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Abstract

In this paper, we study adaptive nonparametric regression estimation in the presence of conditional
heteroskedastic error terms. We demonstrate that both the conditional mean and conditional variance
functions in a nonparametric regression model can be estimated adaptively based on the local profile
likelihood principle. Both the one-step Newton-Raphson estimator and the local profile likelihood
estimator are investigated. We show that the proposed estimators are asymptotically equivalent to
the infeasible local likelihood estimators (e.g., Aerts and Claeskens, 1997), which require knowledge
of the error distribution. Simulation evidence suggests that when the distribution of the error term
is different from Gaussian, the adaptive estimators of both conditional mean and variance can often

achieve significant efficiency over the conventional local polynomial estimators.
JEL classifications: C13, C14

Key Words: Adaptive Estimation, Conditional Heteroskedasticity, Local Profile Likelihood Es-
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1 Introduction
We consider the following regression model:
}/’i :m(Xl)+O-(XZ)€lv izla"w”v (11)

where ¢; is independent and identically distributed (IID hereafter) with mean zero and variance one, X;

is a d x 1 IID independent variable, m(-) and o2 (-) are assumed to be unknown smooth functions. For
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simplicity, we will assume that ¢; is independent of X; and has an unknown density function. We are
interested in estimating the infinite dimensional parameters m(-) and o2 (-) adaptively in the sense that
they are asymptotically equivalent to the infeasible likelihood estimators which require knowledge of the
error distribution.

Model (1.1) has attracted a lot of research attention in the last two decades; see Hérdle and Tsybakov
(1997), Ruppert et al. (1997), Fan and Yao (1998), Akritas and van Keilegom (2001), and Ziegelmann
(2002), among others. Hirdle and Tsybakov (1997) consider local polynomial estimation of the volatility
function in a nonparametric autoregression model; Ruppert et al. (1997) study the conditional bias and
variance of the local polynomial estimates of variance functions. Fan and Yao (1998) suggest estimating
the conditional mean function first and then the conditional variance function and they show that their
estimator of the conditional variance function is asymptotically adaptive to the unknown conditional
mean function. Akritas and van Keilegom (2001) are interested in estimating the distribution of &;
after estimating the conditional mean and variance functions. Ziegelmann (2002) propose a local linear
exponential tilting estimator of the conditional variance function to ensure its positivity. Nevertheless,
all estimators of the conditional variance functions reviewed here are based on the least squares principle
and none of them takes into account the error distribution.

Motivated by efficiency considerations, Linton and Xiao (2007) study adaptive estimation for model
(1.1) in the case where 02 (X;) = % almost surely (a.s.). They propose an adaptive estimator in the sense
that it is asymptotically equivalent to the infeasible local likelihood estimator of Staniswalis (1989) and
Fan et al. (1998), which requires the knowledge of the error distribution. In the case where conditional
heteroskedasticity is present, i.e., 02 (+) is not a constant function, the density of u; = o (X;)¢; also has
mean zero but is a multiplicative convolution of the two terms and such that an estimator based on a
direct application of Linton and Xiao (2007) may not be adaptive unless ¢; is symmetric about zero.
In the current paper we propose jointly estimating the location and scale parameters (m (1),0? (x))
efficiently by a feasible multiparameter local likelihood method.

There are several advantages associated with our approach. First, our estimator takes into account
the useful information in the error distribution and is adaptive to the unknown error distribution. Second,
by estimating the conditional mean and variance functions jointly, we relax the symmetry assumption
on the error density, which is very helpful for applications in empirical finance and economics, since
both conditional heteroskedasticity and asymmetric error distributions have frequently been detected
in practice. Third, compared to Linton and Xiao (2007), additional issues arise due to the estimation
of conditional variance and its nonnegativity. We resolve these issues by using a link function for the
variance parameter.

In this paper, we consider the model (1.1) where the regression function m (-) is assumed to be a
general smooth function of the regressor x. It is well-known that such models, although general, suffer
from the curse-of-dimensionality problem and have a slow rate of convergence when the dimension of z is
high. In the case of high dimensional covariates, other types of models such as the additive functions may
be considered to avoid the curse of dimensionality. See, e.g., Claeskens and Aerts (2000) for nonparametric
estimation of additive multiparameter models. But to conserve space, we limit our attention to the model
(1.1).

The rest of the paper is organized as follows. We introduce the model and estimators in Section 2 and



the asymptotic properties of the proposed estimators in Section 3. In section 4 we provide results from
a small Monte Carlo experiment evaluating the finite sample performance of the adaptive estimators.
Section 5 concludes. All proofs are relegated to the appendix.

Throughout the paper, we use f) to denote the jth derivatives of a function f. When j = 1,2, we
also use f’ and f” to denote the first and the second order derivatives, respectively. For a matrix A,
we use ||A|| to denote its Frobenius norm {tr(AT A)}Y/? and A" its transpose. Let I,, denote the n x n
identity matrix. For a d x 1 multi-index vector j = (j1, ..., 74)" and a general d x 1 vector z = (1, ..., z4)’,
we follow Masry (1996a, 1996b) and Linton and Xiao (2007) and use the following notation

d d d p k k
=110k =) "ds o =JJal,and Y7 =33 ">,
s=1 s=1 s=1

0<)jlI<p  k=071=0  ja=0
Jit..+ja=k

2 The Model and Estimator

We introduce the multi-parameter likelihood model in Section 2.1 where the likelihood function is assumed
to be known. This infeasible estimator serves as an efficiency standard with which we can compare the
proposed adaptive estimator. We propose an adaptive estimator in Section 2.2, where we study the

efficient estimation in the case when the error density is unknown and has to be estimated from the data.

