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Abstract

A new Bayesian test statistic is proposed to test a point null hypothesis based on
a quadratic loss. The proposed test statistic may be regarded as the Bayesian version
of Lagrange multiplier test. Its asymptotic distribution is obtained based on a set
of regular conditions and follows a chi-squared distribution when the null hypothesis
is correct. The new statistic has several important advantages that make it appeal
in practical applications. First, it is well-defined under improper prior distributions.
Second, it avoids Jeffrey-Lindley’s paradox. Third, it is relatively easy to compute,
even for models with latent variables. Finally, it is pivotal and its threshold value
can be easily obtained from the asymptotic chi-squared distribution. The method is
illustrated using some real examples in economics and finance.
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1 Introduction

This paper is concerned with statistical testing of a point null hypothesis after a Bayesian

Markov chain Monte Carlo (MCMC) method has been used to estimate the models. The

importance of testing a point null hypothesis is well-known in economics. In the recent

years, Bayesian MCMC methods have found more and more applications in economics

because they make it possible to fit increasingly complex models, including latent variable

models (Shephard, 2005), dynamic discrete choice models (Imai, Jain and Ching, 2009)

and dynamic general equilibrium models (An and Schorfheide, 2007).

In the Bayesian paradigm, Bayes factor (BF) is the gold standard for the Bayesian

model comparison and the Bayesian hypothesis testing (Kass and Raftery 1995; Geweke,

2007). Unfortunately, BF is not problem-free. First, BF is sensitive to the prior and

subject to Jeffreys-Lindley’s paradox; see for example, Kass and Raftery (1995), Poirier

(1995), Robert (1993, 2001). Second, the calculation of BF for hypothesis testing gen-

erally requires the evaluation of marginal likelihood which is a marginalization over the

unknown quantities. In many cases, the evaluation of marginal likelihood is difficult. Not

surprisingly, alternative strategies have been proposed to test a point null hypothesis in

the Bayesian literature. These methods can be classified into two classes.

In the first class, refinements are made to BF to overcome the theoretical and com-

putational difficulties. For example, to reduce the influence of BF to the prior, one may

split the data into two parts, a training sample and a sample for statistical analysis. The

training sample is used to update the non-informative prior and to obtain a new proper

informative prior. This idea includes the fractional BF (O’Hagan 1995) and the intrinsic

BF (Berger and Perrichi, 1996). In practice, however, it is often not clear how to split the

sample and the testing outcome may be sensitive to how the sample is split.

In the second class, instead of refining the BF methodology, several interesting Bayesian

approaches have been proposed for hypothesis testing based on the decision theory. For

example, Bernardo and Rueda (2002, BR hereafter) showed that BF for the Bayesian

hypothesis testing can be regarded as a decision problem with a simple zero-one discrete

loss function. However, the zero-one discrete function requires the use of non-regular (not

absolutely continuous) prior and this is why BF leads to Jeffreys-Lindley’s paradox. BR

further suggested using a continuous loss function, based on the well-known continuous

Kullback-Leibler (KL) divergence function. As a result, it was shown in BR that their

Bayesian test statistic does not depend on any arbitrary constant in the prior. However,

BR’s approach has some disadvantages. First, the analytical expression of the KL loss

function required by BR is not always available, especially for latent variable models.

Second, the test statistic is not a pivotal quantity. Consequently, BR had to use subjective
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threshold values to test the hypothesis.

To deal with the computational problem in BR in latent variable models, Li and

Yu (2012, LY hereafter) proposed a new test statistic based on the Q function in the

Expectation-Maximization (EM) algorithm.1 LY showed that the new statistic is well-

defined under improper priors and easy to compute for latent variable models. Following

the idea of McCulloch (1989), LY proposed to choose the threshold values based on the

Bernoulli distribution. However, like the test statistic proposed by BR, the test statistic

proposed by LY is not pivotal. Moreover, it is not clear if the test statistic of LY can

resolve Jeffreys-Lindley’s paradox.

Based on the difference between the deviances, Li, Zeng and Yu (2014, LZY here-

after) developed another Bayesian test statistic for hypothesis testing. This test statistic

is well-defined under improper priors, free of Jeffreys-Lindley’s paradox, and not difficult

to compute. Moreover, its asymptotic distribution can be derived and one may obtain the

threshold values from the asymptotic distribution. Unfortunately, in general the asymp-

totic distribution depends on some unknown population parameters and hence the test is

not pivotal.

In the present paper, we propose a pivotal Bayesian test statistic, based on a quadratic

loss function, to test a point null hypothesis within the decision-theoretic framework.

The new statistic has the four desirable properties that makes it appeal in practice after

the models are estimated by Bayesian MCMC methods. First, it is well-defined under

improper prior distributions. Second, it is immune to Jeffreys-Lindley’s paradox. Third,

it is easy to compute. The main computational effort is to get the first derivative of

the likelihood function with respect to the parameters. For latent variable models, the

first derivative can be easily evaluated from the MCMC output with the help of the

EM algorithm. Finally, the asymptotic distribution of the test statistic follows the chi-

squared distribution and hence the test is pivotal. In particular, under a set of regularity

conditions, we show that our test statistic is asymptotically equivalent to the Lagrange

multiplier (LM) statistic that has been commonly used in the frequentist’s paradigm to

test a point null hypothesis.

The paper is organized as follows. Section 2 reviews the Bayesian literature on testing a

point null hypothesis from the viewpoint of the decision theory. Section 3 develops the new

Bayesian test statistic and establishes its asymptotic properties. Section 4 illustrates the

new method by using three real examples in economics and finance. Section 5 concludes

the paper. Appendix collects the proof of all the theoretical results.

1The EM algorithm was originally proposed to compute maximum likelihood estimates in latent variable
models (Dempster, et al., 1977).
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2 Bayesian Hypothesis Testing under Decision Theory

2.1 Testing a point null hypothesis

Let the observable data, y = (y1, y2, · · · , yn)′ ∈ Y. A probability model M ≡ {p(y|θ,ψ)}
is used to fit the data. We are concerned with a point null hypothesis testing problem

which may arise from the prediction of a particular theory. Let θ ∈ Θ denote a vector

of p-dimensional parameters of interest and ψ ∈ Ψ a vector of q-dimensional nuisance

parameters. The problem of testing a point null hypothesis is given by{
H0 : θ = θ0

H1 : θ 6= θ0
. (1)

The hypothesis testing may be formulated as a decision problem. It is obvious that

the decision space has two statistical decisions, to accept H0 (name it d0) or to reject H0

(name it d1). Let {L[di, (θ,ψ)], i = 0, 1} be the loss function of statistical decision. Hence,

a natural statistical decision to reject H0 can be made when the expected posterior loss

of accepting H0 is sufficiently larger than the expected posterior loss of rejecting H0, i.e.,

T(y,θ0) =

∫
Θ

∫
Ψ
{L[d0, (θ,ψ)]− L[d1, (θ,ψ)]} p(θ,ψ|y)dθdψ > c ≥ 0,

where T(y,θ0) is a Bayesian test statistic; p(θ,ψ|y) the posterior distribution with some

given prior p(θ,ψ); c a threshold value. Let 4L[H0, (θ,ψ)] = L[d0, (θ,ψ)]−L[d1, (θ,ψ)]

be the net loss difference function which can generally be used to measure the evidence

against H0 as a function of (θ,ψ). Hence, the Bayesian test statistic can be rewritten as

T(y,θ0) = Eϑ|y (4L[H0, (θ,ψ)]) .

2.2 A literature review

BF is defined as the ratio of the two marginal likelihood functions, namely,

BF01 =
p(y|M0)

p(y|M1)
,

where M0 := {p(y|θ0,ψ),ψ ∈ Ψ} is the model under the null; M1 := M is the model

under the alternative. The two marginal likelihood functions are defined as

p(y|M0) =

∫
Ψ
p(y|θ0,ψ)p(ψ|θ0)dψ,

p(y|M1) =

∫
Θ

∫
Ψ
p(y|θ,ψ)p(ψ|θ)p(θ)dθdψ.

BF corresponds to the use of the zero-one discrete loss function, namely,

4L[H0, (θ,ψ)] =

{
−1 if θ = θ0

1 if θ 6= θ0

,
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and in this case, with c = 0, we

Reject H0 iff BF01 =

∫
Ψ p(y|θ0,ψ)p(ψ|θ0)dψ∫

Θ

∫
Ψ p(y|θ,ψ)p(ψ|θ)π(θ)dθdψ

< 1.

