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Adaptive Nonparametric Regression with Conditional

Heteroskedasticity∗

Sainan Jin, Liangjun Su Zhijie Xiao

 School of Economics, Singapore Management University
 Department of Economics, Boston College

March 12, 2014

Abstract

In this paper, we study adaptive nonparametric regression estimation in the presence of conditional

heteroskedastic error terms. We demonstrate that both the conditional mean and conditional variance

functions in a nonparametric regression model can be estimated adaptively based on the local profile

likelihood principle. Both the one-step Newton-Raphson estimator and the local profile likelihood

estimator are investigated. We show that the proposed estimators are asymptotically equivalent to

the infeasible local likelihood estimators (e.g., Aerts and Claeskens, 1997), which require knowledge

of the error distribution. Simulation evidence suggests that when the distribution of the error term

is different from Gaussian, the adaptive estimators of both conditional mean and variance can often

achieve significant efficiency over the conventional local polynomial estimators.

JEL classifications: C13, C14

Key Words: Adaptive Estimation, Conditional Heteroskedasticity, Local Profile Likelihood Es-

timation, Local Polynomial Estimation, Nonparametric Regression, One-step Estimator.

1 Introduction

We consider the following regression model:

 = () +  ()   = 1   (1.1)

where  is independent and identically distributed (IID hereafter) with mean zero and variance one, 

is a  × 1 IID independent variable, (·) and 2 (·) are assumed to be unknown smooth functions. For
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simplicity, we will assume that  is independent of  and has an unknown density function. We are

interested in estimating the infinite dimensional parameters (·) and 2 (·) adaptively in the sense that
they are asymptotically equivalent to the infeasible likelihood estimators which require knowledge of the

error distribution.

Model (1.1) has attracted a lot of research attention in the last two decades; see Härdle and Tsybakov

(1997), Ruppert et al. (1997), Fan and Yao (1998), Akritas and van Keilegom (2001), and Ziegelmann

(2002), among others. Härdle and Tsybakov (1997) consider local polynomial estimation of the volatility

function in a nonparametric autoregression model; Ruppert et al. (1997) study the conditional bias and

variance of the local polynomial estimates of variance functions. Fan and Yao (1998) suggest estimating

the conditional mean function first and then the conditional variance function and they show that their

estimator of the conditional variance function is asymptotically adaptive to the unknown conditional

mean function. Akritas and van Keilegom (2001) are interested in estimating the distribution of 

after estimating the conditional mean and variance functions. Ziegelmann (2002) propose a local linear

exponential tilting estimator of the conditional variance function to ensure its positivity. Nevertheless,

all estimators of the conditional variance functions reviewed here are based on the least squares principle

and none of them takes into account the error distribution.

Motivated by efficiency considerations, Linton and Xiao (2007) study adaptive estimation for model

(1.1) in the case where 2 () = 2 almost surely (a.s.). They propose an adaptive estimator in the sense

that it is asymptotically equivalent to the infeasible local likelihood estimator of Staniswalis (1989) and

Fan et al. (1998), which requires the knowledge of the error distribution. In the case where conditional

heteroskedasticity is present, i.e., 2 (·) is not a constant function, the density of  ≡  ()  also has

mean zero but is a multiplicative convolution of the two terms and such that an estimator based on a

direct application of Linton and Xiao (2007) may not be adaptive unless  is symmetric about zero.

In the current paper we propose jointly estimating the location and scale parameters
¡
 ()  2 ()

¢
efficiently by a feasible multiparameter local likelihood method.

There are several advantages associated with our approach. First, our estimator takes into account

the useful information in the error distribution and is adaptive to the unknown error distribution. Second,

by estimating the conditional mean and variance functions jointly, we relax the symmetry assumption

on the error density, which is very helpful for applications in empirical finance and economics, since

both conditional heteroskedasticity and asymmetric error distributions have frequently been detected

in practice. Third, compared to Linton and Xiao (2007), additional issues arise due to the estimation

of conditional variance and its nonnegativity. We resolve these issues by using a link function for the

variance parameter.

In this paper, we consider the model (1.1) where the regression function  (·) is assumed to be a
general smooth function of the regressor . It is well-known that such models, although general, suffer

from the curse-of-dimensionality problem and have a slow rate of convergence when the dimension of  is

high. In the case of high dimensional covariates, other types of models such as the additive functions may

be considered to avoid the curse of dimensionality. See, e.g., Claeskens and Aerts (2000) for nonparametric

estimation of additive multiparameter models. But to conserve space, we limit our attention to the model

(1.1).

The rest of the paper is organized as follows. We introduce the model and estimators in Section 2 and
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the asymptotic properties of the proposed estimators in Section 3. In section 4 we provide results from

a small Monte Carlo experiment evaluating the finite sample performance of the adaptive estimators.

Section 5 concludes. All proofs are relegated to the appendix.

Throughout the paper, we use  () to denote the th derivatives of a function  When  = 1 2 we

also use  0 and  00 to denote the first and the second order derivatives, respectively. For a matrix 

we use kk to denote its Frobenius norm {tr(>
)}12 and 

>
its transpose. Let  denote the  × 

identity matrix. For a ×1 multi-index vector j = (1  )0 and a general × 1 vector  = (1  )0,
we follow Masry (1996a, 1996b) and Linton and Xiao (2007) and use the following notation

j! =
Y

=1

! |j| =
X

=1

 
j =

Y
=1

  and
X

0≤|j|≤
=

X
=0

X
1=0

· · ·
X

=0

1++=



2 The Model and Estimator

We introduce the multi-parameter likelihood model in Section 2.1 where the likelihood function is assumed

to be known. This infeasible estimator serves as an efficiency standard with which we can compare the

proposed adaptive estimator. We propose an adaptive estimator in Section 2.2, where we study the

efficient estimation in the case when the error density is unknown and has to be estimated from the data.

2.1 The Multi-parameter Likelihood Model

Suppose that we have a random sample {(1 1)  ( )}  where  ∈ R and  ∈ R from the

nonparametric regression model (1.1). We consider the regression model (1.1) where  is independent of

 and has mean zero and variance one. Assume that  admits a Lebesgue density  We are interested

in estimating
¡
 ()  2 ()

¢
at some interior point .

Although kernel estimation or other types of methods can be used, in this paper we give asymptotic

analysis based on the local polynomial procedure. See Fan (1992, 1993) and Fan and Gijbels (1996) for

discussions on the attractive properties of local polynomial estimators.

For a kernel function and a bandwidth parameter  let (·) ≡  (·)  Following the notation
of Masry (1996a, b), let  ≡ ( +  − 1)!(!( − 1)!) be the number of distinct -tuples j with |j| = 

Arrange the  -tuples as a sequence in a lexicographical order (with highest priority to last position so

that (0 0  ) is the first element in the sequence and ( 0  0) is the last element), and let −1 denote

this one-to-one map. For each j with 0 ≤ |j| ≤ 2 let j() ≡
R
R 

j() j() ≡
R
R 

j2()

and define the  × dimensional matrices  and Γ and  ×+1 matrix  where  ≡
P

=0 by

 ≡

⎡⎢⎢⎢⎢⎢⎣
00 01  0

10 11  1

...
...

. . .
...

0 1  

⎤⎥⎥⎥⎥⎥⎦  Γ ≡
⎡⎢⎢⎢⎢⎢⎣
Γ00 Γ01  Γ0

Γ10 Γ11  Γ1
...

...
. . .

...

Γ0 Γ1  Γ

⎤⎥⎥⎥⎥⎥⎦   ≡
⎡⎢⎢⎢⎢⎢⎣

0+1

1+1

...

+1

⎤⎥⎥⎥⎥⎥⎦  (2.1)

where  and Γ are × dimensional matrices whose ( ) elements are, respectively, ()+()

and ()+() Note that the elements of the matrices  = () and Γ = Γ( ) are simply

multivariate moments of the kernel  and 2 respectively; and the matrix  = ( ) depends on
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the kernel and the order of the local polynomial in use. In addition, we arrange the  elements of the

derivatives

(s) () ≡ 1

1! · · · !
|s|()

11
 |s| = 

as an  × 1 column vector ()() in the lexicographical order.
¡
s2

¢
() and σ2()() are similarly

defined.

Let  (·) denote the probability density function (PDF) of  Then we can write the density function
of  given  =  as

 (;1 ()  2 ()) ≡ 
³
( − 1 ()) 

p
(2 ())

´

p
 (2 ()) (2.2)

where  (·) is a “link” function that is strictly monotonic and positive, and the true value (01 ()  02 ())
of (1 ()  2 ()) satisfies 

0
1 () =  () and (02 ()) = 2 ()  A simple choice for  (·) is the identity

function, i.e.,  () =  but this parametrization generally does not ensure the positivity of the variance

function estimate. Another choice is  () = exp ()  ensuring that the estimate of 2 () is always

positive; Ziegelmann (2002) uses this function to obtain a local linear exponential tilting estimate. It is

worth mentioning that both link functions yield the same asymptotic variance but different asymptotic

biases for the local polynomial estimates. We will consider both link functions below.

For the ease of presentation, we denote for  = 1 2

β () ≡
³
β0 () β1 ()

>
 β ()

>´>
 β0 () ≡

³
β00 () β

0
1 ()

>
 β0 ()

>´>


where β01 () = ()() and β02 () = ()() for  = 0 1   where  () = −1
¡
2 ()

¢
 −1 (·) is

the inverse function of  (·)  and () is analogously defined as ()() with  () replacing  ()  In

particular, β010 () =  () and β020 () = −1(2 ()) We will frequently suppress the dependence of

β () and β
0
 () on  for  = 1 2 Let  (β) ≡

P
0≤|j|≤ j () ( − )

j
. Apparently, 

¡
β01 ()

¢
and


¡
β02 ()

¢
are -th order Taylor expansions of  () and −1(2 ()) around  respectively.

Given {()}=1  the local polynomial maximum likelihood estimator (MLE) β̄
>
= (β̄

>

1  β̄
>

2 ) =

(β̄10 β̄
>

11  β̄
>

1 β̄20 β̄
>

21  β̄
>

2) maximizes the kernel-weighted log-likelihood function

L (β1β2) ≡
1



X
=1

log  (; (β1)   (β2)) (−)  (2.3)

with respect to (β
>
1 β

>
2 ) = (β10β

>
11 β

>
1β20β

>
21 β

>
2).

Let  () ≡  0 ()  () and  () ≡  ()  + 1 Let  () ≡ ( − 1) 
p
(2) and () (;1 2) ≡



 log ()|=() for  = 1 2 3 To study the asymptotic properties of β̄ we make the following assump-
tions.

A1.  and  are IID and are mutually independent with  () = 0 and 
¡
2
¢
= 1 The PDF  (·) of

 has support R, and uniformly bounded continuous derivatives of up to the order + 2 Furthermore,
 (+2) (·) is Lipschitz continuous of order 1, i.e., there exists 1  ∞ such that for all  and  on the

support of  we have
¯̄
 (+2) ()−  (+2) ()

¯̄ ≤ 1 |− | 
A2. ()  [ ()] = 0  [ ()] = 0 

£
2 ()

¤
∞ and 

£
2 ()

¤
∞ for some   1

()

"

£
2 ()

¤
 [ ()  ()]

 [ ()  ()] 
£
2 ()

¤ #
is positive definite (p.d.).
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() 
¯̄̄
() ()

¯̄̄
∞ and 

¯̄
() ()

¯̄
∞ for  = 1 2

() There exists a function  (),
¯̄̄
() (;1 2)  ()


¯̄̄
≤  () for all  ∈ B0 0 ≤  ≤  and

 = 1 2 3 and 
£
2 ( )

¤
∞.

A3. The PDF  (·) of  is differentiable, bounded, and bounded away from zero on its compact

support X . 0 () ( = 1 2) have (+ 1)th order derivatives, and
¡
j0

¢
() are bounded and Lipschitz

continuous on X for all |j| = + 1

A4.  is a product kernel of a univariate kernel function  :  () ≡ Π=1 (), where  is a symmetric
PDF that has compact support and bounded variation. For each -tuple j with 0 ≤ |j| ≤ 2 + 1

j() ≡ j () is Lipschitz continuous.

A5. As →∞ → 0  →∞ and 2(+1)+ → 2 ∈ [0∞)
Assumptions A1-A2 are parallel to the Assumptions A1-A2 in Linton and Xiao (2007). The main

difference is that our Assumption A2 is stronger than theirs. In addition to the conditions on the score

function  (·) for the conditional mean parameter, we also impose conditions on the score function for
the conditional variance parameter that is associated with  (·)  It is easy to verify that the normal or
student  distributions with degrees of freedom larger than three will satisfy A2(i). A2(ii) ensures the

positive definiteness of certain information matrix. A3 mainly specifies conditions on the density of 

and the smoothness of functions of interest. A4 and A5 impose conditions on the kernel function and

bandwidth parameter, respectively.

Let  ≡diag¡0  1   


¢
and ̄ ≡diag()  Define

I0 () =  ()

⎡⎣ [2()]
2()  [ ()  ()]

0(02())
23()

 [ ()  ()]
0(02())
23()  [ ()]2

[0(02())]
2

44()

⎤⎦  (2.4)

The following proposition reports the asymptotic distribution of β̄().

Proposition 2.1 Suppose that Assumptions A1-A5 hold. Then

√


"
̄
¡
β̄()− β0()¢− +1

Ã
−1m(+1) ()

−1β0(+1)2 ()

!#
→ 

³
0 I−1

0
()⊗ £−1Γ−1¤´  (2.5)

where β
0(+1)
2 () is analogously defined as m(+1) () 

Proposition 2.1 complements existing results in the literature. Staniswalis (1989) studies the local

constant ( = 0) estimation of a single location parameter by maximizing a kernel-weighted likelihood

function. Fan et al. (1995) discuss the local polynomial estimator of a single location parameter when

the error density belongs to a one-parameter exponential family. Aerts and Claeskens (1997) study the

local polynomial estimation in multiparameter-likelihood models where  = 1 and  is nonrandom.

Claeskens and Van Keilegom (2003) study the construction of confidence bands via local polynomial

estimation. One can apply their method to construct the confidence bands for both the conditional

mean and variance function estimates in our framework. In addition, under appropriate conditions, the

local MLE is equivalent to nonparametric estimation by treating the locally weighted score functions as
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Table 1: Relative efficiency of the local likelihood estimators over the conventional local polynomial

estimators
Estimator  ()  (2)  (3)  (4)  (5)  (10)  (20)  (50)  (100)  (∞)
 () (−2)((+3)

(+1) - 0.5 0.7 0.8 0.945 0.986 0.998 0.999 1

2() (+3)(−4)
(+2) - - - 0.229 0.650 0.836 0.938 0.969 1

estimating equations. So we can obtain the solution to the local MLE through solving the estimating

equations. See Claeskens and Aerts (2000) for such a local polynomial estimation setup.

If  () =  then 0
¡
02 ()

¢
= 1 and Proposition 2.1 holds with 0

¡
02 ()

¢
being replaced by 1 in

the definition of I0 (). If, in addition, the density  of  is symmetric about zero, then  (·) is an
odd equation, implying that [ ()  ()] = 0 under Assumption A2. In this case, I−1

0
() is a diagonal

matrix and thus the estimation of conditional variance is not affected by the estimation of conditional

mean. In particular, we have

√


³
()−()− +1

h
−1m(+1)()

i
1

´
→ 

Ã
0

2()

 ()
£
2 ()

¤ £−1Γ−1¤
11

!


and

√


³
2()− 2()− +1

h
−1σ2

(+1)

()
i
1

´
→ 

µ
0

44()

 () [2 ()]

£
−1Γ−1

¤
11

¶


where []1 denotes the first element of , and [] signifies the ( )th element of  This indicates that

in the case of symmetric error density, the asymptotic biases of () and 2() are the same as those of

the local polynomial estimators of () and 2() when they are estimated separately (e.g., Ruppert et

al., 1997, Fan and Yao, 1998). The asymptotic variance of () is smaller than that of the conventional

local polynomial estimator of (), which is 2()
£
−1Γ−1

¤
11

 ()  Similarly, the asymptotic

variance of 2() is smaller than that of the conventional local polynomial estimator of 2(), which

is 4()
¡
21 − 1

¢2 £
−1Γ−1

¤
11

 ()  In the special case where the error term  is proportional

to a student- random variable, let ∗ have the student  distribution with   2 degrees of freedom,

we can normalize ∗ so that  =
p
( − 2) ∗ has variance one. Table 1 lists the relative asymptotic

efficiency ratio of
¡
() 2()

¢
over the conventional local polynomial estimators of

¡
 ()  2 ()

¢
in

terms of asymptotic variance for the approximately  () distributed . Smaller number means that larger

asymptotic gain can be achieved by using the local likelihood approach. Table 1 indicates that a large

efficiency gain can be achieved by using the local likelihood approach when the error distribution is far

away from normality.

If  () = exp ()  then 0
¡
02 ()

¢
= exp(02 ()) = 2 ()  and Proposition 2.1 holds with 0

¡
02 ()

¢
being replaced by 2 () in the definition of I0 (). In this case, Proposition 2.1 implies that

√
 [ ()− ()]− +1

h
−1m(+1) ()

i
1

→ 

µ
0
h
I−10 ()⊗

¡
−1Γ−1

¢i
11

¶
 (2.6)

and that, by a simple application of the delta method,

√


£
2 ()− 2 ()

¤−+12() h−1β0(+1)2 ()
i
1

→ 

µ
0 4()

h
I−10 ()⊗

¡
−1Γ−1

¢i
+1+1

¶
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where

I0 () =  ()

⎡⎣ [2()]
2()

[()()]
2()

[()()]
2()

[2()]
4

⎤⎦  (2.7)

and β
0(+1)
2 () is analogously defined as m(+1) by stacking all (+ 1)th derivatives of log 2() into a

column vector. Compared with the case of  () =  the bias of () remains the same as before whereas

the bias of 2() differs from that of the latter case; the asymptotic variances of these two estimators

also remain the same as before. Furthermore, if  is symmetric about zero, then one can readily verify

that the asymptotic variance of 2 () is the same as that of the local linear exponential-tilting (ET)

estimator of 2 () as obtained by Ziegelmann (2002).1

It is worth mentioning that in general, the estimate β̄() is only implicitly defined as a nonlinear

function of the random sample. In practice, one may resort to a numerical algorithm to compute it. We

may work with the one-step Newton-Raphson (NR hereafter) estimator from a preliminary consistent

estimator β̃ = (β̃1 ()
>
 β̃2 ()

>
)
>
 where β̃1 () and β̃2 () can be the local polynomial least squares

estimator for β1 and β2 respectively. Let X̃ ≡ X̃ () = (X̃0 ()
>
  X̃ ()

>
)
>
where X̃|j| ()

(0 ≤ |j| ≤ ) is an |j| × 1 subvector whose -th element is given by
h
X̃|j|

i

= ( − )

|j|()  Let

 (β) ≡
⎛⎝ − (())

((2))
12

−0((2))(())
2((2))

⎞⎠ , (2.8)

where  (β) ≡ ( −  (β1)) 
p
 ( (β2)) Define the smoothed score function

 (β; ) ≡ 1



X
=1

 (−)  (β)⊗ X̃ (2.9)

and the smoothed information matrix

 (β; ) ≡ 1



X
=1

 (−)
h
 (β)  (β)

>i⊗µX̃X̃
>



¶
 (2.10)

Then the one-step NR estimator from a preliminary consistent estimator β̃ is given by

β̄ () ≡ β̃ () + 

³
β̃ () ; 

´−1


³
β̃ () ; 

´
 (2.11)

It can be shown that β̄ () shares the same asymptotic distribution as β̄() under some regularity

conditions.