2.1 The Multi-parameter Likelihood Model

Suppose that we have a random sample {(X1,Y1),..., (X, Y,)}, where X; € R? and Y; € R, from the
nonparametric regression model (1.1). We consider the regression model (1.1) where ¢; is independent of
X; and has mean zero and variance one. Assume that ¢; admits a Lebesgue density f. We are interested
in estimating (m (z),0? (z)) at some interior point .

Although kernel estimation or other types of methods can be used, in this paper we give asymptotic
analysis based on the local polynomial procedure. See Fan (1992, 1993) and Fan and Gijbels (1996) for
discussions on the attractive properties of local polynomial estimators.

For a kernel function K and a bandwidth parameter h, let K}, (-) = K (-/h) /h?. Following the notation
of Masry (1996a, b), let Ny = (I +d — 1)!/(I/(d — 1)!) be the number of distinct d-tuples j with |j| = [.
Arrange the N d-tuples as a sequence in a lexicographical order (with highest priority to last position so
that (0,0, ...,1) is the first element in the sequence and (1,0, ..., 0) is the last element), and let ¢, ' denote
this one-to-one map. For each j with 0 < [j| < 2p, let p;(K) = [pu WK (u)du, vj(K) = [ v K?(u)du,
and define the N x N dimensional matrices M and I' and N x Nj41 matrix B, where N =7 N;, by

Moo Mo1 ... Moy Too To1 - Top Mo p+1
Ml,() Ml,l ML FI,O F1,1 Fl, ML +1

M= . R T e N T PR OB )
Mp,O Mp71 Mp,p FP»O anl Fp,p Mp,p-l-l

where M; ; and T'; j are N; x N; dimensional matrices whose (I, 7) elements are, respectively, He, (1)+6,(r)
and Vo, (1)+6,(r)- Note that the elements of the matrices M = M(K,p) and I' = T'(K,p) are simply

multivariate moments of the kernel K and K2, respectively; and the matrix B = B(K,p) depends on



the kernel and the order of the local polynomial in use. In addition, we arrange the N elements of the

derivatives
1 dlslm(x)

D?® =
(D*m) (z) 51 8q! 0%121...0%xy’

8| = s,

as an Ny x 1 column vector m(*)(z) in the lexicographical order. (DS¢?) (z) and o*(*)(z) are similarly
defined.

Let f (-) denote the probability density function (PDF) of ;. Then we can write the density function
of ¥; given X; = x as

73 By @), 85 (@) = 1 (0= 81 @) /202 D)) /v/2 (B (@), (22)

where ¢ (-) is a “link” function that is strictly monotonic and positive, and the true value (5% (z), 9 ()
of (B, (), By (x)) satisfies 59 (z) = m (x) and @(B (x)) = o2 () . A simple choice for ¢ (-) is the identity

function, i.e., ¢ (u) = u, but this parametrization generally does not ensure the positivity of the variance

function estimate. Another choice is ¢ (u) = exp (u), ensuring that the estimate of o2 (x) is always
positive; Ziegelmann (2002) uses this function to obtain a local linear exponential tilting estimate. It is
worth mentioning that both link functions yield the same asymptotic variance but different asymptotic
biases for the local polynomial estimates. We will consider both link functions below.

For the ease of presentation, we denote for r = 1,2,

B, @)= (Bro @) B (1) By (@)) B @)= (B (), 8% ) Bl () )

where 8Y, (z) = m®)(x), and B9, (z) = a®)(z) for s = 0, 1,...,p where a(z) = ¢! (e (2)), ¢t () is
the inverse function of ¢ (-), and a(®) is analogously defined as m(®)(z) with a (z) replacing m (z). In
particular, 8% (z) = m(z) and 85, (z) = ¢~ (02 (z)). We will frequently suppress the dependence of
B, (z) and B2 (z) on x for r = 1,2. Let P; (8,) = > 0<jl<p Brj (@) (X — z)). Apparently, P, : (8] (z)) and
P; (B9 (z)) are p-th order Taylor expansions of m (X;) and ¢~ (02 (X;)) around =, respectlvely

leen {(YZ, Xty . the local polynomial maximum likelihood estimator (MLE) B (,@1 ,,@2) =
(B0 ﬁll, ) ,,Blp, Bao, ,621,. ,ﬁ2p) maximizes the kernel-weighted log-likelihood function

L, (81,8,) = Zlogf Yi; P (81), Pi (Ba)) Kn (& — X)), (2.3)
=1
with respect to (ﬁ;ﬁ;) = (ﬁlOwngl’ "'7161Tpa/6207ﬁ;1’ "ng)
Let ¢ () = f'(¢) /f (¢) and p(e) = ¥ (e)e + L. Let e (8) = (y — B1) //¢(B2) and ¢ (y; By, B,) =
66—; log f(€)|e=<(p) for s = 1,2, 3. To study the asymptotic properties of B, we make the following assump-

tions.

Al. ¢; and X; are IID and are mutually independent with E (g;) = 0 and E (¢7) = 1. The PDF f (-) of
¢; has support R, and uniformly bounded continuous derivatives of up to the order p + 2. Furthermore,

f®+2) (.) is Lipschitz continuous of order 1, i.e., there exists C; < oo such that for all u and v on the
support of f, we have | f®+2) (u) — f*+2) (v)| < Cy |[u—o|.