Remark 2.1 BF has several disadvantages. If the Jeffreys or the reference prior (Jeffreys,

1961) is used to reflect the objectiveness, BF is not well-defined since it depends on an

arbitrary constant (BR, 2002). In addition, if a proper prior with a large spread is used

to represent the prior ignorance, BF has a tendency to favor the null hypothesis, giving

rise to Jeffreys-Lindley’s paradox; see Poirier (1995), Robert (1993, 2001). Moreover,

for many models in economics, such as latent variable models and the dynamic general

equilibrium models, the marginal likelihood and hence BF are very difficult to evaluate; see

Han and Carlin (2001) for a good review of methods for calculating BF from the MCMC

outputs. Moreover, Jeffreys’s scales are often used to interpret BF and logarithmic BF

(Kass and Raftery, 1995). However, the interpretation lacks of statistical justification.

BR (2002) suggested using a continuous loss function based on the KL divergence given

by

KL[p(x), q(x)] =

∫
p(x) log

p(x)

q(x)
dx, (2)

where p(x) and q(x) are any two regular probability density functions. The corresponding

Bayesian test statistic is:

TBR (y,θ0) = Eϑ|y (min {KL [p(y|θ,ψ), p(y|θ0,ψ)] ,KL [p(y|θ0,ψ), p(y|θ,ψ)]}) . (3)

Remark 2.2 It is shown in BR (2002) that TBR (y,θ0) is well-defined under improper

distributions. This is an important advantage over the BF. However, the BR test is not

without its problems. First, the KL divergence function often does not have a closed-form

expression. Consequently, TBR (y,θ0) may be difficult to compute. Second, BR suggested

using some subjective and arbitrary threshold values to implement the test. Unfortunately,

the choice of these threshold values has not been justified.

To alleviate the computational problems of TBR (y,θ0) in the context of latent variable

models, LY (2012) proposed a new loss difference function, based on the Q function used in

the EM algorithm (Dempster, Laird and Rubin, 1977). Let z = (z1, z2, · · · , zn)′ denote the

latent variables and x = (y′, z′)′. Let p(y|ϑ) and p(x|ϑ) (:= p(y, z|ϑ)) be the observed

data likelihood function and the complete data likelihood function, respectively. The

relationship between these two likelihood functions is

p(y|ϑ) =

∫
p(y, z|ϑ)dz.
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For any ϑ1 and ϑ2, the Q function is:

Q (ϑ1|ϑ2) = Ez|y,ϑ2
[log p(y, z|ϑ1)] .

Compared with the observed data likelihood function p(y|ϑ), the Q function is easier to

evaluate in latent variable models. In particular, when the analytical expression of p(y|ϑ)

is not available, the Q function can be easily approximated from the MCMC outputs via,

Q (ϑ1|ϑ2) ≈ 1

S

S∑
s=1

log p
(
y, z(s)|ϑ1

)
,

where {z(s), s = 1, 2, · · · , S} are the effective MCMC draws from the posterior distribution

p(z|y,ϑ2). Let ϑ0 = (θ0,ψ). LY (2012) defined a new continuous net loss difference

function as:

4L(ϑ,ϑ0) = {Q(ϑ,ϑ)−Q(ϑ0,ϑ)}+ {Q(ϑ0,ϑ0)−Q(ϑ,ϑ0)} ,

and proposed a Bayesian test statistic as:

TLY (y,θ0) = Eϑ|y [4L (ϑ,ϑ0)] .

Remark 2.3 It is shown in LY (2012) that the test statistic, TLY (y,θ0), is well-defined

under improper priors and also easy to compute. However, this test statistic has some

practical disadvantages. First, like the test statistic of BR, some threshold values have to be

specified. Following the idea of McCulloch (1989), LY (2012) proposed to choose threshold

values based on the Bernoulli distribution. Such a choice is not justified, unfortunately.

Second, it is not clear whether this test statistic is immune to Jeffreys-Lindley’s paradox.

Aiming to alleviate Jeffreys-Lindley’s paradox, LZY (2014) developed an alternative

Bayesian test statistic based on the Bayesian deviance. The net loss function and the test

statistic are given, respectively, by

4L[H0, (θ,ψ)] = 2 log p(y|θ,ψ)− 2 log p(y|θ0,ψ),

TLZY (y,θ0) = 2

∫
[log p(y|θ,ψ)− log p(y|θ0,ψ)] p(θ,ψ|y)dθdψ. (4)

TLZY can be understood as the Bayesian version of the likelihood ratio test. However,

for latent variable models, the likelihood function p(y|θ,ψ) generally is not available in

closed-form. To achieve computational tractability, under some regularity conditions, LZY

(2014) gave an asymptotically equivalent form for TLZY (y,θ0), i.e.,

T∗LZY (y,θ0) = 2D + 2
[
log p(θ̄, ψ̄)− log p(ψ̄|θ0)

]
− 2

[∫
log p(θ|ψ)p(ϑ|y)dϑ

]
−
[
p+ q − tr[−L(2)

0n (ψ̄)V22(ϑ̄)]
]
,
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where ϑ̄ = (θ̄, ψ̄)′ is the posterior mean of ϑ under H1, ϑ̄∗ = (θ0, ψ̄)′, ϑ̄b = (1−b)ϑ̄∗+bϑ̄,

for b ∈ [0, 1], S(x|ϑ) = ∂ log p(x|ϑ)/∂ϑ, D =
∫ 1

0

{
(θ̄ − θ0)′

[
Ez|y,ϑ̄b

(
S1(x|ϑ̄b)

)]}
db the

subvector of S(x|ϑ) corresponding to θ, V22(ϑ̄) = E[(ψ−ψ̄)(ψ−ψ̄)′|y, H1], the submatrix

of V (ϑ̄) corresponding to ψ, and L
(2)
0n (ψ) = ∂2 log p(y,ψ|θ0)/∂ψ∂ψ′.

Remark 2.4 As shown in LZY (2014), T∗LZY (y,θ0) appeals in four aspects. First, it

is well-defined under improper priors. Second, it does not suffer from Jeffreys-Lindley’s

paradox and, hence, can be used under noninformative vague priors. Third, it is easy

to compute. Furthermore, for latent variable models, T∗LZY (y,θ0) only involves the first

and the second derivatives which is easy to evaluate from the MCMC outputs with the

help of the EM algorithm. Finally, LZY (2014) derived the asymptotic distribution of

T∗LZY (y,θ0). When θ and ψ̄ are orthogonal, the asymptotic distribution is determined

by the chi-squared distribution. In this case the test is pivotal and the thresholds can be

obtained form the asymptotic distribution. Unfortunately, in general the test is not pivotal

because the asymptotical distribution depends on some unknown population parameters.

3 Bayesian Hypothesis Testing Based on a Quadratic Loss

3.1 The test statistic

To deal with the non-pivotal problem, in this section, we develop a new Bayesian test

statistic for hypothesis testing. The new statistic shares all the nice features of the LZY

statistic. First, it is motivated from the decision-theoretic perspective. Second, it is well-

defined under improper prior distributions. Second, it is immune to Jeffreys-Lindley’s

paradox. Fourth, it is easy to compute. However, unlike the LZY statistic, the new

statistic is pivotal and hence the threshold can be easily obtained from its asymptotic

distribution.

To fix the idea, let

s(ϑ) =
∂ log p(y|ϑ)

∂ϑ
, C(ϑ) = s(ϑ)s(ϑ)′,

where s(ϑ) is the score function and ϑ = (θ,ψ). We define a quadratic loss function as:

4L[H0,ϑ] = (θ − θ̄)′Cθθ(ϑ̄0)(θ − θ̄), (5)

where Cθθ(ϑ) is the submatrix of C(ϑ) corresponding to θ and is semi-positive definite,

ϑ̄0 = (θ0, ψ̄0) is the Bayesian estimator of ϑ under H0, θ̄ is the Bayesian estimator of θ

under H1. Based on this quadratic loss, we propose the following Bayesian test statistic:

T(y,θ0) =

∫
4L[H0,ϑ]p(ϑ|y)dϑ =

∫
(θ − θ̄)′Cθθ(ϑ̄0)(θ − θ̄)p(ϑ|y)dϑ, (6)

where p(ϑ|y) is the posterior distribution of ϑ under H1.
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Remark 3.1 Clearly T(y,θ0) depends on the posterior distribution directly. The prior

information only influences the test statistic via the posterior distribution.