We call β̄() in Proposition 2.1 an oracle estimator because its definition uses knowledge that only

an oracle could have. In practice, the density  of  is generally unknown and so both β̄() and β̄ ()

are infeasible.

2.2 The Adaptive Nonparametric Regression Estimators

To obtain a feasible analogue of β̄() we need to replace  in (2.11) by a nonparametric estimate, say, ̃

Since ̃ appears as a random denominator, it causes technical difficulty when it is small. For this reason,

we propose to trim out small values of ̃ as do Bickel (1982), Kreiss (1987), and Linton and Xiao (2007).

7



In particular, we consider the following smoothed trimming, which has been used by Andrews (1995), Ai

(1997), and Linton and Xiao (2007). Let  (·) be a density function with support [0,1],  (0) =  (1) = 0

Let  be the trimming parameter that goes to zero at a certain rate as →∞ Define  () =
1

¡

 − 1

¢


Clearly,  () has support on [ 2]. Defining  () =
R 
−∞  ()  we have

 () =

⎧⎪⎪⎨⎪⎪⎩
0 if   R 
−∞  ()  if  ≤  ≤ 2
1 if   2

(2.12)

We assume that  is second order differentiable and its derivatives are uniformly bounded.

In this section we propose a feasible estimator by substituting a suitable pilot estimator of  in (2.11).

The proposed three-step estimation procedure is as follows:

1. Obtain a preliminary consistent estimate of
¡
01 

0
2

¢ ≡ ( ()  2 ()) and its derivatives by the
-th order local polynomial smoothing with kernel  and bandwidth 1 Denote the preliminary

estimate as β̃ () = (β̃
>
1 ()  β̃

>
2 ())

>
 where β̃ () estimates β

0
 () for  = 1 2 Define the

residuals ̃ ≡  − ̃() and its standardized version ̃ ≡ ̃̃ () for  = 1  

2. Obtain a consistent estimator for the error density and its derivatives by the leave-one-out kernel

method:

̃ () ≡ 1

0

X
 6=

0

µ
 − ̃

0

¶
 and ̃

0
 () ≡

1

20

X
 6=


0
0

µ
 − ̃

0

¶
 (2.13)

where 0 and 0 are the univariate kernel and bandwidth parameter, respectively.

3. Define the trimmed and re-centered local score function

̃

³
β; ̃

´
≡ 1



X
=1



µ
−



¶
̃ (β)⊗ X̃ (2.14)

and the trimmed local information matrix

̃

³
β; ̃

´
≡ 1



X
=1



µ
−



¶


³
̃ ( (β))

´h
̃ (β) ̃ (β)

>i⊗ (X̃X̃
>

 ) (2.15)

where ̃ (β) ≡ (̃ ( (β)))̃ (β) + ̃∗ (β̃)

̃ (β) ≡
Ã

̃1 (β)

̃2 (β)

!
≡ −

⎛⎝ ̃(())

((2))
12

0((2))̃(())
2((2))

⎞⎠  (2.16)

̃∗ (β) ≡
Ã

̃∗1 (β)

̃∗2 (β)

!
(2.17)

≡ − log
Ã

̃ ( (β))

 ( (β2))
12

!


³
̃ ( (β))

´
̃ 0 ( (β))

⎛⎝ 1
((2))

12

0((2))()
2((2))

⎞⎠ 

and ̃ (·) ≡ ̃ 0 (·) ̃ (·), ̃ ( (β)) =
h
̃ ( (β))  (β) + 1

i
. The proposed one-step adaptive

estimator can then be calculated by

β̂ () ≡ β̃ () + ̃

³
β̃ () ; ̃

´−1
̃

³
β̃ () ; ̃

´
 (2.18)
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We shall show below that, under appropriate assumptions, the proposed estimator β̂ () is asymptot-

ically equivalent to the infeasible estimator β̄()

Note that Linton and Xiao (2007) only resort to the trimming but not the re-centering technique.

There the score function is given by 1 ≡ 1


P
=1

¡
−



¢
 () X̃ and can be estimated by ̃1 ≡

1(β̃) where

1 (β) ≡ 1



X
=1



µ
−



¶


³
̃ ( (β))

´
̃ ((β)) X̃

An important step in their paper is justifying the adaptivity of the conditional mean function by show-

ing that
√
̃1 and

√
1 share the same asymptotic distribution. The latter is based on the

demonstration that

1√


X
=1



µ
−



¶
X̃ () [1− ( ())] =  (1)

and that

 { () [1− ( ())]} = 0 (2.19)

By the construction of  and the nature of  the last condition can be ensured no matter whether

 is symmetric about zero or not. In contrast, to prove the adaptivity of both the conditional mean

and variance functions, we also require the asymptotic equivalence of
√
̃2 and

√
2 where

2 ≡ 1


P
=1

¡
−



¢
 () X̃ ̃2 ≡ ̃2 (β)  and

̃2 (β) ≡ 1



X
=1



µ
−



¶


³
̃ ( (β))

´ 0 ((β2)) ̃ ( (β))
2 ((β2))

X̃

Analogously to (2.19), a key step toward the establishment of the above claim is to demonstrate that

 { () [1− ( ())]} = 0 (2.20)

where recall that  () =  () + 1 Unfortunately, (2.20) does not hold generally even if we assume the

symmetry of  And there is no obvious way to design another trimming function for the estimation of

2 such that we can ensure the above asymptotic equivalence. An intuitive explanation is that even

though the score function for the conditional variance has zero mean, this does not ensure that the

weighted population score (i.e., after being multiplied by  ( ())) has zero mean. When the error

density is symmetric, the score function for the conditional mean function is antisymmetric, which is still

antisymmetric after being multiplied by  ( ())  This ensures that its weighted population score has

zero mean. In contrast, the score function for the conditional variance function is symmetric and it is

still symmetric after being multiplied by  ( ())  which cannot have zero mean.

To avoid the non-zero asymptotic mean of the estimated score function, we rely on the re-centering

term ̃∗ in the above definition of ̃(β; ̃) or ̃ (β)  This is motivated by maximizing the following

local profile log-likelihood function

̃ (β) ≡ 1



X
=1

log
³
̃ ( (β)) 

p
 ( (β2))

´


³
̃ ( (β))

´
 (−) (2.21)

9



with respect to β The previously defined score function results from the first order condition to this

maximization problem and hence one expects that its population analog has asymptotic zero mean.

Below we will study the asymptotic properties of both the one-step NR adaptive estimator and the local

profile likelihood (LPL) estimator obtained from maximizing a local profile log-likelihood function of the

above type.

3 The Main Results

In this section we first study the asymptotic properties of the one-step Newton-Raphson (NR) estimator,

and then the LPL estimator.

3.1 The One-Step Newton-Raphson Estimator

To proceed, we add the following assumptions.

A6. (i) The kernel 0 has compact support and is symmetric about zero and satisfies
R
0 ()  = 1R

0 ()  = 0 for  = 1   and
R
+10 ()  6= 0 (ii) 0 is three times differentiable on its

support with 0 (0) = 0 In addition, ()0 ()   = 1 2 3 is Lipschitz continuous and |00 ()| is uniformly
bounded.

A7. As  → ∞ the trimming parameter  and bandwidth sequences 0 and 1 satisfy (i)  ∝  for

 ∈ (0 13)  (ii) 0 ∝  log (iii) 1 ∝  log

Assumptions A6-A7 are similar to the Assumptions A6 and A7 in Linton and Xiao (2007). We just

mention two main differences. First, our assumption on the kernel 0 in A6 is slightly different from

theirs in that we need a restriction on the tail thickness of the derivative of 0 (a similar assumption is

made by Andrews (1995, Assumption NP4)), and we require that the Lipschitz condition hold instead of

the fourth order differentiability. A6 requires that 0 be a (+ 1)th order kernel, but the compactness

condition can be relaxed at the cost of lengthy arguments. Second, our assumption on the bandwidth

sequences in A7 is weaker than theirs whereas our requirement on the trimming parameter is stricter.

This is due to the differences in proving that the higher order terms are asymptotically negligible.

In this paper we only focus on the case where the error density  has an unbounded support in order

to apply some uniform convergence results for the kernel estimates of density function and its derivatives

(e.g., Hansen, 2008) and avoid the well-known boundary bias problems for kernel density estimates in

the case of compact support. Linton and Xiao (2007) also consider the case of bounded support for the

error density where special attention is needed. In particular, they assume that the density  vanishes at

the boundary at a sufficiently fast rate so that the properties of regular density estimation can hold.

The following theorem states the asymptotic property of the one-step NR estimator.

Theorem 3.1 Suppose that Assumptions A1-A7 hold. Then

√


"
̄
³
β̂()− β0()

´
− +1

Ã
−1m(+1) ()

−1β0(+1)2 ()

!#
→ 

³
0 I−1

0
()⊗ £−1Γ−1¤´  (3.1)
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We denote the first and ( +1)th elements of β̂() as ̂ () and −1(̂2 ()) which are the one-step

NR adaptive estimator of  () and −1(2 ()) respectively. Theorem 3.1 shows that the one-step

Newton-Raphson estimator is “oracle”: the feasible estimator β̂() is asymptotically equivalent to β̄()

and hence is more efficient than conventional local polynomial estimator in the case of  () =  and the

local polynomial ET estimator in the case of  () = exp (). Following Remarks 2 and 3 we can readily

obtain the asymptotic normal distributions for ̂ () and ̂2 ()  based on which one can also construct

the pointwise confidence intervals. To do this we require an estimation of the asymptotic variance. The

procedure is standard and we omit it for brevity.

3.2 The LPL Estimator

The one-step NR estimates ̂ () and ̂2 ()) are easy to obtain in general. Nevertheless, we have to

estimate both the error density and its derivative in order to construct these estimates. It is well known

that precise estimation of the density’s derivatives can be difficult for some distributions. For this reason,

we now propose another adaptive estimator that avoids estimation of density derivatives.

We can obtain the adaptive estimator by maximizing the local profile likelihood in (2.21) by taking

 (·) = exp (·). Let β+ () = (β+
>

1 β+
>

2 )
>
denote the solution. The local profile likelihood estimators

+ () and +2 () for  () and 2 () are given respectively by β+10 and exp
¡
β+20

¢
 where β+0 is the

first element of β+   = 1 2 The corresponding infeasible local likelihood estimator of β can be obtained

by maximizing the following criterion function

 (β) ≡ 1



X
=1

log
³
 ( (β)) 

p
exp ( (β2))

´
 ( ( (β))) (−)  (3.2)

where  ( ( (β))) can be absent as in Aerts and Claeskens (1997). Replacing  in (3.2) by ̃ gives

the local profile likelihood function (2.21). We will show that such a replacement does not affect the

asymptotic properties of the resulting estimator.

To derive the uniform consistency and pointwise asymptotic normality of β+ we shall show that

under certain conditions that ̃ (β) and  (β) converge uniformly in (β) to the non-random

function

 (β) ≡ 
h
log
³
 ( (β)) 

p
exp ( (β2))

´
 (−)

i
 (3.3)

where we suppress the dependence of  (β) on  through  By the theory on local likelihood estimation

(e.g., Aerts and Claeskens, 1997), the maximizer of the limit of  (β) is given by β0 ≡ β0 ()  which

is composed of  ()  log 2 ()  and their derivatives of up to the -th order. This corresponds to the

identifiable uniqueness condition of White (1994, p. 28). Consequently we can establish the following

uniform consistency result.

Theorem 3.2 Suppose that Assumptions A1-A7 hold, and for all β ∈B0, |log  ( (β))| ≤  () such

that  [ ()

] ∞ for some   1. Then

sup
∈X

¯̄
β+()− β0()¯̄→ 0 a.s. (3.4)

The asymptotic normality of β+() can be established in several ways. One way is to apply and modify

the results of Andrews (1994a) for semiparametric estimators. See also Andrews (1994b) for a review of

11



the theoretical literature and results for more general sampling schemes using stochastic equicontinuity

concepts and empirical process techniques. Here, we follow the traditional approach to establish the

asymptotic normality of β+() by expanding the score function around the population truth. The result

is stated in the next theorem.

Theorem 3.3 Under the conditions in Theorem 3.2, we have

√


"
̄
¡
β+()− β0()¢− +1

Ã
−1m(+1) ()

−1β0(+1)2 ()

!#
→ 

³
0 I−10 ()⊗

£
−1Γ−1

¤´
 (3.5)

where I0 () is as defined in (2.7).

Note that I0 () is given by (2.7). So Theorem 3.3 indicates the asymptotic equivalence between

β+() and β̂() when  () = exp () is used to obtain the latter estimate. As expected, the local

profile likelihood estimators + () and +2 () share the same asymptotic properties of the one-step NR

adaptive estimators ̂ () and ̂2 () when  () = exp ()  Despite the need to estimate certain density

derivatives, the computation for the NR adaptive estimators is not very heavy. By contrast, even though

the local profile likelihood estimates + () and +2 () only require estimation of the density function,

they are computationally more demanding because certain optimization routine is needed. In the next

section, we shall evaluate the finite sample performance of these estimators in Matlab.

4 Monte Carlo Simulations

In this section we conduct a small set of Monte Carlo simulations to evaluate the finite sample performance

of the proposed estimators and compare them with the conventional local polynomial estimators for the

conditional mean and variance functions.

4.1 Data Generating Processes

We generate data from (1.1) with different specifications of the conditional mean and variance functions

and different choices of the error distributions. In all cases, the regressor  is independently and

uniformly distributed on [-2, 2]. The conditional mean and variance functions are specified as follows:

DGP 1:  () = 1 + + 2 2 () = 01 + 2;

DGP 2:  () = 1 + + 2 2 () = exp (2) ;

DGP 3:  () = 4 sin ()  2 () = 01 + 2;

DGP 4:  () = 4 sin ()  2 () = exp (2) 

For the error term  we consider two distributions:  (41) and Beta(2 3)  Note that the  (41) distrib-

ution is symmetric around zero with variance 41/21 and the Beta(2 3) distribution is asymmetric with

mean 2/5 and variance 1/25. For each case, we first generate ∗ independently according to the specified

distribution and then normalize it to have mean zero and variance one (e.g., let  = 5 (
∗
 − 25) for the

Beta(2,3) case). In DGPs 1-4, we consider cases where the error term ∗ are IID  (41)  DGPs 5-8 are

specified as DGPs 1-4, respectively, but with ∗ being generated from Beta(2 3) 2

In addition, we also consider bivariate regressions where the conditional mean and variance functions

are specified as follows:

12



DGP 9:  (1 2) = 1 + (1 + 2)
2
 2 (1 2) = 05

¡
1 + 21 + 22

¢
;

DGP 10:  (1 2) = 1 + (1 + 2)
2
 2 (1 2) = exp (1 + 2 − 05) ;

DGP 11:  (1 2) = cos (1 + 2) + 21 + 2
2
2 

2 (1 2) = 05
¡
1 + 21 + 22

¢
;

DGP 12:  (1 2) = cos (1 + 2) + 21 + 2
2
2 

2 (1 2) = exp (1 + 2 − 05) 
We generate the IID error terms  from normalized 

2 (6) distribution, namely,  = (
∗
 − 6) 

√
12 where

∗ are IID 2 (6) 

4.2 Implementation

We investigate the local linear estimation ( = 1) with the normalized Epanechnikov kernel  () =
3

4
√
5

¡
1− 1

5
2
¢
1{|| ≤ √5} For the estimation of the error density and its first derivative, we use the

second order Gaussian kernel 0 () =
1√
2
−

22.

For comparison purpose, we examine the finite sample performance of the local linear (LL) estimators

and the two adaptive estimators. For the conditional variance function, we also report the local linear ET

estimator of Ziegelmann (2002). The preliminary estimator that is used for our adaptive estimation is

composed of the LL estimator for the conditional mean function and the ET estimator for the conditional

variance function (to achieve nonnegativity). We calculate the empirical variances and mean squared

errors (MSEs) of the estimators of  () and 2 () at selected values of 

For the conventional LL estimators, the bandwidth sequences are chosen by Silverman’s rule of thumb

(ROT):  = 
−1(+4) where  is the sample standard deviation of .

3 The ET estimator also

adopts the same bandwidth used for estimating the conditional variance. For our estimator, we have

not designed a data-driven procedure for choosing the bandwidth. Instead, we set  =  0 =

15−1(+4) log and 1 = (+ 3) log For the trimming parameter, we set  = 00114 when

 = 1 and  = 001̄14 when  = 2 with ̄ being the average of the two elements in  We choose the

trimming function  to be the Beta(5,5) density function. The number of replications is 500 in each case.

4.3 Results

Tables 2 and 3 report the results for estimating the regression mean and variance functions at  =-1.2,

-0.6, 0, 0.6, and 1.2, respectively for DGPs 1-8. Table 2 suggests that both the one-step NR adaptive

estimator and the local profile likelihood (LPL) estimator generally have lower MSE than the local linear

(LL) estimators for the regression mean. Somewhat surprisingly, in terms of MSE the efficiency gains for

the LPL estimators are not as large as the case of the one-step NR adaptive estimators. For the estimation

of the variance functions, Table 3 suggests that the conventional LL estimator is typically outperformed

by the ET estimator, which is in turn outperformed by the NR and LPL estimators. Exceptions may

occur when  moves toward the boundary points.