A2. (i) E[¢(e)]=0,E[p(e)]=0, E [zb2V (¢)] < o0 and E [p?7 (¢)] < oo for some v > 1.
i | FWE) EWErE)
Elp(e)p)]  E[p(e)]

is positive definite (p.d.).



(7it) E ‘w(r) (E)) < ooand F ’p(” (e)] < oo forr=1,2.
(iv) There exists a function J (y), ‘q(s) (y;ﬁl,BQ)a(,B)t‘ < J(y) for all g € By, 0 <t < s, and
s=1,2,3,and E [J?(Y)] < 0.

A3. The PDF fx (-) of X; is differentiable, bounded, and bounded away from zero on its compact
support X. 2 (z) (r = 1,2) have (p + 1)th order derivatives, and (DJ,BE) (x) are bounded and Lipschitz

continuous on X for all |j| =p+ 1.

A4. K is a product kernel of a univariate kernel function k : K (u) = L, k (u;), where k is a symmetric
PDF that has compact support and bounded variation. For each d-tuple j with 0 < |j| < 2p + 1,

H;(u) = WK (u) is Lipschitz continuous.
A5. Asn — oo, h — 0, nh? — oo, and nh2P+tD+d _ Cy € [0, 00).

Assumptions A1-A2 are parallel to the Assumptions A1-A2 in Linton and Xiao (2007). The main
difference is that our Assumption A2 is stronger than theirs. In addition to the conditions on the score
function ¢ () for the conditional mean parameter, we also impose conditions on the score function for
the conditional variance parameter that is associated with p (). It is easy to verify that the normal or
student ¢ distributions with degrees of freedom larger than three will satisfy A2(i). A2(ii) ensures the
positive definiteness of certain information matrix. A3 mainly specifies conditions on the density of X;
and the smoothness of functions of interest. A4 and A5 impose conditions on the kernel function and
bandwidth parameter, respectively.

Let H Ediag(INO, hIn, ... hpINp) and H =diag(H, H) . Define

i B[ () p ()] S
Tso () = fx (x) @ o AR (2.4)
T B @p@ D) gl EE@L

The following proposition reports the asymptotic distribution of B(z).

Proposition 2.1 Suppose that Assumptions A1-A5 hold. Then

W i (B(:L,) _ﬁO(x)) _ pptl ( M—1Bm®+1) (SC) ) Iy

M—lBIBg(p-H) (z)

4N (0,75 (@)@ [MTM ), (25)

where 53(”“) (z) is analogously defined as m®+V) ().

Proposition 2.1 complements existing results in the literature. Staniswalis (1989) studies the local
constant (p = 0) estimation of a single location parameter by maximizing a kernel-weighted likelihood
function. Fan et al. (1995) discuss the local polynomial estimator of a single location parameter when
the error density belongs to a one-parameter exponential family. Aerts and Claeskens (1997) study the
local polynomial estimation in multiparameter-likelihood models where d = 1 and X; is nonrandom.
Claeskens and Van Keilegom (2003) study the construction of confidence bands via local polynomial
estimation. Omne can apply their method to construct the confidence bands for both the conditional
mean and variance function estimates in our framework. In addition, under appropriate conditions, the

local MLE is equivalent to nonparametric estimation by treating the locally weighted score functions as



Table 1: Relative efficiency of the local likelihood estimators over the conventional local polynomial

estimators
Estimator t(7y) t(2) t(3) t(4) t(5) t(10) t(20) ¢(50) ¢(100) t(c0)

m ~2OEL o 05 0 07 08 0945 098 0998 0999 1
72 (x) Lo - - 0229 0650 0.836 0938 0969 1
y(y+2)

estimating equations. So we can obtain the solution to the local MLE through solving the estimating
equations. See Claeskens and Aerts (2000) for such a local polynomial estimation setup.

If ¢ (u) = u, then ¢’ (53 (z)) = 1 and Proposition 2.1 holds with ¢’ (53 (z)) being replaced by 1 in
the definition of Zgo (2). If, in addition, the density f of ¢; is symmetric about zero, then ¢ () is an
odd equation, implying that E[¢ (¢) p (€)] = 0 under Assumption A2. In this case, IB_OI (x) is a diagonal
matrix and thus the estimation of conditional variance is not affected by the estimation of conditional

mean. In particular, we have

nhd (m(x) —m(z) — kPt {M*IBm(pH)(m)} 1) 4N ( o (z [MTM 1) ’

0 fx (@) E [1&2 (5)] ;
and

where [C]; denotes the first element of C, and [A]; ; signifies the (¢,¢)th element of A. This indicates that

in the case of symmetric error density, the asymptotic biases of 72(z) and 7*(z) are the same as those of

2(p+1)

nhd (52(:E) —o%(z) — hPT! [M*IBO'

the local polynomial estimators of m(z) and o?(z) when they are estimated separately (e.g., Ruppert et
al., 1997, Fan and Yao, 1998). The asymptotic variance of m(x) is smaller than that of the conventional
local polynomial estimator of m(x), which is o?(x) [MleMfl]Ll /fx (z). Similarly, the asymptotic
variance of 72(x) is smaller than that of the conventional local polynomial estimator of o2(x), which
is ol(z)E (3 — 1)2 [M~'TM~'], | /fx (z). In the special case where the error term & is proportional
to a student-t random variable, let &* have the student ¢ distribution with ~v > 2 degrees of freedom,
we can normalize €* so that ¢ = \/me* has variance one. Table 1 lists the relative asymptotic
efficiency ratio of (m(x),7(x)) over the conventional local polynomial estimators of (m (x),0? (z)) in
terms of asymptotic variance for the approximately ¢ (y) distributed . Smaller number means that larger
asymptotic gain can be achieved by using the local likelihood approach. Table 1 indicates that a large
efficiency gain can be achieved by using the local likelihood approach when the error distribution is far

away from normality.