Remark 3.2 Since the posterior distribution p(ϑ|y) is independent of an arbitrary con-

stant in the prior distributions, both s(ϑ) and Cθθ(ϑ̄0) are independent of the arbitrary

constant. As a result, T(y,θ0) is well-defined under improper priors.

Remark 3.3 To see how the new statistic can avoid Jeffreys-Lindley’s paradox, consider

the example discussed in LZY (2014). Let y ∼ N(θ, σ2) with a known σ2 and we test the

null hypothesis H0 : θ = 0. Let the prior distribution of θ be N(µ, τ2) with µ = 0. LZY

showed that the posterior distribution of θ is N(µ(y), ω2) with

µ(y) =
σ2µ+ τ2y

σ2 + τ2
, ω2 =

σ2τ2

σ2 + τ2
,

and BF is

BF10 =
1

BF01
=

√
σ2

σ2 + τ2
exp

[
τ2y2

2σ2(σ2 + τ2)

]
.

As τ2 → +∞, BF10 → 0, suggesting the test always supports H0, whether or not H0 holds

true, giving rise to Jeffreys-Lindley’s paradox. On the other hand, it is easy to show that

Cθθ(ϑ̄0) =
y2

σ4
, and T(y, 0) =

y2

σ4

∫
(θ − θ̄)2p(θ|y)dθ =

ω2y2

σ4
.

As τ2 → +∞, µ(y) → y, ω2 → σ2, and, hence, T(y, 0) → y2/σ2 which is distributed as

χ2(1) when H0 is true. Consequently, our proposed test statistic is immune to Jeffreys-

Lindley’s paradox.

Remark 3.4 To calculate T(y,θ0), the first derivatives of the observed-data likelihood

function must be evaluated. For most latent variable models, the first derivatives are

difficult to evaluate directly because the observed-data likelihood function is not available

in closed-form. Fortunately, with the help of the EM algorithm, the first derivatives can

be easily approximated from the MCMC outputs in connection with the data augmentation

technique. For any ϑ and ϑ
∗

in the support space of ϑ, it was shown in Dempster et al.

(1977) that

s(ϑ) =
∂ log p(y|ϑ)

∂ϑ
=
∂Q(ϑ|ϑ∗)

∂ϑ
|ϑ=ϑ∗ =

∫
∂ log p(y, z|ϑ)

∂ϑ
p(z|y,ϑ)dz.

Hence, based on the MCMC outputs, the first derivative can be approximated by:

s(ϑ) ≈ 1

M

M∑
m=1

{
∂ log p(y, z(m)|ϑ)

∂ϑ

}
,

where {z(m),m = 1, 2, · · · ,M} are effective MCMC draws from the posterior distribution

p(z|y,ϑ) due to the use of data augmentation.
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3.2 The threshold value

To implement the proposed test, a threshold value, c, has to be specified, i.e.,

Accept H0 if T(y,θ0) ≤ c; Reject H0 if T(y,θ0) > c.

This section obtains the asymptotic distribution of the test statistic under H0 and estab-

lishes the link between the test statistic and the LM test. To do so, following LZY (2014),

we first impose a set of regularity conditions.

Assumption 1: There exists a finite sample size n∗, so that, for n > n∗, there is a local

maximum at ϑ̂ (i.e., posterior mode) such that L
(1)
n (ϑ̂) = 0 and L

(2)
n (ϑ̂) is negative definite,

where Ln(ϑ) = log p(ϑ|y), L
(1)
n (ϑ) = ∂ log p(ϑ|y)/∂ϑ, L

(2)
n (ϑ) = ∂2 log p(ϑ|y)/∂ϑ∂ϑ′.

Assumption 2: The largest eigenvalue λn of −L−(2)
n (ϑ̂) goes to zero when n→∞.

Assumption 3: For any ε > 0, there exists an integer N and some δ > 0 such that for

any n > max{N,n∗} and ϑ ∈ H(ϑ̂, δ) = {ϑ : ||ϑ− ϑ̂|| ≤ δ}, L(2)
n (ϑ) exists and satisfies

−A(ε) ≤ L(2)
n (ϑ)L−(2)

n (ϑ̂)−Ep+q ≤ A(ε),

where Ep+q is an identity matrix and A(ε) is a positive semidefinite symmetric matrix

whose largest eigenvalue goes to zero as ε→ 0.

Assumption 4: For any δ > 0, as n→∞,∫
Ω−H(ϑ̂,δ)

p(ϑ|y)dϑ→ 0,

where Ω is the support space of ϑ.

Assumption 5: The likelihood of the models under both the null hypothesis and the

alternative hypothesis is regular so that the standard maximum likelihood (ML) theory

can be applied. Furthermore, if the null hypothesis is true, let ϑ0 = (θ0,ψ0) be true value

of ϑ, as n→∞, for any null sequence kn → 0, so that,

sup
||ϑ−ϑ0||<kn

n−1||I(ϑ)− I(ϑ0)|| p−→ 0,

where I(ϑ) = ∂2 log p(y|ϑ)/∂ϑ∂ϑ′.

Remark 3.5 In the literature, Assumption 1-4 have been used to develop the Bayesian

large sample theory; see, for example, Chen (1985). Assumption 5 is a fundamental reg-

ularity condition for developing the standard ML theory. Based on these regularity condi-

tions, LZY (2014) showed that

ϑ̄ = E [ϑ|y, H1] =

∫
ϑp(ϑ|y)dϑ = ϑ̂+ op(n

−1/2),

V (ϑ̂) = E
[
(ϑ− ϑ̂)(ϑ− ϑ̂)

′ |y, H1

]
= −L−(2)

n (ϑ̂) + op(n
−1).
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When the null hypothesis holds, we also have

ψ̄0 = E [ψ|y, H0] =

∫
ψp(ψ|y,θ0)dψ = ψ̂0 + op(n

−1/2),

V0(ψ̂0) = E
[
(ψ − ψ̂0)(ψ − ψ̂0)′|y, H0

]
= −L−(2)

0n (ψ̂0) + op(n
−1),

where L
(2)
0n (ψ0) = log p(ψ|θ0,y)/∂ψ∂ψ′|ψ=ψ0

and ψ̂0 is the local maximum of log p(ψ|y,θ0)

under H0.

Lemma 3.1 Let

I(ϑ) =
∂2 log p(y|ϑ)

∂ϑ∂ϑ′
,J(ϑ) = I−1(ϑ).

When the null hypothesis is true, and ϑ0 = (θ0,ψ0) is the true value of ϑ, for any

consistent estimator ϑ̃ of ϑ, we have

I(ϑ0) = Op(n), I(ϑ̃) = I(ϑ0) + op(n) = Op(n),

J(ϑ0) = Op(n
−1),J(ϑ̃) = J(ϑ0) + op(n

−1) = Op(n
−1).

Lemma 3.2 Let ϑ̂0 = (θ0, ψ̂0) be the posterior mode of ϑ under the null hypothesis.

Under Assumptions 1-5 and when the null hypothesis is true, we have

s(ϑ̂0) = Op(n
1/2), s(ϑ̄0) = Op(n

1/2), C(ϑ̂0) = Op(n),

C(ϑ̄0) = C(ϑ̂0) + op(n) = Op(n).

Let the LM statistic (Breusch and Pagan, 1980) be

LM = sθ(ϑ̂m0)
[
−Jθθ(ϑ̂m0)

]
sθ(ϑ̂m0),

where ϑ̂m0 = (θ0, ψ̂m0) is the ML estimator of ϑ under the null hypothesis, sθ(ϑ) is the

score function corresponding to θ, Jθθ(ϑ) is the submatrix of J(ϑ̂) corresponding to θ.

Theorem 3.1 Under Assumptions 1-5, we can show that

T(y,θ0) = sθ(ϑ̂0)
[
−L−(2)

n,θθ (ϑ̂)
]
sθ(ϑ̂0) + op(1), (7)

where L
−(2)
n,θθ is the submatrix of L

−(2)
n corresponding to θ. Furthermore, when the null

hypothesis is true and the likelihood dominates the prior, we have

T(y,θ0) = LM + op(1)
d→ χ2(p). (8)
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Remark 3.6 From Equation (8), T(y,θ0) may be regarded as the Bayesian version of

the LM statistic. However, LM is a frequentist test which is based on the ML estimation of

the model in the null hypothesis whereas our test is a Bayesian test which is based on the

posterior quantities of the models under both the null hypothesis as well as the alternative

hypothesis.