Tables 4 and 5 report the results for estimating the regression mean and variance functions at  =(-

1.2,-1.2), (-0.6, -0.6), (0,0), (0.6, 0.6), and (1.2,1.2), respectively, for DGPs 9-12. As Table 4 suggests, the

performance of the one-step NR estimator of the regression mean function is still good for most DGPs

at most data evaluation points. But this is not the case for the LPL estimator. We find the performance

of this estimator is not stable when  = 2 because of the need to utilize certain numerical optimization

routine. Interestingly, for the estimates of the conditional variance function, the performance of the LPL
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estimator is comparable with that of the NR estimator and both tend to outperform the conventional LL

estimator at most data evaluation points.

5 Conclusions

In this paper we propose adaptive estimators for nonparametric regression models with conditional het-

eroskedasticity. Consistency and asymptotic normality for the proposed estimators are studied. Our

simulations confirm our theoretical results and suggest that significant gains can often be achieved by

adopting our approach. The methodology can be extended to a general multi-parameter model by using

the local likelihood method. It can also be extended to regression models where both  and  are

stationary time series, or autoregression models with lagged dependent variables in the regressors.

Note to readers. In the Appendices that follow we provide the proofs of the main results in the

paper which further require some technical lemmas. The proofs of these lemmas are rather long and can

be found in the Supplementary Material at Cambridge Journals Online (journals.cambridge.org/ect).

Notes

1Let ̃ (·) be the -th order local polynomial estimator of  (·) by using the kernel  and bandwidth

1 We regress ̃
2
 = [ − ̃()]

2 on  by using the -th order local polynomial (LP) ET technique

based on the following minimization problem:

³
β̆20 β̆21  β̆2

´
= arg min

{2j}
1



X
=1

⎧⎨⎩̃2 − exp
⎛⎝ X
0≤|j|≤

2j () ( − )j

⎞⎠⎫⎬⎭
2



µ
−

1

¶


The LP ET estimator ̃2 () of 2 () is then given by exp(β̆20) In addition, exp(β̆20)β̆21 estimates the

first derivatives of 2 () and the estimates of other derivatives of 2 () can also be recovered. Ziegelmann

(2002) shows that ̃2 () obtained this way is also adaptive to the unknown conditional mean function

and it shares the same asymptotic variance as the two-step local polynomial least squares estimator of

Fan and Yao (1998) but has different asymptotic biases. One can establish the uniform convergence rate

for this type of estimators by following the arguments of Masry (1996a, 1996b).
2Note that the Beta distribution is compactedly supported and Assumption A1 is not satisfied in this

case. We use this distribution simply to check whether our estimators are robust to errors with compact

support.
3We also tried to choose the the bandwidth sequences by least squares cross-validation (LSCV) for

estimating the conditional mean and variance functions separately, and the results were qualitatively

similar.
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Table 2: Comparison of our NR adaptive estimator and local profile likelihood (LPL) estimator with the
conventional local linear (LL) estimator for regression mean, d=1, n=100

DGP  Variance MSE Efficiency ratio

LL (1) NR (2) LPL (3) LL (4) NR (5) LPL (6) (5)
(4)

(6)
(4)

1 -1.2 0.049 0.050 0.053 0.073 0.067 0.072 0.924 0.989
-0.6 0.015 0.017 0.017 0.055 0.036 0.045 0.648 0.816
0 0.007 0.007 0.007 0.047 0.024 0.029 0.519 0.626
0.6 0.015 0.017 0.017 0.052 0.032 0.039 0.618 0.754
1.2 0.051 0.050 0.054 0.071 0.065 0.073 0.914 1.031

2 -1.2 0.004 0.004 0.007 0.033 0.021 0.027 0.623 0.819
-0.6 0.010 0.011 0.011 0.052 0.027 0.038 0.517 0.737
0 0.030 0.034 0.034 0.070 0.051 0.057 0.727 0.814
0.6 0.098 0.117 0.117 0.136 0.132 0.133 0.976 0.983
1.2 0.443 0.403 0.443 0.462 0.416 0.456 0.900 0.987

3 -1.2 0.051 0.054 0.057 0.175 0.118 0.153 0.674 0.873
-0.6 0.015 0.019 0.023 0.076 0.045 0.063 0.589 0.830
0 0.006 0.005 0.005 0.006 0.005 0.005 0.964 0.982
0.6 0.015 0.017 0.017 0.076 0.043 0.057 0.569 0.751
1.2 0.052 0.052 0.061 0.186 0.119 0.160 0.636 0.858

4 -1.2 0.006 0.008 0.007 0.141 0.074 0.109 0.526 0.768
-0.6 0.010 0.012 0.013 0.073 0.041 0.060 0.556 0.818
0 0.029 0.031 0.036 0.029 0.032 0.037 1.098 1.267
0.6 0.099 0.122 0.118 0.160 0.133 0.141 0.835 0.882
1.2 0.443 0.423 0.473 0.581 0.449 0.534 0.772 0.918

5 -1.2 0.044 0.050 0.051 0.076 0.072 0.076 0.940 0.994
-0.6 0.015 0.018 0.018 0.059 0.040 0.048 0.677 0.814
0 0.007 0.007 0.007 0.048 0.028 0.031 0.587 0.637
0.6 0.016 0.019 0.019 0.053 0.036 0.040 0.684 0.747
1.2 0.052 0.058 0.060 0.071 0.070 0.071 0.993 1.003

6 -1.2 0.004 0.004 0.005 0.035 0.023 0.025 0.667 0.710
-0.6 0.010 0.012 0.013 0.053 0.031 0.040 0.585 0.755
0 0.029 0.035 0.037 0.071 0.054 0.060 0.758 0.849
0.6 0.110 0.126 0.144 0.146 0.143 0.164 0.980 1.126
1.2 0.442 0.442 0.446 0.457 0.450 0.453 0.985 0.992

7 -1.2 0.046 0.053 0.056 0.187 0.137 0.155 0.729 0.828
-0.6 0.016 0.019 0.022 0.081 0.054 0.066 0.658 0.817
0 0.006 0.006 0.006 0.006 0.006 0.006 1.058 1.105
0.6 0.016 0.019 0.021 0.078 0.044 0.060 0.561 0.768
1.2 0.051 0.058 0.058 0.191 0.139 0.161 0.729 0.842

8 -1.2 0.006 0.007 0.007 0.145 0.085 0.110 0.588 0.762
-0.6 0.011 0.013 0.014 0.075 0.047 0.058 0.630 0.781
0 0.029 0.032 0.035 0.029 0.033 0.035 1.158 1.219
0.6 0.109 0.130 0.128 0.172 0.140 0.154 0.811 0.891
1.2 0.437 0.428 0.476 0.587 0.470 0.559 0.801 0.952
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Table 3: Comparison of our NR adaptive estimator and local profile likelihood (LPL) estimator with
the conventional local linear (LL) and local linear exponential-tilting (ET) estimators for conditional
variance, d=1, n=100

DGPs  Variance MSE Efficiency ratio

LL(1) ET(2) NR(3) LPL(4) LL(5) ET(6) NR(7) LPL(8) (6)
(5)

(7)
(5)

(8)
(5)

1 -1.2 2.178 2.233 0.590 0.663 2.198 2.264 0.695 0.725 1.030 0.316 0.330
-0.6 0.466 0.135 0.055 0.061 0.513 0.135 0.064 0.064 0.263 0.124 0.124
0 0.036 0.037 0.012 0.029 0.083 0.051 0.015 0.036 0.608 0.177 0.426
0.6 0.098 0.091 0.062 0.070 0.130 0.091 0.070 0.072 0.700 0.542 0.558
1.2 1.048 0.741 0.490 0.474 1.074 0.786 0.607 0.547 0.732 0.565 0.509

2 -1.2 0.011 0.007 0.002 0.004 0.015 0.007 0.002 0.004 0.478 0.147 0.235
-0.6 0.090 0.087 0.030 0.049 0.117 0.087 0.032 0.050 0.743 0.272 0.424
0 0.694 0.687 0.345 0.420 0.905 0.687 0.366 0.424 0.760 0.405 0.469
0.6 5.185 4.808 3.366 3.544 6.986 4.890 3.796 3.742 0.700 0.543 0.536
1.2 101.78 56.50 36.08 34.72 117.19 57.00 39.49 36.49 0.486 0.337 0.311

3 -1.2 2.188 2.235 0.476 0.562 2.227 2.244 0.564 0.599 1.008 0.253 0.269
-0.6 0.469 0.136 0.056 0.088 0.541 0.140 0.061 0.089 0.259 0.113 0.165
0 0.038 0.041 0.012 0.026 0.094 0.055 0.015 0.033 0.590 0.160 0.350
0.6 0.099 0.092 0.059 0.075 0.151 0.093 0.065 0.076 0.617 0.430 0.502
1.2 1.060 0.728 0.526 0.548 1.099 0.744 0.606 0.587 0.677 0.552 0.534

4 -1.2 0.013 0.009 0.003 0.006 0.028 0.017 0.004 0.010 0.612 0.149 0.342
-0.6 0.092 0.090 0.028 0.042 0.138 0.094 0.029 0.043 0.681 0.208 0.309
0 0.709 0.714 0.312 0.397 0.935 0.714 0.339 0.404 0.763 0.363 0.432
0.6 5.192 4.817 2.864 3.238 7.129 4.876 3.406 3.487 0.684 0.478 0.489
1.2 102.19 56.67 34.60 32.97 117.95 57.04 38.32 34.86 0.484 0.325 0.296

5 -1.2 0.135 0.174 0.163 0.170 0.143 0.214 0.215 0.201 1.492 1.501 1.402
-0.6 0.021 0.024 0.022 0.022 0.060 0.024 0.026 0.022 0.402 0.423 0.370
0 0.005 0.011 0.006 0.007 0.051 0.027 0.011 0.017 0.529 0.220 0.328
0.6 0.024 0.024 0.020 0.021 0.060 0.024 0.024 0.022 0.396 0.399 0.356
1.2 0.147 0.201 0.196 0.200 0.157 0.249 0.262 0.244 1.590 1.676 1.556

6 -1.2 0.001 0.001 0.001 0.001 0.005 0.002 0.001 0.001 0.327 0.227 0.250
-0.6 0.009 0.010 0.009 0.011 0.031 0.010 0.010 0.011 0.343 0.341 0.351
0 0.101 0.124 0.091 0.101 0.308 0.125 0.106 0.103 0.408 0.344 0.334
0.6 1.260 1.379 1.243 1.202 3.281 1.420 1.472 1.268 0.433 0.449 0.387
1.2 13.27 15.71 14.32 14.93 23.63 16.73 16.90 15.66 0.708 0.715 0.663

7 -1.2 0.138 0.147 0.154 0.168 0.159 0.157 0.180 0.176 0.983 1.128 1.107
-0.6 0.022 0.025 0.021 0.023 0.083 0.029 0.022 0.023 0.348 0.265 0.279
0 0.005 0.013 0.007 0.009 0.061 0.027 0.010 0.016 0.441 0.162 0.258
0.6 0.026 0.029 0.022 0.028 0.085 0.032 0.026 0.028 0.380 0.309 0.326
1.2 0.143 0.164 0.155 0.165 0.160 0.177 0.177 0.181 1.106 1.108 1.132

8 -1.2 0.002 0.003 0.002 0.002 0.016 0.011 0.004 0.007 0.687 0.242 0.434
-0.6 0.010 0.015 0.011 0.012 0.049 0.017 0.011 0.013 0.349 0.229 0.260
0 0.105 0.133 0.097 0.102 0.332 0.135 0.123 0.107 0.407 0.370 0.323
0.6 1.277 1.485 1.130 1.194 3.453 1.511 1.501 1.275 0.438 0.435 0.369
1.2 12.97 15.21 13.15 14.00 23.58 16.00 16.66 15.25 0.679 0.707 0.647
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Table 4: Comparison of our NR adaptive estimator and local profile likelihood (LPL) estimator with the
conventional local linear (LL) estimator for regression mean, d=2, n=200

DGP  Variance MSE Efficiency ratio

LL (1) NR (2) LPL (3) LL (4) NR (5) LPL (6) (5)
(4)

(6)
(4)

9 (−12−12) 0.090 0.114 0.199 0.099 0.115 0.200 1.163 2.019
(−06 06) 0.032 0.048 0.042 0.125 0.077 0.138 0.616 1.108
(0 0) 0.019 0.037 0.026 0.163 0.076 0.200 0.466 1.224

(06 06) 0.031 0.050 0.041 0.136 0.086 0.154 0.633 1.135
(12 12) 0.095 0.130 0.217 0.101 0.130 0.218 1.279 2.150

10 (−12−12) 0.036 0.033 0.051 0.044 0.045 0.061 1.003 1.373
(−06 06) 0.013 0.023 0.022 0.109 0.033 0.132 0.303 1.219
(0 0) 0.021 0.039 0.029 0.166 0.074 0.203 0.446 1.226

(06 06) 0.062 0.092 0.088 0.170 0.135 0.211 0.796 1.242
(12 12) 0.268 0.364 0.398 0.273 0.369 0.399 1.351 1.458

11 (−12−12) 0.075 0.095 0.133 0.257 0.246 0.356 0.958 1.388
(−06 06) 0.029 0.051 0.044 0.276 0.123 0.344 0.445 1.243
(0 0) 0.017 0.039 0.025 0.175 0.064 0.255 0.366 1.453

(06 06) 0.031 0.054 0.050 0.297 0.140 0.378 0.470 1.270
(12 12) 0.083 0.110 0.151 0.276 0.282 0.376 1.023 1.365

12 (−12−12) 0.021 0.022 0.035 0.206 0.151 0.198 0.733 0.961
(−06 06) 0.010 0.030 0.023 0.262 0.050 0.390 0.192 1.488
(0 0) 0.019 0.039 0.030 0.178 0.064 0.249 0.359 1.397

(06 06) 0.062 0.098 0.086 0.334 0.200 0.402 0.598 1.202
(12 12) 0.255 0.335 0.335 0.453 0.517 0.582 1.142 1.285

Table 5: Comparison of our NR adaptive estimator and local profile likelihood (LPL) estimator with
the conventional local linear (LL) and local linear exponential-tilting (ET) estimators for conditional
variance, d=2, n=200

DGPs  Variance MSE Efficiency ratio

LL(1) ET(2) NR(3) LPL(4) LL(5) ET(6) NR(7) LPL(8) (6)
(5)

(7)
(5)

(8)
(5)

9 1 0.739 1.471 0.879 1.017 2.663 1.922 1.820 1.739 0.722 0.684 0.653
2 0.095 0.146 0.136 0.110 0.208 0.192 0.137 0.119 0.923 0.657 0.575
3 0.035 0.041 0.058 0.039 0.256 0.258 0.120 0.137 1.005 0.470 0.534
4 0.098 0.144 0.142 0.123 0.229 0.202 0.142 0.136 0.882 0.621 0.594
5 0.757 1.525 0.837 1.195 2.915 1.888 1.726 1.776 0.648 0.592 0.609

10 1 0.181 0.052 0.028 0.040 2.682 0.091 0.040 0.061 0.034 0.015 0.023
2 0.006 0.007 0.009 0.008 0.072 0.056 0.013 0.031 0.773 0.186 0.424
3 0.057 0.066 0.065 0.051 0.209 0.136 0.069 0.068 0.651 0.330 0.328
4 0.659 0.941 0.694 0.669 0.937 0.960 0.928 0.789 1.024 0.990 0.841
5 9.276 13.970 8.765 9.814 12.175 17.978 18.142 16.755 1.477 1.490 1.376

11 1 0.556 1.322 0.939 0.951 0.941 1.503 1.379 1.319 1.597 1.466 1.402
2 0.090 0.109 0.133 0.086 0.383 0.343 0.179 0.141 0.895 0.466 0.369
3 0.035 0.039 0.060 0.038 0.360 0.372 0.144 0.148 1.031 0.400 0.412
4 0.093 0.120 0.148 0.099 0.406 0.365 0.195 0.159 0.898 0.480 0.391
5 0.561 1.371 1.025 1.038 1.052 1.486 1.364 1.320 1.412 1.297 1.255

12 1 0.021 0.006 0.003 0.004 0.679 0.006 0.003 0.004 0.008 0.005 0.006
2 0.007 0.008 0.016 0.012 0.220 0.228 0.060 0.108 1.036 0.275 0.493
3 0.055 0.069 0.071 0.051 0.294 0.193 0.083 0.080 0.655 0.282 0.272
4 0.613 0.806 0.760 0.581 1.135 0.832 0.819 0.614 0.733 0.721 0.541
5 8.659 11.262 8.230 8.211 9.529 14.075 14.426 13.459 1.477 1.514 1.413

Note. 1  5 represents points (−12−12)  (−06 06)  (0 0)  (06 06)  and (12 12)  respectively.
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APPENDIX

In this appendix we first define some notation and provide some technical lemmas that are used in the

proof of the main results in the text. The proofs of all technical lemmas are provided in the supplementary

material.

A Notation and Some Preliminary Results

We use  to signify a generic constant whose exact value may vary from case to case. Let 1 ≡ (1 0  0)
>

denote an  × 1 vector with one in the first position and zero elsewhere. Let Z̃ = −11 X̃ and Z =

−1X̃ where 1 is defined as  but with 1 in place of  Let

 ≡  ((−) ) and j ≡ (( − ) )j (A.1)

We write  '  to signify that  =  (1 +  (1)) as →∞ Let

̄ ≡ 
¡
β0
¢
=

 − 
¡
β01
¢q


¡

¡
β02
¢¢ =  + q


¡

¡
β02
¢¢  and −→  ≡  − (β̃1)r


³
(β̃2)

´ =  +  − 1 ()r

³
(β̃2)

´  (A.2)

where  ≡  ()− 
¡
β01
¢
 1 () ≡ (β̃1)− 

¡
β01
¢
 and  () =  or exp ()  Further, define

0 ≡ 1 + −12−21

p
log 1 ≡ 

+1
1 + −12−21

p
log and 2 ≡ 1 (1 + (1)


)  (A.3)

Let ̃
()
 () =

1
+10

P
 6= 

()
0

³
−̃
0

´
  = 0 1 2 3 where 

(0)
0 = 0 We first study the uniform

consistency of ̃
()
 (−→ ) with  () () by the following two lemmas.