If o (u) = exp (u), then ¢’ (58 (z)) = exp(BY (z)) = 02 (z) , and Proposition 2.1 holds with ¢’ (58 (z))
being replaced by o2 () in the definition of Tgo (x). In this case, Proposition 2.1 implies that

nhe [ () — m (z)] — hP+! [M%Bm(m) (x)] 1 4N <0, [fgol (z) ® (M*IFM*)} 1 1) . (26)
and that, by a simple application of the delta method,

[0 ()~ o? @] 403 [ Ba Y @] 4N (00 [T @ (e ] )



where
E[W*(©)]  ElE)p)]

T _ o2(x) 20 ()

and ,Bo(pH (z) is analogously defined as m®*1) by stacking all (p 4 1)th derivatives of logo?(z) into a
column vector. Compared with the case of ¢ (u) = u, the bias of T (x) remains the same as before whereas
the bias of 7%(z) differs from that of the latter case; the asymptotic variances of these two estimators
also remain the same as before. Furthermore, if f is symmetric about zero, then one can readily verify
that the asymptotic variance of &2 () is the same as that of the local linear exponential-tilting (ET)
estimator of 02 (z) as obtained by Ziegelmann (2002).!

It is worth mentioning that in general, the estimate B(z) is only implicitly defined as a nonlinear
function of the random sample. In practice, one may resort to a numerical algorithm to compute it. We
may work with the one—step Newton-Raphson (NR hereafter) estimator from a preliminary consistent
estimator 3 = (8, (= ) B, (z )T) , where 3, () and 3, (z) can be the local polynomial least squares
estimator for 3; and B,, respectively. Let X; = X, (z) = (X0 (:v)T e X (:U)T)T where Xi,m (x)
(0 <j| <p)is an Nj; x 1 subvector whose r-th element is given by [XHJ"L =(X; — x)%‘(r) . Let

__¥(E(B)
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. = ©(Pi(B2)
B =\ _omeahe | (28)
2¢(Pi(Bs))
where ¢; (8) = (Y; — P (81)) /v/¢ (Pi (B5)). Define the smoothed score function
1< -
Su(B; f) == Kn(x—X,) s (8) ® X, (2.9)
i3
and the smoothed information matrix
LB =2 K- x) s 0)58) | @ (XX, (2.10)
n ) = n i:1 h (T i) | Si Si 4N . .
Then the one-step NR estimator from a preliminary consistent estimator B is given by
Bryr @ =B @+ 1. (B@):f) Su(B@):f). (2.11)

It can be shown that By r (x) shares the same asymptotic distribution as B(x) under some regularity

conditions.

We call B(z) in Proposition 2.1 an oracle estimator because its definition uses knowledge that only
an oracle could have. In practice, the density f of ¢; is generally unknown and so both B(x) and By ()

are infeasible.

2.2 The Adaptive Nonparametric Regression Estimators

To obtain a feasible analogue of B(x), we need to replace f in (2.11) by a nonparametric estimate, say, f.
Since f appears as a random denominator, it causes technical difficulty when it is small. For this reason,

we propose to trim out small values of f as do Bickel (1982), Kreiss (1987), and Linton and Xiao (2007).



In particular, we consider the following smoothed trimming, which has been used by Andrews (1995), Ai
(1997), and Linton and Xiao (2007). Let ¢ (-) be a density function with support [0,1], g (0) = ¢ (1) = 0.
Let b be the trimming parameter that goes to zero at a certain rate as n — oco. Define g;, (2) = %g (% — 1) .
Clearly, g, (z) has support on [b, 2b]. Defining Gy, (2) = ffoo gp (t) dt, we have

0 ifz<b
Gy(2) =1 [ g(t)dt ifb<z<2b (2.12)
1 if z>2b

We assume that g is second order differentiable and its derivatives are uniformly bounded.
In this section we propose a feasible estimator by substituting a suitable pilot estimator of f in (2.11).

The proposed three-step estimation procedure is as follows:

1. Obtain a preliminary consistent estimate of (87,33) = (m(z),0?(z)) and its derivatives by the
p-th order local polynomial smoothing with kernel K and bandwidth h;. Denote the preliminary

~ ~T ~T T ~
estimate as B(z) = (B, (z), By (x)) , where B, (z) estimates B° (z) for = 1,2. Define the

residuals 4; = Y; — m(X;) and its standardized version &; = 4, /5 (X;) for i = 1, ...,n.
2. Obtain a consistent estimator for the error density and its derivatives by the leave-one-out kernel
method:
~ 1 e; —E; ~ 1 ;e —E;
(e)=— ) ko ——2L],and f, (e;) = —= Y ko[ ——2
Foled = o Sk (52 ) and ) = (%

J#
where kg and hg are the univariate kernel and bandwidth parameter, respectively.