Remark 3.7 In Theorem 3.1, we can see that under the null hypothesis, the asymptotic

distribution of T(y,θ0) always follows the χ2 distribution and, hence, is independent of the

nuisance parameters. This suggests that the new test is pivotal, a property that compares

favorably with the use of the subjective threshold values as in BF (Jeffreys, 1961), BR

(2002), LY (2012) or LZY (2014).

Remark 3.8 When the likelihood dominates the prior, the posterior mode, ϑ̂, reduces to

the ML estimator of ϑ under the alternative hypothesis, and the posterior mode, ϑ̂0 =

(θ0, ψ̂0), reduces to the ML estimator of ϑ under the null hypothesis. From Equation (7),

we can see that

T(y,θ0) = sθ(ϑ̂0)
[
−L−(2)

n,θθ (ϑ̂)
]
sθ(ϑ̂0) + op(1) = −sθ(ϑ̂0)

[
Jθθ(ϑ̂)

]
sθ(ϑ̂0) + op(1).

If the null hypothesis is false, according to the standard ML theory, we get

J(ϑ0) = J(ϑ̂) + op(n
−1) 6= J(ϑ̂0) + op(n

−1).

This is because, under the alternative, ϑ̂ is a consistent estimator of ϑ whereas ϑ̂0 is not.

Hence,

T(y,θ0) = −sθ(ϑ̂0)′Jθθ(ϑ̂)sθ(ϑ̂0) + op(1)

6= −sθ(ϑ̂0)′Jθθ(ϑ̂0)sθ(ϑ̂0) + op(1)

= LM + op(1).

The implementation of the LM test requires the ML estimation of the null model.

When it is hard to do the ML estimation, it will be difficult to calculate the LM statistic.

This is the case for many models that involve latent variables. However, as long as the

Bayesian MCMC methods are applicable, our test can be implemented. Moreover, our

method offers two additional advantages over the LM test, which we explain below.

Remark 3.9 We have shown that when the alternative hypothesis is correct, our test

statistic is not close to the LM test. In this case, our test continues to take a positive

value whereas the LM test can take a negative value. This is because, in our test, the

weight matrix −L−(2)
n,θθ (ϑ̂) remains positive definite as ϑ̂ is consistent. When θ0 is further

11



away from the true value of θ, sθ(ϑ̂0) will be further way from zero. Consequently, T(y,θ0)

will be larger so that it can discriminate H0 against H1. Whereas, when θ0 is further away

from the true value of θ, the weight matrix −I(ϑ0) in the LM statistic may not be positive

definite. This may cause some difficulties in the use of the LM test.

To illustrate the remark, consider the following example where yt ∼ N(0, σ2), t =

1, 2 · · · , n, and the true value of σ2 is 0.1. We would like to test

H0 : σ2 = 1, H1 : σ2 6= 1.

In this case, we have

I(ϑ) = I(σ2) =
∂2 log p(y|σ2)

∂σ2∂σ2
=

n

2σ4
−
∑n

t=1 y
2
t

σ6
.

When n is large enough, we know that
∑n

t=1 y
2
t /n ≈ 0.1 and, hence,

I(ϑ̂0) = I(σ2 = 1) =
n

2
−

n∑
t=1

y2
t =

n

2

(
1− 2

∑n
t=1 y

2
t

n

)
≈ 0.8n > 0,

−J(ϑ̂0) =
1

−I(ϑ̂0)
= − 1

0.8n
< 0.

Consequently, the LM test statistic is negative. Whereas, for our statistic, we have

σ̂2 =
n∑
t=1

y2
t

n
,−I(ϑ̂) =

n

2 (σ̂2)2 ,−J (ϑ) =
2
(
σ̂2
)2

n
.

Hence, out test statistic does not suffer from the problem of taking a negative value.

Remark 3.10 The implementation of the LM test requires the inversion of −I(ϑ0). When

the dimension of ϑ is high, such an inversion may be numerically challenging. Whereas,

to calculate T(y,θ0), one does not need to invert any matrix.

4 Empirical Illustrations

In this section, we illustrate the proposed test using three popular examples in economics

and finance. The first example is a simple linear regression model where BF is easy to

calculate. We hope to compare BF and T(y,θ0), paying particular attentions to the

sensitivity of the statistics to the choice of prior. The second example is a probit model

where there are latent variable models. However, the observed data likelihood is available

in closed-form in the probit model, facilitating the implementation of the LM test. In this

example, we will test a point null hypothesis using both the LM test and the proposed

Bayesian test. The third example is a stochastic conditional duration (SCD) model, where

12



latent variable models are also in presence. However, in this example the observed data

likelihood is not available in closed-form even for the model under the null, making the

implementation of the LM test difficult. Since the complete data likelihood is available in

closed-form, we can use MCMC to estimate the models. We will show how to implement

our Bayesian test in this case.

4.1 Hypothesis testing in linear regression models

The first example is the simple linear regression model:

yi = α+ βxi + εi, εi ∼ i.i.d. N
(
0, σ2

)
, i = 1, ..., n. (9)

We would like to test H0 : β = β0 against H1 : β 6= β0. Assume the prior distributions for

(α, β) and σ2 are normal and inverse gamma, respectively,

(α, β)′ ∼ N
(
µ̃, σ2Ṽ

)
, σ2 ∼ IG(a, b),

where µ̃ = (µα, µβ)′, Ṽ = diag (Vα, Vβ).

The marginal likelihood for the model under H0 is

p0 (y) =
baΓ

(
a+ n

2

)
(2π)

n
2 Γ (a)

√
1

nVα + 1

[
b+

1

2

(
(y − β0x)′ (y − β0x) +

µ2
α

Vα
− µ∗α
V ∗α

)]−(a+n
2 )
,

(10)

where V ∗α = Vα
nVα+1 , µ∗α = V ∗α

(∑n
i=1 (yi − β0xi) + µα

Vα

)
= V ∗α

(
ι′ (y − β0x) + µα

Vα

)
with n×1

vector ι = (1, ..., 1)′. The marginal likelihood for the model under H1 is:

p1 (y) =
ba
√
|V ∗|Γ

(
a+ n

2

)
(2π)

n
2 Γ (a)

√
|Ṽ |

[
b+

1

2

(
(µ̃)′Ṽ −1µ̃+ y′y − (µ∗)′V ∗−1µ∗

)]−(a+n
2 )
, (11)

where V ∗ =
(
Ṽ −1 +X ′X

)−1
, µ∗ = V ∗

(
Ṽ −1µ̃+X ′y

)
, X = (ι,x). Equations (10) and

(11) are derived in Appendix. In this simple model, BF01 = p0 (y) /p1 (y) has an analytical

expression.

To calculate our proposed statistic, note that ϑ = (α, β, σ2)′ and θ = β. Given the

posterior sample
{
ϑ(j)

}M
j=1

=
{
α(j), β(j), σ2(j)

}M
j=1

under H1, the approximation of the

statistic is

T̂ (y,θ0) =
1

M
Cθθ

(
ϑ0

) M∑
j=1

(
β(j) − β

)2
, (12)

where β = 1
M

∑M
j=1 β

(j) and

Cθθ
(
ϑ̄0

)
=

1

(σ2
0)2

[
x′ (y − α0ι− β0x)

]2
.
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where α0 and σ2
0 are the posterior means of α and σ2 under H0. The derivation of Equation

(12) is given in Appendix.

We now analyze a model in Brooks (2008, Page 40) where the return on a spot price

is linked to the return on a futures price, i.e.,

∆ log (st) = α+ β∆ log (ft) + εt, εt ∼ i.i.d.N(0, σ2),

where ∆ log (st) is the log-difference of the spot S&P500 index and ∆ log (ft) is the log-

difference of the S&P500 futures price, and β captures the optimal hedge ratio. We would

like to test if β = 1.

The hyperparameters are set at

µa = 0, Va = 103, µβ = 0, a = 0.001, b = 0.001.

In addition, we allow the prior variance of β, Vβ, to vary so that we can examine how the

prior influences BF and T (y,θ0). Since both the priors and the likelihood function are in

the Normal-Gamma form, we can directly draw MCMC samples from their posterior joint

distributions under H0 and H1. In particular, 50,000 random draws are sampled from the

posterior distributions.

