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Abstract

This paper develops a new methodology for estimating and testing conditional factor

models in finance. We propose a two-stage procedure that naturally unifies the two existing

approaches in the finance literature–the parametric approach and the nonparametric ap-

proach. Our combined approach possesses important advantages over both methods. Using

our two-stage combined estimator, we derive new test statistics for investigating key hypothe-

ses in the context of conditional factor models. Our tests can be performed on a single asset

or jointly across multiple assets. We further propose a novel test to directly check whether

the parametric model used in our first stage is correctly specified. Simulations indicate that

our estimates and tests perform well in finite samples. In our empirical analysis, we use our

new method to examine the performance of the conditional CAPM, which has generated

controversial results in the recent asset-pricing literature.
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1 Introduction

Since the advance of the Capital Asset Pricing Model (Sharpe 1964; Lintner 1965; Mossin 1966)

and the Arbitrage Pricing Model (Ross 1977), factor models have become one of the most

important tools in modern finance. The existing research literature on both theoretical studies

and empirical analysis is vast (see Campbell, Lo, and MacKinlay 1996 or Cochrane 2005 for

excellent overviews). Although earlier studies tend to focus on the unconditional models (e.g.,

Fama and MacBeth 1973 for CAPM, Fama and French 1993 for a three-factor model), many

recent studies have focused on conditional factor models (e.g., Cochrane 1996; Jagannathan and

Wang 1996; Lettau and Ludvigson 2001; Santos and Veronesi 2006; Lustig and Nieuwerburgh

2005; among many others), because conditional models are theoretically more appealing (e.g.,

Jensen 1968; Dybvig and Ross 1985).

Under a conditional factor model, parameters (i.e., the factor loadings) change with the

investor’s information set, which is unobservable to econometricians. Therefore, it is empirically

challenging to estimate and test a conditional factor model. To tackle this issue, two approaches

have emerged in existing studies. The first approach is the traditional method that specifies fac-

tor loadings to be parametric functions of the state variables, which approximate the investor’s

information set. It has been used in Shanken (1990), Ferson and Harvey (1999), among many

others. This parametric approach has the advantage of clear economic modeling of the condi-

tioning information but also has the disadvantage that the model is very likely to be misspecified.

To avoid the potential misspecification associated with the traditional approach, nonparamet-

ric methods have been proposed for the inference of conditional factor models. An incomplete

list of studies relying on nonparametric approaches in the test of conditional models includes

French, Schwert, and Stambaugh (1987), Bansal, Hsieh, and Viswanathan (1993), Bansal and

Viswanathan (1993), Wang (2003), Lewellen and Nagel (2006), Nagel and Singleton (2011), Ang

and Kristensen (2010), Li and Yang (2011), and Roussanov (2014). However, compared with

the traditional parametric approach, nonparametric approaches have the disadvantage of being

less efficient as evidenced by their slow rate of convergence.

The goal of this paper is to develop a new methodology that unifies the above two ap-

proaches to the inference of conditional factor models. Our approach consists of two stages. In

the first stage, we follow the traditional approach by specifying factor loadings as a parametric

function of state variables. In the second stage, we use nonparametric methods to fit the resid-

uals obtained from the first-stage estimation. Because the parametric models in the traditional

approach are usually carefully built using clear economic intuitions, our two-stage procedure

allows the parametric estimation from the traditional approach to take care of a substantial

portion of the problem first, and then it allows the nonparametric approach to take care of any
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remaining tasks.

To our knowledge, this is the first paper to combine the parametric and nonparametric

approaches in a unified way for the inference of factor models, although ideas similar to ours

have appeared in other finance contexts. For example, in their study of state-price densities, Ait-

Sahalia and Lo (1998) use a two-stage procedure by first transforming the option prices into the

Black-Scholes implied volatilities, and then they use kernel regression to fit nonparametrically

the implied volatility curve/surface. The use of the Black-Scholes option-pricing formula in Ait-

Sahalia and Lo (1998) is very similar to the first-stage parametric estimation in our procedure.

Similar to the Ait-Sahalia and Lo method which does not assume the Black-Scholes option

pricing formula to hold perfectly, our method does not assume that the parametric models used

in the first stage is correctly specified.

Our paper contributes to the literature in several important ways. First, our new method-

ology joins two distinct approaches in the literature on the inference of conditional models in

finance. Because we use a parametric model from the traditional approach in the first step to

get the first-stage estimator, the method retains the desirable feature of traditional methods of

more explicit modeling of the investor’s information set. Since the state variables used in the

traditional approach are usually selected carefully based on economic reasoning, it is reason-

able to expect that after the first-stage estimation in our approach, we have already obtained

a substantial part for the unknown parameter values. The second-stage estimation then uses a

nonparametric technique to take care of any potential model misspecification in the first-stage

estimation, thereby avoiding the pitfalls of model misspecification, an important issue stressed

in Ghysels (1998), Harvey (2001), and Brandt and Chapman (2008), among others.

Second, we establish the asymptotic distributions for our two-stage estimators under both

general conditions and the correct specification of the parametric model in the first stage. These

results illustrate that our new two-stage estimators have some crucial advantages with respect

to both parametric and nonparametric methods. It is well known that the parametric estimator

is inconsistent when the parametric model is incorrectly specified; our new combined estimator,

on the other hand, remains consistent even if the first-stage parametric model is misspecified.

Our two-stage estimator is also superior to the nonparametric estimator of Cai, Fan, and Yao

(2000): if the first-stage parametric model is correctly specified, then our new two-stage estimator

converges at the faster parametric rate; even if the first-stage parametric model is incorrectly

specified, our two-stage estimator still possesses important potential gains in achieving a smaller

asymptotic bias than the nonparametric estimator.

Third, we propose new tests to investigate important hypotheses in the context of con-

ditional factor models, such as tests on conditional alphas and conditional betas. These tests
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can be performed for a single asset or jointly across multiple assets. We derive the asymptotic

distribution of these tests and propose a bootstrap procedure which can be implemented in small

samples.

Fourth, because our combined approach naturally nests the traditional parametric ap-

proach, we can directly test whether or not the parametric model used in the first stage is

correctly specified. This has not been done by existing parametric or nonparametric methods.

The test for the correct specification of the parametric part is important because the parametric

estimation of conditional models is widely used in the literature, and it is well known that all

the -values/critical values from the traditional parametric approach implicitly assume that the

parametric model is correctly specified. If the model is in fact incorrectly specified, then all the

-values (or the critical values) are likely wrong, which could result in misleading conclusions.

Finally, in light of the conflicting results generated from existing parametric and nonpara-

metric methods, we apply our new method to re-evaluate the performance of the conditional

CAPM. The conditioning variables examined in our study are from several recent influential

studies (Jagannathan and Wang 1996; Lettau and Ludvigson 2001; Santos and Veronesi 2006).

In addition to examining the performance of the conditional CAPM in pricing portfolios sorted

by book-to-market ratios, we also formally test whether conditional CAPM betas are time vary-

ing and whether the first-stage parametric form is correctly specified.

The rest of this paper is organized as follows. Section 2 develops our new methodology that

combines the existing two approaches. Section 3 describes the simulation studies, and Section

4 provides empirical analysis. Section 5 concludes the paper. All proofs are relegated to the

technical appendix.

Notation. For natural numbers  and  we use  to denote an × identity matrix, 1× is
an ×  matrix of ones, and 0× is an ×  matrix of zeros. Let ⊗ and ¯ denote the Kronecker
and Hadamard products, respectively. For a matrix  > denotes its transpose and kk its
Euclidean norm (kk = {tr(>)}12). We use → to denote convergence in distribution.

2 Statistical Methodology

In this section, we develop our new approach to estimate and test conditional models.

Let  = (1 · · ·  )
> denote a vector of asset returns on  assets. The traditional

unconditional -factor model attempts to explain the returns  of asset  by a linear model

of factors  = (1 · · ·  )>:
 = >  +  (2.1)
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where  is a  × 1 vector of factor loadings that is usually assumed to be constant over time,
and  is the usual error term. The conditional factor model extends the above unconditional

factor model (2.1) by allowing the vector of factor loadings  to depend on the information

set F−1 available to the investor at time − 1:  = (F−1) where (F−1) is a function of

the investors’ information set F−1 at time − 1 and hence can be time-varying. To make the
inference feasible, we assume that (F−1) depends on F−1 only through a finite -dimensional
vector , i.e., (F−1) = () As a result, the conditional factor model that we will study

in this paper is

 =  ()
>  +  (2.2)

where the coefficient () depends on the state variable  through a vector of unknown

functions (·) and we allow the error term  to exhibit heteroskedasticity, serial correlations,

and cross-sectional dependence across different asset . The model in (2.2) will be regarded

as the true model in our subsequent analysis. Throughout this paper, we assume that the

conditioning variable  is observable, but this assumption can be relaxed as in Mishra, Su, and

Ullah (2010).

2.1 A Semiparametric Approach to the Conditional Factor Model

In this section, we propose a two-stage procedure to estimate the conditional factor model in

(2.2). In the first stage of our procedure, we assume that a parametric model for the factor

loadings is available to us:

 () = ( ) (2.3)

where  is an unknown parameter and  is a  × 1 vector of functions whose functional forms
are assumed to be known. Different asset-pricing models can provide different ; for exam-

ple, Lettau and Ludvigson (2001) propose  as the consumption-to-wealth ratio, Santos and

Veronesi (2006) propose  as the labor-to-income ratio, and all of these models can be used

in the estimation of (2.3). In the extreme case in which no  is available, one can always use

the null (empty) model or the constant model in the first stage, and in this case our combined

approach will reduce to a pure nonparametric one.

Once the above parametric specification for  has been chosen, we can estimate  in the

model  = ( )
> +  by several ways such as the nonlinear least squares (NLS) and

quasi-maximum likelihood methods. In this paper we focus on the NLS estimator ̂ of   which

gives us our first-stage parametric estimator ( ̂) for (). After the first-stage estimation

is done, we obtain the residuals as

̂ =  − ( ̂)
>. (2.4)
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In the second stage, we explore the remaining information in the residuals ̂ by estimating

nonparametrically the following model:

̂ = ()
> + , (2.5)

where  is a ×1 vector of functions whose functional forms are unknown. Although there are
many ways to estimate in the nonparametric literature, we consider the local linear estimator

in this paper due to its simple structure of asymptotic bias and its automatic boundary bias

correction mechanism (see Fan and Gijbels 1996). In the finance literature, the local linear

estimator has become popular (e.g., Ait-Sahalia and Duarte 2003; Nagel and Singleton 2011).

Once we obtain the nonparametric estimator ̂ (·) of  (·)  our two-stage estimator for
(·) can be obtained additively as follows:

̂() = ( ̂) + ̂() for any  (2.6)

due to the linear structure of the original conditional model in  In some sense, one can regard

̂ () as a nonparametric correction term added to the first-stage parametric estimator ( ̂)

Ideally, this term is not needed if the the first-stage parametric model is correctly specified (which

we do not assume), otherwise it plays an important role.

Because our new estimator of ̂() is the sum of the first-stage parametric estimator

( ̂) and a second-stage nonparametric estimator ̂(), we also call our two-stage estimator

as a semiparametric estimator. It is worth mentioning that the idea of semiparametric combined

estimation has appeared in the econometric and statistics literature. See Glad (1998), Fan and

Ullah (1999), Mishra, Su, and Ullah (2010), Long, Su, and Ullah (2011) and Su, Murtazashvili,

and Ullah (2013) for different approaches in the standard conditional mean and variance models.

Our additive semiparametric approach is closely related to the work of Martins-Filho, Mishra,

and Ullah (2008), who demonstrated that for the estimation of unknown conditional mean

function, the local polynomial estimator, the multiplicatively combined estimator of Glad (1998),

and the additively combined estimator like that in (2.6) can all be regarded as the minimization

of a suitably defined Cressie-Read discrepancy. Nevertheless, to the best of our knowledge, our

paper is the first to consider combined estimation for the conditional factor models in finance.

To see the motivation for our approach, note that (2.4) and (2.2) imply that

̂ =  − ( ̂)
>

=  +
£
 ()− ( 

0
 )
¤>

 −
£
( ̂)− ( 

0
 )
¤>



=  + ()
>  −  ()

>  (2.7)
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where  () = ( ̂)− ( 0 ) represents the estimation error from the first-stage parametric

regression and

 () =  ()− ( 0 ) (2.8)

represents the remaining information about  that cannot be explained by the fitted para-

metric conditional factor model in the first stage.