Lemma A.1 Suppose that Assumptions A1-A7 hold. Then

max
{0}

|̃ () (−→ )−  () (̄) | =  (3) for  = 0 1 2 3 (A.4)

where 3 ≡ 2+(0
−1−
0 +)

−12−21

√
log+22

−2−
0 and  = [(2+)4−(+1)](log)+1

Lemma A.2 Suppose that Assumptions A1-A7 hold. Then

max
1≤≤

¯̄̄
̃
()
 (̄)−  () (̄)

¯̄̄
= 

³

+1
0 + −12−12−0

p
log+ 1

´
for  = 0 1 2 (A.5)

and the above result is also true if one replaces ̄ ≡ 
¡
β0
¢
by .

To proceed, we use linear functional notation and write  =
R
 for any probability measure 

and random variable  ()  where  =
¡
> 

¢>
  denotes the empirical probability measure of the

observations {1  } sampled randomly from 

Lemma A.3 (USLLN) Let  = (>β>)
>
be an element of Θ = X ×B Let 1 ( ) = log ( ( (β)))

 ( ( (β))) ((−) )  and 2 ( ) =  (β2) ( ( (β))) ((−) )  where  =
¡
> 

¢>


 (β) ( = 1 2) is defined as  (β) with  replaced by  and  (β) = ( −  (β1)) 
p
exp ( (β2))

Under the conditions in Theorem 3.2, we have

sup
∈Θ

¯̄
− [ ( )−  ( )]

¯̄
= 

³
−12−2

p
log

´
  = 1 2

Lemma A.4 (Equicontinuity) Let  = (>β>)
>
be an element of Θ ≡ X × B For  = 1 2

let 1 ( ) = log ( ( (β)))(1−  ( ( (β)))) (−)  2 ( ) =  (β2) (1− ( ( (β))))

 (−)  and  =
¡
>
  

¢>
 Then under the conditions in Theorem 3.2, ̄ () ≡  [ ( )]

is equicontinuous,  = 1 2
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B Proof of the Main Results

B.1 Proof of Proposition 2.1

Let  = 1
√
 and β∗ ≡ (β∗>1 β∗>2 )

>
with β∗ ≡

√


¡
β − β0

¢
for  = 1 2 If β̄ ≡ (β̄

>

1  β̄
>

2 )
>

maximizes (2.3), then β̄
∗ ≡ (β̄∗

>

1  β̄
∗>
2 )

>
maximizes

L (β∗) = 1



X
=1

log 
³
;

¡
β01
¢
+ β

∗>
1 Z 

¡
β02
¢
+ β

∗>
2 Z

´


To study the asymptotic properties of β̄
∗
 we resort to the quadratic approximation lemma of Fan et al.

(1995) to the maximization of

 (β
∗) =

X
=1

{log (;
¡
β01
¢
+ β

∗>
1 Z 

¡
β02
¢
+ β

∗>
2 Z)− log 

¡
;

¡
β01
¢
 

¡
β02
¢¢}

Notice that β̄
∗
also maximizes  (β

∗) 
Let  (;1 2) ≡ 


log ( (;1 2))   (;1 2) ≡ 2


log ( (;1 2))  and  (;1 2)

≡ 3


log ( (;1 2))     = 1 2 One can verify that

1 (;1 2) =
−1p
 (2)

 0( ())
( ())

 and 2 (;1 2) =
−0 (2)
2 (2)

∙
 0( ())
( ())

 () + 1

¸


where  () ≡ ( − 1)
p
 (2) The expressions for  and  are complicated and are given in sup-

plementary Appendix D. In addition, let  () ≡
Ã

11 () 12 ()

21 () 22 ()

!
 where  () ≡ [(;

0
1 () 

02 ())(;
0
1 ()  

0
2 ())| = ] It is easy to verify that

 ()=

⎡⎣ [2()]
2()

[()(()+1)]
23()

[()(()+1)]
23()

[()+1]2

44()

⎤⎦ = " 1() 0

0 1[22()]

#


"
1() 0

0 1[22()]

#

where  =

"

£
2 ()

¤
 [ () ( () + 1)]

 [ () ( () + 1)]  [ () + 1]2

#
is p.d. by Assumption A2(ii). As a result,

 () is p.d. as 0  () ∞

By Taylor series expansions,

 (β
∗) = 

2X
=1

X
=1


¡
;

¡
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¢
 

¡
β02
¢¢
Z

>
 β
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+
2
2
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=1
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=1
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3
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2

´
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 β
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Z
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 β
∗
Z
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 β
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≡ 1 (β
∗) + 2 (β

∗) + 3 (β
∗)  say,

where 
†
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β0
¢
and 

¡
β0
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+ β
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 Z  = 1 2 Let
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where  ≡ 2
P

=1 
¡
;

¡
β01
¢
 

¡
β02
¢¢
ZZ

>
  Then 1 = 

>
 β
∗ and 2 =

1
2β
∗>β

∗
By Assumption A2(iv) and the explicit expressions for  (;1 2)     = 1 2 in Appendix D,

|3 (β∗)| ≤ 3̄3 for kβ∗k ≤  where ̄3 =
3
6

P2
=1

P2
=1

P2
=1

P
=1  () kZk3  Noting that

(̄3) = (3) = (()−12) = (1) by Assumption A5, ̄3 =  (1) by Markov inequality.

Consequently 3 (β
∗) =  (1) uniformly in β

∗ in a compact set. Consequently,  (β∗) = 
>
 β
∗ +

1
2β
∗>β

∗ +  (1)  which implies that β̄
∗
= −−1  +  (1) provided that  is asymptotically

non-singular.

By Taylor series expansions,
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X
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¢
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( − )j
¸
ZZ
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≡ 1 +2 say,

where 
†
 ( ) lies between 

¡
β0
¢
and 0 () for  = 1 2 By the weak law of large numbers (WLLN)

and the information matrix inequality (e.g., White (1994, Ch. 4),

1 = −
h

¡
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0
2 ()

¢
ZZ

>


i
+  (1) = − ()  () +  (1) 

By Assumptions A1-A5 and Markov inequality, we can show that 2 = 

¡
+1

¢
 It follows that

 = − ()  () +  (1) and that  = −I0 ()⊗ +  (1) is asymptotically non-singular.

By the Liapounov central limit theorem, we can readily show that  −  ()
→ 

¡
0 I0 ()⊗ Γ

¢


Combining these results, we have
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+−1  () = β̄

∗ −
h
I−1
0
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In addition, by Taylor expansions and Assumption A2,
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by Assumption A2. Then Proposition 2.1 follows. ¥

B.2 Proof of Theorem 3.1

For notational simplicity, denote ̃(β () ; ̃) as ̃ (β) and ̃(β () ; ̃) as ̃ (β) We frequently suppress

the dependence of β̂ ()  β̃ ()  β ()  etc., on  Denote (̃((β̃))) as ̃ and  ( (̄)) as  where

̄ ≡ 
¡
β0
¢
 Write
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Expanding ̃(β̃) in (2.16) around β
0 we obtain ̃(β̃) = ̃

¡
β0
¢
+ ̃()


> (β̃−β0) + (β

∗)  where ∗ is

the element-by-element intermediate value between β̃ and β0 and the th element of  (β) is given by
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where recall ̃ (β) ≡ (̃ ( (β)))̃ (β) + ̃∗ (β̃) and ̃∗ (β) is defined in (2.17). Then ̃(β̃) =

̄(β
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It follows that
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It suffices to prove the theorem by showing that
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̄−1̄1(β0 β̃)̄−1 =  (1)  (B.3)√
̄−1̄2(β∗ β̃) =  (1)  (B.4)

B.2.1 Proof of (B.1)

Recall ̄ ≡ 
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 −→  ≡ (β̃) ̃ ≡ (̃ (

−→ )) and  ≡  ( (̄))  Note that

̄−1̃(β̃)̄−1 =
1



X
=1



µ
−



¶
̃

h
̃(β̃)̃(β̃)

>i⊗ ZZ>



and a typical element of ̄−1̃(β̃)̄−1 is 1


P
=1j̃̃(β̃)̃(β̃) where j is defined in
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and  (β) ≡  (; (β1)   (β2)) for  = 1 2We complete the proof of (B.1) by showing j ( ) =

 (
) for  = 1 2 3   = 1 2 0 ≤ |j| ≤ 2 in Lemmas B.1-B.3 below.

Lemma B.1 Suppose that the conditions in Theorem 3.1 hold. Then 1j ( ) =  (
) for   = 1 2

0 ≤ |j| ≤ 2
Lemma B.2 Suppose that the conditions in Theorem 3.1 hold. Then 2j ( ) =  (

) for   = 1 2

0 ≤ |j| ≤ 2
Lemma B.3 Suppose that the conditions in Theorem 3.1 hold. Then 3j ( ) =  (

) for   = 1 2

0 ≤ |j| ≤ 2

B.2.2 The proof of (B.2)
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where  = 1 2 and 0 ≤ |j| ≤  It suffices to show that j =  (1)   = 1 2 We only consider the

 = 2 case, since the  = 1 case is similar but simpler. (Without bias correction, the proof for the case

 = 1 would be analogous to that in Appendix A.2.2 of Linton and Xiao (2007)). We make the following

decomposition:
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¢¢−12´

 ( (̄)) 
0 (̄)

̄
0 ¡ ¡β02¢¢

2
¡

¡
β02
¢¢ )

+
1√


X
=1

j

n
̃

£
̃2

¡
β0
¢− 2

¡
β0
¢¤o

− 1√


X
=1

j

⎧⎨⎩log
µ
̃ (
−→ )

³
(β̃2)

´−12¶


³
̃ (
−→ )

´
̃ 0 (
−→ )

−→ 
0
³
(β̃2)

´
2
³
(β̃2)

´
− log

³
 (̄)

¡

¡
β02
¢¢−12´

 ( (̄)) 
0 (̄)

̄
0 ¡ ¡β02¢¢

2
¡

¡
β02
¢¢ )

≡ S1j + S2j − S3j say.
By Lemmas B.4-B.6 below, j2 =  (1) 

Lemma B.4 Suppose that the conditions in Theorem 3.1 hold. Then S1j =  (1) for 0 ≤ |j| ≤ 

Lemma B.5 Suppose that the conditions in Theorem 3.1 hold. Then S2j =  (1) for 0 ≤ |j| ≤ 

Lemma B.6 Suppose that the conditions in Theorem 3.1 hold. Then S3j =  (1) for 0 ≤ |j| ≤ 
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B.2.3 The proof of (B.3)

To show (B.3), we first decompose ̄−1̄1(β0 β̃)̄−1 as follows

̄−1̄1(β0 β̃)̄−1

=
1



X
=1



µ
−



¶
̄−1̃

"
̃

¡
β0
¢

β>
⊗ X̃ + (̃

¡
β0
¢
̃
¡
β0
¢>
)⊗ (X̃X̃

>
 )

#
̄−1

=
1



X
=1



µ
−



¶
̄−1[̃̃

¡
β0
¢
̃
¡
β0
¢> −

¡
β0
¢

¡
β0
¢>
]⊗ (X̃X̃

>
 )̄

−1

+
1



X
=1



µ
−



¶
̄−1

("
̃

̃
¡
β0
¢

β>
−


¡
β0
¢

β>

#
⊗ X̃

)
̄−1

+
1



X
=1



µ
−



¶
̄

−1
"


¡
β0
¢

β>
⊗ X̃ + (

¡
β0
¢

¡
β0
¢>
)⊗ (X̃X̃

>
 )

#
̄−1

≡ R1 +R2 +R3 say.

By Lemmas B.7-B.8 below, R1 =  (1) and R2 =  (1) We are left to show that R3 =  (1)  Using

(2.8), we can readily obtain


¡
β0
¢

β>
=

⎛⎜⎝ 0(̄)
((02))

0((02))[
0(̄)̄+(̄)]

2((02))
32

0((02))[0(̄)̄+(̄)]
2((02))

32

2[(̄)̄+1]+
0((02))

2
̄[0(̄)̄+(̄)]

4((02))
2

⎞⎟⎠⊗ X̃>
 

where  = 0
¡

¡
β02
¢¢2 − 00

¡

¡
β02
¢¢

¡

¡
β02
¢¢


For notational simplicity, we focus on the case where  () = exp ()  In this case, we have
(0)
> =

̄ ⊗ X̃>
 and 

¡
β0
¢

¡
β0
¢>
= ̄ where

̄ ≡

⎛⎜⎝ 0(̄)
exp((02))

0(̄)̄+(̄)
2[exp((02))]12

0(̄)̄+(̄)
2[exp((02))]12

̄[0(̄)̄+(̄)]
4

⎞⎟⎠ and ̄ ≡
⎡⎣ 2(̄)

exp((02))
(̄)[(̄)̄+1]

2[exp((02))]12
(̄)[(̄)̄+1]

2[exp((02))]12
[(̄)̄+1]

2

4

⎤⎦ 
Using these notation and −1X̃ = Z we have

R3 =
1



X
=1



µ
−



¶
(̄ + ̄)⊗ (ZZ> )

=
1



X
=1



µ
−



¶
(̄ + ̄)⊗ (ZZ> ) +

1



X
=1



µ
−



¶
( − 1) (̄ + ̄)⊗ (ZZ> )

≡ R31 +R32 say.

We want to show that R31 =  (1) and R32 =  (1)  Consider R31 first. Using the definition of

̄ in (A.2), we can readily show that R31 = R31 +  (1)  where R31 =
1



P
=1

¡
−



¢
( +

) ⊗ (ZZ> ) and  and  are analogously defined as ̄ and ̄ respectively with ̄ being replaced

by  Consider the following auxiliary location-scale regression model


†
 = 

¡
β01
¢
+
q
exp

¡

¡
β02
¢¢


Recall that  is independent of  and has PDF  (·)  So the conditional density of  †
 given  is
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† (β;) ≡ 
³

†
 (β)

´

p
exp ( (β2)) where 

†
 (β) ≡

³

†
 −  (β1)

´

p
exp ( (β2)). The corre-

sponding conditional-log-likelihood function is given by

 (β) ≡ 1



X
=1

log
³

³

†
 (β)

´

p
exp ( (β2))

´
=
1



X
=1

∙
log 

³

†
 (β)

´
− 1
2
 (β2)

¸


It is easy to show that for this auxiliary maximum likelihood estimation problem, the Hessian and

information matrices for the th observation, when evaluated at the true parameter values β01 and β
0
2

are given by  ⊗ X̃X̃
>
 and  ⊗ X̃X̃

>
  respectively. By the information matrix equality, we have


h
( +)⊗ X̃X̃

>
 |

i
= 0

It follows that 
¡R31¢ = 0 In addition, we can show that Var¡R31¢ = (

¡


¢−1
) =  (1)  Hence

R31 =  (1) by Chebyshev inequality.

We are left to show that R32 =  (1)  By Minkowski inequality, the fact that k⊗k = kk kk
(e.g., Bernstein (2005, p. 398)), the compact support of  and Assumption A1, we have

 kR32k ≤ −
£
 (1−)

°°̄ + ̄

°°°°ZZ> °°¤ ≤  32

where 32 = −
£
 (1−)

°°̄ + ̄

°°¤  By the fact that 0 ≤ 1 −  ≤ 1{ (̄) ≤ 2} and
Hölder inequality,

32 = −
£
 (1−)

°°̄ + ̄

°°¤
≤ ©

−
£°°̄ + ̄

°° 

¤ª1 ©
− [ ( (̄) ≤ 2|)]

ª(−1)


Under Assumption A2 and as in the proof of Lemma B.2, we can readily show that −
£°°̄ + ̄

°° 

¤
=  (1) and − [ ( (̄) ≤ 2|)] = 

¡
12

¢
 It follows that 32 = 

¡
(−1)2

¢
=  (1) 

Then R32 =  (1) by the Markov inequality.

Lemma B.7 Suppose that the conditions in Theorem 3.1 hold. Then R1 =  (1) 

Lemma B.8 Suppose that the conditions in Theorem 3.1 hold. Then R2 =  (1) 

B.2.4 The proof of (B.4)

To show (B.4), note that a typical element of
√
̄−1̄2(β∗ β̃) is given by

1

2
√


X
=1

j̃
2̃ (β

∗)
ββ

(β̃ − β0)(β̃ − β0)

So it suffices to show ||̃
2̃ (β) (ββ

>
)|| = (

√
) for any β ∈B0 = {β :

°°β − β0°° ≤ −12−2}
This is true because, by Lemma A.1 and Assumption A7 we can show that uniformly in β ∈B0 ||̃

2̃ (β)

(ββ
>
)|| = (1 + −133 + −232 + −331) = (

√
) ¥

B.3 Proof of Theorem 3.2

Let ̃ (β) and  (β) be as defined in (2.21) and (3.3). By White (1994, Theorem 3.4), it suffices

to show

sup
()∈X×B

¯̄̄
̃ (β)− (β)

¯̄̄
→ 0 wp→ 1 (B.6)
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and for every neighborhood B0 of β0

lim sup
→∞

sup
∈B/B0

£
 (β)−

¡
β0

¢¤
 0 uniformly in  (B.7)

We first show (B.6). Write

̃ (β) =
1



X
=1

log
³
̃ ( (β))

´


³
̃ ( (β))

´
 (−)− 1

2

X
=1

 (β2)

³
̃ ( (β))

´
 (−)

≡ ̃1 (β)− ̃2 (β) 

Let  ≡
³
>β>

´>
 We expand ̃1 () about  ( (β)) :

̃1 () =
1



X
=1

log ( ( (β))) ( ( (β))) (−)

+
1



X
=1

1

̃∗ ( (β))


³
̃∗ ( (β))

´
 (−)

³
̃ ( (β))−  ( (β))

´
+
1



X
=1

log
³
̃∗ ( (β))

´


³
̃∗ ( (β))

´
 (−)

³
̃ ( (β))−  ( (β))

´
≡ 1 () +1 () +1 () 

where ̃∗ ( (β)) lies between ̃ ( (β)) and  ( (β))  First, uniformly in 

sup

|1 ()| ≤ 1


sup


¯̄̄
̃ ()−  ()

¯̄̄
sup
∈X

1



X
=1

| (−)|→ 0 wp→ 1

where the last line follows from the fact that sup

¯̄̄
̃ ()−  ()

¯̄̄
→ 0 wp→ 1 by Lemma A.2 and

sup
∈X

1



X
=1

| (−)| ' sup
∈X

Z
 ()  (− )  ≤ 

Z
 ()  = 

Similarly,

sup

|1 ()| ≤

¯̄̄̄− log()


¯̄̄̄
sup


¯̄̄
̃ ()−  ()

¯̄̄
sup
∈X

1



X
=1

| (−)|→ 0 wp→ 1

Thus uniformly in  ̃1 () → 1 () wp→ 1 Similarly, we can show that uniformly in  ̃2 () →
2 () wp→ 1 where 2 () ≡ (2)−1

P
=1  (β2) ( ( (β))) (−)  Now by Lemma A.3,

uniformly in  and wp→ 1

̃ ()→ 

½∙
log ( ( (β)))− 1

2
 (β2)

¸
 ( ( (β))) (−)

¾


Now, let  () ≡
£
log ( ( (β)))− 1

2 (β2)
¤
[1− ( ( (β)))] (−)  By Lemma A.4, ̄ () ≡

 [ ()] is equicontinuous. Notice that  | (−)| ∞ and



¯̄̄̄∙
log ( ( (β)))− 1

2
 (β2)

¸
[1− ( ( (β)))] (−)

¯̄̄̄
≤ 

¯̄̄̄∙
log ( ( (β)))− 1

2
 (β2)

¸
· 1 { ( (β)) ≤ 2} (−)

¯̄̄̄
=  (1)
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by the dominated convergence theorem. So ̄ () =  (1)  It follows from Rudin (1976, Exercise 7.16)

that sup ̄ () =  (1)  Consequently, ̃ ()→  () uniformly in  wp→ 1

Now, note that the elements of β0 () correspond to  () and log 2 () and their derivatives of up

to order  which are uniquely defined for each  in the interior of X (c.f., Aerts and Claeskens, 1997).