Table 1 reports logBF01, T̂ (y,θ0), the posterior means and the posterior standard

errors of all the parameters under H1 for different values of Vβ. From Table 1, we observe

that the posterior quantities of all three parameters are robust to Vβ. However, logBF01 is

sensitive to Vβ. In particular, logBF01 increases as Vβ increases. When the prior variance

Vβ is moderate, logBF01 is less than 0 and tends to reject the null hypothesis. When Vβ

is sufficiently large, logBF01 is larger than 0 and does not reject the null hypothesis. This

observation clearly demonstrates that BF is subject to Jeffreys-Lindley’s paradox. On the

contrary, T̂ (y,θ0) takes nearly identical values with different Vβ. Therefore, T (y,θ0) is

immune to Jeffreys-Lindley’s paradox. The asymptotic distribution of T (y,θ0) under H0

is χ2(1), and the 99.9% percentile of χ2(1) is 10.83. T̂ (y,θ0) is much larger than 10.83 in

all cases, suggesting that the null hypothesis is rejected under the 99.9% probability level.

4.2 Hypothesis testing in discrete choice models

The probit model is widely used to analyze binary choice data. In this section, we fit

the probit model to a dataset originally used in Mroz (1987). Since the observed data

likelihood in the probit model is available in closed-form, we can directly compute the

proposed Bayesian test statistic T(y,θ0) based on the MCMC outputs. Also, the LM test

can be easily obtained.

In the probit model, we take the married women’s labor force participation (inlf) as the

binary dependent variable and nwifeinc, educ, exper, expersq, age, kedslt6, and kidsge6
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Table 1: Bayesian estimates of ϑ under H1, BF and the proposed test statistic.

Vβ = 0.1 Vβ = 100 Vβ = 105 Vβ = 1022 Vβ = 1025 Vβ = 1035

logBF01 -14.7354 -11.2948 -7.8409 11.7311 15.1849 26.6979

T̂(y,θ0) 14.9558 15.2747 15.1514 15.1569 15.1823 15.1826

β 0.1229 0.1231 0.1246 0.1231 0.1236 0.1242
SE(β) 0.1329 0.1343 0.1337 0.1338 0.1339 0.1339
α 0.3622 0.3633 0.3669 0.3626 0.3639 0.3607

SE(α) 0.4430 0.4427 0.4459 0.4458 0.4438 0.4429

σ2 12.6056 12.5683 12.5688 12.5965 12.5802 12.5821
SE(σ2) 2.2716 2.2701 2.2779 2.2922 2.2649 2.2840

Table 2: The Bayesian and ML estimates

Bayesian Method ML Method
Posterior Mean SE Estimate SD

ϑ0 0.2675 0.5108 0.2701 0.5086
ϑ1 −1.2186× 10−2 4.85× 10−3 −1.2024× 10−2 4.8398× 10−3

ϑ2 0.132 2.5438× 10−2 0.1309 2.5254× 10−2

ϑ3 0.124 1.8755× 10−2 0.1233 1.8716× 10−2

ϑ4 −1.8953× 10−3 6.0381× 10−4 −1.8871× 10−3 6× 10−4

ϑ5 −5.3107× 10−2 8.4833× 10−3 −5.2853× 10−2 8.4772× 10−3

ϑ6 -0.8741 0.1182 -0.8683 0.1185
ϑ7 3.6055× 10−2 4.3472× 10−2 3.6005× 10−2 4.3477× 10−2

are taken as independent variables; see Wooldridge (2002) for detailed explanation of these

variables. The latent variable representation of the model is given by

z = ϑ0 + ϑ1nwifeinc+ ϑ2educ+ ϑ3exper + ϑ4expersq + ϑ5age+ ϑ6kedslt6 + ϑ7kidsge6 + e,

where z is the latent variable, e follows a standard normal distribution, and inlf takes

value 1 if z > 0, and 0 otherwise.

To compute the Bayesian estimates and the proposed test statistic, a proper but vague

prior is used for all the regression coefficients. Specifically, each element of ϑ is assumed

to follow the normal distribution with mean 0 and variance 108. In this example, we test

if exper and expersq have explanatory power for yi. Hence, the parameters of interest are

θ = (ϑ3, ϑ4)′. The null hypothesis is θ = 0.

For the Bayesian analysis, based on Koop (2003), 220,000 draws are obtained using

the Gibbs sampler under H0 and H1 with the first 20,000 samples being discarded. The
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Table 3: The Bayesian test statistic and the LM test statistic

Statistic T̂(y,θ0) LM

Value 127.121 99.088

parameter estimates under H1 for both the Bayesian method and the ML method are

reported in Table 2. For the Bayesian method, we report the posterior means and the

posterior standard errors. For the ML method, we report the ML estimates and the

asymptotic standard deviations. Since the likelihood of the probit model has an analytical

form, the approximation of T(y,θ0) can be easily obtained and is reported in Table 3.

The derivation of T̂(y,θ0) is given in Appendix. For the same reason, the LM test can

be easily obtained and also reported in Table 3.

The asymptotic distribution of T (y,θ0) under H0 is χ2 (2) and the 99.99% percentiles

of χ2 (2) is 18.42. The approximated value T̂(y,θ0) is much larger than 18.42 and suggests

that the null hypothesis is rejected under the 99.99% probability level. Similarly, the LM

statistic is 99.088, which is also much larger than the 99.99% percentile of χ2 (2), and

rejects the null hypothesis.

4.3 Hypothesis testing in stochastic conditional duration models

The third example is the stochastic conditional duration (SCD) model of Bauwens and

Veredas (2004) given by
dt = exp (ϕt) εt εt ∼ Exp (1)

ϕt = µ+ φ (ϕt−1 − µ) + σεt εt ∼ N (0, 1)

ϕ1 ∼ N
(
µ, σ2

1−φ2

) ,

for t = 1, ..., T , where |φ| < 1, dt is the adjusted duration between transactions, ϕt is

the latent variable which is potentially serially correlated. εt and εt are assumed to be

independent. The distribution of εt is assumed to follow the exponential distribution with

the rate parameter of 1.

The data, collected from the TAQ database, are the time intervals (durations) between

transactions for IBM between September 3, 1996 and September 30, 1996 and have 17,237

observations. Following Bauwens and Veredas (2004), the transaction data before 9:30 and

after 16:00 are excluded and the simultaneous trades are treated as one single transaction.

Consequently, we are left with 17,157 raw durations.

Following Engle and Russell (1998), we adjust the raw durations using the daily season

factor Ψ (ti) which is assumed to be a cubic spline with each node being the average
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Table 4: The estimation results of SCD under H0 and H1

H0 H1

Posterior Mean Standard Error Posterior Mean Standard Error

µ -0.1100 9.3943× 10−3 -0.1071 2.502× 10−2

φ - - 0.9549 4.791× 10−3

σ2 0.2122 1.0776× 10−2 1.912× 10−2 2.153× 10−3

duration on each half hour from 9:30 to 16:00, i.e.,

dti =
Dti

Ψ (ti)
,

where Dti is the raw durations. We are interested in testing whether or not ψt is serially

correlated, i.e., φ = 0. Hence, θ = φ, ϑ =
(
µ, σ2

)
.

Because the observed-data likelihood function is not available in closed-form, it is

very hard to calculate the LM statistic even for the model under the null hypothesis.

However, since the complete-data likelihood function has an analytical expression, the

data augmentation facilitates the Bayesian MCMC estimation of the models. As a result,

the proposed test statistic is easy to calculate and the detailed derivation of T̂ (d,θ0) is

reported in Appendix. For H1, we use OpenBUGS to obtain the posterior samples of the

parameters. 60,000 MCMC draws are obtained with the first 10,000 being treated as burn-

in samples. For H0, we use the Gibbs sampler to draw the parameters and the adaptive

rejection Metropolis sampling method (Gilks et.al, 1995) to draw the latent variables. The

estimation results under H0 and H1 are reported in Table 4.

Our test statistic, T̂ (d,θ0), takes the value of 4.2353. Under the null, its asymptotic

distribution is χ2 (1) and the 95% percentiles of χ2 (1) is 3.8415. Therefore, at the 95%

significant level, the proposed test rejects the null hypothesis that the latent variables are

serially uncorrelated.

5 Conclusion

In this paper, we have proposed a new Bayesian test statistic to test a point null hypothesis

based on a quadratic loss function. Under the null hypothesis and a set of regularity

conditions, we show that our test is asymptotically equivalent to frequentist’s LM test

and follows a chi-squared distribution asymptotically.