The last expression provides intuition for our two-stage semiparametric approach. If the

first-stage parametric model  (· ·) is correctly specified, then we expect that no useful informa-
tion should be retained in the residual ̂ because the nonparametric function  () is now

identically zero. The second-stage nonparametric estimate of such a zero function can be accu-

rate enough so that adding the second-stage nonparametric correction term ̂ () to ( ̂)

as in (2.6) will not affect the latter’s asymptotic distributional property. On the other hand, if

the first-stage parametric model  (· ·) is misspecified, then much information about the returns
will be carried on to the residual ̂ through the nonparametric correction term  (·), and the
second-stage nonparametric regression will pick up extra useful information about the returns.

In this case, it is easy to show that the parametric estimator ( ̂) is inconsistent for  (),

whereas our semiparametric estimator ̂() remains consistent.

Now, we discuss how to use the local linear method to obtain the nonparametric estimator

for   Let  (·) denote the th element of  (·) for  = 1 · · ·   and  = 1 · · ·   Assume

that  (·) has a second-order partial derivatives. For any given  and  in the neighborhood

of  it follows from a first-order Taylor expansion that  () ≈  () + ̇ ()
> ( − ),

where ̇ () =  ()  To estimate { ()} and {̇ ()}  we choose {} and {}
to minimize

X
=1

"
̂ −

X
=1

n
 + > (( − ))

o


#2
 ( − )  (2.9)

where  (·) =  (·)   (·) is a product kernel function defined by () = Π=1 ()   (·)
is a symmetric probability density function (PDF) on the real line, and  =  ( ) is a bandwidth

that typically shrinks to 0 as the sample size  goes to infinity. Let ̂ () and ̂ () denote

the solution to the above minimization problem. Then, the local linear regression estimator

for  () is given by ̂ () = ̂ () for  = 1 · · ·   and ̂ () = (̂1 ()  · · ·  ̂ ())
>

is the local linear estimator of  ()  To obtain the expression for ̂ ()  let X denote an

 ×  (1 + ) matrix with  () = (
>
  > ⊗ (( − ))>) as its th row, where ⊗ denotes

the Kronecker product. Let ̂ = (̂1 · · ·  ̂ )> and K =diag{1 2 · · · } where
 =  ( − ) for  = 1 2 · · ·   Then it is easy to verify that

̂ () = s
³
X>KX

´−1
X>K̂  (2.10)
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where s =(0×)   is an  ×  identity matrix, and 0× is a  ×  matrix of zeros.

Note that for notational simplicity we use the same bandwidth  for all conditioning variables

in . In practice, it is advisable to choose  as a vector of bandwidths if the spreads of different

elements of  are quite different from each other. Then we can use h = (1 · · ·  ) to denote
the bandwidth, and  ( − ) changes to h ( − ) = Π=1 (( − ))  The results

in the following analysis can easily be adjusted to accommodate this case with a little bit more

complicated notation.

Intuitively, () specifies how ̂, which contains the remaining information in  after

the first-stage estimation, varies with the factor  when the state variable  = . For any asset

, we can obtain the first-stage parametric estimator ( ̂) and the second-stage nonparametric

estimator ̂(). Our combined semiparametric estimator for asset  is

̂() = ( ̂) + ̂()

We will study the asymptotic properties of ̂() in the next two subsections.

2.2 Asymptotic Distribution of ̂() Under General Conditions

In this section, we show that our semiparametric estimator has asymptotic normal distribution

under general nonparametric assumptions. Notably, compared with the pure nonparametric

estimator, our semiparametric estimator has potential gains in the reduction of asymptotic bias.

Furthermore, we will demonstrate in the next section that our estimator can converge at the

faster parametric
√
 -rate when the parametric part is correctly specified.

Some notations are needed to state our result. Let  (·) denote the PDF of  and set

12 =
R
R 

1 ()2  for 1 2 = 0 1 2. The following result shows that our semiparametric

estimator ̂ () has asymptotic normal distribution.

Theorem 1 Assume that Assumptions A1-A4 in the Appendix hold. Then, for each interior

point  in the support of , we have

√


h
̂ ()−  ()− 2 ()

i
→  (0Σ ())   = 1 · · ·   (2.11)

Here,  () =
1
2
21 ()   () = (

P
=11 ()  · · · 

P
=1 ())

>
with 12 ≡

2()

12
for   = 1 · · ·   and 1 2 = 1 · · ·  ; Σ () = 02Ω()

−1Ω∗()Ω()
−1 () 

Ω () = E(> | = ) Ω∗ () = E[
>
  ( ) | = ] and  ( ) = E[| = 

 =  ]
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Remark 1. The above result does not need the assumption that the first-stage parametric

model is correctly specified. It can be used to construct confidence bands for the parameters

in the conditional factor models. To this goal, one can estimate  ()  Ω (), and Ω
∗
 ()

respectively by ̂ () =
1


P
=1 ( − )  Ω̂ () = 1



P
=1 

>
  ( − ) ̂ ()  and

Ω̂∗ () =
1


P
=1 

>
 ̃̃ ( − ) ̂ ()  where ̃ is the residual obtained from our

semiparametric fit: ̃ =  − ̂ ()
>  It is standard to justify that the above estimators

are consistent.

Remark 2. Many applications in finance involve multiple assets or portfolios. Theorem 1

can be extended to cover the situation easily. Suppose that we have  assets and our interest

is not to estimate the coefficients for a single asset  (which can be done using Theorem 1), but

to estimate the collection of estimators ̂ ()   = 1 · · ·   Let β () collect the coefficients

from  different assets, and let β̂ () denote the semiparametric estimator for β (): β () =

(1 ()
|    ()

|)| and β̂ () = (̂1 ()
|   ̂ ()

|)| Following the proof of Theorem 1

and the Cramér-Wold device, we can readily show that
√


³
β̂ ()− β ()− 2B ()

´
→

 (0Σ ())  where

B () =

⎛⎜⎜⎝
1 ()
...

 ()

⎞⎟⎟⎠ and Σ () =

⎛⎜⎜⎝
Σ11 () · · · Σ1 ()
...

. . .
...

Σ1 () · · · Σ ()

⎞⎟⎟⎠ 

Note that because we allow cross-sectional dependence among ’s, the variance-covariance ma-

trix Σ () is not block-diagonal. On the other hand, as expected, the serial dependence in 

does not contribute to the asymptotic distribution of β̂ () after local smoothing. To implement

the above asymptotic distribution in practice, the quantities involved in the asymptotic distrib-

utions for β̂ can be estimated consistently by their sample analogs, very similar to the one-asset

case that we have discussed before.

Remark 3. It is very helpful to compare our two-stage estimator to one-step local linear

estimator of Cai, Fan, and Yao (2000). It is well known that the pure one-step local linear

estimator ̃ () of  () in (2.2) has the asymptotic distribution of

√


h
̃ ()−  ()− 2̄ ()

i
→  (0Σ ())  (2.12)

where ̄ () is analogously defined as  () but with  () being replaced by

̄ () =

"
X

=1

1 ()  · · · 
X

=1

 ()

#>
with 12 () =

2 ()

12
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and  () denotes the -th element in  ()  Apparently, comparing the results in Theorem 1

with that in (2.12), we find that our two-step semiparametric estimator ̂ () shares the same

asymptotic variance as the one-step nonparametric estimator ̃ (), but they have different

asymptotic biases. If the first-stage parametric model in our combined procedure can reasonably

capture the curvature of the unknown function  (·) at the point of interest  then one can
demonstrate that our two-step semiparametric estimator ̂ () has smaller asymptotic bias

than ̃ ()  To see the last point clearly, we focus on the case where  = 1 and compare the

asymptotic biases of the first element ̂1 () of ̂ () with that of the first element ̃1 ()

of ̃ ()  The leading asymptotic bias term of our two-stage estimator ̂1 () can be written

as 1 () =
1
2
21

21()

2
and that of Cai, Fan, and Yao’s (2000) one-stage estimator ̃1 ()

is given by ̄1 () =
1
2
21

21()

2
 It follows that our two-stage estimator will achieve bias

reduction in comparison with the one-stage estimator if one can fit the first-stage parametric

model such that ¯̄̄̄
21 ()

2

¯̄̄̄


¯̄̄̄
21 ()

2

¯̄̄̄
 (2.13)

In other words, if the parametric function 1(· 0 ) can capture some of the shape features of
1 (·) at  1 (·) will be less rough than 1 (·) at  so that (2.13) can be satisfied and we
achieve bias reduction. The bias reduction condition in (2.13) is analogous to that in Glad (1998)

and crucially depends on whether the first-stage parametric model is reasonably good or not.

In the special case where 21 () 
2 = 21( 

0
 ) 1 () = 0 and our semiparametric

estimator is asymptotically unbiased up to the order (2) and thus more efficient than the one-

step local linear estimator. If the first-stage parametric model 1 (· ) is correctly specified, i.e.,
1 () = 1( 

0
 ) a.s. for some 

0
  then such a derivative condition is automatically satisfied

and we demonstrate below that our two-stage estimator can achieve the parametric
√
 -rate of

consistency under certain conditions whereas the one-stage estimator can only achieve the usual

nonparametric rate of consistency.

Remark 4. As a referee kindly points out, several nonparametric and semiparametric

methods have been recently proposed to estimate functional/time-varying coefficient models.

For example, Su, Chen, and Ullah (2009) allow both continuous and discrete variables in the

vector  of state variables. But they focus on the one-step local linear estimation as in Cai,

Fan, and Yao (2000). Gao, Gu, and Hernandez-Verme (2012) consider a special semiparametric

varying coefficient model

 =  ()
>  +  () + 

where  () is a ×1 vector of unknown smooth functions of   () is a scalar function, and

 is the error term. Apparently, the above model is a special functional coefficient model when

one factor is replaced by the deterministic time trend  and is applicable to the case when 
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may exhibit non-stationary feature. They also consider the one-stage local linear estimation but

their estimators of  () and  () have different convergence rates because of the appearance

of the time trend. Sun and Wu (2005) consider a semiparametric time-varying coefficient model

for longitudinal data:

 () =  ()>  I () +  (; )>  II () +  () 

where  = 1   denote the individuals,  denotes time, the functional coefficient  () is a

vector of unspecified smooth functions of ,  (; ) is a vector of smooth functions of  known

up to the finite dimension parameter   () is the error term, and the observations of  () are

taken at time points 1  2     with  denoting the total number of observations on

the th object. Note that the regressors  I () and  II () are not common factors. The above

model represents a functional coefficient unbalanced panel data model (without individual fixed

effects) and is more complicated than the model considered in this paper. Sun and Wu (2005)

propose two ways to estimate the above model and argue that one way is more efficient than

the other. In addition, Borak and Weron (2008) consider the model:

 =  ()
>  +  = 0 () + 1 ()1 + +  () + 

where  = 1    = 1    = (1  )
> is a  × 1 vector of unobserved common

factors,  is observed,  (·) = (0 (·)  1 (·)    (·))> is ( + 1)-vector of unknown smooth
functions, and  is the error term. Borak and Weron term the above model as semiparametric

dynamic factor model (DSFM) and apply it to model the electricity forward curve dynamics.

Park, Mammen, Härdle, and Borak (2009) propose an iterative algorithm to fit the model and

study the asymptotic properties of the resulting estimators, but they do not have any asymptotic

distributional results.

2.3 Asymptotic Distribution of the Estimator ̂ () under the Correct Spec-

ification of the Parametric Part

Having established the asymptotic distribution for our semiparametric estimator under general

conditions, we proceed to study the asymptotic properties of ̂ () when the parametric model

in the first stage is actually correctly specified. We show that when the parametric part of

the model is correctly specified, our two-stage estimator converges to the true  at the faster

parametric
√
 -rate when holding the bandwidth  constant. Note that the assumption that

the parametric part is correctly specified is equivalent to

( 
0
 ) =  () almost surely (a.s.) for some 

0
  (2.14)
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Recall that Theorem 1 implies that when  → 0 as  → ∞ the first-stage parametric

estimator does not contribute to the asymptotic variance of our semiparametric estimator ̂ () 

and the serial dependence among  does not play a role either. Nevertheless, this is not the

case when  is held fixed. The following theorem indicates that when  is held fixed, both the

first-stage estimation and the serial dependence in the process {} play important roles in the
asymptotic distribution of our semiparametric estimator ̂ () 

Theorem 2 Suppose Assumptions A1-A3 and A5 in the Appendix hold. Suppose (2.14) holds.