Hence (B.7) holds. ¥

B.4 Proof of Theorem 3.3

Given Assumption A3, an element-by-element mean value expansion of ̃(β
+)β about β0 gives

0 =
̃

β
(β+) =

̃

β

¡
β0

¢
+

2̃

ββ
> (β

∗)
¡
β+ − β0¢  (B.8)

where β∗ is a random variable such that elements of β∗ lies on the segment joining the corresponding
elements of β+ and β0 and hence β

+ → β0 a.s. From (B.8), we have

√
̄

¡
β+ − β0¢ = −

(
̄−1

2̃

ββ
> (β

∗) ̄−1
)−1√

̄−1
̃

β

¡
β0

¢
≡  (β

∗)−1 
¡
β0

¢
 (B.9)

The proof is completed by showing that


¡
β0

¢−√+1I0 ()⊗
→ 

¡
0 I0 ()⊗

¢
 (B.10)°°°°°̄−1 2̃

ββ
>
¡
β0

¢
̄−1 − Γ

°°°°° =  (1)  (B.11)°°°°°̄−1
"

2̃

ββ
> (β

∗)− 2̃

ββ
>
¡
β0

¢#
̄−1

°°°°° =  (1)  (B.12)

The study of (B.11) parallels that of (B.1). We can prove (B.12) by showing that

sup
k−0k≤−12−2

°°°°°̄−1
"

2̃

ββ
> (β)−

2̃

ββ
>
¡
β0

¢#
̄−1

°°°°° =  (1)

by standard uniform consistency arguments and applying Lemmas A.1-A.2 repeatedly; see also the proof

of (B.4). Below, we focus on the proof of (B.10).

By a geometric expansion, we can write


¡
β0

¢
=

1√


̄−1
X
=1



β

∙µ
log ̃

¡

¡
β0
¢¢− 1

2

¡
β02
¢¶



³
̃
¡

¡
β0
¢¢´¸

 =
6X

=1

J

where

J1 = − 1√


P
=1

⎧⎨⎩
⎛⎝  (̄) 

q
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¡

¡
β02
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1
2 ( (̄) ̄ + 1)

⎞⎠

³
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´
+

Ã
1

̄

!
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µ
 (̄) 

q
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¡

¡
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¢¢¶

 ( (̄)) 
0
(̄)

)
⊗ Z

J2 = 1√


P
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⎛⎝ −1 (̄)
³
̃ 0 (̄)−  0 (̄)

´


q
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¡

¡
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1
2
−1 (̄)

³
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´
̄
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³
̃ (̄)

´


27



J3 = − 1√
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³
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¡
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2
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P
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Ã
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̄

!
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¡
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¢ ³



³
̃ (̄)

´
̃
0
 (̄)−  ( (̄)) 

0
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It suffices to show J1 −
√
+1I0 ()⊗

→ (0 I0 ()⊗) and each of other terms is  (1) 

To analyze J1 let ̃ = ̃ (̄),  =  (̄)  and

 (β) = ̄−1
(Ã

 ( (β)) 
p
exp ( (β2))

1
2 [ ( (β))  (β) + 1]

!
 ( ( (β)))

+

Ã
1

 (β)

!
log
³
 ( (β)) 

p
exp ( (β2))

´
 ( ( (β))) 

0
( (β))

)
⊗ X̃

Noticing that (̃)− () =  () (̃− )+
1
2
0
 (
∗
 ) (̃− )

2, where ∗ lies between ̃ and  we

have

J1 = − 1√


X
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¡
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+

1√


X
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⎛⎝  (̄) 
q
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¡
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¢¢

1
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´


+
1

2
√


X
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⎛⎝  (̄) 
q
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¡

¡
β02
¢¢

1
2 [ (̄) ̄ + 1]

⎞⎠⊗ Z0 (∗ )³̃ − 

´2


≡ −J11 + J12 + J13 say.

Using a rough bound on the last term, we have by Lemma A.2 and Assumption A7

J13 =
√


µ³

+1
0 + −12−120

p
log+ 1

´2¶
=  (1) 

Let  (β) ≡
£
log ( ( (β)))− 1

2 (β2)
¤
 ( ( (β)))  (β) ≡

£
log  ( (β))− 1

2 (β2)
¤


and  (β) ≡ −{ £ (β)
¤ − [ (β)]} → 0. We can verify that i) 

¡
β0
¢ → 0 (ii)  (β) is

differentiable in a small 0-neighborhood 0

¡
β0
¢
of β0 (iii)  0 (β) converges uniformly on 0

¡
β0
¢


Then by Theorem 7.17 of Rudin (1976), we have

J11 =
√
−

£
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¢¤
=
√
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∙


β


¡
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¢¸

=
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1
2 [ (̄) ̄ + 1]

⎞⎠⊗ Z

⎞⎠ {1 +  (1)}

=
√
+1

¡I0 ()⊗
¢ {1 +  (1)} 
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Similarly, Var(J11) = −Var
¡

¡
β0
¢¢ ' −Var

⎛⎝⎛⎝  () 
q
exp

¡

¡
β02
¢¢

1
2 [ ()  + 1]

⎞⎠⊗ Z

⎞⎠ → I0 ()⊗

 By the Liapounov central limit theorem,

J11 → 
¡I0 ()⊗I0 ()⊗

¢
 (B.13)

For J12 by Lemma A.2, ̃ (̄)−  (̄) =
1

0

P
 6=
n
0

³
̄−̃
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³
̄−
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´o
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where 
¡
−12−2

¢
holds uniformly in {  0}  Using ̃ −  = (̃ −  ) + (  − ) and the

expressions for V (̄) and B (̄) in (C.30) and (C.31), we can decompose J12 as follows
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≡ J12 + J12 + J12 + J12 +  (1) 

For J12 and J12 we can write them as the sum of a third order  -statistic and a term that is as-

ymptotically negligible. Using the standard theory for third order  -statistics (e.g., Lee, 1990), we

can show J12 and J12 are each  (1)  Writing J12 as a second order  -statistic we can verify that
 [J12]2 =  (1) and thus J12 =  (1)  For J12 we verify that J12 = 

¡
122+1
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Consequently J12 =  (1) and J1 → 
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where 0 ≤ |j| ≤   = 0 1 and recall  ≡  ()  A typical element of J21 is
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Decompose J21 as
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The analysis of these two terms is similar to the analysis of S1j212 in the proof of Lemma B.4. In
particular, the first term is  (1) by the replacement of 

−1
 () by [ ()]

−1
and moment calcu-

lations and the second term is (
√


+1
1 ) =  (1)  Similarly, we can verify that J21 =  (1)  Next,

decompose J22 as follows

1

2
√


̄−1
X
=1

j
−1 (̄)

⎧⎨⎩ 1

20

X
 6=

½
00

µ
̄ − 

0

¶
−

∙
00

µ
̄ − 

0

¶¸¾⎫⎬⎭ ̄
£
exp

¡

¡
β02
¢¢¤− 2−

2 

+
1

2
√


̄−1
X
=1

j
−1 (̄)

⎧⎨⎩ 1

20

X
 6=



∙
00

µ
̄ − 

0

¶¸
−  0 (̄)

⎫⎬⎭ ̄
£
exp

¡

¡
β02
¢¢¤− 2−

2 

Analogous to the study of S2j12 in the proof of Lemma B.5, we can show that J22 =  (1) 

For J3 a typical element of J3 is

− 1

2
√


̄−1
X
=1

j
−1 (̄) ̃ 0 (̄)

³
̃ (̄)−  (̄)

´
̄
£
exp

¡

¡
β02
¢¢¤− 2−

2 

³
̃ (̄)

´
' − 1

2
√


̄−1
X
=1

j
−1 (̄) ̃ 0 (̄)

³
̃ (̄)−  (̄)

´
̄
£
exp

¡

¡
β02
¢¢¤− 2−

2  () 

where 0 ≤ |j| ≤  and  = 0 1 The rest of the proof is similar to that of J2 and thus omitted.
For J4 we apply Lemma A.2 and the remark after it:

J4 =
√
−2

µ³

+1
0 + −12−20 log+ 1

´2¶
=  (1) 

J5 and J6 can be analyzed by similar techniques to the above. ¥
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THIS APPENDIX PROVIDES PROOFS FOR TECHNICAL LEMMAS IN THE ABOVE PAPER.

C Proofs of the Technical Lemmas

To facilitate the proof, we define an  × matrix () and  × 1 vectors Ψ() ( = 1 2) as:

 () ≡

⎡⎢⎢⎢⎢⎢⎣
00() 01()  0()

10() 11()  1()
...

...
. . .

...

0() 1()  ()

⎤⎥⎥⎥⎥⎥⎦  Ψ() ≡
⎡⎢⎢⎢⎢⎢⎣
Ψ0()

Ψ1()
...

Ψ()

⎤⎥⎥⎥⎥⎥⎦  (C.1)

where ||||() is an || ×|| submatrix with the ( ) element given by£
|||| ()

¤

≡ 1



X
=1

µ
 − 

1

¶||()+||()


µ
 − 

1

¶


Ψ1||() is an || × 1 subvector whose -th element is given by£
Ψ1||()

¤

≡ 1



X
=1

µ
 − 

1

¶||()


µ
 − 

1

¶


and Ψ2||() is an || × 1 subvector whose -th element is given by£
Ψ2||()

¤

≡ 1



X
=1

µ
 − 

1

¶||()


µ
 − 

1

¶
2 

Define eΨ2() analogously as Ψ2() with 2 being replaced by ̃2  where ̃ ≡  − ̃ ()  The -th

order local polynomial estimates of  () and 2 () are given respectively by

̃ () = 
>
1

−1
 ()Ψ1() and ̃2 () = 

>
1

−1
 () eΨ2().

For  = 1 2 let

 () ≡

⎡⎢⎢⎢⎢⎣
0()

1()

:

1()

⎤⎥⎥⎥⎥⎦   () ≡

⎡⎢⎢⎢⎢⎣
0()

1()

:

()

⎤⎥⎥⎥⎥⎦ 
where  () and  () are defined analogously as Ψ() so that || () and || () are
|| × 1 subvectors whose -th elements are given by£

|| ()
¤

=

1

1

X
=1

µ
 − 

1

¶||()


µ
 − 

1

¶


£
|| ()

¤

=

1

1

X
=1

µ
 − 

1

¶||()


µ
 − 

1

¶
∆ () 

1



where 1 ≡  2 ≡ 2 − (2 |) = 2 () (
2
 − 1) and ∆ () ≡  () −

P
0≤|j|≤ j ()

× ( − )j  We further define ̃2 () analogously as 2 () but with 2 being replaced by ̃2 ≡
̃2 −

¡
2 |

¢
 Then

̃()− () = 
>
1

−1
 ()1 () + 

>
1

−1
 ()1 ()  and (C.2)

̃2()− 2 () = 
>
1

−1
 ()̃2 () + 

>
1

−1
 ()2 () 

By Masry 1996(a), we can readily show that

̃()− () = 
>
1 [ () ]

−1 1


X
=1

1 (−)Z + 
+1
1 

>
1

−1m(+1) () + (
+1
1 ) (C.3)

uniformly in  Furthermore,

sup
∈X

|()−  () | =  (0) and sup
∈X

|̃()− ()| =  (1)  (C.4)

The following lemma studies the asymptotic property of the local polynomial estimator ̃2() of 2()

Lemma C.1 Suppose Assumptions A1-A5 hold. Then ̃2()− 2() = 
>
1

−1
 ()2 () + 

>
1

−1
 ()

×2 () + ((0 + 1)1) uniformly in 

Proof of Lemma C.1. Let∗ ( ) ≡ 
>
1

−1
 () (( − ) 1) Z̃ Then ̃

2() = (1)
−1P

=1
∗

( )̃
2
  It follows from −1 ()() =  that

1

1

X
=1

∗ ( ) =
1

1

X
=1


>
1

−1
 () (( − ) 1) Z̃ = 1

and
1

1

X
=1

∗ ( ) ( − )
j
=

1

1

X
=1


>
1

−1
 () (( − ) 1) Z̃ ( − )

j
= 0

for 1 ≤ |j| ≤  Consequently,

̃2()− 2() = 
>
1

−1
 ()eΨ2() = 1

1

X
=1

∗ ( )
©
̃2 − 2 ()

ª


where 2 () ≡
P
0≤|j|≤

¡
(j)2

¢
() ( − )

j
 Noting that ̃2 = [− ̃()]

2 = [()+ ()

−̃()]
2 = 2()

2
 + 2()[ ()− ̃()] + [ ()− ̃()]

2 we have

̃2()− 2() =
1

1

X
=1

∗ ( )
©
2()− 2 ()

ª
+
1

1

X
=1

∗ ( )
2()

¡
2 − 1

¢
+
2

1

X
=1

∗ ( )() [ ()− ̃()]

+
1

1

X
=1

∗ ( ) [ ()− ̃()]
2

≡ 1 () +2 () + 23 () +4 ()  say.
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Noting that ∆2 () = 2()−2 ()  we have 1 () = 
>
1

−1
 ()2 ()  In addition 2 () =


>
1

−1
 ()2 () by the definition of 2 and sup∈X |4 ()| = 21 by (C.4). For 3 ()  write

−3 () = 31 () +32 ()  where

31 () ≡ 1

1

X
=1

∗ ( )
>
1

−1
 ()1 ()  and

32 () ≡ 1

1

X
=1

∗ ( )
>
1

−1
 ()1 () 

Note that

31 () =
1

1

X
=1

∗ ( )
>
1 [ ()]

−1
1 ()

− 1

1

X
=1

∗ ( )
>
1

n
 ()

−1 − [ ()]
−1o

1 ()

≡ 311 ()−312 ()  say.

We dispose 312 () first. By (C.4), the facts that sup∈X k1 ()k = (
−12−21

√
log) and

sup∈X
1

1

P
=1 |∗ ( )| =  (1), we have

sup
∈X

|312 ()| ≤ sup
∈X

°°° ()
−1 − [ ()]

−1
°°° sup
∈X

k1 ()k sup
∈X

1

1

X
=1

|∗ ( )|

= (0)(
−12−21

p
log)(1) = (0

−12−21

p
log)

Using 1 () =
1

1

P
=1 (( − ) 1) Z̃ and ∗ ( ) = 

>
1

−1
 () (( − ) 1) Z̃ we

have

311 () =
1

221

>
1

−1
 ()

X
=1

X
=1

 (( − ) 1) Z̃
>
1 [ ()]

−1
 (( −) 1) Z̃

=
1

221

>
1

−1
 ()

X
1≤6=≤

 (( − ) 1) Z̃
>
1 [ ()]

−1
 (( −) 1) Z̃

+
1

221

>
1

−1
 ()

X
=1

 (( − ) 1) Z̃
>
1 [ ()]

−1
 (0) Z̃

2


≡ 311 () +311 ()  say.

Let  () ≡ {>1 [ ()]
−1

 (( − ) 1) Z̃}{>1 [ ()]
−1

 (( −) 1) Z̃}  Then
by (C.4), 311 () = [1 + (0)]̄311 ()  where

̄311 () =
1

221

X
1≤6=≤

 () 

is a second order degenerate  -statistic. We can readily show that ̄311 () = 

¡
−1−1

¢
for

each  by Chebyshev inequality. By using Bickel’s (1975) standard chaining argument, we can show

sup∈X
¯̄
̄311 ()

¯̄
= 

¡
−1−1 log

¢
 For 311 ()  we have

sup
∈X

|311 ()| ≤ 1

1
sup
∈X

°°−1 ()
°° sup
∈X

°°°°° 1

1

X
=1

 (( − ) 1) Z̃
>
1 [ ()]

−1
 (0) Z̃

2


°°°°°
= 

¡
−1−1

¢
 (1) (1) = 

¡
−1−1

¢


3



It follows that sup∈X |311 ()| = 

¡
−1−1 log

¢
. Consequently, we have shown that sup∈X |31 ()| =

(0
−12−21

√
log)

Note that

32 () =
1

1

X
=1

∗ ( )
>
1 [ ()]

−1
1 ()

− 1

1

X
=1

∗ ( )
>
1

n
 ()

−1 − [ ()]
−1o

1 ()

≡ 321 ()−322 ()  say.