The main advantages of the new statistic can be summarized as follows: (1) it is

well-defined under improper prior distributions. (2) it is immune to Jeffreys-Lindley’s

paradox; (2) it is easy to compute, even for the latent variable models; (3) the asymptotic
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distribution is pivotal. The proposed method is illustrated using a simple linear regression

model, a discrete choice model and a stochastic conditional duration model.

6 Appendix

6.1 Appendix 1: Proof of Lemma 3.1

When the likelihood information dominates the prior information, the posterior mean ϑ̄

reduces to the ML estimator ϑ̂, under the alternative hypothesis. When the null hypothesis

is true, let ϑ0 = (θ0,ψ0) be the true value of ϑ. According to the standard ML theory

and the central limit theorem, it can be shown that

√
n(ϑ̂− ϑ0)

d→ N [0, F (ϑ0)] ,

where F (ϑ0) = nI−1(ϑ0), I(ϑ0) = −E [I (ϑ0)] is the Fisher information matrix, and

I(ϑ) =
∂2 log p (y|ϑ)

∂ϑ∂ϑ′
= L(2)

n (ϑ).

Under the standard regularity conditions, as n→∞, we have

−nJ(ϑ0)
p→ F (ϑ0),

where J(ϑ0) is the inverse matrix of I(ϑ0). Therefore, it can be shown that

ϑ̂− ϑ0 = Op(n
− 1

2 ),

J(ϑ0) = Op(n
−1), I(ϑ0) = Op(n).

For any consistent estimator of ϑ, say ϑ̃, there exists a positive sequence k∗n → 0 such

that p(||ϑ̃−ϑ0|| ≤ k∗n) ≥ 1− k∗n. Hence, when n is large enough, we can find some N > 0,

and n > N to make ||ϑ̃− ϑ0|| ≤ k∗n. Under Assumption 5, we have

1

n
||I(ϑ̃)− I(ϑ0)|| ≤ sup

||ϑ−ϑ0||<kn

1

n
||I(ϑ)− I(ϑ0)|| p−→ 0.

Hence, for any consistent estimator ϑ̃, 1
n

[
I(ϑ̃)− I(ϑ0)

]
= op(1) so that I(ϑ̃) = I(ϑ0) +

op(n) and that I(ϑ̃) = Op(n). Similarly, J(ϑ̃) = J(ϑ0) + op(n
−1) and J(ϑ̃) = Op(n

−1).

6.2 Appendix 2: Proof of Lemma 3.2

When the likelihood information dominates the prior information, the posterior mode ϑ̂0

of ϑ under the null hypothesis reduces to the ML estimator of ϑ under the null hypothesis.

18



Similar to Lemma 3.1, when the null hypothesis is true, according to the standard ML

theory, it can be shown that

1√
n
s(ϑ0) ∼ N [0, F (ϑ0)],

√
n(ψ̂0 −ψ0) ∼ N [0, Fψψ(ϑ0)],

where Fψψ(ϑ0) is the submatrix of F (ϑ0) corresponding to ψ. Hence, we have

s(ϑ0) = Op(n
1/2), ψ̂0 −ψ0 = Op(n

−1/2), ϑ̂0 − ϑ0 = Op(n
−1/2).

Furthermore, based on Remark 3.5, it can be shown that

ψ̄0 − ψ̂0 = op(n
−1/2), ϑ̄0 − ϑ̂0 = op(n

−1/2),

ψ̄0 −ψ0 = ψ̄0 − ψ̂0 + ψ̂0 −ψ0 = op(n
−1/2) +Op(n

−1/2) = Op(n
−1/2),

ϑ̄0 − ϑ0 = Op(n
−1/2).

Using the first-order Taylor expansion, we have

s(ϑ̂0) = s(ϑ0) + I(ϑ̃0)(ϑ̂0 − ϑ0),

where θ̃0 lies on the segment between ϑ̂0 and ϑ0. Since ϑ̂0 − ϑ0 = Op(n
−1/2), it means

that ϑ̂0 is a consistent estimator of ϑ0 so that ϑ̃0 is also a consistent estimator of ϑ0.

Hence, we get

s(ϑ̂0) = s(ϑ0) + I(ϑ̃0)(ϑ̂0 − ϑ0)

= s(ϑ0) + [I(ϑ0) + op(n)](ϑ̂0 − ϑ0)

= s(ϑ0) + I(ϑ0)(ϑ̂0 − ϑ0) + op(n)(ϑ̂0 − ϑ0)

= s(ϑ0) + I(ϑ0)(ϑ̂0 − ϑ0) + op(n)Op(n
−1/2)

= s(ϑ0) + I(ϑ0)(ϑ̂0 − ϑ0) + op(n
1/2)

= Op(n
1/2) +Op(n)Op(n

−1/2) + op(n
1/2) = Op(n

1/2),

C(ϑ̂0) = s(ϑ̂0)s(ϑ̂0)′ = Op(n
1/2)Op(n

1/2) = Op(n).

Similarly, since ϑ̄0 − ϑ0 = Op(n
−1/2), it means that ϑ̄0 is a consistent estimator of ϑ0 so

that ϑ̃0 is also a consistent estimator of ϑ0. Hence, we can get

s(ϑ̄0) = Op(n
1/2),

C(ϑ̄0) = s(ϑ̄0)s(ϑ̄0)′ = Op(n).

Furthermore, we can show that

s(ϑ̄0) = s(ϑ̂0) + I(ϑ̃0)(ϑ̄0 − ϑ̂0),
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where ϑ̃0 lies on the segment between ϑ̄0 and ϑ̂0. Because both ϑ̂0 and ϑ̄0 are consistent

estimators of ϑ0, ϑ̃0 is also a consistent estimator of ϑ0. Using Lemma 3.1, we get

C(ϑ̄0) = s(ϑ̄0)s(ϑ̄0)′ = [s(ϑ̂0) + I(ϑ̃0)(ϑ̄0 − ϑ̂0)][s(ϑ̂0) + I(ϑ̃0)(ϑ̄0 − ϑ̂0)]′

= s(ϑ̂0)s(ϑ̂0)′ + 2I(ϑ̃0)(ϑ̄0 − ϑ̂0)s(ϑ̂0) + I(ϑ̃0)(ϑ̄0 − ϑ̂0)(ϑ̄0 − ϑ̂0)′I(ϑ̃0)

= s(ϑ̂0)s(ϑ̂0)′ + 2Op(n)op(n
−1/2)Op(n

1/2) +Op(n)op(n
−1/2)op(n

−1/2)Op(n)

= s(ϑ̂0)s(ϑ̂0)′ + op(n) = C(ϑ̂0) + op(n).

6.3 Appendix 3: Proof of Theorem 3.1

Using the Bayesian large sample theory, we have

E
[
(ϑ− ϑ̄)(ϑ− ϑ̄)′|y

]
= E

[
(ϑ− ϑ̂+ ϑ̂− ϑ̄)(ϑ− ϑ̂+ ϑ̂− ϑ̄)′|y

]
= E

[
(ϑ− ϑ̂)(ϑ− ϑ̂)′|y

]
+ 2E

[
(ϑ− ϑ̂)|y

]
(ϑ̂− ϑ̄) + (ϑ̂− ϑ̄)(ϑ̂− ϑ̄)′

= E
[
(ϑ− ϑ̂)(ϑ− ϑ̂)′|y

]
− 2(ϑ̂− ϑ̄)(ϑ̂− ϑ̄) + (ϑ̂− ϑ̄)(ϑ̂− ϑ0)′

= E
[
(ϑ− ϑ̂)(ϑ− ϑ̂)′|y

]
− (ϑ̂− ϑ̄)(ϑ̂− ϑ̄)

= −L−(2)
n (ϑ̂) + op(n

−1) + op(n
−1/2)op(n

−1/2).