If  is held fixed as  →∞ then we have

√

h
̂ ()−  ()

i
→ 

¡
0 Σ̄ ()

¢
  = 1 · · ·  (2.15)

where Σ̄ () = E[̄1̄>1]+
P∞

=2 E[̄1̄
>
+̄̄

>
1] denotes the long-run covariance of the process

{(̄ ̄)  ≥ 1} with ̄ = [s̄ ()−1 ̄ () +Λ̄ ()(
0
 )] Here, ̄ () = E [ ()] ;

(
0
 )  ()  and ̄ () are respectively defined in (A.2), (B.2) and (B.9) in the Appendix;

Λ̄ () = ( 
0
 )− s̄ ()−1 E[̄

>
 ( 

0
 )] with  ( ) ≡  ( ) 

>
 

Remark 5. Theorem 2 indicates that under the correct specification of the parametric

conditional model, ̂ () is asymptotically unbiased up to 
¡
−12

¢
 The asymptotic variance

of ̂ () has a quite complicated formula because it is affected by the first-stage parametric

estimation through the term (
0
 ) in the definition of ̄ and the serial dependence among

{}  In general, we cannot simplify this formula as we keep  fixed. But as we show in

the appendix, Λ̄ () =  (1) provided  =  (1)  so that the contribution from the first-stage

parametric estimation will be asymptotically negligible by permitting → 0.

Remark 6. To compare our estimator with the parametric estimator ( ̂) of (),

we consider two situations:  → 0 as  → ∞, and  being fixed. In the case where  → 0

as  → ∞ Theorem 1 indicates that when the parametric component is correctly specified,

our estimator is usually less efficient than the parametric one since our estimator has a slower

convergence rate in this case, as expected. In the case where  is kept fixed, Theorem 2 indicates

that our estimator converges at the parametric
√
 -rate. In this sense, we say that our estimator

is as good as the parametric estimator in terms of convergence rates when  is kept fixed, which

is consistent with Glad (1998) even though she did not explicitly point this fact out. In contrast,

Fan and Ullah (1999) consider a combined estimator of the regression mean in the cross section

framework with independent and identically distributed (i.i.d.) observations. Their combined

estimator is a linear combination of a parametric estimator and a nonparametric estimator with

the weights automatically determined by the data. The parametric rate of convergence of their

estimator in case of correct parametric specification can be achieved by letting the bandwidth

12



approach zero.

In the multiple-asset case, a similar result holds. Following the proof of Theorem 1 and the

Cramér-Wold device, we can also show that
√

³
β̂ ()− β ()

´
→ 

¡
0 Σ̄ ()

¢
 where Σ̄ () is

defined analogously as Σ () with typical block Σ () being replaced by Σ̄ () 

2.4 Tests for the Constancy of Coefficients and the Correct Specification of

the Parametric Part

In this section, we develop tests for testing important hypotheses in empirical finance studies.

2.4.1 Hypotheses and test statistics

To state the hypothesis testing problem, we first split up the set of factors in  into two

components:  I = (1  1)
> and  II = (1+1  )

>. As before, to keep notation

compact, we focus on the test for a single generic asset  and make remarks on the more

general case. Correspondingly, the coefficients  () are also partitioned into two components:

I () = (1 ()  · · ·  1 ())> and II () = (1+1 ()  · · ·   ())>  and the original

factor model (2.2) can be written as

 = I ()
>  I + II ()

>  II +  (2.16)

The first hypothesis of interest to us is to test for the constancy of the first set of coefficients

I () for 
I
 while allowing the second set of coefficients 

II
 () for 

II
 to depend on the set of

exogenous regressors  Formally, the general form of the null and the alternative hypotheses

can be formulated as

H(1)0 : I () = I a.s. for some parameter 
I
 ∈ R1  (2.17)

H(1)1 : negation of H(1)0 

In other words, under the null hypothesis H(1)0 , 1 of the  coefficients in  () are constant

over , whereas under the alternative at least one of the 1 coefficients in 
I
 () is not constant.

It should be noted that the above formulation covers two interesting hypotheses in the

context of conditional factor models in finance–the case of constant alphas:

H()0 : I () = I ∈ R with 1 = 1 
I
 = 1

13



and the case of constant betas:

H()0 : I () = I ∈ R−1 with 1 =  − 1  I = 

where we recall that  denotes the set of non-constant factors in  If we are interested in

whether the conditional alphas are equal to zero, we can simply test H()0 by setting I = 0.

The hypothesis of H()0 can be used to test whether the conditional betas are constant.

To test H(1)0 , we propose a Wald-type test statistic that has the advantage of requiring

only a one-time consistent estimation of the unrestricted model. Our proposed test statistic is

1 = 2
X
=1

°°°̂I ()− ̂I

°°°2  (2.18)

where ̂I () is the first 1 element of ̂ (), ̂
I
 = −1

P
=1 ̂

I
 () is an estimator of 

I
 under

H(1)0  and k·k denotes the Frobenius norm. Clearly, if I is known, as in the cases of testing
conditional alphas and betas, then one can replace ̂I by the known value of 

I
 , which will not

affect the asymptotics developed below.

Another important hypothesis in finance concerns whether the parametric part is correctly

specified. This hypothesis is important because the usual -stat derived from fitting a para-

metric model implicitly assumed that the parametric model is correctly specified. If in fact the

parametric model is misspecified, then all the reported statistics such as the -stat will be wrong.

Hence, it is very desirable to test for whether the parametric part is correctly specified, given

that the parametric estimation of conditional factor models is widely used in the literature.

One important feature of our approach is that it naturally nests the parametric model in the

first stage into a nonparametric setup, and hence it can provide a direct check for the correct

specification of the parametric model. This has not been done for the existing methods that

have been proposed in the literature.

Recall that in our approach  () =  () − ( 0 ) and hence the assertion that the

parametric part is correctly specified is equivalent to the assertion that the  () is zero.

Specifically, the null hypothesis of correct specification of the parametric part can be formulated

as

H(2)0 :  () = 0×1 a.s. (2.19)

The alternative hypothesis H(2)1 is the negation of H(2)0  To test the above hypothesis of correct
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specification of the parametric part, we propose the following test statistic

2 = 2
X
=1

°°̂ ()− ̂

°°2  (2.20)

where ̂ = −1
P

=1 ̂ () serves as an estimator of 0×1 under H
(2)
0  Alternatively, one can

consider ̄2 = 2
P

=1 k̂ ()k2  which is asymptotically equivalent to 2 under H
(2)
0 

In the next subsection, we develop the asymptotic distribution for our test statistics 1

and 2 under general conditions.

2.4.2 Asymptotic distributions of the test statistics

It can be shown that under mild regularity conditions, ̂I converges to I at the
√
 -rate. In

this section, we show that our test statistic for testing the constancy of the coefficients follow

an asymptotic normal distribution.

Theorem 3 (Test for Constancy of Coefficients) Suppose that Assumptions A1-A4 and

A6-A8 in the Appendix hold. Suppose that 2+4 → 0 as  →∞ Then,

1 −s1
→ (0Θs1) under H

(1)
0  (2.21)

where s1 =
2

2

P
=1

P
=1 ks1 ( )k2  s1 ( ) = s1s̄ ()

−1 ̄ ();

Θs1 = lim
→0

2EE [̄s1 ( ) ̄s1 ( )] = ̄

Z °°°s1Ω ()−1Ω∗ ()Ω ()−1 s>1 °°°2 
̄ =

R
[
R
 ()  (+ ) ]2 ̄s1 ( ) =

R
s1 ( )

> s1 ( )  ()   =
¡
>  >  

¢>


 denotes the CDF of  and E denotes expectation with respect to variables indexed by time

 only.

Remark 7. If  ≤ 3 as in most applications, the above theorem also holds if we replace

s1 by its nonstochastic version: s1 = −202trace(s1
R
Ω ()−1Ω∗ ()Ω ()

−1 s|1)

where 02 = 27 (32
√
) ' 04760 for the standard normal kernel. As before, the extra condition

on the bandwidth in the above theorem ensures that the bias term from the nonparametric

regression does not contribute to the asymptotic distribution of 1  If we do not assume that

the first-stage parametric model is correctly specified, then clearly undersmoothing is needed

here. Nevertheless, if we assume that the first-stage parametric model is correctly specified, then

 () = 0 a.s., and this extra condition is not required any more.
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To implement the test in finance applications, we need to consistently estimate s1 and

Θs1  This can be done using

̂s1 ≡
2

 2

X
=1

X
=1

k̂s1k2 and Θ̂s1 =
2

 ( − 1)
X
=1

X
6=

"
1



X
=1

̂>s1̂s1

#2


where ̂s1 = s1s ()
−1 ̄ ()̃ Equivalently, Theorem 3 can be stated more conve-

niently as follows:

̂s1 ≡
1 − ̂s1q

Θ̂s1

→  (0 1) under H(1)0  (2.22)

This is due to the fact that ̂s1 −s1 =  (1) and Θ̂s1 −Θs1 =  (1)  which can be

justified easily. In applications, one can compare ̂s1 with the one-sided critical value  the

upper  percentile from the  (0 1) distribution, and reject the null at the asymptotic nominal

level  if ̂s1  

The next theorem establishes the asymptotic distribution of our statistic for testing the

correct specification of the parametric part.

Theorem 4 (Test for Correct Specification of Parametric Part) Suppose that Assump-

tions A1-A4 and A6-A8 in the Appendix hold. Then,

2 −
→ (0Θ) (2.23)

under the null hypothesis H(2)0  where  and Θ are analogously defined as s1 and

Θs1, with the selection matrix s1 being replaced by the  ×  identity matrix 

Remark 8. Note that the above theorem does not require that 2+4 → 0 as  → ∞
as in Theorem 3. The reason is that under H(2)0   () = 0 a.s., so that the asymptotic bias

from the second-stage nonparametric estimation vanishes automatically. Following the remark

after Theorem 3, a feasible version of 2 is given by

̂ ≡
2 − ̂q

Θ̂

 (2.24)

which is asymptotically distributed as  (0 1) under H(2)0  Here, the definitions of ̂ and

Θ̂ follow from those of ̂s1 and Θ̂s1 , with s1 being replaced by 
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2.4.3 Joint tests for multiple assets

In many applications, it is of interest to test whether (2.17) or (2.19) holds for multiple assets.

In this case, the null hypothesis will be either

H(1)0 : I () = I a.s. for  = 1 2 · · ·   (2.25)

or

H(2)0 :  () = 0×1 a.s. for  = 1 2 · · ·   (2.26)

Natural test statistics for H(1)0 and H(2)0 would, respectively, be

̂s1 ≡
P

=11 −
P

=1 ̂s1qP
=1

P
=1 Θ̂s1

(2.27)

and

̂ ≡
P

=12 −
P

=1 ̂qP
=1

P
=1 Θ̂

 (2.28)

where Θ̂s1 =
2

 (−1)
P

=1

P
6=(

1


P
=1 ̂

>
s1

̂s1)(
1


P
=1 ̂

>
s1

̂s1) and Θ̂ is anal-

ogously defined. Following the proof of Theorems 3 and 4, we can readily show that under

hypothesis H(1)0 , ̂s1
→  (0 1) as  →∞ and under H(2)0  ̂

→  (0 1) as  →∞

2.4.4 A Bootstrap Version of Our Test

It is well known that many nonparametric tests based on their asymptotic normal null distri-

butions may perform poorly in finite samples. We follow the literature (e.g., Hansen 2000; Su

and Ullah 2013; Su, Murtazashvili, and Ullah 2013 (SMU hereafter)) and recommend using the

fixed-design wild bootstrap method to obtain the bootstrap -value for our test statistics.

Below we focus on the case of testing H(1)0 : I () = I a.s. using statistic ̂s1 as the

case for other test statistics is similar. The method can be described as follows:

1. First, obtain the semiparametric estimate ̂ () = (̂I ()
>  ̂II ()

>)> by using the

bandwidth ∗ and kernel function  and calculate the unrestricted residuals ̃ =  −
̂ ()

> .

2. Generate the wild bootstrap residuals {̂},  = 1 · · ·   from the centered fitted resid-

uals ̂ = ̃ − ̃ with ̃ =
1


P
=1 ̃.

3. Define the bootstrap sample ∗ = [̂
I
 ]
> I + ̂II ()

>  II +∗ with 
∗
 = ̂ ·, where

17



{}=1 is a sequence of i.i.d. random variables with zero mean and unit variance that are
independent of the data. If I is known, then ̂I = I ; otherwise, set ̂

I
 ≡ 1



P
=1 ̂

I
 () 

4. Calculate the bootstrap test statistic ̂ ∗
s1

in the same way as ̂s1 using the bootstrap

sample {∗  } and the same bandwidth  and kernel function  as used to obtain

̂s1 .