) , (2.13)

3. Define the trimmed and re-centered local score function

~ ~ 1 ~ T — Xz ~ S
5.(8:7) = i K (T ) B % (2.14)
and the trimmed local information matrix
< . - - X; < 3 T - o'
L(e:) = gk () e (fe@) [eae e k& e
where 5,5 (8) = Gy (f; (e (8))5: (B) + 57 (B).
o (@) _ oy,
- @i, (B)
@ = (B 2.17
i (g@ii(ﬂ)) 21
_ .fl (51‘ (ﬁ)) g 7 (p.(ﬁlg NEE
= —log| —————7 i (& i (€6 P B3, :
* (so P, (m))“) n(fE@)feo| e
and ¥, () = f1()/fi (), p(ei (B) = [QLZ (€ (B))e: (B) + 1}. The proposed one-step adaptive
estimator can then be calculated by
B)=B@) +1, (B@:f) S (B):]) (218)



We shall show below that, under appropriate assumptions, the proposed estimator B (z) is asymptot-

ically equivalent to the infeasible estimator B(z).

Note that Linton and Xiao (2007) only resort to the trimming but not the re-centering technique.
There the score function is given by Sy, = # Y K (%) P (&) X; and can be estimated by Sin =

Sln (13)’ where

$1n () = ; K (557 6 (6 () s () X

An important step in their paper is justifying the adaptivity of the conditional mean function by show-
ing that v nhdgln and vVnhdSy, share the same asymptotic distribution. The latter is based on the

demonstration that

1 ZK <$ —hXZ> Xt (ei) [1 — Gy (f (€:))] = 0, (1)
i=1

Vnhd

and that
E{¢(ei) [L = Gy (f (€:))]} = 0. (2.19)

By the construction of Gy and the nature of 1, the last condition can be ensured no matter whether
f is symmetric about zero or not. In contrast, to prove the adaptivity of both the conditional mean
and variance functions, we also require the asymptotic equivalence of VnhaSs,, and \/WSQH, where
Sopn = =2 S0 K (524) p (&) X, Son = Son (8), and

500 ()= =12 > K (20 ) 6 (7 e ) LB,

Analogously to (2.19), a key step toward the establishment of the above claim is to demonstrate that

E{p(ei) 1 = Go (f ()]} =0, (2.20)

where recall that p (¢) = ¢ (¢) € + 1. Unfortunately, (2.20) does not hold generally even if we assume the
symmetry of f. And there is no obvious way to design another trimming function for the estimation of
So, such that we can ensure the above asymptotic equivalence. An intuitive explanation is that even
though the score function for the conditional variance has zero mean, this does not ensure that the
weighted population score (i.e., after being multiplied by Gy (f (¢;))) has zero mean. When the error
density is symmetric, the score function for the conditional mean function is antisymmetric, which is still
antisymmetric after being multiplied by Gy (f (g;)) . This ensures that its weighted population score has
zero mean. In contrast, the score function for the conditional variance function is symmetric and it is

still symmetric after being multiplied by Gy (f (£;)) , which cannot have zero mean.

To avoid the non-zero asymptotic mean of the estimated score function, we rely on the re-centering
term 5 in the above definition of S,,(8; f) or 3, (8). This is motivated by maximizing the following

local profile log-likelihood function

Gn(@,8) = =Y tog (i () VR B Ba)) Go (o i (0) (e - X0) (221)



with respect to 3. The previously defined score function results from the first order condition to this
maximization problem and hence one expects that its population analog has asymptotic zero mean.
Below we will study the asymptotic properties of both the one-step NR adaptive estimator and the local
profile likelihood (LPL) estimator obtained from maximizing a local profile log-likelihood function of the

above type.

3 The Main Results

In this section we first study the asymptotic properties of the one-step Newton-Raphson (NR) estimator,
and then the LPL estimator.

3.1 The One-Step Newton-Raphson Estimator
To proceed, we add the following assumptions.

A6. (i) The kernel ko has compact support and is symmetric about zero and satisfies [ ko (u)du = 1,
Juwko(u)du = 0 for j = 1,...,p, and [uPT kg (u)du # 0. (ii) ko is three times differentiable on its
support with &’ (0) = 0. In addition, k(()j) (w), j =1,2,3,is Lipschitz continuous and |k{ (u) u| is uniformly
bounded.

AT. As n — oo, the trimming parameter b and bandwidth sequences hg and hy satisfy (i) b o< h” for
7€ (0,1/3), (ii) ho x h/logn, (iii) hy; x h/logn.

Assumptions A6-A7 are similar to the Assumptions A6 and A7 in Linton and Xiao (2007). We just
mention two main differences. First, our assumption on the kernel ky in A6 is slightly different from
theirs in that we need a restriction on the tail thickness of the derivative of ko (a similar assumption is
made by Andrews (1995, Assumption NP4)), and we require that the Lipschitz condition hold instead of
the fourth order differentiability. A6 requires that kg be a (p + 1)th order kernel, but the compactness
condition can be relaxed at the cost of lengthy arguments. Second, our assumption on the bandwidth
sequences in A7 is weaker than theirs whereas our requirement on the trimming parameter is stricter.
This is due to the differences in proving that the higher order terms are asymptotically negligible.

In this paper we only focus on the case where the error density f has an unbounded support in order
to apply some uniform convergence results for the kernel estimates of density function and its derivatives
(e.g., Hansen, 2008) and avoid the well-known boundary bias problems for kernel density estimates in
the case of compact support. Linton and Xiao (2007) also consider the case of bounded support for the
error density where special attention is needed. In particular, they assume that the density f vanishes at
the boundary at a sufficiently fast rate so that the properties of regular density estimation can hold.

The following theorem states the asymptotic property of the one-step NR. estimator.