The last equality E
[
(ϑ− ϑ̂)(ϑ− ϑ̂)′|y

]
= −L−(2)

n (ϑ̂) + op(n
−1) follows Li, Zeng and Yu

(2012) based on the assumptions listed in Section 3.2. Hence, we have

T(y,θ0) =

∫
(θ − θ̄)′Cθθ(ϑ̄0)(θ − θ̄)p(ϑ|y)dϑ

= tr
[
Cθθ(ϑ̄0)E[(θ − θ̄)(θ − θ̄)′|y]

]
= tr

[
Cθθ(ϑ̄0)[−L−(2)

n,θθ (ϑ̂) + op(n
−1)]

]
= tr

[(
Cθθ(ϑ̂0) + op(n)

)
[−L−(2)

n,θθ (ϑ̂)]
]

+ tr
[
Cθθ(ϑ̄0)op(n

−1)
]

= tr
[
Cθθ(ϑ̂0)[−L−(2)

n,θθ (ϑ̂)]
]

+ op(n)[−L−(2)
n,θθ (ϑ̂)] +Op(n)op(n

−1)

= tr
[
sθ(ϑ̂0)sθ(ϑ̂0)′[−L−(2)

n,θθ (ϑ̂)]
]

+ op(n)Op(n
−1) + op(1)

= tr
[
sθ(ϑ̂0)sθ(ϑ̂0)′[−L−(2)

n,θθ (ϑ̂)]
]

+ op(1)

= sθ(ϑ̂0)′[−L−(2)
n,θθ (ϑ̂)]sθ(ϑ̂0) + op(1).

This proves Equation (7) in the theorem.

When the likelihood information dominates the prior information, the posterior mode

ϑ̂ reduces to the ML estimator of ϑ under the alternative hypothesis, the posterior mode

ψ̂0 to the ML estimator of ψ under the null hypothesis, and L
(2)
n (ϑ) to I(ϑ). under the

null hypothesis, let ϑ0 = (θ0,ψ0) be the true value of ϑ, and ϑ̂0 = (θ0, ψ̂) be the ML
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estimator of ϑ. Then, when the null hypothesis is true, ϑ̂ and ϑ̂0 are both consistent

estimators of ϑ. Hence, based on Lemma 3.1 and Lemma 3.2, we get

J(ϑ̂) = I−1(ϑ̂) = [I(ϑ0) + op(n)]−1 + op(n
−1) = J(ϑ0) + op(n

−1),

J(ϑ̂0) = I−1(ϑ0) = [I(ϑ0) + op(n)]−1 + op(n
−1) = J(ϑ0) + op(n

−1).

Then, we can further derive that

T(y,θ0) =

∫
(θ − θ̄)′Cθθ(ϑ̄0)(θ − θ̄)p(ϑ|y)dϑ

= sθ(ϑ̂0)′[−L−(2)
n,θθ (ϑ̂)]sθ(ϑ̂0) + op(1)

= −sθ(ϑ̂0)′Jθθ(ϑ̂)sθ(ϑ̂0) + op(1)

= −sθ(ϑ̂0)′Jθθ(ϑ̂)sθ(ϑ̂0) + op(1)

= −sθ(ϑ̂0)′
[
Jθθ(ϑ0) + op(n

−1)
]
sθ(ϑ̂0) + op(1)

= −sθ(ϑ̂0)′ [Jθθ(ϑ0)] sθ(ϑ̂0) + sθ(ϑ̂0)′op(n
−1)sθ(ϑ̂0) + op(1)

= −sθ(ϑ̂0)′ [Jθθ(ϑ0)] sθ(ϑ̂0) +Op(n
1/2)op(n

−1)Op(n
1/2) + op(1)

= −sθ(ϑ̂0)′ [Jθθ(ϑ0)] sθ(ϑ̂0) + op(1)

= −sθ(ϑ̂0)′
[
Jθθ(ϑ̂0) + op(n

1/2)
]
sθ(ϑ̂0) + op(1)

= −sθ(ϑ̂0)′Jθθ(ϑ̂0)sθ(ϑ̂0) +Op(n
1/2)op(n

−1)Op(n
1/2) + op(1)

= −sθ(ϑ̂0)′Jθθ(ϑ̂0)sθ(ϑ̂0) + op(1)

= LM + op(1).

According to the standard ML theory, under the null hypothesis, LM
d→ χ2(p). Therefore,

T(y,θ0)
d→ χ2(p) and the theorem is proved.

6.4 Appendix 4: Derivation of BF and the proposed test statistic in a
simple linear model

In the simple linear regression model, under the null hypothesis, the marginal likelihood

is
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p0 (y) =

∫ ∫
p (y|α, β0) p

(
α|σ2

)
p
(
σ2
)
dαdσ2

=
ba

(2π)
n
2 Γ (a)

∫ ∫
exp

(
− 1

2σ2

n∑
i=1

(yi − α− β0xi)
2

)
1√

2πVασ
exp

(
−(α− µα)2

2σ2Vα

)

×
(
σ2
)−a−n

2
−1

exp

(
− b

σ2

)
dαdσ2

=
ba

(2π)
n
2 Γ (a)

∫ ∫
1√

2πVασ
exp

{
− 1

2σ2

[
−2α

n∑
i=1

(yi − β0xi) + nα2

]}

× exp

(
− 1

2σ2

n∑
i=1

(yi − β0xi)
2

)
exp

[
− 1

2σ2Va

(
α2 − 2µαα

)]
exp

(
− µ2

α

2σ2Vα

)
dαdσ2

=
ba

(2π)
n
2 Γ (a)

∫ ∫
1√

2πVασ
exp

(
− 1

2σ2

n∑
i=1

(yi − β0xi)
2

)
exp

(
− µ2

α

2σ2Vα

)

× exp

{
− 1

2σ2

[(
n+

1

Vα

)
α2 − 2α

(
n∑
i=1

(yi − β0xi) +
µα
Vα

)]}
dαdσ2

=
ba

(2π)
n
2 Γ (a)

√
1

nVα + 1
,

×
∫ +∞

0

(
σ2
)−a−n

2
−1

exp

{
− 1

σ2

[
b+

1

2

(
n∑
i=1

(yi − β0xi)
2 +

µ2
α

Vα
− µ∗2α
V ∗α

)]}
dσ2

=
baΓ

(
a+ n

2

)
(2π)

n
2 Γ (a)

√
1

nVα + 1

[
b+

1

2

(
n∑
i=1

(yi − β0xi)
2 +

µ2
α

Vα
− µ∗α
V ∗α

)]−(a+n
2 )

=
baΓ

(
a+ n

2

)
(2π)

n
2 Γ (a)

√
1

nVα + 1

[
b+

1

2

(
(y − β0x)′ (y − β0x) +

µ2
α

Vα
− µ∗α
V ∗α

)]−(a+n
2 )
,

where V ∗α = Vα
nVα+1 , µ∗α = V ∗α

(∑n
i=1 (yi − β0xi) + µα

Vα

)
= V ∗α

(
ι′
(
y − β0x + µα

Vα

))
with

ι = (1, 1, ..., 1)′. Under H1, we rewrite the equation in a matrix form:

y = Xγ + ε,

where γ = (α, β)′, X = (ι,x). The prior for γ is N
(
µ̃, σ2Ṽ

)
, where µ̃ = (µα, µβ)′,

Ṽ = diag (Vα, Vβ).
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Similarly, the marginal likelihood for the model under the alternative is:

p1 (y) =

∫ ∫
p (y|β, α) p

(
γ|σ2

)
p
(
σ2
)
dγdσ2

=
ba

(2π)
n
2 Γ (a)

∫ ∫ (
σ2
)−a−n

2
−1

exp

(
− b

σ2

)
× exp

(
− 1

2σ2
(y −Xγ)′ (y −Xγ)

)
1

2π|Ṽ |
1
2σ2

exp

(
− 1

2σ2
(γ − µ̃)′ Ṽ −1 (γ − µ̃)

)
dγdσ2

=
ba

(2π)
n
2 Γ (a)

√
|Ṽ |

∫ ∫
1

2πσ2

(
σ2
)−a−n

2
−1
{(
− 1

σ2

[
b+

1

2

(
y′y + (µ̃)′Ṽ −1µ̃

)])}

× exp

{
− 1

2σ2

(
γ′
(
X ′X + Ṽ −1

)
γ − γ′

(
X ′y + Ṽ −1µ̃

)
−
(
X ′y + Ṽ −1µ̃

)′
γ

)}
dγdσ2

=
ba

(2π)
n
2 Γ (a)

√
|Ṽ |

∫ ∫
1

2πσ2
exp

{
− 1

2σ2
(γ − µ∗)′ V ∗−1 (γ − µ∗)

}

× exp

(
− 1

2σ2

(
(µ̃)′Ṽ −1µ̃+ y′y − (µ∗)′V ∗−1µ∗

))(
σ2
)−a−n

2
−1

exp

(
− b

σ2

)
dγdσ2

=
ba
√
|V ∗|

(2π)
n
2 Γ (a)

√
|Ṽ |

∫ (
σ2
)−a−n

2
−1

exp

{
− 1

σ2

[
b+

1

2

(
(µ̃)′Ṽ −1µ̃+ y′y − (µ∗)′V ∗−1µ∗

)]}
dσ2

=
ba
√
|V ∗|Γ

(
a+ n

2

)
(2π)

n
2 Γ (a)

√
|Ṽ |

[
b+

1

2

(
(µ̃)′Ṽ −1µ̃+ y′y − (µ∗)′V ∗−1µ∗

)]−(a+n
2 )
,

where V ∗ =
(
Ṽ −1 +X ′X

)−1
, µ∗ = V ∗

(
Ṽ −1µ̃+X ′y

)
.