5. Repeat the above steps 1-4  times to obtain  bootstrap test statistics and label them

as {̂ ∗()
s1

}=1. The bootstrap -value for ̂s1 is defined as 
∗ = −1

P
=1 1(̂

∗()
s1

≥
̂s1 ). We reject the null hypothesis H(1)0 if ∗ is smaller than the prescribed level of

significance.

Remark 9. The above algorithm is similar to that in SMU who consider testing the

correct specification of functional coefficient based on local linear GMM estimation in the cross

section setting. We obtain the unrestricted residuals in Step 1 and center them to ensure zero

sample mean in Step 2. The centering is commonly used but not required for the asymptotic

theory because the way  is generated in Step 3 can ensure the bootstrap error term ∗ to

have zero mean conditional on the data. Note that in Step 3 we impose the null hypothesis

H(1)0 : I () = I a.s. whereas SMU impose the null hypothesis: H()0 :  () =  a.s.

The latter is typically stronger than the tested one (unless 1 = ) but can facilitate the

justification of the asymptotic validity of the bootstrap procedure. As SMU remark, either

way is fine and has both pros and cons. The way we generate the bootstrap resample requires

that we should use oversmoothing bandwidth ∗ to obtain ̂ () used in the construction of

the bootstrap observations ∗; see Härdle and Marron (1991) for the explanation. In the

simulation and application below, we generate {}=1 as an i.i.d. sequence from the standard

normal distributions. After the bootstrap sample is generated, then one recalculate the bootstrap

statistics and -values as stated in Steps 4 and 5.

Remark 10. Following SMU and Härdle and Marron (1991), we can justify the asymptotic

validity of the bootstrap test. Intuitively, because we impose H(1)0 in Step 3, the bootstrap test

statistics {̂ ∗()
s1

}=1 have the asymptotic distribution  (0 1) no matter whether the original

sample is generated under this null hypothesis or not. Note that the original test statistic ̂s1

is asymptotically  (0 1) under H(1)0 and our bootstrap statistic has the same asymptotic

distribution. This ensures the correct asymptotic size of our bootstrap test. Further, one can

follow SMU and show that the original test statistic ̂s1 diverges to infinity at the rate 
2

under the alternative whereas the bootstrap test statistics {̂ ∗()
s1

}=1 remain asymptotically
distributed as  (0 1). This ensures the consistency of our bootstrap test.

As a referee kindly points out, it is possible to consider other resampling schemes. For

example, it is well known that subsampling also works in a variety of hypothesis testing problems
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and it does not need to impose the null hypothesis to generate the resampling data; see Politis,

Romano, and Wolf (1999). Nevertheless, subsampling typically does not work as well as a

bootstrap method in terms of asymptotic power when the latter works. To see this, let  be

a sequence of positive integers such that  → ∞ and   → 0 as  → ∞ Let ̂ ∗∗
s1

be

the subsampling analogue of ̂s1 based on a subsample of {  } with  observations.
Under the null hypothesis, both ̂s1 and ̂ ∗

s1
are asymptotically distributed as  (0 1) 

which ensures the correct asymptotic size for the subsampling-based test. Under the alternative,

̂s1 diverges to infinity at a speed faster than ̂ ∗∗
s1

 which ensures the asymptotic power

of the subsampling-based test but at the same time indicates such an asymptotic power is lower

than that of the bootstrap-based test because ̂ ∗
s1

remains asymptotically distributed as

 (0 1) even if the alternative hypothesis holds. Other bootstrap methods like moving block

bootstrap or stationary bootstrap take into account the weak dependence structure in the data

and may also work for our testing problem. For example, Hwang and Shin (2012) have recently

justified the asymptotic validity of the stationary bootstrap applied to kernel estimators of

densities and derivatives. We conjecture that we can also generate the bootstrap observations

{∗   ∗ } via the stationary bootstrap first and then obtain {∗} as in Step 3 by replacing
{ } by {∗   ∗ }  and then justify the asymptotic validity of such a bootstrap method. We
leave the formal study of such a bootstrap procedure in future research.

2.5 Choice of Bandwidth and Kernel Function

In this section, we discuss the choice of the bandwidth and the kernel function for our methods.

It is well known that the choice of bandwidth parameter plays a critical role in many kernel-

based nonparametric inferences. It is desirable to have a reliable bandwidth selection procedure

that is data-driven and yet easily implementable.

For the estimation of  (), several approaches are possible. One approach is to apply a

“plug-in” method to obtain an estimate of  as described in Fan and Gijbels (1996) (Ch. 4.2 for

the single regressor case). Without assuming the correct specification of the parametric part,

we can consider choosing  to minimize the asymptotic mean integrated squared error (AMISE)

of our estimator ̂ (). As long as the second derivatives of the ( 
0
 ) and  () with respect

to  do not fully match each other, the resulting “optimal” bandwidth ∗ converges to zero at

the rate −1(+4) However, as Mishra, Su, and Ullah (2010) remarked, such an approach can

not be easily implemented in the case of combined estimation for two reasons. First, since ∗
depends on several unknown quantities that need to be estimated by some pilot bandwidth, the

performance of our estimate ̂ () will be contingent upon the choice of such a pilot bandwidth

and the estimates of these unknown quantities. Second, the AMISE can not be minimized in the
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case of correct parametric specification because Theorem 2 implies that the optimal bandwidth

should now be a fixed, finite constant.

In this paper, we consider two data-driven ways to choose the bandwidth to obtain the

estimate ̂ (). One is to use the leave-one-out least squares cross validation (LSCV) to obtain

choices of data-driven bandwidth, and the other is to adopt the bias-corrected AIC (AIC)

of Hurvich, Simonoff, and Tsai (1997). To allow different variations of conditioning variables

in  = (1  )
>  we choose h = (1  ) to minimize the following LSCV criterion

function

CV (h) =
1



X
=1

³
̂ − ̂

(h)
−()

>
´2

() (2.29)

where ̂ is the residual from the first-stage parametric regression, ̂
(h)
− is the second-step

local linear estimator obtained using all observations except the one at time , and  (·) is a
nonnegative weight function, e.g., () = Π


=11

©°° − ̄

°° ≤ 2ª, with ̄ and  being the

sample mean and standard deviation of , respectively.

To consider the AIC criterion, we need to find the effective number of parameters. Let

 denote a  × 1 vector with one in the th position and zeros elsewhere. Let  () ≡
> s

¡
X>KX

¢−1
X>K a 1× vector. Then the local linear estimate ̂ () of () is given

by ̂ () =  () ̂  Let  ≡
³
 (1)

>    ( )
>
´>

and ̂ ≡ (̂ (1)   ̂ ( ))
>

Then ̂ = ̂ and

̂2 ≡ 1



X
=1

h
̂ − ̂()

>
i2
=
1



°°°°°̂ −
X
=1

³
̂

´
¯F

°°°°°
2

=
1



°°°( −) ̂

°°°2
where ¯ denotes the Hadamard product, F = (1   )

| for  = 1   and  =
P

=1 ¯
(F11× ) is the  × “hat matrix”. Note that we have suppressed the dependence of   and

̂2 on the bandwidth. Analogous to the case of linear regression models, the effective number

of parameters in our model is given by tr()  Then the AIC of Hurvich, Simonoff, and Tsai

(1997) is defined as follows:

AIC = log
¡
̂2
¢
+ 1 +

2{tr () + 1}
 − tr ()− 2 

One chooses the bandwidth by minimizing the above AIC criterion.

Hart and Vieu (1990) claimed that the usual leave-one-out LSCV is robust to moderate

amount of dependence in the data but some improvement can be obtained by considering leave-

(2+ 1)-out LSCV with  ≥ 1 when the data are sufficiently highly dependent. Yao and Tong
(1998) argued that this is true only for regressions with fixed design and thus it does not apply
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to our setup with random covariates. Huang and Shen (2004) compared the finite sample

performance of AIC, AIC BIC, and the modified cross-validation (MCV) of Cai, Fan, and Yao

(2000) in their spline polynomial estimation of functional coefficient models for nonlinear time

series, and found that the AIC and AIC behave similarly and both outperform the BIC and

MCV. So in this paper, we focus on the comparison of AIC with the LSCV method.

For the hypothesis testing part, to construct the test statistics, we will consider the sensi-

tivity of our test for different choices of bandwidth by setting h = 
−1(2+3) for different

values of  (say,  = 1 15 2), where  stacks the sample standard deviations of elements of 

In our simulation and empirical work, we choose the Gaussian density as the kernel function:

 () = exp
¡−22¢ √2.

3 Monte Carlo Simulations

In this section we conduct a small set of Monte Carlo simulations to illustrate the finite sample

performance of our semiparametric estimators and tests.

3.1 Evaluation of the Semiparametric Estimates

To study the finite performance of our semiparametric estimator, we simulate 500 random sam-

ples with sample size  = 400 according to the following data generating process (DGP):

 = () + 

where () = 1 +  + 2 + 3   = 09−1 +   ∼ (0017 0082)  ∼ (0 012)

 ∼ (0 052) and is truncated between [−1 1].

For each random sample, we obtain three different estimator for () : the parametric

estimator ( ̂), the one-step nonparametric estimator ̃(), and our semiparametric estima-

tor ̂(). To obtain ( ̂) and ̂(), we use three parametric specifications: (1) the cubic

specification with ( ) = 0 + 1 + 2
2
 + 3

3
 , (2) the quadratic specification with

( ) = 0 + 1 + 2
2
 , and (3) the linear specification with ( ) = 0 + 1. We

consider both the LSCV and AIC methods to choose the bandwidth to compute ̂() and ̃().

As mentioned, we use the Gaussian kernel throughout. The average time for the estimation

per replication is 3.1 seconds for LSCV and 14.3 seconds for AIC on our Intel(R) Core (TM)

i7-2820QM CPU.

To evaluate the finite sample performance of different estimators, we calculate both the
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mean absolute deviation (MAD) and mean squared error (MSE) for each estimate evaluated at

all  data points. In the case of the semiparametric estimator ̂(), we have:

 =
1



P
=1

¯̄̄
̂()− ()

¯̄̄
and  =

1



P
=1

h
̂()− ()

i2


The MAD and MSE measures are defined analogously for ( ̂) and ̃().

Table 1 provides the results where the MADs and MSEs are averages over 500 replications

for each estimator. When the parametric form is correctly specified (Panel A), the parametric

estimator ( ̂) produces the smallest MAD and MSE among the three estimators. However,

when the parametric form is misspecified (Panels B and C), the parametric estimator produces

the largest MAD and MSE. The semiparametric estimator ̂() produces much smaller MAD

and MSE than the one-step nonparametric estimator ̃() when the parametric form is correctly

specified (Panel A). When the first-stage parametric form is linear (Panel B), the semiparamet-

ric estimator and the one-step nonparametric estimator are quite close to each other and they

produce almost the same MAD and MSE. When the first-stage parametric form is quadratic

(Panel C), the semiparametric estimator produces smaller MAD and MSE than the one-step non-

parametric estimator. While both the linear and quadratic specifications are misspecified, the

quadratic specification captures some of the shape features of () and therefore the semipara-

metric estimator achieves bias reduction in comparison to the one-step nonparametric estimator.

This is consistent with our discussion in Remark 3.

Theorem 1 provides the asymptotic standard errors for our semiparametric estimator ̂().

In Table 2, we use simulations to examine the accuracy of the asymptotic standard errors. We

choose five points on the support of  for the above DGP:  = −02, −01, 0, 01, and 02.
We then estimate ̂() using the bandwidth chosen by LSCV and AIC methods, respectively.

[̂()] is the average estimated ̂() over 500 random samples, [̂()] is the average esti-

mated standard errors of ̂() over 500 random samples, where the standard errors are computed

using Theorem 1 , and [̂()] is the simulated standard deviation of estimated ̂() that is

obtained over 500 random samples. We observe that the theoretical standard errors [̂()]

are quite close to the simulated standard errors [̂()].