As in the study of 31 ()  using (C.4) and the fact that sup∈X |1 ()| = (
+1
1 ) we can readily

show that sup∈X |322 ()| = (0
+1
1 ) and that sup∈X |322 ()| = (

−12−21

√
log+11 )

Hence sup∈X |32 ()| = (0
+1
1 ) Consequently, sup∈X |3 ()| = (01) This completes the

proof. ¥

Remark C1. Using the notation defined in the proof of Lemma C.1, we can also show that 1 () =


+1
1 

>
1

−1σ2(+1) ()+(
+1
1 ) and

p
12 ()

→ (0
¡
4() ()

¢

¡
21 − 1

¢2

>
1

−1Γ−1
>
1 )

By standard results on local polynomial estimators, Lemma A.1 implies

sup
∈X

¯̄
̃2()− 2()

¯̄
=  (1)  (C.5)

where 1 is the rate we can obtain even if the conditional mean function  () is known.

Let  and  () be as defined in Appendix A. To prove Lemmas A.1-A.2, we will frequently use the

facts that

 = 

¡
+1

¢
uniformly on the set {  0}  (C.6)

 () = 

³
(+11 + −12−21 ) (1 + (1)

)
´
on the set {  0}   = 1 2(C.7)

max
{0}

| ()| =  (2)   = 1 2 (C.8)

To facilitate the asymptotic analysis, we also define the kernel density and derivative estimator based on

the unobserved errors {}:

  () =
1

0

X
 6=

0

µ
 − 

0

¶
 and 

()

 () =
1

1+0

X
 6=


()
0

µ
 − 

0

¶
for  = 1 2 3

We will need the result in the following lemma which is adopted from Hansen (2008).

Lemma C.2 Let   = 1   be IID. Assume that () the PDF of   (·)  is uniformly bounded, and
the (+ 1)th derivative of  () () is uniformly continuous; () there exists   0 such that sup ||  () 
∞ and |()0 () | ≤  ||− for || large; () 0 (·) is a (+1)th order kernel and

R ||++1 |0 ()|  ∞;
() 0 → 0 and 1+20  log→∞ as →∞ Then

max
1≤≤

¯̄̄

()

 (̄)−  () (̄)
¯̄̄
= (

+1
0 + −12−12−0

p
log)

Proof of Lemma C.2. The above result is essentially a special case of Theorem 6 in Hansen (2008)

who allows for strong mixing processes. For an IID sequence, the parameters  and  in Hansen (2008)

correspond to ∞ and one, respectively. Another noticeable difference is that Hansen considers the usual

kernel estimates whereas we consider the leave-one-out kernel estimates here. The difference between these

4



two kernel estimates is uniformly (1+0 )−1()0 (0)  which is (−12−12−0

√
log) under condition ()

and thus does not contribute to the uniform convergence rate of 
()

 (̄)−  () (̄) to 0. ¥

Proof of Lemma A.1. We only prove the lemma with  = 0 as the other cases can be treated

analogously. Write ̃ (
−→ ) −  (̄) = [ (̄) −  (̄)] + [̃ (

−→ ) −  (̄)] Noting that 0 is a ( + 1)-

th order kernel with compact support by Assumption A6, the conditions on the kernel in Lemma C.2

are satisfied. One can readily check that the other conditions in that lemma are also satisfied under

Assumptions A1, A2, and A7. So we can apply Lemma C.2 to obtain max1≤≤
¯̄
  (̄)−  (̄)

¯̄
=

(
+1
0 + −12−120

√
log) Let

1 ≡
̄

h

¡

¡
β02
¢¢12 − ((β̃2))

12
i

((β̃2))
12

− 1 ()

((β̃2))
12

+
̃ ()− ()

 ()

+

∙
 +

 ()− ̃ ()

 ()

¸
̃ ()−  ()

̃ ()
 (C.9)

Then
−→  − ̃ = (̄ − ) + 1  (C.10)

By a first order Taylor expansion with an integral remainder, we have

̃ (
−→ )−  (̄) =

1

0

X
 6=

∙
0

µ−→  − ̃

0

¶
− 0

µ
̄ − 

0

¶¸

=
−1
20

X
 6=

00

µ
̄ − 

0

¶
1 ()

((β̃2))
12

+
1

20

X
 6=

00

µ
̄ − 

0

¶
̄

h
(

¡
β02
¢
)12 − ((β̃2))

12
i
((β̃2))

−12

+
1

20

X
 6=

00

µ
̄ − 

0

¶
̃ ()− ()

 ()

+
1

20

X
 6=

00

µ
̄ − 

0

¶ ∙
 +

 ()− ̃ ()

 ()

¸
̃ ()−  ()

̃ ()

+
1

20

X
 6=

Z 1

0

∙
00

µ
̄ −  + 1

0

¶
− 00

µ
̄ − 

0

¶¸
1

≡ −1 () +2 () +3 () +4 () +5 ()  say. (C.11)

We will establish the uniform probability order for  ()   = 1 2  5 in order.

For 1 ()  we apply Lemma C.2 to obtain that, uniformly in 

1

20

X
 6=

00

µ
̄ − 

0

¶
=  0 (̄) +

³
−12−320

p
log+ 

+1
0

´
 (C.12)

Then by (C.8) and the uniform boundedness of  0 (), we have

max
{0}

|1 ()| =  (2)  (C.13)

Similarly, by (C.12), (C.8), and the uniform boundedness of  0 ()  we have

max
{0}

|2 ()| =  (2)  (C.14)
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Expanding −1 () around its probability limit [ ()]
−1

 we have

3 () =
1

20

X
 6=

00

µ
̄ − 

0

¶
−1 () 

>
1 [ ()]

−1
1 ()

− 1

20

X
 6=

00

µ
 − 

0

¶
−1 () 

>
1  ()

−1
 ()1 ()

+
1

20

X
 6=

00

µ
̄ − 

0

¶
−1 () 

>
1 [ ()]

−1
1 ()

− 1

20

X
 6=

00

µ
̄ − 

0

¶
−1 () 

>
1  ()

−1
 ()1 ()

≡ 31 ()−32 () +33 ()−34 () 

where  () ≡ [ ()]
−1
[ ()− ()] Write

31 () =
1

20

X
 6=

00

µ
̄ − 

0

¶
−1 () 

>
1 [ ()]

−1
1 ()

=
1

20

X
 6=



∙
00

µ
̄ − 

0

¶¸
−1 () 

>
1 [ ()]

−1
1 ()

+
1

20

X
 6=

½
00

µ
̄ − 

0

¶
−

∙
00

µ
̄ − 

0

¶¸¾
−1 () 

>
1 [ ()]

−1
1 ()

≡ 311 () +312 ()  say.

For 311 ()  we have

max
1≤≤

|311 ()| ≤ max
1≤≤

¯̄̄̄
− 1
20



∙
00

µ
̄ − 

0

¶¸¯̄̄̄
× sup

∈X

°°°−1 () >1 [ ()]
−1
°°° sup
∈X

k1 ()k

=  (1) (1)

³
−12−21

p
log

´
= 

³
−12−21

p
log

´


where we use the facts that sup∈X k1 ()k = (
−12−21

√
log) by Masry (1996a), max1≤≤ |−20

× [
0
0((̄−)0)]− 0 (̄) | = (+10 ) by standard bias calculation for kernel estimates and max1≤≤

| 0 (̄)| ≤ sup | 0 ()| ≤  ∞

Let  (̄) = 00 ((̄ − )0)−[00 ((̄ − )0)] Then

312 () =
1

21
2
0

X
 6=

X


 (̄)
−1 () 

>
1 [ ()]

−1
Z̃

µ
 −

1

¶


=
1

21
2
0

X
 6=

X
 6=

 (̄)
−1 () 

>
1 [ ()]

−1
Z̃

µ
 −

1

¶


+
1

21
2
0

X
 6=

 (̄)
−1 () 

>
1 [ ()]

−1 Z̃ (0)

+
1

21
2
0

X
 6=

 (̄)
−1 () 

>
1 [ ()]

−1 Z̃
µ
 −

1

¶


≡ 312 () +312 () +312 ()  say.

By construction, 312 () is a second order degenerate  -statistic (see, e.g., Lee (1990)) and we can

bound it by straightforward moment calculations. Let  ≡ −12−21

√
log for some   0 By the
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Boole and Markov inequalities,



µ
max
1≤≤

|312 ()| ≥ 

¶
≤

X
=1

 (|312 ()| ≥ ) ≤
X
=1


h
|312 ()|4

i
4



Let  = 
>
1 [ ()]

−1 Z̃ (( −)1)  Note that


h
|312 ()|4

i
=

1¡
21

2
0

¢4 X
 6= 6= for =1234

× {112233441 (̄)12 (̄)23 (̄)34 (̄)4} 

where the summations are only taken with respect to  and ’s. Consider the index set  ≡ {   = 1 2 3 4} 
If the number of distinct elements in  is larger than 4 then the expectation in the last expression is zero

by the IID condition in Assumption A1. We can readily show that 
h
|312 ()|4

i
= (−4−21 −60 )

It follows that



µ
max
1≤≤

|312 ()| ≥ 0

¶
≤ (−4−21 −60 )

−2−21 (log)
2
40

=

³
−1−60 (log)

−2´
4

= 
³
−1−(2+1)−

´
=  (1) 

where recall  = [(2+)4−(+1)](log)+1 Then max1≤≤ |312 ()| = (0
−12−21

√
log)

by the Markov inequality. Analogously, we can show that max1≤≤ |312 ()| = (−12−21

√
log)

For 312 ()  we continue to decompose it as follows

312 () =
 (0)

21
2
0

X
 6=

−1 () 
>
1 [ ()]

−1
Z̃ { (̄) − [ (̄) ]}

+
 (0)

21
2
0

X
 6=

−1 () 
>
1 [ ()]

−1 Z̃ [ (̄) ]

≡ 3121 () +3122 () 

where  denotes expectation with respect to the variable indexed by We bound the second term first:

max
1≤≤

|3122 ()| ≤ max
1≤≤

¯̄
−10  [ (̄) ]

¯̄  (0)

210

X
=1

−1 ()
¯̄̄

>
1 [ ()]

−1
Z̃

¯̄̄
=  (1)(

−1−1 −10 ) = (
−1−1 −10 )

By the Boole and Markov inequalities,



µ
max
1≤≤

|3121 ()| ≥ 

¶
≤

X
=1


h
|3121 ()|4

i
4

=
(−6−41 −60 )

−2−21 (log)2

= (−3−21 −60 (log)
−2
) =  (1) 

implying thatmax1≤≤ |3121 ()| = (
−12−21

√
log)Hencemax1≤≤ |312 ()| = (

−1−1 −10 )

+(
−12−21

√
log) Consequently, we have shown that

max
1≤≤

|31 ()| = (
−1−1 −10 ) + (0 +  (1))(

−12−21

p
log)
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By (C.4), the fact that sup∈X k1 ()k = (
−12−21

√
log) and the fact thatmax1≤≤ 1

20

P
 6=

|00 (( − )0)| = (−10 ) we can readily show thatmax1≤≤ |32 ()| = (0
−12−21

√
log−10 )

For the other terms, we havemax1≤≤ |33 ()|= (
+1
1 ) andmax1≤≤ |34 ()| = (

+1
1 ) (0)

¡
−10

¢
=

(0
+1
1 −10 ) Consequently,

max
1≤≤

|3 ()| = 

³
−1−1 −10 + 1 + 01

−1
0 + 0

−12−21

p
log

´
 (C.15)

Now write

4 () =
1

20

X
 6=

00

µ
̄ − 

0

¶

̃ ()−  ()

̃ ()

+
1

20

X
 6=

00

µ
̄ − 

0

¶
 ()− ̃ ()

 ()

̃ ()−  ()

̃ ()

≡ 41 () +42 () 

By (C.4) and Lemma C.1, it is easy to show that max1≤≤ |42 ()| = 

¡
21

−1
0

¢
 Using analogous

arguments as used in the analysis of 3 () and Lemma C.1, we can show that max1≤≤ |41 ()|
= (

−1−1 −10 + 01
−1
0 + 

+1
1 ) Consequently,

max
1≤≤

|4 ()| = (
−1−1 −10 + 01

−1
0 + 

+1
1 ) (C.16)

where we use the fact that 21
−1
0 = (

−1−1 −10 + 
+1
1 ) As argued by Hansen (2008, pp.740-741),

under Assumption A6 there exists an integral function ∗0 such that¯̄̄̄
00

µ
̄ −  + 1

0

¶
− 00

µ
̄ − 

0

¶¯̄̄̄
≤ −10 ∗0

µ
̄ − 

0

¶
|1 | 

It follows that

max
1≤≤

|5 ()| ≤ 1

30

X
 6=

∗0

µ
̄ − 

0

¶
21 =



¡
22

¢
30

X
 6=

∗0

µ
̄ − 

0

¶¡
̄2 + 2

¢
= 

¡
22

−2
0

¢
 (C.17)

Combining (C.11), (C.13), (C.14), (C.15), (C.16), and (C.17) and using the facts that −1−1 −10 =


¡
21

−2
0

¢
and that 

+1
1 = (2) yield the desired result for  = 0

When   0 we can decompose ̃
()
 (−→ ) − 

()
(̄) as in (C.11) with the corresponding terms

denoted as 
()
 () for  = 1 2  5 The probability orders of 

()
1 () and 

()
2 () are the same as

those of 1 () and 2 ()  those of 
()
3 () and 

()
4 () become (

−1−1 −1−0 + (0
−1−
0 +

)
−12−21

√
log + 

+1
1 ) and the probability order of 

()
5 () is (

2
2
−2−
0 ). Consequently,

max1≤≤ |̃ () (−→ )− 
()
(̄) | = (2 + (0

−1−
0 + )

−12−21

√
log+ 22

−2−
0 ) ¥

Proof of Lemma A.2. The proof is similar to but much simpler than that of Lemma A.1 and thus

omitted. ¥

Proof of Lemma A.3. The proof is analogous to that of Lemma USSLN in Gozalo and Linton (2000)

and thus we only sketch the proof for the  = 1 case. Let C = {1 ( ) :  ∈ Θ}. Under the permissibility
and envelope integrability of C the almost sure convergence of sup∈Θ

¯̄
− [1 ( )− 1 ( )]

¯̄
is equivalent to its convergence in probability. By the boundedness of Θ and measurability of the 1, the

class C is permissible in the sense of Pollard (1984, p196). We now show the envelope integrability of C

8



By Assumption A1 and the compactness of  |log ( ( (β)))| ≤ () on the set  0 Consequently,

we can take the dominance function  =  ( ) ((−) )  Let  [ ( ) |] = ̄ ()  Assumptions

A1 and A3 ensure that

 = 
£
̄ () ((−) )

¤
= 

Z
̄ (− )  (− ) ()  = 

¡

¢


The envelope integrability allows us to truncate the functions to a finite range. Let   1 be a

sequence of constants such that  →∞ as →∞ Define

C∗ =
©
∗ = −1 11 { ≤ } :  ∈ C

ª


Let  be a non-increasing sequence of positive numbers for which 2 À log By analysis sim-

ilar to that of Gozalo and Linton (2000) and Theorem II.37 of Pollard (1984, p.34), to show that

sup
C
|1 − 1| = 

¡


¢
 it suffices to show

sup
C∗

¯̄


∗
 − ∗

¯̄
= 

¡


¢
 (C.18)

which holds provided

sup
C∗

n

£
∗
¤2o12

 2 (C.19)

and

sup1

¡
 C∗

¢ ≤ 1
−2 for 0   ≤ 1 (C.20)

where 1

¡
 C∗

¢
is the covering number of C∗  i.e., the smallest value  for which there exists

functions 1   such that min≤  | −  | ≤  for each  ∈ C∗  the supremum is taken over all

probability measures  and 1 and 2 are positive constants independent of 

(C.19) holds by construction. For (C.20), we need to show that C∗ is a Euclidean class (Nolan and
Pollard, 1987, p.789). Since the functions in C∗  ∗ = −1 log ( ( (β))) ( ( (β))) ((−) )

1 { ≤ }  are composed from the classes of functions

C1 =

(
1 log 

Ã
 −  (β1)p
exp ( (β2))

!
:
³
β
>
1 β

>
2

´>
∈ B 1 ≤ 1

)


C2 =

(
2

Ã


Ã
 −  (β1)p
exp ( (β2))

!!
:
³
β
>
1 β

>
2

´>
∈ B 2 ≤ 1

)


C3 =
n

³

>
3 + 4

´
: 3 ∈ R 4 ∈ R

o
 and C4 = {1 {5 ≤ 1} : 5 ∈ R} 

it suffices to show that the C0 form Euclidean classes by Nolan and Pollard (1987, pp. 796-797) and

Pakes and Pollard (1989, Lemmas 2.14 and 2.15).

First, for  = 1 2 { (β)} forms a polynomial class of functions and is Euclidean by Lemma 2.12
of Pakes and Pollard (1989). By Example 2.10 of Pakes and Pollard (1989) and the bounded variation

assumption on  , the class { ¡− ¢
:  ∈ R,   0} is Euclidean for the constant envelope sup | ()|  It

follows from Pakes and Pollard (1989, Lemmas 2.15) that C1 is also Euclidean. Similarly, C2 is Euclidean.
By Nolan and Pollard (1987, Lemma 22) and the bounded variation of  C3 forms a Euclidean class
with constant envelope sup | ()|  Finally, by Pollard (1984, Lemma II.25) and the Euclidean property
of C   = 1 2 3 C4 is Euclidean. Consequently

sup


¯̄̄̄
¯ 1

X
=1

1 ( )−1 ( )

¯̄̄̄
¯ =  () 

9



Since Pollard’s Theorem requires that  À −12−2
√
log we can take  = −12−2

√
log to

obtain the desired result. ¥

Proof of Lemma A.4. The proof is analogous to that of Newey (1991, Corollary 3.2). We first show

̄1 () is equicontinuous. Let  () = 1 { ∈ } () (−) for a compact set  on R. By
the Hölder inequality and the law of iterated expectations,

 () =  [ () |]

≤ 
h
{ ( ∈ |)}(−1) { [ () |]}1  (−)

i
= 

h
{ ( ∈ |)}(−1)

£
̄ ()

¤1
 (−)

i
 (C.21)

Note that


h£
̄ ()

¤1
 (−)

i
=

Z £
̄ (− )

¤1
 (− ) ()  ≤ 

Z
 ()  (C.22)

Consider    0 By Assumption A2, we can choose  large enough such that  ( ∈ |) is arbitrary

small to ensure  ()  4. Also,  ( ) is uniformly continuous on (X ×)×Θ for each compact
set X× implying that for any  ∈ Θ there existsN ≡ N () such that sup(0)∈(X×)×N |1

¡
 0

¢−1(
)|  2 Consequently

sup
0∈N

¯̄
1
¡
 

0¢− 1 ( )
¯̄
 2 + 2 · 1 { ∈ } () (−)  (C.23)

Let 4 ( ) = 2+2̄ ()  where ̄ () = −1
P

=1 ()  By (C.23) and the triangle inequality

sup
0∈N

¯̄
1

¡
 0

¢− 1 ( )
¯̄
 4 ( ) 

Also,

 (4 ( )  ) = 
¡
̄ ()  4

¢ ≤  [ ()]

4
 

Consequently

sup
0∈N

¯̄
̄1

¡
0
¢− ̄1 ()

¯̄
= sup

0∈N

¯̄

£
1

¡
 0

¢− 1 ( )
¤¯̄

≤ 

∙
sup
0∈N

¯̄
1

¡
 0

¢− 1 ( )
¯̄¸ ≤  [4 ( )]  

That is,
©
̄1 ()

ª
is equicontinuous.