Theorem 3.1 Suppose that Assumptions A1-A7 hold. Then

M~'Bm®+) ()

nhd lH (,é(w) — ,6'0(35)) _ ppt1 ( M*lBﬁg(m—l) (z)

)1 4N (o,zﬁi} (z)® [M‘lfM‘lD. (3.1)
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We denote the first and (N + 1)th elements of B(z) as 7 (z) and ¢~ 1(62 (x)), which are the one-step
NR adaptive estimator of m (x) and p~1(0? (z)), respectively. Theorem 3.1 shows that the one-step
Newton-Raphson estimator is “oracle”: the feasible estimator ,B(at) is asymptotically equivalent to B(z)
and hence is more efficient than conventional local polynomial estimator in the case of ¢ (u) = u and the
local polynomial ET estimator in the case of ¢ (u) = exp (u). Following Remarks 2 and 3 we can readily
obtain the asymptotic normal distributions for 72 (z) and 62 (), based on which one can also construct
the pointwise confidence intervals. To do this we require an estimation of the asymptotic variance. The

procedure is standard and we omit it for brevity.

3.2 The LPL Estimator

The one-step NR estimates m (z) and 62 (z)) are easy to obtain in general. Nevertheless, we have to
estimate both the error density and its derivative in order to construct these estimates. It is well known
that precise estimation of the density’s derivatives can be difficult for some distributions. For this reason,
we now propose another adaptive estimator that avoids estimation of density derivatives.

We can obtain the adaptive estimator by maximizing the local profile likelihood in (2.21) by taking
©(-) =exp(-). Let BT (z) = (ﬂfT,,BSFT)T denote the solution. The local profile likelihood estimators
m™ (z) and 072 (z) for m (z) and o (z) are given respectively by 37, and exp (83;) , where B/ is the
first element of ﬁj‘ , 7 = 1,2. The corresponding infeasible local likelihood estimator of 3 can be obtained

by maximizing the following criterion function

Qu(2.8)= Y log (1 (=4 (B) /Vexp (P (B2))) Go (F (e (B) K (e~ X), (32)

where Gy (f (¢; (8))) can be absent as in Aerts and Claeskens (1997). Replacing f in (3.2) by f; gives
the local profile likelihood function (2.21). We will show that such a replacement does not affect the
asymptotic properties of the resulting estimator.

To derive the uniform consistency and pointwise asymptotic normality of 8", we shall show that
under certain conditions that Q,, (z,B) and @, (z,3) converge uniformly in (x,3) to the non-random
function

Q(x,8) = E [10g (f (=: (8)) /v/exp (P (B))) K (x — X2)] (3.3)
where we suppress the dependence of @ (z, 3) on n through h. By the theory on local likelihood estimation
(e.g., Aerts and Claeskens, 1997), the maximizer of the limit of Q (z,B) is given by 8° = 8° (z), which
is composed of m (z), logo? (x), and their derivatives of up to the p-th order. This corresponds to the
identifiable uniqueness condition of White (1994, p. 28). Consequently we can establish the following

uniform consistency result.

Theorem 3.2 Suppose that Assumptions A1-A7 hold, and for all B €By, |log f (¢; (B))| < D (Y;) such
that E[D (Y;)"] < oo for some v > 1. Then

sup |87 (z) — BO($)| —0 a.s. (3.4)
TEX

The asymptotic normality of 3" () can be established in several ways. One way is to apply and modify

the results of Andrews (1994a) for semiparametric estimators. See also Andrews (1994b) for a review of
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the theoretical literature and results for more general sampling schemes using stochastic equicontinuity
concepts and empirical process techniques. Here, we follow the traditional approach to establish the
asymptotic normality of B () by expanding the score function around the population truth. The result

is stated in the next theorem.

Theorem 3.3 Under the conditions in Theorem 3.2, we have

_ M~'Bm®tD (g = Irar—1
Vahd | H (8 (z) — B(x)) — ko ( Sy ((x)) )] 4N (o,zﬂ(} (x) @ [M~'TM }), (3.5)

where Zgo () is as defined in (2.7).

Note that Zgo (2) is given by (2.7). So Theorem 3.3 indicates the asymptotic equivalence between
BT (z) and B(x) when ¢ (u) = exp (u) is used to obtain the latter estimate. As expected, the local
profile likelihood estimators m™ (z) and o2 () share the same asymptotic properties of the one-step NR
adaptive estimators 7 (z) and 62 (x) when ¢ (u) = exp (u) . Despite the need to estimate certain density
derivatives, the computation for the NR adaptive estimators is not very heavy. By contrast, even though
the local profile likelihood estimates m™ (x) and o2 (z) only require estimation of the density function,
they are computationally more demanding because certain optimization routine is needed. In the next

section, we shall evaluate the finite sample performance of these estimators in Matlab.

4 Monte Carlo Simulations

In this section we conduct a small set of Monte Carlo simulations to evaluate the finite sample performance
of the proposed estimators and compare them with the conventional local polynomial estimators for the

conditional mean and variance functions.