Note that the log-likelihood function is:

log p (y|ϑ) = −n
2

log (2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

(yi − α− βxi)2 .

Hence, given ϑ =
(
α, β, σ2

)′
, θ = β, we have

s (ϑ) =

(
1

σ2

n∑
i=1

(yi − α− βxi) ,
1

σ2

n∑
i=1

xi (yi − α− βxi) ,−
n

2σ2
+

1

2σ4

n∑
i=1

(yi − α− βxi)2

)′
,

and

Cθθ
(
ϑ0

)
=

1

σ2
0

2

[
n∑
i=1

xi (yi − α0 − β0xi)

]2

=
1

σ2
0

2

[
x′ (y−α0ι− β0x)

]2
,

where α0 and σ2
0 are the posterior means of α and σ2 under H0.

To sum up, to compute the T (y,θ0), we first draw MCMC samples for the model cor-

responding to H0 and calculate Cθθ
(
ϑ0

)
. And then we draw MCMC samples for the model
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corresponding to H1 to obtain
{
ϑ(j)

}M
j=1

=
{
α(j), β(j), σ(j)

}M
j=1

. The approximation of

the test statistic is given by

T̂ (y,θ0) =
1

M
Cθθ

(
ϑ0

) M∑
j=1

(
β(j) − β

)2
,

where β = 1
M

∑M
j=1 β

(j).

6.5 Appendix 5: Derivation of the proposed test statistic in a binary
probit model

In the binary probit model, for each yi, i = 1, 2, ..., n, there is a corresponding latent

variable zi that satisfies: {
yi = 1 if zi ≥ 0

yi = 0 if zi < 0
,

and

zi = x′iϑ+ ei,

where ϑ is the (p+q)×1 parameter vector measuring the marginal effects and ei ∼ N (0, 1)

for i = 1, ..., n.

Rewrite the above equation as:

zi = x′i1ψ + x′i2θ + ei.

For each i, we have{
p (yi = 1|ϑ) = p (zi ≥ 0|ϑ) = p (ei ≥ − (x′i1ψ + x′i2θ) |ϑ) = Φ [(2yi − 1) (x′i1ψ + x′i2θ)]

p (yi = 0|ϑ) = p (zi < 0|ϑ) = p (ei < − (x′i1ψ + x′i2θ) |ϑ) = Φ [(2yi − 1) (x′i1ψ + x′i2θ)]
,

where the Φ (·) is the standard normal cumulative distribution function. Note that the

log-likelihood function is:

log p (y|ϑ) =

n∑
i=1

log Φ
[
qi
(
x′i1ψ + x′i2θ

)]
,

where qi = 2yi − 1.

In our example, the null hypothesis is: H0 : θ = 0. Note that,

∂ log p (y|ϑ)

∂θ
=

n∑
i=1

qi
φ [qi (x′i1ψ + x′i2θ)] xi2

Φ [qi (x′i1ψ + x′i2θ)]
,
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where φ (·) is the density function of the standard normal distribution. The test statistic

is

T (y,θ0) =

∫ (
θ − θ

)′
Cθθ

(
ϑ0

) (
θ − θ

)
p (ϑ|y) dϑ.

where

Cθθ
(
ϑ0

)
=

(
∂ log p (y|ϑ)

∂θ

)(
∂ log p (y|ϑ)

∂θ

)′∣∣∣∣
ϑ=ϑ̄0

=

(
n∑
i=1

φ [qi (x′i1ψ + x′i2θ)] qixi2
Φ [qi (x′i1ψ + x′i2θ)]

)
×

(
n∑
i=1

φ [qi (x′i1ψ + x′i2θ)] qixi2
Φ [qi (x′i1ψ + x′i2θ)]

)′
,

where ϑ0 = (θ0, ψ̄0) and ψ0 is the posterior mean of ψ under H0.

To sum up, to compute the T (y,θ0), we firstly draw MCMC samples for the model

under H0 and calculate Cθθ
(
ϑ0

)
. We then draw MCMC samples for the model under H1

to obtain
{
ϑ(j)

}M
j=1

=
{
θ(j),ψ(j)

}M
j=1

. The approximation of the statistic is

T̂ (y,θ0) =
1

M

M∑
j=1

(
θ(j) − θ

)′
Cθθ

(
ϑ0

) (
θ(j) − θ

)
, (13)

where θ is the posterior mean of θ for the model under H1.

6.6 Appendix 6: Derivation of the test statistic in the stochastic condi-
tional duration model

In the third example, we choose the SCD model, which is defined as:
dt = exp (ϕt) εt εt ∼ Exp (1)

ϕt = µ+ φ (ϕt−1 − µ) + σεt εt ∼ N (0, 1)

ϕ1 ∼ N
(
µ, σ2

1−φ2

) ,

for t = 1, ..., T , where dt is the adjusted duration data, |φ| < 1, ϕt is the latent variable.

εt and εt are assumed to be independent. We would like to test if φ = 0. Hence, θ = φ,

ψ =
(
µ, σ2

)
, ϑ = (θ,ψ). The proposed test statistic is:

T (d,θ0) =

∫ (
φ− φ

)
Cθθ

(
ϑ0

) (
φ− φ

)
p (φ|d) dφ.

where d = {dt}Tt=1, φ is the posterior mean of φ under H1, and Cθθ
(
ϑ0

)
can be approxi-

mated by

Cθθ
(
ϑ0

)
=

[
∂ log p (d|ϑ)

∂ϑ

(
∂ log p (d|ϑ)

∂ϑ

)′]
θθ

∣∣∣∣
ϑ=ϑ0

=

[
∂ log p (d|ϑ)

∂θ

(
∂ log p (d|ϑ)

∂θ

)′]∣∣∣∣
ϑ=ϑ0
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According to Remark 3.4, the partial derivative of log-likelihood function with respect

to φ can be approximated by the Q-function. Under H1, the log-likelihood function given

ϑ and ϕ = {ϕt}Tt=1 is

log p (d|ϕ,ϑ) = −
T∑
t=2

1

2σ2
(ϕt − µ− φ (ϕt−1 − µ))2 − 1− φ2

2σ2
(ϕ1 − µ)2

+
1

2
log
(
1− φ2

)
− n

2
log(2π)− n

2
log(σ).

Therefore, the partial derivative of log-likelihood function with respect to φ given ϕ and

ϑ is

∂ log p (d|ϕ,ϑ)

∂θ
=

T∑
t=2

1

σ2
(ϕt − µ− φ (ϕt−1 − µ)) (ϕt−1 − µ) +

φ

σ2
(ϕ1 − µ)2 − φ

1− φ2
.

Then, underH1, we generate MCMC samples and denote them by
{
µ

(j)
1 , φ(j), σ

2(j)
1

}M
j=1

.

UnderH0, the MCMC samples is denoted as
{
µ

(j)
0 , σ

2(j)
0 ,ϕ(j)

}M
j=1

, whereϕ(j) =
{
ϕ

(j)
t

}T
t=1

is the set of the draws of the latent variables at j-th iteration. Then ∂ log p (d|ϑ) /∂θ can

be approximated by

∂ log p (d|ϑ)

∂θ

∣∣∣∣
ϑ=ϑ0

≈ 1

M

M∑
j=1

(
1

σ2
0

T∑
t=2

(
ϕ

(j)
t − µ0

)(
ϕ

(j)
t−1 − µ0

))
,

where µ0 = 1
M

∑M
j=1 µ

(j)
0 , σ2

0 = 1
M

∑M
j=1 σ

2(j)
0 , ϑ̄0 =

(
θ0,ψ0

)
, θ0 = 0, ψ0 =

(
µ0, σ

2
0

)
. The

test statistic can be approximated by

T̂ (d,θ0) =
1

M
Cθθ

(
ϑ0

) M∑
j=1

(
φ(j) − φ

)2
.
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