Notice that under our assumption on the compactness of B and the support of ,  (β2) is bounded.
So the proof for the equicontinuity of ̄2 () is simpler than that of ̄1 () and thus omitted. ¥

Proof of Lemma B.1. We only prove the case ( ) = (1 1) as the other cases are similar. For notational

simplicity, write 1j = 1j (1 1)  By the fact that ((β̃2))
−12−(

¡
β02
¢
)−12 =  (2) uniformly

in  on the set {  0}  we can write

̃1(β̃)− 1
¡
β0
¢
=

̃ 0 (
−→ )

̃ (
−→ )

((β̃2))
−12 −  0 (̄)

 (̄)
(

¡
β02
¢
)−12

=

"
̃ 0 (
−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

#
((β̃2))

−12 +
 0 (̄)
 (̄)

h
((β̃2))

−12 − (
¡
β02
¢
)−12

i
=

"
̃ 0 (
−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

# h
(

¡
β02
¢
)−12 + (2)

i
+

 0 (̄)
 (̄)

 (2)  (C.24)
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Thus

|1j| ≤ 1



X
=1

¯̄̄̄
¯j̃1

¡
β0
¢ " ̃ 0 (−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

#
(

¡
β02
¢
)−12

¯̄̄̄
¯

+
 (2)



X
=1

¯̄̄̄
¯j̃1

¡
β0
¢ " ̃ 0 (−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

#¯̄̄̄
¯

+
 (2)



X
=1

¯̄̄̄
j̃1

¡
β0
¢  0 (̄)
 (̄)

¯̄̄̄


Since the last two terms are of smaller order, it suffices to show the first term (denoted as |̄1j|) is
 (

)  By Lemma A.1, the definition of ̃ and Assumption A7,¯̄̄̄
¯ ̃ 0 (−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

¯̄̄̄
¯ ̃ =

¯̄̄̄
¯̄ ̃ 0 (−→ )−  0 (̄)

̃ (
−→ )

+
 0 (̄)

h
 (̄)− ̃ (

−→ )
i

 (̄) ̃ (
−→ )

¯̄̄̄
¯̄ ̃

≤ 

¡
−131

¢
+ ( 0 (̄)  (̄))

¡
−130

¢
=  (

) {1 + | 0 (̄)  (̄)|}  (C.25)

Therefore
¯̄
̄1j

¯̄
=

(
)



P
=1

¯̄̄
j1

¡
β0
¢ ³
1 +  0(̄)

(̄)

´
(

¡
β02
¢
)−12

¯̄̄
=  (

) by Markov inequal-

ity and the fact that

1




¯̄̄̄
j1

¡
β0
¢µ
1 +

 0 (̄)
 (̄)

¶
(

¡
β02
¢
)−12

¯̄̄̄
=

1




¯̄̄̄
j

 0 (̄)
 (̄)

µ
1 +

 0 (̄)
 (̄)

¶
(

¡
β02
¢
)−1
¯̄̄̄

=
1




¯̄̄̄
j

−2 ()
 0 ()
 ()

µ
1 +

 0 ()
 ()

¶¯̄̄̄
{1 +  (1)}

≤  ()

2 ()

Z ¯̄̄
 ()

j
¯̄̄

n
12 () +  ()

o
=  (1) 

where  () ≡ 
£
2 ()

¤
and we use the fact that (

¡
β02
¢
) is the -th order Taylor expansion of 2 ()

around  This completes the proof of the lemma. ¥

Proof of Lemma B.2. We only prove the case ( ) = (1 1) as the other cases are similar. For

notational simplicity, write 2j = 2j (1 1)  That is, we will show

2j =
1



X
=1

j̃

n
̃1(β̃)− 1

¡
;

¡
β01
¢
 

¡
β02
¢¢o2

=  (
) 

By (C.24) and (C.25) in the proof of Lemma B.1, we can write¯̄̄
̃1(β̃)− 1

¡
;

¡
β01
¢
 

¡
β02
¢¢¯̄̄2

̃

=

"
 (

)

µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 h
(

¡
β02
¢
)−12 +(2)

i2
+

µ
 0 (̄)
 (̄)

¶2
(

2
2)

#
̃

≤
µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 £
(

¡
β02
¢
)−1 + 1

¤
̃ (

) 

Thus

2j ≤  (
)



X
=1

|j|
µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 £
(

¡
β02
¢
)−1 + 1

¤
=  (

)
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by Markov inequality and the fact that

1




¯̄̄̄
¯j

µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 £
(

¡
β02
¢
)−1 + 1

¤¯̄̄̄¯
=

1




¯̄̄̄
¯j

µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 £
−2 () + 1 +  (1)

¤¯̄̄̄¯ {1 +  (1)}

≤  ()
£
−2 () + 1

¤ Z ¯̄̄
 ()

j
¯̄̄

h
1 +  () + 212 ()

i
{1 +  (1)} =  (1) 

This completes the proof of the lemma. ¥

Proof of Lemma B.3. We only prove the case ( ) = (1 1) as the other cases are similar. For

notational simplicity, write 3j = 3j (1 1)  That is, we will show

3j =
1



X
=1

j

³
1− ̃

´
1

¡
β0
¢2
=  (

) 

We decompose 3j as follows

3j =
1



X
=1

j [1− ( (̄))]
2 (̄)

+
1



X
=1

j

h
 ( (̄))−(̃ (

−→ ))
i
2 (̄)

≡ 3j1 + 3j2 say.

By Lemma A.1,

max
1≤≤

|̃ −| = max
1≤≤

|(̃ (
−→ ))− ( (̄)) |

≤ 


max
1≤≤

|̃ (−→ )−  (̄) | = −1 (30) =  (
)  (C.26)

With this, we can readily obtain |3j2| ≤  (
) 1



P
=1 |j|2 (̄) =  (

) by Markov inequal-

ity. For 3j1 we have

 |3j1| ≤ 

∙
1


|j| [1− ( (̄))]

2 (̄)

¸
=

1


 [|j|]

©
[1− ( ())]

2 ()
ª {1 +  (1)} 

By the Hölder inequality,


©
[1− ( ())]

2 ()
ª ≤ 

£
2 () 1 { () ≤ 2}

¤
≤ ©


£
2 ()

¤ª1
[ ( () ≤ 2)](−1)

≤  [ ( () ≤ 2)](−1) = 
³
(−1)(2)

´
=  () 

where the last line follows from Lemma 6 of Robinson (1988) and the Markov inequality because by taking

 = −12 we have  ( () ≤ 2) ≤ 2
R
||≤  + 

¡||  
¢ ≤ 22−12 +  || 12 = 

¡
12

¢
=

 ()  This, in conjunction with the fact that 1

 [|j|] =  (1)  implies that 3j1 =  (

) by

Markov inequality. Consequently, we have shown that 3j =  (
). ¥
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Proof of Lemma B.4. Let ̃ = ̃ (
−→ ) and  =  (̄) Note that ̃

−1
 = −1 − (̃ − )

2
 + 2

where 2 ≡ (̃ − )
2{(2 ̃) First, we expand the trimming function to the second order:

(̃)− () =  ()
³
̃ − 

´
+
1

2
0 (

∗
 )
³
̃ − 

´2
 (C.27)

where ∗ is an intermediate value between ̃ and  Let  (β) ≡  ( (β))  (β) + 1 ̄ ≡ 
¡
β0
¢
 and

 ≡  ()  + 1 Let  ≡ 0(
¡
β02
¢
)(

¡
β02
¢
) Then we have

−S1j =
1

2
√


X
=1

j

n
̄

h
(̃)− 1

i
+ log

³
 (̄)(

¡
β02
¢
)−12

´
 ( (̄)) 

0 (̄) ̄
o

=
1

2
√


X
=1

j

n
̄ [ ()− 1] + log

³
 (̄)(

¡
β02
¢
)−12

´
 ( (̄)) 

0 (̄) ̄
o

+
1

2
√


X
=1

j̄ ()
³
̃ − 

´
+

1

4
√


X
=1

j̄
0
 (
∗
 )
³
̃ − 

´2
≡ S1j1 + S1j2 + S1j3 say.

Using a crude bound on the last term, we have |S1j3| = 

¡
230

−2122
¢
=  (1) by Lemma A.1,

the fact that sup |0 ()| = (−2) and Assumption A7.
To show the first term is  (1)  write

S1j1 =
−1

2
√


X
=1

j̄

+
1

2
√


X
=1

j

h
̄ () + log

³
 (̄)(

¡
β02
¢
)−12

´
 ( (̄)) 

0 (̄) ̄
i

=
−1√


X
=1

j1 +
1√


X
=1

j2

≡ −S1j11 + S1j12 say,

where 1 =
1
2 ̄ and 2 =

1
2

©
̄ () + log( (̄)(

¡
β02
¢
)−12) ( (̄))  0 (̄) ̄

ª


Let 1 (β) ≡ log{ ( (β))( (β2))−12} (−)  2 (β) ≡ log{ ( (β))( (β2))−12}
×( ( (β)) (−)  and  (β) ≡  [2 (β)] −  [1 (β)]  Then it is easy to show that (i)


¡
β0
¢→ 0 (ii)  (β) is differentiable in a small 0-neighborhood 0

¡
β0
¢
of β0 with 0

¡
β0
¢ ≡ {β :°°β − β0°° ≤ 0} (iii)  0 (β) converges uniformly on 0

¡
β0
¢
 Then by Theorem 7.17 of Rudin (1976)

and the fact that −|j|1
¡
β0
¢
β2j = −−1j and −|j|2

¡
β0
¢
β2j = −−2j we

have

 (S1j12) = −√2−|j|
"
2

¡
β0
¢

β2j

#

= −√2−|j|
"
1

¡
β0
¢

β2j

#
{1 +  (1)} =  (S1j11) {1 +  (1)} 

Consequently,  (S1j1) =  (1) (S1j11) =  (1) as S1j11 = 12−2 [j1] = 
¡
122+1

¢
=  (1)  By straightforward calculations and the IID assumption, we can readily show that Var(S1j1) =
 (1)  Therefore, S1j1 =  (1) by the Chebyshev inequality.
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Now, we show that S1j2 =  (1)  Decompose S1j2 = S1j21+S1j22 where S1j21 ≡ 1

2
√


P
=1

j2
¡
β0
¢
 ()

³
̃ (
−→ )−  (̄)

´
 and S1j22 ≡ 1

2
√


P
=1j2

¡
β0
¢
 ()

¡
 (̄)−  (̄)

¢


It suffices to show that S1j2 =  (1)   = 1 2 For S1j21 by a Taylor expansion and (C.9)-(C.10), we
have

S1j21 =
1

2
√


X
=1

j̄ ()
1

0

X
 6=

∙
0

µ−→  − ̃

0

¶
− 0

µ
̄ − 

0

¶¸

=
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
 − 

0

¶
(−→  − ̃ − ̄ + ) +  (1)

= − 1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶
1 ()

((β̃2))
12

+
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶
̃ ()− ()

 ()

+
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶

̃ ()−  ()

̃ ()

+
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶
 + 

((β
0
2))

12

((β
0
2))

12 − ((β̃2))
12

((β̃2))
12

+ (1)

≡ −S1j211 + S1j212 + S1j213 + S1j214 +  (1) 

For the first term, by Lemma A.2 and the fact that 1 () =  (2)  ((β̃2)) = (
¡
β02
¢
)+ (2)

uniformly on the set {  0}, we have

|S1j211| =

¯̄̄̄
¯ 1

2
√


X
=1

j̄ () ̄
0
 ()

1 ()

((β̃2))
12

¯̄̄̄
¯

=

¯̄̄̄
¯ 1

2
√


X
=1

j̄ () 
0 ()

1 ()

(
¡
β02
¢
)12

¯̄̄̄
¯+  (1)

≤ max
{0}

|1 ()| 1

2
√


X
=1

¯̄̄
j(

¡
β02
¢
)−12̄ () 

0 ()
¯̄̄
+  (1) 

The first term in the last expression is  (1) if 
12−2

¯̄
j(

¡
β02
¢
)−12̄ ()  0 ()

¯̄
=


¡
−12

¢
by Markov inequality. Note that

̄ −  = {[ ()− (
¡
β02
¢
)12] + }(

¡
β02
¢
)12 =  +  (C.28)

where  ≡  ()(
¡
β02
¢
)−12 − 1 = 

¡
+1

¢
and  ≡ (

¡
β02
¢
)−12 = 

¡
+1

¢
uniformly on
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the set {  0}. Then by the triangle inequality,
−

¯̄̄
j(

¡
β02
¢
)−12̄ () 

0 ()
¯̄̄

= −
¯̄̄
j(

¡
β02
¢
)−12 [̄ () 

0 () |]
¯̄̄

= −

¯̄̄̄
¯j(

¡
β02
¢
)−12

 + 1

Z
≤()≤2

[ () + 1] 0 ()  ( ()) 
µ
− 

 + 1

¶


¯̄̄̄
¯

≤ −

¯̄̄̄
¯j(

¡
β02
¢
)−12

 + 1

Z
≤()≤2

 ()  0 ()  ( ())  () 

¯̄̄̄
¯

+−

¯̄̄̄
¯j(

¡
β02
¢
)−12

 + 1

Z
≤()≤2

 ()  0 ()  ( ())
∙


µ
− 

 + 1

¶
−  ()

¸


¯̄̄̄
¯

≡ 1 + 2 say.

For 1 we have

1 = −

¯̄̄̄
¯j(

¡
β02
¢
)−12 ( + 1)

−1
Z
≤()≤2

 ()  0 ()  ( ())  () 

¯̄̄̄
¯

≤ sup
≤()≤2

[ ()  ( ())]
−

¯̄̄̄
¯j(

¡
β02
¢
)−12 ( + 1)

−1
Z
≤()≤2

 ()  0 () 

¯̄̄̄
¯

≤ −
¯̄̄
j(

¡
β02
¢
)−12 ( + 1)

−1
¯̄̄ ¯̄̄̄¯
Z
≤()≤2

 ()  0 () 

¯̄̄̄
¯

≤ −
¯̄̄
j(

¡
β02
¢
)−12 ( + 1)

−1
¯̄̄ (Z

≤()≤2
 ()2  () 

Z
≤()≤2

 ()  () 

)12
=  ()

where the third inequality follows from the Hölder inequality and the independence between  and

. By a Taylor expansion, 
³
−
1+

´
−  () ' − 0 () ¡ + 

¢
 With this, we can readily show that

2 =  ()  Consequently, |S1j211| = (2
√
) =  (1) 

For S1j212 using (C.2) we can write

S1j212 =
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶
̃ ()− ()

 ()

=
1

232220

X
=1

X
 6=

j
 ()

̄ () 
0
0

µ
̄ − 

0

¶

>
1

−1
 ()1 ()

− 1

232220

X
=1

X
 6=

j
 ()

̄ () 
0
0

µ
̄ − 

0

¶

>
1

−1
 ()1 ()

≡ S1j212 + S1j212 (C.29)

Recall Z̃ is defined analogously to Z with 1 in place of  So S1j212 can be written as

S1j212 =
X
=1

X
 6=

2 ( ) +
X
=1

X
 6=

X
 6= 6=

3 (   ) 

where 2 ( ) =
1

25221
2
0

j
()

̄ () 
0
0

³
̄−
0

´

>
1

−1
 () Z̃

³
−

1

´
 and 3(   )

= 1
25221

2
0

j
2()

̄ () 
0
0

³
̄−
0

´

>
1

−1
 () Z̃

³
−

1

´
. Let X ≡ {1 } Then
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[S1j212|X] =
P

=1

P
 6= [2 ( ) |X] = 

¡
−122−1

¢
=  (1)  For the variance of S1j212

it is easy to show that

Var

⎡⎣ X
=1

X
 6=

2 ( ) |X
⎤⎦ = 

¡
2
¢

h
2 ( )

2 + 2 ( ) 2 (  ) |X
i

+
¡
3
¢
 [2 ( ) 2 ( ) + 2 ( ) 2 ( ) |X]

= 

¡
−3−−4−2

¢
+

¡
−2−2

¢
=  (1) 

Similarly, one can show that  (3 (   ) |X) = 0 and Var
hP

=1

P
 6=
P

 6= 6= 3 (   ) |X
i
=

 (1)  Consequently, S1j212 =  (1) by the conditional Chebyshev inequality. For S1j212 we have
S1j212 = (

122
+1
1 ) =  (1)  Thus we have shown that S1j212 =  (1)  By analogous

arguments, Lemma A.1, and (C.8), we can show that S1j21 =  (1) for  = 3 4 It follows that

S1j21 =  (1) 

For S1j22 we make the following decomposition:

S1j22 = 1

2
√


X
=1

j2
¡
β0
¢
 () {V (̄) + B (̄)} ≡ S1j221 + S1j222

where

V (̄) =
1

0

X
 6=

½
0

µ
̄ − 

0

¶
−

∙
0

µ
̄ − 

0

¶¸¾
 (C.30)

B (̄) =
1

0

X
 6=



∙
0

µ
̄ − 

0

¶¸
−  (̄)  (C.31)

and  indicates expectation with respect to the variable indexed by Writing S1j221 as a second order
degenerate statistic we verify that  [S1j221]2 =  (1) and thus S1j221 =  (1)  For S1j222 we verify
that S1j222 = (

122
+1
0 ) =  (1)  Consequently, S1j22 =  (1)  This concludes the proof of

the lemma. ¥

Proof of Lemma B.5. By a geometric expansion: ̃ = −1 − (̃ − )2 + (̃ − )2(2̃) where

̃ = ̃ (̄)  we have

S2j =
1√


X
=1

j

n
̃

£
̃2

¡
β0
¢− 2

¡
β0
¢¤o

= − 1

2
√


X
=1

j
̃ 0 (̄)−  0 (̄)

 (̄)
̄̃

+
1

2
√


X
=1

j

̃ 0 (̄)
h
̃ (̄)−  (̄)

i
 (̄)

̄̃

− 1

2
√


X
=1

j

̃ 0 (̄)
h
̃ (̄)−  (̄)

i2
2 (̄) ̃ (̄)

̄̃

≡ −S2j1 + S2j2 − S2j3

where recall  ≡ 0(
¡
β02
¢
)(

¡
β02
¢
) It suffices to show that each of these three terms is  (1)  For

S2j1 noticing that (̃) −  () =  () (̃ − ) +
1
2
0
 (
∗
 ) (̃ − )

2, we can apply Lemma A.2
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and show that

S2j1 =
1

2
√


X
=1

j
̃ 0 (̄)− 

0
(̄)

 (̄)
̄ ()

+
1

2
√


X
=1

j

0
(̄)−  0 (̄)
 (̄)

̄ () +  (1)

≡ S2j11 + S2j12 +  (1) 

For the first term, we have

S2j11 =
1

2
√


X
=1

j
 (̄)

1

20

X
 6=

∙
00

µ
̄ − ̃

0

¶
− 00

µ
̄ − 

0

¶¸
̄ ()

=
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶
(̃ − ) ̄ () +  (1)

=
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶
 ()− ̃ ()

 ()
̄ ()

+
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶

 ()− ̃ ()

 ()
̄ () +  (1)

≡ S2j111 + S2j112 +  (1)  say.