3.2 Size and Power of the Tests

In this section, we study the size and power for our new tests. To match our empirical studies

later, we generate artificial data based on cases in which the conditional CAPM holds or fails.
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More specifically, we consider the following data-generating process:

 =  () +  () +   ∼ (0 012)

where  ∼ (0017 0082) and the state variable  is generated according to an AR(1)

process:  = 09−1+  where  ∼ (0 052) and is truncated between [−1 1]We consider
the following four specifications for the evolutions of  () and  ():

 () = 0,  () = 1 + , (DGP1)

 () = 0,  () = 1 +  + 2 + 3 , (DGP2)

 () = 03 + 08,  () = 1, (DGP3)

 () = 03 + 08 + 04
2
 + 04

3
 ,  () = 1. (DGP4)

When testing the conditional CAPM, a key test is on the conditional alpha  (). If the

conditional CAPM holds, then  () = 0 for all time . DGP1 and DGP2 simulate data when

the conditional CAPM holds, and they are designed to examine the size of the constancy test on

 (). Another important test in empirical asset pricing is the constancy test on the conditional

betas  (). DGP3 and DGP4 simulate the data when betas are constant, and are designed to

examine the size of the constancy test on  (). Because  () varies with state variables in

DGP3 and DGP4 rather than being zero, DGP3 and DGP4 also serve to examine the power of

the constancy test on  (). Because  () varies with the state variable in DGP1 and DGP2

rather than being constant, DGP1 and DGP2 also serve to examine the power of the constancy

test on  (). An important contribution of our semiparametric method is the test on  (),

i.e., the test on whether the first-stage parametric form is correctly specified. To examine the

size and the power of the specification test on  (), in DGP1 and DGP3,  () and  ()

are linear functions of state variables , while in DGP2 and DGP4 either  () or  () is a

nonlinear function of .

For each of DGP1-4, we generate 500 random samples with sample size  = 100 and

 = 400, respectively. For each random sample, we obtain the semiparametric estimators for

 () and  () by conducting a two-stage estimation. In the first-stage regression, we consider

two parametric forms for  () and  (): (i) a linear parametric specification with

( ) = 0 + 1 and  ( ) = 0 + 1,

and (ii) a quadratic parametric specification with

( ) = 0 + 1 + 2
2
 and ( ) = 0 + 1 + 2

2
 .
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In the second-stage regression, we first get the residuals from the first-stage regression: ̂ =

 − ( ̂)− ( ̂) where ̂ is the first-stage parametric estimator of  Then we fit

̂ as a nonparametric function of : ̂ = () +() + . The estimators ̂
()

and ̂() can be obtained by minimizing (2.9), and they are the second-stage nonparametric

estimators for  () and  (), respectively. Finally, our semiparametric estimators for  ()

and  () are given by ̂ () = ( ̂)+̂
() and ̂ () = ( ̂)+̂

() respectively.

For each random sample, we construct three test statistics to examine three hypotheses: (1)

H(1)0 :  () = 0, (2) H
(2)
0 :  () = 1, and (3) H

(3)
0 : 

() = () = 0. The test statistics

for H(1)0 and H(2)0 are provided in equation (2.18), and the test statistic for H(3)0 is provided in

equation (2.20). To construct the relevant test statistic, we choose  = 
−1(2+3), where

 is the sample standard deviation of . We try three different values of  to check the

sensitivity of our test to the choice of bandwidth:  = 1 15 2. Because we do not want to

assume that the first-stage parametric model is correctly specified, our tests require some sort of

undersmoothing. The -values of the test statistics are obtained using the procedure described

in Section 2.4.4 with  = 200 bootstrap resamples. When generating bootstrap data under the

null, we use the parameters estimated using ∗ = 
−1(+6). To compare the performance of

our semiparametric test with the one-step nonparametric test, we also construct test statistics for

H(1)0 and H(2)0 according to equation (2.18) by replacing ̂I () with the one-step nonparametric

estimator.

For each DGP, we calculate the rejection frequency of different test statistics across 500

random samples. Table 3 provides the simulation results when the sample size  = 100. Our

semiparametric estimator exhibits very good sizes regardless of whether the first-stage regression

adopts a linear parametric form (Panel A), or the first-stage regression adopts a quadratic form

(Panel B). When the first-stage regression adopts a linear parametric form, our semiparametric

test has similar power to that of the one-step nonparametric test (Panel C). However, when the

first-stage regression adopts a quadratic parametric form, our semiparametric test has higher

power than that of the one-step nonparametric test. Table 4 provides the simulation results

when the sample size  increases to 400. We observe that the sizes of all three tests generally

improve and their powers increase fast with the majority of powers close to 1.

4 Empirical Applications

The performance of the conditional CAPM has attracted enormous research efforts in recent

asset-pricing studies. Depending on the methods used (parametric or nonparametric methods),

the literature has offered controversial results. In our empirical studies, we use our new method
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to examine the performance of the conditional CAPM in the presence of three influential state

variables, which have been emphasized in the recent asset-pricing literature.

The state variables examined in our study are: the consumption—wealth ratio of Lettau

and Ludvigson (2001) (cay), the labor income-consumption ratio of Santos and Veronesi (2006)

(yc), and the corporate bond spread as in Jagannathan and Wang (1996) (def ). The cay data

are obtained from Martin Lettau’s Website. Following Santos and Veronesi (2006), we obtain

yc as the labor income component of cay. The def series is calculated as the yield difference

between Baa- and Aaa-rated bonds, obtained from the Federal Reserve Bank of St. Louis. The

data on these state variables run from 1952.Q1 to 2012.Q2. Because the portfolios sorted by

book-to-market (B/M) ratios have presented arguably the greatest empirical challenge to the

unconditional CAPM (Fama and French 1993), we use B/M portfolios as our test portfolios.

More specifically, from the 25 size-B/M portfolios obtained from Kenneth French’s Website, we

form three B/M portfolios. G is the average of the five portfolios in the lowest B/M quintile, V

is the average of the five portfolios in the highest B/M quintile, and V-G is their the difference.

We compound monthly portfolio returns to obtain quarterly returns which run from 1952.Q2 to

2012.Q3.

The conditional CAPM states that

 =  () +  () + . (4.1)

Here,  is the excess return of portfolio  at time ,  is the market excess return at time ,

 () and  () are portfolio ’s conditional alpha and beta at time − 1, respectively. The
state variable  summarizes the information set at time −1. In our context, we consider three
choices of  : −1, −1, and −1. Our semiparametric method estimates (4.1) in two

stages. Similar to our simulation analysis in Section 3.2, we use both a linear and a quadratic

specification in the first-stage regression to obtain the parametric estimators.

To evaluate the performance of the conditional CAPM, we conduct three hypothesis tests.

First, we examine whether or not, when conditioning on , the conditional CAPM can price a

single portfolio as well as multiple portfolios. If the conditional CAPM is able to price a portfolio

, then the conditional alpha (i.e., conditional pricing error) associated with portfolio  should

be equal to zero at all time . This amounts to testing the null hypothesis: H(1)0 :  () = 0

a.s. for  = 1 · · ·  . If the conditional CAPM is able to price all  portfolios jointly, the

conditional pricing errors associated with any portfolio  should be zero at all time , which

means that H(1)0 should hold across all  assets. The test statistics for a single portfolio 

and across all  portfolios can be obtained from (2.22) and (2.27), respectively. Second, an

important question in finance is whether betas are indeed time varying (e.g., Bollerslev, Engle,
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and Wooldridge 1988; Ferson and Harvey 1991; Ferson and Korajczyk 1995). We investigate

whether the conditional CAPM betas are time varying by examining H(2)0 :  () = ̄ , where

̄ is the unconditional CAPM beta for portfolio . Similar to the test on the conditional alpha,

the relevant test statistics can be obtained from (2.22) and (2.27). Finally, we conduct a model

specification test on the first-step parametric form. If the first-stage parametric estimators are

correctly specified, then the second-stage nonparametric estimators 
 () and 


 () are not

needed. That is, H(3)0 : 
 () = 


 () = 0 a.s. We test H(3)0 both for a single portfolio 

and across all  portfolios by utilizing the test statistics in (2.24) and (2.28), respectively. The

-value for each test statistic is obtained based on 200 bootstraps using the procedure described

in Section 2.4.4. We use  = 
−1(2+3)( = 1 15 2) to construct the test statistics. To

compare our semiparametric test results with those using a one-step nonparametric test, we also

construct test statistics for testing H(1)0 and H(2)0 .

Table 5 provides the bootstrap -values of the tests on the conditional alpha. Panel A

uses the linear first-stage parametric specification, and Panel B uses the quadratic first-stage

specification. The results show that the conditional CAPM is strongly rejected for V and V-G

when conditioning on either of the three state variables. The conditional CAPM is also strongly

rejected for G when conditioning on cay and yc. The joint test testing that the conditional

CAPM holds for all three portfolios yields a -value of virtually 0 in all cases, indicating that

the model is strongly rejected for pricing the three B/M portfolios simultaneously.

Figures 1 plots the quarterly conditional alphas for the three portfolios with respect to the

state variable yc, together with their corresponding two-standard-deviation confidence bands.

These conditional alphas are obtained from our two-stage estimation with first-stage specification

being linear, and the confidence bands are based on the standard errors in Theorem 1. Consistent

with our formal test in Panel A of Table 5, the conditional alphas of V and V-G largely stay

above zero while the conditional alphas of G largely stay below zero.

Overall, our empirical results show that when conditioning on cay, yc, and def, the B/M

portfolios remain a serious challenge for the conditional CAPM. These results are consistent with

those of the one-step nonparametric test provided in Panel C of Table 5, but run counter to the

conclusions of several recent influential studies (e.g., Jagannathan and Wang 1996; Lettau and

Ludvigson 2001; Santos and Veronesi 2006), who argue that conditioning dramatically improves

the performance of both the simple and consumption CAPMs. As illustrated in Lewellen and

Nagel (2006), by focusing on cross-sectional regressions rather than time-series intercept tests,

these extant studies ignore important restrictions on the cross-sectional slopes. Lewellen, Nagel,

and Shanken (2010) further argue that high cross-sectional 2 or low cross-sectional pricing

errors are low hurdles for claiming the success of a model. Our new test, on the other hand, looks

at the time series of squared deviations of conditional pricing errors from zero, which renders a
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more powerful test. Our empirical findings on the conditional CAPM also complement those in

Nagel and Singleton (2011) who find that the consumption-based models in the presence of the

same set of state variables fail to capture the return variations of size and B/M portfolios.

Table 6 presents the empirical results for testing the null hypothesis that the conditional

betas are equal to their unconditional counterparts. The semiparametric tests using a linear and

quadratic first-stage specification are provided in Panels A and B, respectively. Both tests show

that for cay, we cannot reject the null for all three B/M portfolios at all conventional significance

levels; for yc, we reject the null for every portfolio at least at the 10% level; for def, we reject the

null for G and V-G at the 5% level, but not for V. The nonparametric test in Panel C provides

similar results.

Figures 2 plots the quarterly conditional betas of the three portfolios with respect to yc,

together with their two-standard-deviation confidence bands. These conditional betas are ob-

tained from our two-stage estimation with first-stage specification being linear, and the confi-

dence bands are based on the standard errors in Theorem 1. Consistent with our formal test in

Panel A of Table 6, the conditional betas of all three portfolios appear time-varying, suggesting

that the risk of these portfolios varies with the business cycle proxied by yc.

Table 7 provides the test results for H30 : 

 () = 


 () = 0. When the first-stage

parametric form is linear (Panel A), for cay the null is not rejected for any portfolio at all

conventional significance levels; for yc, the null is strongly rejected for every portfolio; for def,

the null is rejected for G and V-G at the 5% level, but not for V. The joint test testing H30
across all three portfolios is strongly rejected for yc and def. When the first-stage parametric

form is quadratic (Panel B), the results are quite similar to those in Panel A except that the

null is no longer rejected for G when the state variable is yc. Our analysis therefore shows

whether the second-step nonparametric estimator is needed varies greatly with state variables

and with portfolios. For certain portfolios, it is crucial to model the nonlinear dynamics of the

state variables which can go beyond the commonly used linear and quadratic forms.

5 Conclusions

This paper develops a new methodology for estimating and testing conditional factor models

in modern finance. Our method naturally unifies two existing approaches in the literature–

the traditional parametric approach and the nonparametric approach–and thereby retains the

distinct advantages of both approaches. We propose new tests for investigating important issues

in the context of conditional factor models, such as the tests on the conditional alphas and betas,

and the test on the correct specification of the first-stage parametric model.
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In light of the controversial results in the empirical literature, we apply our new method to

examine the performance of the conditional CAPM in explaining return variations of portfolios

sorted by book-to-market ratios. Our results run counter to the conclusions of several recent

studies, who argue that conditioning dramatically improves the performance of the conditional

CAPM. Due to the unique advantage of our combined procedure, we further show that, for some

portfolios it is important to model the nonlinear functional forms of the conditional alphas and

betas.