4.1 Data Generating Processes

We generate data from (1.1) with different specifications of the conditional mean and variance functions
and different choices of the error distributions. In all cases, the regressor X; is independently and
uniformly distributed on [-2, 2]. The conditional mean and variance functions are specified as follows:
DGP 1: m(z) =1+ + 2% 02 (z) = 0.1 + 2%
DGP 2: m(x) = 1+ a + 22, 0% (x) = exp (27);
DGP 3: m(x) = 4sin (z), 0% (z) = 0.1 + 2%
DGP 4: m (x) = 4sin (z), 0% (x) = exp (27) .
For the error term &;, we consider two distributions: ¢ (4.1) and Beta(2, 3) . Note that the ¢ (4.1) distrib-
ution is symmetric around zero with variance 41/21 and the Beta(2,3) distribution is asymmetric with
mean 2/5 and variance 1/25. For each case, we first generate ¢ independently according to the specified
distribution and then normalize it to have mean zero and variance one (e.g., let €; = 5 (¢f — 2/5) for the
Beta(2,3) case). In DGPs 1-4, we consider cases where the error term ¢} are IID ¢ (4.1). DGPs 5-8 are
specified as DGPs 1-4, respectively, but with &} being generated from Beta(2,3) .2

In addition, we also consider bivariate regressions where the conditional mean and variance functions

are specified as follows:
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DGP 9: m (z1,22) =1+ (x4 +x2)2 , 02 (z1,22) = 0.5 (1 + a2+ :L’%) ;

DGP 10: m (z1,22) = 1+ (z1 4 22)°, 02 (@1, 22) = exp (z1 4 x5 — 0.5) ;

DGP 11: m (z1,22) = cos (z1 + 2) + 2F + 223, 02 (z1,22) = 0.5 (1 + x4 23) ;

DGP 12: m (z1,22) = cos (1 + x2) + 27 + 223, 0% (21, 72) = exp (x1 + 22 — 0.5).

We generate the IID error terms ¢; from normalized x? (6) distribution, namely, &; = (¢} — 6) /v/12 where
e are IID X2 (6).

4.2 Implementation

We investigate the local linear estimation (p = 1) with the normalized Epanechnikov kernel K (u) =
ﬁg (1 — 1u?) 1{|u| < V/5}. For the estimation of the error density and its first derivative, we use the
second order Gaussian kernel ko (u) = \/%e_uz/ 2,

For comparison purpose, we examine the finite sample performance of the local linear (LL) estimators
and the two adaptive estimators. For the conditional variance function, we also report the local linear ET
estimator of Ziegelmann (2002). The preliminary estimator that is used for our adaptive estimation is
composed of the LL estimator for the conditional mean function and the ET estimator for the conditional
variance function (to achieve nonnegativity). We calculate the empirical variances and mean squared
errors (MSEs) of the estimators of m (z) and o2 (z) at selected values of .

For the conventional LL estimators, the bandwidth sequences are chosen by Silverman’s rule of thumb
(ROT): hrp = sxn Y@+ where sy is the sample standard deviation of X;.> The ET estimator also
adopts the same bandwidth used for estimating the conditional variance. For our estimator, we have
not designed a data-driven procedure for choosing the bandwidth. Instead, we set h = hrpp, hg =
1.5n~ /(@44 /logn, and hy = (d+ 3) h/logn. For the trimming parameter, we set b = 0.012Y/* when
d =1 and b = 0.012"/* when d = 2 with h being the average of the two elements in h. We choose the

trimming function g to be the Beta(5,5) density function. The number of replications is 500 in each case.

4.3 Results

Tables 2 and 3 report the results for estimating the regression mean and variance functions at z =-1.2,
-0.6, 0, 0.6, and 1.2, respectively for DGPs 1-8. Table 2 suggests that both the one-step NR adaptive
estimator and the local profile likelihood (LPL) estimator generally have lower MSE than the local linear
(LL) estimators for the regression mean. Somewhat surprisingly, in terms of MSE the efficiency gains for
the LPL estimators are not as large as the case of the one-step NR adaptive estimators. For the estimation
of the variance functions, Table 3 suggests that the conventional LL estimator is typically outperformed
by the ET estimator, which is in turn outperformed by the NR and LPL estimators. Exceptions may
occur when = moves toward the boundary points.

Tables 4 and 5 report the results for estimating the regression mean and variance functions at « =(-
1.2,-1.2), (-0.6, -0.6), (0,0), (0.6, 0.6), and (1.2,1.2), respectively, for DGPs 9-12. As Table 4 suggests, the
performance of the one-step NR estimator of the regression mean function is still good for most DGPs
at most data evaluation points. But this is not the case for the LPL estimator. We find the performance
of this estimator is not stable when d = 2 because of the need to utilize certain numerical optimization

routine. Interestingly, for the estimates of the conditional variance function, the performance of the LPL
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estimator is comparable with that of the NR estimator and both tend to outperform the conventional LL

estimator at most data evaluation points.

5 Conclusions

In this paper we propose adaptive estimators for nonparametric regression models with conditional het-
eroskedasticity. Consistency and asymptotic normality for the proposed estimators are studied. Our
simulations confirm our theoretical results and suggest that significant gains can often be achieved by
adopting our approach. The methodology can be extended to a general multi-parameter model by using
the local likelihood method. It can also be extended to regression models where both ¢; and X; are
stationary time series, or autoregression models with lagged dependent variables in the regressors.
Note to readers. In the Appendices that follow we provide the proofs of the main results in the
paper which further require some technical lemmas. The proofs of these lemmas are rather long and can

be found in the Supplementary Material at Cambridge Journals Online (journals.cambridge.org/ect).

Notes

'Let 7 (+) be the p-th order local polynomial estimator of m (-) by using the kernel K and bandwidth
hy. We regress a7 = [V; — m(X;)]? on X; by using the p-th order local polynomial (LP) ET technique
based on the following minimization problem:

2

(EQO?B%;M,EQP) = arg min L ﬁg—exp Z 62j (:L') (XZ‘—:L')j K(HI—XZ) .

d
{85} N i—1 0<ljl<p &

The LP ET estimator 62 () of 62 () is then given by exp(By). In addition, exp(By)B,; estimates the
first derivatives of o2 (z) and the estimates of other derivatives of o2 (z) can also be recovered. Ziegelmann
(2002) shows that 62 (z) obtained this way is also adaptive to the unknown conditional mean function
and it shares the same asymptotic variance as the two-step local polynomial least squares estimator of
Fan and Yao (1998) but has different asymptotic biases. One can establish the uniform convergence rate
for this type of estimators by following the arguments of Masry (1996a, 1996b).