Write

S2j111 =
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶

>
1

−1
 ()1 ()

 ()
̄ ()

+
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶

>
1

−1
 ()1 ()

 ()
̄ ()

≡ S2j111 + S2j111

Writing S2j111 as a third order  -statistic, we can show that S2j111 = (
2) =  (1) by con-

ditional moment calculations and conditional Chebyshev inequality. For S2j111 we have S2j111 =
(
√


+1
1 ) =  (1)  Similarly, we can verify that S2j112 =  (1)  Consequently S2j11 =  (1) 

For S2j12 we have

S2j12 =
1

2
√


X
=1

j
 (̄)


0
(̄)−  0 (̄)
 (̄)

̄ ()

=
1

2
√


X
=1

j
 (̄)

⎧⎨⎩ 1

20

X
 6=

½
00

µ
̄ − 

0

¶
−

∙
00

µ
̄ − 

0

¶¸¾⎫⎬⎭ ̄ ()

+
1

2
√


X
=1

j
 (̄)

⎧⎨⎩ 1

20

X
 6=



∙
00

µ
̄ − 

0

¶¸
−  0 (̄)

⎫⎬⎭ ̄ ()

= S2j121 + S2j122

where  indicates expectation with respect to the variable indexed by  Noting S2j121 is a second
order statistic, it is easy to verify that  [S2j121]2 = () =  (1)  implying that S2j121 =  (1)  For
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S2j122 noticing that
1

20

X
 6=



∙
00

µ
̄ − 

0

¶¸
−  0 (̄) = 

+1
0  (+2) (̄)

Z
0 ()

+1

we can show that S2j122 = (
√


+1
0 ) =  (1)  Consequently, S2j12 =  (1) and S2j1 =  (1) 

For S2j2 we can easily show that

S2j2 = 1

2
√


X
=1

j
0 (̄)

 (̄)

h
̃ (̄)−  (̄)

i
̄ () +  (1) 

The rest of the proof is similar to that of S2j1 and thus omitted. For S2j3 by Lemma A.2, S2j3 =
(
√
−223) =  (1)  This concludes the proof of the lemma. ¥

Proof of Lemma B.6. Write S3j = 1
2{S3j1 − S3j2 + S3j3 − S3j4} where

S3j1 ≡ 1√


X
=1

j

n
log
³
̃ (
−→ )

´


³
̃ (
−→ )

´
̃ 0 (
−→ )
−→ (β̃2)

− log
³
̃ (̄)

´


³
̃ (̄)

´
̃ 0 (̄) ̄

o


S3j2 ≡ 1

2
√


X
=1

j

n
log

³
(β̃2)

´


³
̃ (
−→ )

´
̃ 0 (
−→ )
−→ (β̃2)

− log ¡ ¡β02¢¢  ³̃ (̄)´ ̃ 0 (̄) ̄o 
S3j3 ≡ 1√



X
=1

j

n
log
³
̃ (̄)

´


³
̃ (̄)

´
̃ 0 (̄)− log ( (̄))  ( (̄))  0 (̄)

o
̄

S3j4 ≡ 1

2
√


X
=1

j log
¡

¡
β02
¢¢n



³
̃ (̄)

´
̃ 0 (̄)−  ( (̄)) 

0 (̄)
o
̄

where  (β2) ≡ 0( (β2))( (β2)) and  = 
¡
β02
¢
 We will only show that S3j1 =  (1) since

the proofs of S3j =  (1) for  = 2 3 4 are similar.

For S3j1 noticing that ̃2 () = ((
¡
β02
¢
)12 − ((β̃2))

12)((β̃2))
12 and ̃1 () = 1 ()

((β̃2))
12 are both  (2) uniformly in  on the set {  0}  and −→  − ̄ = ̄̃2 ()− ̃1 () 

we can show that

S3j1 =
1√


X
=1

j

n
̃ (̄) 

³
̃ (̄)

´
̃ 0 (̄) ̄ {̄̃2 ()− ̃1 ()}

+
1√


X
=1

j log
³
̃ (̄)

´
0
³
̃ (̄)

´
̃ 0 (̄) ̄ {̄̃2 ()− ̃1 ()}

+
1√


X
=1

j log
³
̃ (̄)

´


³
̃ (̄)

´
̃ 00 (̄) ̄ {̄̃2 ()− ̃1 ()}+  (1)

≡ S3j11 + S3j12 + S3j13 +  (1) 
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By Lemma A.1, we can show

S3j11 ' 1√


X
=1

j (̄)  ( (̄)) 
0 (̄) ̄ {̄̃2 ()− ̃1 ()}  (C.32)

S3j12 ' 1√


X
=1

j log ( (̄)) 
0
 ( (̄)) 

0 (̄) ̄ {̄̃2 ()− ̃1 ()}  (C.33)

S3j13 ' 1√


X
=1

j log ( (̄))  ( (̄)) 
00 (̄) ̄ {̄̃2 ()− ̃1 ()}  (C.34)

The rest of the proof relies on the repeated applications of the dominated convergence arguments. For

example, the right hand side of (C.32) is smaller than

1√


max
{0}

|̃2 ()|
X
=1

¯̄
j (̄)  ( (̄)) 

0 (̄) ̄2
¯̄

+
1√


max
{0}

|̃1 ()|
X
=1

|j (̄)  ( (̄)) 
0 (̄) ̄| 

Noting that

 |j (̄)  ( (̄)) 
0 (̄) ̄ | = 

∙¯̄̄̄
j
 + 1

Z
 ()  ( ()) 

0 () 
¯̄̄̄


µ
− 

 + 1

¶


¸
≤ sup


[ ( ())  ()]

¯̄̄̄
j
 + 1

¯̄̄̄ Z
≤()≤2

 0 ()2

 ()
|| + ()

≤  ()

Z
≤()≤2

¯̄̄̄
¯ 0 ()2 ()



¯̄̄̄
¯ + ()

≤ 

Z
≤()≤2

¯̄̄̄
¯ 0 ()2 ()



¯̄̄̄
¯ +

¡
+1

¢
= 

³
(−1)(2) + 

´


where the last equality follows from similar argument to the proof of Lemma B.3, we have S3j11 =
(2

√
((−1)(2) + )) =  (1)  Similarly, we can show that S3j1 =  (1)   = 2 3 ¥

Proof of Lemma B.7. Observe that

R1 =
1



X
=1



µ
−



¶
̄−1[̃̃

¡
β0
¢
̃
¡
β0
¢> −

¡
β0
¢

¡
β0
¢>
]⊗ (X̃X̃

>
 )̄

−1

=
1



X
=1



µ
−



¶
̄−1[̃

¡
β0
¢
̃
¡
β0
¢> − 

¡
β0
¢

¡
β0
¢>
]⊗ (X̃X̃

>
 )̄

−1

+
1



X
=1



µ
−



¶
̄−1

³
̃ −

´

¡
β0
¢

¡
β0
¢> ⊗ (X̃X̃

>
 )̄

−1

+
1



X
=1



µ
−



¶
̄−1

³
̃ −

´
[̃
¡
β0
¢
̃
¡
β0
¢> − 

¡
β0
¢

¡
β0
¢>
]⊗ (X̃X̃

>
 )̄

−1

≡ R11 +R12 +R13 say.

It suffices to prove the lemma by showing that R1 =  (1) for  = 1 2 3We only prove R11 =  (1)

and R12 =  (1) as R13 is a smaller order term and can be studied analogously.
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First, we show that R11 =  (1)  Note that

̃
¡
β0
¢
̃
¡
β0
¢>
=

⎡⎢⎣ ̃2 (̄)

((02))
0((2))̃(̄)[̃(̄)̄+1]

2((02))
32

0((2))̃(̄)[̃(̄)̄+1]
2((02))

32

[0((2))]
2
[̃(̄)̄+1]

2

4((02))
2

⎤⎥⎦ 
and 

¡
β0
¢

¡
β0
¢>
has a similar expression with  (̄) in the place of ̃ (̄)  It follows that

R11 =
1



X
=1



µ
−



¶


×

⎡⎢⎣ ̃2 (̄)−2(̄)
((02))

{̃(̄)[̃(̄)̄+1]−(̄)[(̄)̄+1]}
2((02))

12

{̃(̄)[̃(̄)̄+1]−(̄)[(̄)̄+1]}
2((02))

12

2 [̃(̄)̄+1]
2−[(̄)̄+1]2
4

⎤⎥⎦⊗ (ZZ> )
≡

"
R1111 R1112

R1121 R1122

#
 say,

where recall  = 0
¡

¡
β02
¢¢

¡

¡
β02
¢¢
 R1121 = R>

1112 and R11   = 1 2 are all  ×

matrices. We need to show that R1111 R1112 and R1122 are all  (1)  Noting that

̃2 (̄)− 2 (̄) =
̃ 0 (̄)

2
 (̄)

2 − ̃ (̄)
2
 0 (̄)

2

̃ (̄)
2
 (̄)

2

=

h
̃ 0 (̄)

2 −  0 (̄)
2
i
 (̄)

2
+
h
 (̄)

2 − ̃ (̄)
2
i
 0 (̄)

2

̃ (̄)
2
 (̄)

2 

we have

R1111 =
1



X
=1



µ
−



¶


¡

¡
β02
¢¢−1 h

̃2 (̄)− 2 (̄)
i
ZZ

>


=
1



X
=1



µ
−



¶


¡

¡
β02
¢¢−1

̃ (̄)
−2 h

̃ 0 (̄)
2 −  0 (̄)

2
i
ZZ

>


+
1



X
=1



µ
−



¶


¡

¡
β02
¢¢−1

̃ (̄)
−2

 (̄)
2
h
̃ (̄)

2 −  (̄)
2
i
ZZ

>


≡ R1111 +R1111 say.

Noting that ̃ (̄)
−2 = 

¡
−2
¢
 by Lemma A.2, we have

kR1111k ≤ 

¡
31

−2¢ 1



X
=1

°°°° µ
−



¶


¡

¡
β02
¢¢−1

ZZ
>


°°°°
= 

¡
31

−2¢ (1) = 

¡
31

−2¢ =  (1) 

By the same token, |R1111| =  (1)  Thus R1111 =  (1)  Analogously, we can show R1112 =
 (1) and R1122 =  (1)  Hence we have shown that R11 =  (1) 

Now, we show that R12 =  (1)  By (C.26) and Markov inequality, we have

|R12| ≤  (
)

1



X
=1



µ
−



¶°°° ¡β0¢  ¡β0¢> ⊗ (ZZ> )°°°
=  (

) (1) =  (1) 
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This completes the proof of the lemma. ¥

Proof of Lemma B.8. Observe that

R2 =
1



X
=1



µ
−



¶
̄−1

"
̃

̃
¡
β0
¢

β>
−


¡
β0
¢

β>

#
⊗ X̃̄

−1

=
1



X
=1



µ
−



¶
̄−1

("
̃

¡
β0
¢

β>
− 

¡
β0
¢

β>

#
⊗ X̃

)
̄−1

+
1



X
=1



µ
−



¶
̄−1

³
̃ −

´(
¡
β0
¢

β>
⊗ X̃

)
̄−1

+
1



X
=1



µ
−



¶
̄−1

³
̃ −

´("̃ ¡β0¢
β>

− 
¡
β0
¢

β>

#
⊗ X̃

)
̄−1

≡ R21 +R22 +R23 say.

We prove the lemma by showing that R2 =  (1) for  = 1 2 3We will only show that R21 =  (1)

as the other two cases can be proved analogously. Recall  = 0
¡

¡
β02
¢¢2 − 00

¡

¡
β02
¢¢

¡

¡
β02
¢¢

and  ≡ 0
¡

¡
β02
¢¢

¡

¡
β02
¢¢
 Noting that

̃
¡
β0
¢

β
> =

⎛⎜⎝ ̃0(̄)
((02))

[̃0(̄)̄+̃(̄)]
2((02))

12

[̃0(̄)̄+̃(̄)]
2((02))

12

2[̃(̄)̄+1]+0((02))
2
̄[̃0(̄)̄+̃(̄)]

4((02))
2

⎞⎟⎠⊗ X̃>
 

and 
¡
β0
¢
β> has similar expression with  (̄) in the place of ̃ (̄)  we have

R21 =
1



X
=1



µ
−



¶


×

⎛⎜⎝ ̃0(̄)−0(̄)
((02))

{[̃0(̄)−0(̄)]̄+[̃(̄)−(̄)]}
2((02))

12

{[̃0(̄)−0(̄)]̄+[̃(̄)−(̄)]}
2((02))

12

2[̃(̄)−(̄)]̄
4((02))

2 + ̃
4

⎞⎟⎠⊗ (ZZ> )
≡

"
R2111 R2112

R>2112 R2122

#
 say,

where ̃ ≡ 2 ̄[̃
0
 (̄)− 0 (̄)]̄ + [̃ (̄)−  (̄)]. As in the analysis of R11 using Lemma A.2, we

can readily demonstrate that R2111 =  (1)  R2112 =  (1) and R2122 =  (1)  It follows that

R21 =  (1)  Similarly, we can show that R2 =  (1) for  = 2 3 This completes the proof of the

lemma. ¥
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D Derivative Matrices in the Proof of Proposition 2.1

In this appendix, we give explicit expressions for the elements of some derivative matrices of the log-

likelihood function defined in the proof of Proposition 2.1. The elements of the Hessian matrix are

11 (;1 2) =
2 log  ( ())

2
1

 (2)


12 (;1 2) =

½
2 log  ( ())

2
 () +

 log  ( ())



¾
0 (2)

2 (2)
32



22 (;1 2) =
−00 (2)
2 (2)

∙
 log  ( ())


 () + 1

¸
+
0 (2)

2

4 (2)
2

½
2 log  ( ())

2
 ()

2
+ 3

 log  ( ())


 () + 2

¾


and 21 (;1 2) = 12 (;1 2) by Young’s theorem, where, e.g.,
2 log ()

2 =  00()()− 0()2
2() and

2 log (())
2 ≡ 2 log ()

2

¯̄̄
=()

 Note that when we restrict our attention to the case  () =  or

exp ()  the above formulae can be greatly simplified.

In addition, in the proof of Proposition 2.1, we also need that  (;1 2) ≡ 3


log ( (;1 2)) 

   = 1 2 should be well behaved. Using the expressions

 ()


=

Ã
()
1
()
2

!
=

⎛⎝ − 1
(2)

12

− 0(2)
2(2)

 ()

⎞⎠ and
2 log  ()

2
=

 00()()−  0()2

2()

and by straightforward calculations, we have

111 (;1 2) =
3 log  ( ())

3
1

 (2)


112 (;1 2) =
3 log  ( ())

3
 ()

2

1

 (2)
− 2 log  ( ())

2
0 (2)
 (2)

2 

121 (;1 2) =

½
3 log  ( ())

3
 ()

1
 () + 2

2 log  ( ())

2
 ()

1

¾
0 (2)

2 (2)
32

= 112 (;1 2) 

122 (;1 2) =

½
3 log  ( ())

3
 ()

2
 () + 2

2 log  ( ())

2
 ()

2

¾
0 (2)

2 (2)
32



+

½
2 log  ( ())

2
 () +

 log  ( ())



¾
00 (2) (2)

32 − 3
2

0 (2)
2
 (2)

12

2 (2)
3 

221 (;1 2) =
−00 (2)
2 (2)

∙
2 log  ( ())

2
 () +

 log  ( ())



¸
 ()

1
+

0 (2)
2

4 (2)
2 ()

 ()

1

= 122 (;1 2)

222 (;1 2) =
−00 (2)
2 (2)

∙
2 log  ( ())

2
 () +

 log  ( ())



¸
 ()

2

−
000 (2) (2)− 00 (2)0 (2)

2 (2)
2

∙
 log  ( ())


 () + 1

¸
+
0 (2)

2

4 (2)
2 ()

 ()

2

+
0 (2)00 (2)− 0 (2)

3
 (2)

2 (2)
4

½
2 log  ( ())

2
 ()

2
+ 3

 log  ( ())


 () + 2

¾
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211 = 121 = 112 and 212 = 122 = 221 by Young’s Theorem, where  () ≡ 3 log (())
3  ()2

+2
2 log (())

2  ()+3
2 log (())

2  ()+3 log (())  Note that under our assumptions ( has compact

support, the parameter space is compact, 2 () is bounded away from 0) the terms associated with  (·)
or its derivatives are all well behaved when  (·) is evaluated in the neighborhood of 02 () 
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