Appendix

A Technical Assumptions

Our theoretical analysis is based on the model

 =  ()
>  +   = 1 · · ·    = 1 · · ·  

where  (·) = (1 (·)  · · ·   (·))>  = (1 · · ·  )>  and 1 ≡ 1 in most applications.
If 1 ≡ 1 then one can replace  in the following assumptions by  = (2 · · ·  )>
everywhere for  ≥ 2 Let  = (1 · · ·  )

>

Recall  (·) denotes the PDF of  Let  (· ·) and  | (·|) denote the joint density
of ( ) and the conditional PDF of  given  =  respectively. Let (· ·| ̃) be the
conditional density of (1 ) given (1 ) = ( ̃) for  ≥ 2 Let U and F denote the support
of  (·) and that of the PDF of  respectively. Let () ≡ −1

P
=1 [ −  ( )

| ]
2


 () ≡ 2 () 
|
   () ≡  [ ()]  and  ≡ [ (

0
 )] Recall  (̄ )

≡  (̄ ) 
|
  Let  (̄ ) = 2 (̄ ) 

|
 for  = 1   Let  () ≡ 

− ( )
| . Note that (0 ) =  if (2.14) holds and the two objects may differ otherwise.

We use  to denote a generic finite constant whose value may vary across lines.

The following assumptions are used in the establishment of the asymptotic distributions of

our estimators and test statistics.

Assumption A1. (i) The process {(  )  ≥ 1} is a strictly stationary -mixing process
with coefficients  () satisfying

P∞
=1 

 [ ()](2+)  ∞ for some   0 and    (2 + ) 

 (| ) = 0×1 a.s.

(ii)  (·) is Lipschitz continuous of order 1 and 0   () ≤  ∞.  | (̄|̄) ≤  ∞
and (̄ ̃|̄  ̃) ≤  ∞ for all  ≥ 2 ̄ ̃ ̄  and ̃  Ω () and Ω∗ () are positive definite for
  = 1 · · ·  . Ω (·) and Ω∗ (·) are continuous on U for   = 1 · · ·  

(iii) The second order partial derivatives of  (·) exist and are bounded and uniformly
continuous on U .

(iv)  kk2(2+)  ∞ where  is given in (i). [21 + 2| (1 1) = (̄ ̄) ( ) =

(̃ ̃)] ≤  ∞ for all ̄ and ̃ in the neighborhood of  and ̄  ̃ ∈ F . There exists ̄  2 + 
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such that [|1|̄| (1 1) = (̃ ̃)] ≤   ∞ for all ̃ ∈ F and all ̃ in the neighborhood of

  () =  (−)  where  ≥ (2 + ) ̄{2 ¡̄ − 2− 
¢}

(v) There exists a sequence of positive integers  such that  → ∞  = ( 122)

and  12−2 ( )→ 0

Assumption A2. (i)  () is continuous on the compact parameter space Γ  
0
 uniquely

minimizes  () over  ∈ Γ and is an interior point of Γ .
(ii) k(̄ )− (̄ ̄)k ≤  (̄) || − ̄ || for some continuous function , for all ̄ ∈ U ,

and   ̄ ∈ Γ  where {[ () + ()
2] kk2} ≤  ∞

(iii) Both the Jacobian matrix  (̄ ) and the Hessian matrices  (̄ )   =

1   are uniformly continuous in  in the neighborhood of 
0
 for all ̄ ∈ U  [||( 

0
 )||1+

|(0 )|1+] ≤  ∞ for  = 1    is positive definite. [||(( 
0
 ))

|(0 )||2+]
≤  ∞

(iv)  (· ) has continuous second order partial derivatives with respect to its first argument
for all  in the neighborhood of 

0
 

Assumption A3. The kernel function  (·) is product kernel of  (·)  which is a continuous,
bounded, and symmetric PDF on the real line R. Let k() ≡ () for  = 0 1 2 3 4 k4(·) is
integrable on R with respect to Lebesgue measure, and  () is uniformly bounded on R. For
some 1 ∞ and 2 ∞ either  (·) is compactly supported such that  () = 0 for kk  1

and |k() − k(̃)| ≤ 2 | − ̃| for any  ̃ ∈ R and  = 0 1 2 3; or (·) is differentiable,
kk () k ≤ 1 and for some 0  1 |k () | ≤ 1||−0 for all ||  2 and for

 = 0 1 2 3

Assumption A4. As  →∞ → 0,  →∞ +4 →  ∈ [0∞)
Assumption A5. ̄ () =  [ ()] is positive definite, where  () is defined in (B.2) below.

Assumption A6. The support U of  (·) is compact, and  (·) is uniformly bounded and
bounded away from zero on U  Ω (̄) and Ω∗ (̄) are positive definite for   = 1  and for

all ̄ ∈ U 
Assumption A7. (kk8(1+)) ≤  ∞ and (kk8(1+) | = ̄) is a continuous in

̄. For each 1  1     ( = 1 2 3), the joint density 1···  (·) of (1 1  · · ·  ) exists

and satisfies the Lipschitz condition: |1··· 
¡
(1) + (1) · · ·  (+1) + (+1)

¢−1··· ((1) · · · 
(+1))| ≤ 1 (u) kvk, where u = ((1)

>
 · · ·  (+1)>)> v = ((1)>  · · ·  (+1)>)> R 1··· 

(u) kuk2(1+) u   and
R
1···  (u) 1···  (u) u ≤ 

Assumption A8. As  →∞ (1+3)(1+) → 0 and
P∞

=1 
3 ()(2+) ∞

Assumption A1 is similar to Conditions A1-A2 in Cai, Fan, and Yao (2000). In particular,

A1(i) is standard in the nonparametric regression for time series and it is satisfied by many

well-known processes such as linear stationary ARMA processes, bilinear processes, nonlinear

autoregressive processes, ARCH processes, and functional coefficient autoregressive processes;

see Cai, Fan, and Yao (2000). Assumptions A2(i)-(iv) are about the parametric model used

in the first-stage regression and can be easily verified for the commonly used models where

 ( ) is either linear or quadratic in  A2(i) ensures unique identification of 
0
 and A2(ii)

ensures that sup∈Γ | ()− ()| =  (1) by Theorem 21.11 in Davidson (1994) and
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the law of large number for stationary strong mixing processes (e.g., White 2001, Theorem 3.34

and Proposition 3.44). As a result, A2(i)-(ii) ensures the consistency of the NLS estimator ̂  In

conjunction with A2(ii) and A1(i), A2(iii) ensures that supk−0k≤ k ()−k =  (1)

for any small   0 and the
√
 -consistency of the NLS estimator ̂ :

√
 (̂ − 0 ) = −

£
 (

∗
 )
¤−1 1√



X
=1

(( 
0
 ))

|(
0
 )

=
1√


X
=1

(
0
 )(

0
 ) +  (1) =  (1) (A.1)

where ∗ is the mean value between ̂ and 0 and

(
0
 ) ≡ −−1 (( 

0
 ))

| (A.2)

A2 (iv) is used to study the asymptotic distribution of our combined estimator. In addition, it is

easy to verify that  = [(( 
0
 ))

>> ( 
0
 )]−

P
=1[( 

0
 )(

0
 )]

which simplifies to  = [(( 
0
 ))

>> ( 
0
 )] if (2.14) holds.

Assumption A3 specifies conditions on the kernel function used in the second-stage estima-

tion. It is used to obtain uniform consistency of our local linear estimator by applying the results

of Masry (1996) and Hansen (2008) and is satisfied for the commonly used kernels, e.g., normal or

Epanechnikov kernels. Assumption A4 imposes some basic conditions on the bandwidth, which

are assumed to hold in all theorems but Theorem 2. Assumption A5 is required only in Theorem

2 where the bandwidth  is held fixed. It is automatically ensured by Assumptions A1(ii) and A3

if → 0 as  →∞ Assumption A6-A8 are standard in the literature and are used only in the

proofs of Theorems 3-4. Note that A6 is required because we need to obtain estimates of  ()

at each data point, and A7-A8 strengthen the conditions on the process {(  )  ≥ 1} and
the bandwidth to ensure some higher order term from the Hoeffding decomposition of our test

statistics are asymptotically negligible and enable us to apply a version of central limit theorem

for degenerate second order U-statistics for strong mixing processes. Note by choosing   0

small enough in A1(i), the first condition in A8 is only slightly stronger than  → 0 But this

would require that the mixing rate must decay sufficiently fast.

B Proof of Results in Section 2

Recall  () = ( ̂)− ( 0 ) and  () =  ()− ( 0 ) It follows that

̂ ()−  () = ̂ ()−
£
 ()− ( 0 )

¤
+ [( ̂)− ( 0 )]

= ̂ ()− () +  ()  (B.1)
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Proof of Theorem 1. For ease of notation, let

 () =

Ã
0 () 1 ()

1 ()
> 2 ()

!
and  () = 1 () +2 ()−3 ()  (B.2)

where

0 () = −1
X
=1


>
 

1 () = −1
X
=1

³


>


´
⊗ (( − ) )>

2 () = −1
X
=1

³


>


´
⊗
³
(( − ) ) (( − ) )>

´


1 () = −1
X
=1

Ã


()⊗ (( − ) )

!


2 () = −1
X
=1

Ã


>
  ()¡


>
  ()

¢⊗ (( − ) )

!


3 () = −1
X
=1

Ã


>
  ()¡


>
  ()

¢⊗ (( − ) )

!


Then ̂ () = s ()
−1 () by (2.10) and (2.7). Let  () = (1 ()  · · ·  ()  ̇1 ()

> 
· · ·  ̇ ()

>)>, where recall (·) denotes the th element of (·) and ̇ () =  () 

for  = 1   It follows that

̂ ()− ()

= s ()
−1 [ ()−  ()  ()]

= s ()
−11 () + s ()

−1 [2 ()−  ()  ()]− s ()−13 ()

≡ V () + B ()−R ()  say, (B.3)

where V () and B () are the usual asymptotic variance and bias terms, respectively, and
R () results from the first stage parametric estimation. Then by (B.1) we have

̂ ()−  () = V () + B ()− [R ()−  ()] (B.4)
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We prove the theorem by showing that

√
V ()

→ 
³
0 02Ω()

−1Ω∗()Ω() ()
´
 (B.5)

B () = 2 () +  (
2) (B.6)

R ()−  () =  (
−12) (B.7)

Define the  (1 + )×  (1 + ) diagonal matrices  () and Γ () by

 () = Υ1 ⊗Ω() and Γ () = Υ2 ⊗Ω∗()

where Υ1 =diag(1 21 · · ·  21) and Υ2 =diag(02 22 · · ·  22) are both (+ 1) × (+ 1)
diagonal matrices. Noting that s ()−1 Γ () ()−1 s =02Ω()

−1Ω∗()Ω() (B.5) holds
by Lemmata A.1 and A.2 of Su, Chen, and Ullah (2009) as the former lemma implies that

 () =  ()  ()+ (1) and the latter implies that
√
1 ()

→  (0  ()Γ ()) 

[Su, Chen, and Ullah (2009) assume the kernel function has compact support, but this can be

relaxed as in Hansen (2008).] Applying Lemma A.3 of Su, Chen, and Ullah (2009) with our

 (·) and  in place of their  (·) and  delivers (B.6). So we are left to show (B.7) only. Let

 = 
>
  ()  Noting that

k ()k =
°°( ̂)− ( 0 )

°° ≤  ()
°°̂ − 0

°°  (B.8)

we have > =  ()
> > 

>
  () ≤  ()

2 kk4 ||̂ − 0 ||2 Then by Minkowski
inequality, straightforward calculations, Markov inequality, and (A.1), we have

k3 ()k ≤ −1
X
=1

°°°°°
Ã



 ⊗ (( − ) )

!


°°°°°
= −1

X
=1

n
>[1 + k( − )k2]

o12


≤
°°̂ − 0

°° = 
¡°°̂ − 0

°°¢ =  (
−12)

where  ≡ −1
P

=1 () kk2
n
[1 + k( − )k2]

o12
 satisfies  ( ) ≤   ∞ by

Assumptions A2(ii) and A3. This, in conjunction with the fact that  () =  ()  ()+ (1)

and Assumptions A1(ii)-(iii), implies that kR ()k =  (
−12) Then (B.7) follows. ¥

Proof of Theorem 2. The proof parallels that of Theorem 1. The major differences lie in two

aspects: (a) we now hold  as fixed; (b) we rely on the fact that  () ≡ 0 under the correct
specification of the first stage conditional factor model.

The decomposition in (B.3) continues to hold. Under (b), B () ≡ 0 so that our semipara-
metric estimator ̂ () is asymptotically unbiased (up to order 

−12 which is the magnitude
of R ()−  ()). Under (a), both V () and R ()−  () contribute to the asymptotic
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variance of ̂ ()  Noting that

Ã


⊗

!
=

Ã


 ⊗

!
 for any  × 1 vector  and  × 1

vector  we can write 1 () and 3 () respectively as

1 () = −1
X
=1

̄ () and 3 () = −1
X
=1

̄ ()
>
  () 

where

̄ () = 

Ã


 ⊗ ( − )

!
 (B.9)

By (A.1) and Assumption A2(iii),  (̄) = (̄ ̂)−(̄ 0 ) = (̄ 
0
 )(̂−0 )+

¡
−12

¢
uniformly in ̄ Then

√
 [V ()−R () +  ()]

= s ()
−1 −12

X
=1

̄ () − s ()−1 −12
X
=1

̄ ()
>
  () +

√
 ()

= s ()
−1 −12

X
=1

̄ () − s ()−1 −1
X
=1

̄ ()
>
 

¡
 

0


¢√
 (̂ − 0 )

+
¡
 0

¢√
 (̂ − 0 ) +  (1)

= s̄ ()−1 −12
X
=1

̄ () + Λ̄ ()
√
 (̂ − 0 ) +  (1)

= −12
X
=1

h
s̄ ()−1 ̄ () + Λ ()

¡
0
¢i

 +  (1)

→ 
¡
0 Σ̄ ()

¢
where the third equality follows from the weak law of large number for strong mixing processes,

Λ̄ () = ( 
0
 )−Λ (), Λ () = s̄ ()−1 E

£
̄ ()

>
 

¡
 

0
¢¤
 ̄ () = E [ ()] 

 is defined in (A.2), and Σ̄ () is defined in the theorem. The last CLT result follows from

Theorem 5.20 of White (2001) by Assumptions A1(i) and A2(ii) and by noting that
°°̄ ()

°°
is uniformly bounded in  under Assumption A3 and that Λ̄ () and ̄ ()−1 are bounded too
under Assumptions A2(iv) and the positive definiteness of ̄ ()  ¥

Remark. When  is held fixed, we cannot simplify the expression for Λ (). Nevertheless, if

→ 0 as  →∞ then we can show ̄ () =  ()  ()+ (1) and Λ () = 
³
 0

´
+ (1) 

In this case, Λ̄ () = ( 
0
 ) −Λ () =  (1) so that the contribution from the first stage

parametric estimation is asymptotically negligible.
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Proof of Theorem 3. Decompose 1 as follows

1 = 2
X
=1

°°°³̂I ()− I

´
−
³
̂I − I

´°°°2
= 2

X
=1

h
̂I ()− I

i> h
̂I ()− I

i
− 2

h
̂I − I

i> h
̂I − I

i
≡11 −12 say.

It suffices to show that under H(1)0  ()11−s1 →  (0Θs1) and ()12 =  (1) 

We first prove ()  Under H(1)0 we have by (B.4) that

11 = 2
X
=1

{s1V ()}> {s1V ()}+ 2
X
=1

{s1B ()}> {s1B ()}

+ 2
X
=1

{s1 [R ()−  ()]}> {s1 [R ()−  ()]}

+ 22
X
=1

{s1V ()}> s1B ()− 22
X
=1

{s1V ()}> {s1 [R ()−  ()]}

− 22
X
=1

{s1B ()}> {s1 [R ()−  ()]}

≡111 +112 +113 + 2114 − 2115 − 2116 say.

We prove () by showing that 111−s1
→  (0Θs1) and 11 =  (1) under H

(1)
0

for  = 2 · · ·  6

First, noting that (B.6) also holds uniformly in  we can show that112 = 

¡
2+4

¢
=  (1)  and by the proof of Theorem 1, 113 = 

¡
2

¢
=  (1)  It follows that

116 =  (1) by Chebyshev inequality. Next, for 114 we have

114 ' 2+2
X
=1

1 ()
> ̄ ()

−1
s>s>1 s1 ()

= 2+2
X
=1


>


"
−1

X
=1

̄ ()
> ̄ ()

−1
s>s>1 s1 ()

#
' ̄114

where ̄114 = 2+2
P

=1 
>
 Ω ()

−1
s>1 s1 ()  and the last results holds because
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uniformly in 

−1
X
=1

 (− )

Ã
s1s̄

−1
 ()

Ã


 ⊗ (− )

!!>
s>1 s1 ()

'
Ã
s−1 ()

Ã


0×1

!!>
s>1 s1 () = Ω ()

−1
s>1 s1 () 

Let ∗ = 
>
 Ω ()

−1 s>1 s1 ()  By Davydov inequality for strong mixing processes (e.g.,

Bosq 1996, p. 19), we have


h¡
̄114

¢2i
= +4

X
=1

X
=1

E
£
∗

∗


¤ ≤ +4
∞X
=1

 ()(2+)
n
E|∗1|2+

o2(2+)
= 

³
+4

´
=  (1) 

It follows that ̄114 =  (1) by Chebyshev inequality. By analogous arguments we can show

that 115 =  (1) 

Now we analyze 111 Noting that  () − ̄ () = 

¡
−12−2

√
log 

¢
uniformly

in  by Masry (1996), we can show that

111 = 2
X
=1

1 ()
>  ()

−1
ss>1 s1s ()

−11 () = ̄111+ (1)  (B.10)

where ̄111 = 2
P

=11 ()
> ̄ ()

−1
s>s>1 s1s̄ ()

−11 ()  Let

s1 ( ) = s1s̄ ()
−1 ̄ () (B.11)

Then s1s̄ ()
−11 () = −12

P
=1 s1 ( ) and

̄111 = −22
X
=1

X
=1

X
=1

s1 ( )
> s1 ( )

= −22
X
=1

X
=1

ks1 ( )k2 + −22
X
=1

X
6=

X
 6=

s1 ( )
> s1 ( )

+ 2−22
X
=1

X
 6=

s1 ( )
> s1 ( )

≡ 1 + 1 +1  say. (B.12)

Let (  ) ≡ [s1 ( )> s1 ( )+s1 ( )
> s1 ( )+s1 ( )

>
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s1( )]3 which is symmetric in its arguments. Then

1 =
62

 2

X
1≤≤

(  ) =
( − 1) ( − 2)


̄1 

where ̄1 ≡ 62

 (−1)(−2)
P
1≤≤ (  ) Clearly,

R R
( 1 2) (1)  (2)

= 0 Let 2 (1 2) =
R
(1 2 ) () =

1
3

R
s1 ( 1)

> s1 (2)  ()  Let 3(
 ) =  (  )−2 ( )−2 ( )−3 ( )  By Hoeffding decompo-

sition (c.f. Lee 1990, Chapter 1.6),

̄1 = 3
(2)
 +

(3)
 

where
(2)
 ≡ 22

 (−1)
P
1≤≤ 2( ) and

(3)
 ≡ 62

 (−1)(−2)
P
1≤≤ 3 (  ) 

Noting that
R
3 (1 2 )  () = 0 and that 3 is symmetric in its arguments by construc-

tion, we can apply Lemma A.2 of Gao (2007) (pp. 193-194) to obtain E[(3)
 ]

2 ≤ −3−2(1+2)(1+)

= 
¡
−3−(1+3)(1+)

¢
 Hence, 

(3)
 =  (

−32−(1+3)(2(1+))) = 
¡
−1

¢
by Cheby-

shev inequality and Assumption A7. It follows that 1 =
 (−2)
−1 ̄1 = {1 +  (1)}V1 +

 (1)  where

V1 ≡ 2
2



X
1≤≤≤

32 ( ) =
22



X
1≤≤

Z
s1 ( )

> s1 ( )  () 

As V1 is a second order degenerate  -statistic, it is straightforward but tedious to verify that all
the conditions of Theorem A.1 of Gao (2007) (p. 198) are satisfied, implying that a central limit

theorem applies to V1 : V1 →  (0Θs1)  where the asymptotic variance of V1 is given
by Θs1 ≡ lim→∞Θs1 and Θs1 ≡ 2

hR
s1 ( )

> s1 ( )  ()
i2
 where

 denotes expectation with respect to variables indexed by time  only. [A careful examination

of the proof in the theorem indicates that the geometric strong mixing rate in Gao (2007) can

be relaxed to our arithmetic rate.] For 1  we can apply Lemma A.2 of Gao (2007) to obtain

E(21 ) ≤ −2−(2+3)(1+) =  (1) and Assumptions A4 and A7. So 1 =  (1) by

Chebyshev inequality. It follows that 111 −1
→  (0Θs1 ) 

Now we show ()  Under H(1)0  we have by (B.4) and (B.2) that

√

³
̂I − I

´
= −12

X
=1

s1s ()
−11 ()

+ −12
X
=1

s1s ()
−1 [2 ()−  ()  ()]

− −12
X
=1

s1

h
s ()

−13 ()−  ()
i
≡ 1 +2 +3  say.
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It follows that 12 = 2 (1 +2 +3 )
> (1 +2 +3 ) ≤ 32(>11 +

>22 +>33 ) Under our assumptions (note that  → 0 here), it is easy to show

that >11 =  (1)  
>
22 = 

¡
4

¢
 and >33 =  (1)  It follows that

12 = 

¡
2 + 2+4

¢
=  (1)  ¥

Proof of Theorems 4. The proof is analogous to that of Theorem 3. So we only outline

the difference. Decompose 2 as follows 2 = 2
P

=1 k̂ ()k2−2̂2

 ≡21−
22 say. It is easy to show that 22 =  (1)  For 21 by (B.3) and arguments

analogous to those used in the analysis of 11 we can show that

21 = 2
X
=1

kV () + B () + R ()k2 =211 +  (1) under H
(2)
0 ,

where 211 = 2
P

=1 kV ()k2  The major difference is that B () = 0 a.s. under

H(2)0 so that we do not need the condition 2+4 =  (1) as in the proof of Theorem 3.

Furthermore,211 = ̄211+ (1)  where ̄211 = 2
P

=11 ()
> ̄ ()

−1
s>

s̄ ()
−11 ()  So the asymptotic bias and variance of ̄211 are determined as those of

̄111 with s1 being replaced by  everywhere. Consequently211−
→  (0Θ) 

This completes the proof. ¥
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Table 1: Mean absolute deviation (MAD) and mean squared error (MSE) comparisons

Panel A: Cubic parametric specification

LSCV AIC

MAD MSE MAD MSE

Parametric 0.088 0.016 0.088 0.016

Nonparametric 0.195 0.082 0.164 0.080

Semiparametric 0.114 0.036 0.096 0.022

Panel B: Linear parametric specification

LSCV AIC

MAD MSE MAD MSE

Parametric 1.662 7.030 1.662 7.030

Nonparametric 0.195 0.082 0.164 0.080

Semiparametric 0.195 0.082 0.164 0.080

Panel C: Quadratic parametric specification

LSCV AIC

MAD MSE MAD MSE

Parametric 1.288 3.939 1.288 3.939

Nonparametric 0.195 0.082 0.164 0.080

Semiparametric 0.191 0.078 0.162 0.077

Table 2: Simulation on standard errors

LSCV AIC

 () [̂()] [̂()] [̂()] [̂()] [̂()] [̂()]

-0.2 0.832 0.852 0.103 0.110 0.843 0.117 0.121

-0.1 0.909 0.948 0.102 0.103 0.930 0.115 0.116

0 1.000 1.059 0.101 0.106 1.032 0.114 0.120

0.1 1.111 1.189 0.102 0.116 1.154 0.115 0.128

0.2 1.248 1.348 0.104 0.130 1.305 0.117 0.143
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Table 3: Size and power with sample size T=100

Panel A: Semiparametric test using linear first-stage specification

1% 5% 10%


(1)
0 

(2)
0 

(3)
0 

(1)
0 

(2)
0 

(3)
0 

(1)
0 

(2)
0 

(3)
0

 = 1 0.008 0.866 0.000 0.046 0.946 0.038 0.100 0.976 0.080

DGP1  = 15 0.012 0.936 0.002 0.046 0.978 0.042 0.090 0.990 0.086

 = 2 0.006 0.956 0.006 0.052 0.990 0.050 0.092 0.994 0.088

 = 1 0.016 0.982 0.798 0.054 0.996 0.914 0.106 0.998 0.940

DGP2  = 15 0.012 0.992 0.822 0.056 0.998 0.938 0.094 0.998 0.956

 = 2 0.006 0.994 0.822 0.054 0.998 0.936 0.100 0.998 0.958

 = 1 1.000 0.016 0.000 1.000 0.068 0.042 1.000 0.136 0.078

DGP3  = 15 1.000 0.018 0.002 1.000 0.066 0.050 1.000 0.126 0.078

 = 2 1.000 0.018 0.002 1.000 0.068 0.050 1.000 0.116 0.078

 = 1 1.000 0.022 0.720 1.000 0.062 0.844 1.000 0.122 0.890

DGP4  = 15 1.000 0.012 0.654 1.000 0.038 0.820 1.000 0.078 0.874

 = 2 1.000 0.010 0.560 1.000 0.032 0.742 1.000 0.078 0.834

Panel B: Semiparametric test using quadratic first-stage specification

1% 5% 10%


(1)
0 

(2)
0 

(3)
0 

(1)
0 

(2)
0 

(3)
0 

(1)
0 

(2)
0 

(3)
0

 = 1 0.008 0.998 0.008 0.052 1.000 0.064 0.094 1.000 0.116

DGP1  = 15 0.010 1.000 0.008 0.058 1.000 0.068 0.104 1.000 0.118

 = 2 0.010 1.000 0.014 0.064 1.000 0.072 0.106 1.000 0.122

 = 1 0.008 1.000 0.946 0.050 1.000 0.992 0.092 1.000 0.994

DGP2  = 15 0.008 1.000 0.966 0.058 1.000 0.992 0.102 1.000 0.996

 = 2 0.010 1.000 0.970 0.064 1.000 0.996 0.118 1.000 0.998

 = 1 1.000 0.022 0.008 1.000 0.084 0.070 1.000 0.136 0.116

DGP3  = 15 1.000 0.020 0.008 1.000 0.078 0.070 1.000 0.136 0.118

 = 2 1.000 0.020 0.014 1.000 0.082 0.072 1.000 0.136 0.122

 = 1 1.000 0.004 0.842 1.000 0.052 0.928 1.000 0.112 0.958

DGP4  = 15 1.000 0.010 0.830 1.000 0.046 0.914 1.000 0.102 0.940

 = 2 1.000 0.006 0.768 1.000 0.052 0.892 1.000 0.126 0.930

Panel C: One-step nonparametric test

1% 5% 10%


(1)
0 

(2)
0 

(1)
0 

(2)
0 

(1)
0 

(2)
0

 = 1 0.010 0.846 0.048 0.936 0.090 0.958

DGP1  = 15 0.004 0.896 0.038 0.962 0.082 0.980

 = 2 0.002 0.908 0.028 0.980 0.086 0.990

 = 1 0.015 0.980 0.055 0.990 0.088 0.998

DGP2  = 15 0.008 0.992 0.042 0.998 0.080 0.998

 = 2 0.006 0.994 0.032 0.998 0.090 0.998

 = 1 1.000 0.026 1.000 0.088 1.000 0.148

DGP3  = 15 1.000 0.016 1.000 0.074 1.000 0.136

 = 2 1.000 0.016 1.000 0.064 1.000 0.128

 = 1 1.000 0.020 1.000 0.074 1.000 0.138

DGP4  = 15 1.000 0.018 1.000 0.044 1.000 0.070

 = 2 1.000 0.010 1.000 0.032 1.000 0.068
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Table 4: Size and power with sample size T=400

Panel A: Semiparametric test using linear first-stage specification

1% 5% 10%

H(1)0 H(2)0 H(3)0 H(1)0 H(2)0 H(3)0 H(1)0 H(2)0 H(3)0
 = 1 0.014 1.000 0.012 0.048 1.000 0.052 0.084 1.000 0.094

DGP1  = 15 0.016 1.000 0.010 0.056 1.000 0.048 0.090 1.000 0.096

 = 2 0.014 1.000 0.008 0.056 1.000 0.050 0.092 1.000 0.092

 = 1 0.010 1.000 1.000 0.046 1.000 1.000 0.084 1.000 1.000

DGP2  = 15 0.018 1.000 1.000 0.054 1.000 1.000 0.092 1.000 1.000

 = 2 0.016 1.000 1.000 0.052 1.000 1.000 0.082 1.000 1.000

 = 1 1.000 0.016 0.012 1.000 0.056 0.052 1.000 0.106 0.088

DGP3  = 15 1.000 0.016 0.010 1.000 0.054 0.048 1.000 0.110 0.096

 = 2 1.000 0.014 0.008 1.000 0.058 0.050 1.000 0.100 0.092

 = 1 1.000 0.008 0.982 1.000 0.048 0.996 1.000 0.100 1.000

DGP4  = 15 1.000 0.004 0.970 1.000 0.042 0.994 1.000 0.072 0.996

 = 2 1.000 0.000 0.906 1.000 0.030 0.974 1.000 0.070 0.996

Panel B: Semiparametric test using quadratic first-stage specification

1% 5% 10%

H(1)0 H(2)0 H(3)0 H(1)0 H(2)0 H(3)0 H(1)0 H(2)0 H(3)0
 = 1 0.014 1.000 0.012 0.050 1.000 0.052 0.086 1.000 0.086

DGP1  = 15 0.018 1.000 0.010 0.052 1.000 0.040 0.090 1.000 0.094

 = 2 0.016 1.000 0.004 0.060 1.000 0.046 0.092 1.000 0.100

 = 1 0.010 1.000 1.000 0.046 1.000 1.000 0.084 1.000 1.000

DGP2  = 15 0.012 1.000 1.000 0.040 1.000 1.000 0.086 1.000 1.000

 = 2 0.024 1.000 1.000 0.052 1.000 1.000 0.084 1.000 1.000

 = 1 1.000 0.014 0.010 1.000 0.054 0.058 1.000 0.102 0.094

DGP3  = 15 1.000 0.016 0.010 1.000 0.050 0.046 1.000 0.102 0.102

 = 2 1.000 0.014 0.006 1.000 0.050 0.056 1.000 0.102 0.110

 = 1 1.000 0.006 0.978 1.000 0.058 0.996 1.000 0.112 1.000

DGP4  = 15 1.000 0.010 0.966 1.000 0.062 0.996 1.000 0.108 0.998

 = 2 1.000 0.014 0.934 1.000 0.070 0.994 1.000 0.126 0.996

Panel C: One-step nonparametric test

1% 5% 10%

H(1)0 H(2)0 H(1)0 H(2)0 H(1)0 H(2)0
 = 1 0.008 1.000 0.056 1.000 0.116 1.000

DGP1  = 15 0.014 1.000 0.064 1.000 0.114 1.000

 = 2 0.014 1.000 0.072 1.000 0.116 1.000

 = 1 0.006 1.000 0.060 1.000 0.114 1.000

DGP2  = 15 0.016 1.000 0.060 1.000 0.118 1.000

 = 2 0.018 1.000 0.066 1.000 0.108 1.000

 = 1 1.000 0.014 1.000 0.062 1.000 0.106

DGP3  = 15 1.000 0.016 1.000 0.056 1.000 0.102

 = 2 1.000 0.016 1.000 0.062 1.000 0.108

 = 1 1.000 0.014 1.000 0.046 1.000 0.112

DGP4  = 15 1.000 0.018 1.000 0.044 1.000 0.084

 = 2 1.000 0.008 1.000 0.030 1.000 0.056
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Table 5: Bootstrap p-values for tests on conditional alpha

Panel A. Semiparametric test with linear first-stage form

V G V-G Joint test

 = 1 0.010 0.005 0.000 0.000

  = 15 0.000 0.005 0.000 0.000

 = 2 0.000 0.005 0.000 0.000

 = 1 0.000 0.000 0.000 0.000

  = 15 0.005 0.020 0.000 0.000

 = 2 0.005 0.025 0.000 0.000

 = 1 0.010 0.115 0.005 0.000

  = 15 0.005 0.075 0.000 0.000

 = 2 0.000 0.045 0.000 0.000

Panel B. Semiparametric test with quadratic first-stage form

 = 1 0.005 0.005 0.000 0.000

  = 15 0.015 0.010 0.000 0.000

 = 2 0.015 0.000 0.000 0.000

 = 1 0.005 0.005 0.000 0.000

  = 15 0.000 0.000 0.000 0.000

 = 2 0.000 0.000 0.000 0.000

 = 1 0.000 0.145 0.000 0.000

  = 15 0.005 0.145 0.000 0.000

 = 2 0.030 0.195 0.005 0.005

Panel C. One-step nonparametric test

 = 1 0.005 0.010 0.000 0.000

  = 15 0.005 0.010 0.000 0.000

 = 2 0.005 0.005 0.000 0.000

 = 1 0.000 0.000 0.000 0.000

  = 15 0.000 0.005 0.000 0.000

 = 2 0.000 0.015 0.000 0.000

 = 1 0.000 0.155 0.000 0.020

  = 15 0.000 0.115 0.000 0.010

 = 2 0.000 0.080 0.000 0.000
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Table 6: Bootstrap p-values for tests on conditional beta

Panel A. Semiparametric test with linear first-stage form

V G V-G Joint test

 = 1 0.370 0.940 0.240 0.375

  = 15 0.440 0.915 0.340 0.480

 = 2 0.515 0.890 0.405 0.565

 = 1 0.010 0.000 0.000 0.000

  = 15 0.050 0.000 0.000 0.000

 = 2 0.095 0.005 0.000 0.000

 = 1 0.535 0.020 0.020 0.015

  = 15 0.525 0.010 0.015 0.025

 = 2 0.525 0.010 0.040 0.055

Panel B. Semiparametric test with quadratic first-stage form

 = 1 0.285 0.895 0.305 0.385

  = 15 0.380 0.900 0.335 0.425

 = 2 0.425 0.925 0.280 0.385

 = 1 0.025 0.005 0.000 0.000

  = 15 0.015 0.000 0.000 0.000

 = 2 0.020 0.000 0.005 0.000

 = 1 0.570 0.045 0.005 0.025

  = 15 0.510 0.035 0.020 0.035

 = 2 0.495 0.050 0.005 0.025

Panel C. One-step nonparametric test

 = 1 0.455 0.915 0.325 0.500

  = 15 0.455 0.915 0.325 0.500

 = 2 0.560 0.925 0.385 0.685

 = 1 0.010 0.000 0.000 0.000

  = 15 0.045 0.005 0.000 0.000

 = 2 0.070 0.005 0.000 0.005

 = 1 0.465 0.035 0.010 0.160

  = 15 0.450 0.010 0.015 0.110

 = 2 0.460 0.015 0.035 0.115
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Table 7: Model specification test

Panel A. Semiparametric test with linear first-stage form

V G V-G Joint test

 = 1 0.410 0.950 0.575 0.660

  = 15 0.405 0.885 0.575 0.615

 = 2 0.465 0.880 0.635 0.735

 = 1 0.005 0.000 0.000 0.000

  = 15 0.015 0.000 0.000 0.000

 = 2 0.020 0.000 0.000 0.000

 = 1 0.375 0.000 0.005 0.010

  = 15 0.315 0.000 0.005 0.005

 = 2 0.360 0.000 0.010 0.005

Panel B. Semiparametric test with quadratic first-stage form

 = 1 0.335 0.875 0.380 0.450

  = 15 0.300 0.825 0.395 0.460

 = 2 0.335 0.845 0.395 0.445

 = 1 0.020 0.220 0.035 0.010

  = 15 0.030 0.245 0.035 0.000

 = 2 0.030 0.200 0.025 0.005

 = 1 0.375 0.010 0.005 0.010

  = 15 0.365 0.025 0.005 0.010

 = 2 0.425 0.020 0.005 0.020
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Figure 1: Plots of conditional alphas for V, G, and V-G when conditioning on labor income-

consumption ratio. The conditional alphas are estimated using our two-stage estimation method

where the first-stage specification is linear. The 95% pointwise confidence bands are computed

based on Theorem 1. The solid line corresponds to the value zero.
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Figure 2: Plots of conditional betas for V, G, and V-G when conditioning on labor income-

consumption ratio. The conditional betas are estimated using our two-stage estimation method

where the first-stage specification is linear. The 95% pointwise confidence bands are computed

based on Theorem 1.

47


	A Combined Approach to the Inference of Conditional Factor Models
	Citation

	lsx_20140503.dvi