2Note that the Beta distribution is compactedly supported and Assumption Al is not satisfied in this
case. We use this distribution simply to check whether our estimators are robust to errors with compact
support.

3We also tried to choose the the bandwidth sequences by least squares cross-validation (LSCV) for
estimating the conditional mean and variance functions separately, and the results were qualitatively

similar.
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Table 2: Comparison of our NR, adaptive estimator and local profile likelihood (LPL) estimator with the
conventional local linear (LL) estimator for regression mean, d=1, n=100

DGP T Variance MSE Efficiency ratio
LL(1) NR(2) LPL(3) LL(4) NR(5) LPL(6) [ o

T 12 0049  0.050 0.053 0073 0.067 0072 0924 0.989
0.6 0015  0.017 0.017 0.055  0.036  0.045 0.648 0.816
0 0007  0.007 0.007 0047 0024 0029 0519 0.626
06 0015  0.017 0.017 0052 0032 0039 0618 0.754
1.2 0.051  0.050 0.054 0071  0.065 0073 0914 1.031

2 12 0004  0.004 0.007 0.033 0021  0.027 0623 0.819
0.6 0010  0.011 0.011 0052  0.027 0038 0517 0.737
0 0030  0.034 0.034 0070  0.051  0.057 0727 0.814
06 0098  0.117 0.117 0136 0132 0133 0976 0.983
1.2 0443  0.403 0.443 0462 0416 0456  0.900  0.987

3 .12 0051  0.054 0.057 0175  0.118 0153  0.674 0.873
0.6 0015  0.019 0.023 0.076  0.045  0.063  0.58)  0.830
0 0006  0.005 0.005 0.006  0.005  0.005 0.964 0.982
06 0015  0.017 0.017 0076  0.043 0057  0.569 0.751
12 0052  0.052 0.061 018  0.119 0160  0.636  0.858

4 1.2 0006  0.008 0.007 0141 0074  0.109 0526  0.768
0.6 0010  0.012 0.013 0.073  0.041  0.060  0.556  0.818
0 0029  0.031 0.036 0029 0032 0037 1.098 1267
06 0099  0.122 0.118 0160  0.133 0141  0.835  0.882
12 0443 0423 0.473 0581 0449 0534 0772 0.918

5 -2 0.044  0.050 0.051 0076 0072 0076 0940 0.994
0.6 0015  0.018 0.018 0059 0040  0.048  0.677 0.814
0 0007  0.007 0.007 0.048 0028 0031 0587 0.637
06 0016  0.019 0.019 0.053  0.036  0.040  0.684 0.747
12 0052  0.058 0.060 0071 0070 0071 0993  1.003

6 1.2 0004  0.004 0.005 0.035 0023  0.025 0.667 0.710
0.6 0010  0.012 0.013 0053 0031 0040 0.585 0.755
0 0029 0035 0.037 0071 0054 0060 0758  0.849
06 0110  0.126 0.144 0.146  0.143 0164 0980 1.126
1.2 0442 0.442 0.446 0457 0450 0453  0.985  0.992

7 .12 0046  0.053 0.056 0187  0.137 0155  0.729  0.828
0.6 0016  0.019 0.022 0081 0054  0.066 0.658 0.817
0  0.006  0.006 0.006 0006 0006  0.006 1.058 1.105
06 0016  0.019 0.021 0078 0044 0060 0.561  0.768
1.2 0.051  0.058 0.058 0191  0.139 0161 0729  0.842

8 -12  0.006  0.007 0.007 0145 0085 0110 0.588  0.762
0.6 0011  0.013 0.014 0075  0.047 0058  0.630 0.781
0 0029  0.032 0.035 0029 0033 003 1158 1.219
06 0109  0.130 0.128 0172 0140  0.154 0811  0.891
12 0437 0428 0.476 0587 0470 0559  0.801  0.952
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Table 3: Comparison of our NR adaptive estimator and local profile likelihood (LPL) estimator with

the conventional local linear (LL) and local linear exponential-tilting (ET) estimators for conditional
variance, d=1, n=100

DGPs T Variance MSE Efficiency ratio
LL(1) ET(2) NR(3) LPL(4) LL(5) ET(6) NR(T) LPL®) & & &
T 12 2178 2233 0590 0663 2198 2264 00695 0725 1.030 0.316 0.330

-0.6  0.466 0.135 0.055 0.061 0.513 0.135 0.064 0.064 0.263 0.124 0.124
0 0.036 0.037 0.012 0.029 0.083 0.051 0.015 0.036 0.608 0.177 0.426

0.6  0.098 0.091 0.062 0.070 0.130 0.091 0.070 0.072 0.700 0.542 0.558

1.2 1.048 0.741 0.490 0.474 1.074 0.786 0.607 0.547 0.732  0.565 0.509

2 -1.2 0.011 0.007 0.002 0.004 0.015 0.007 0.002 0.004 0.478 0.147 0.235
-0.6  0.090 0.087 0.030 0.049 0.117 0.087 0.032 0.050 0.743 0.272 0.424

0 0.694 0.687 0.345 0.420 0.905 0.687 0.366 0.424 0.760 0.405 0.469

0.6  5.185 4.808 3.366 3.544 6.986 4.890 3.796 3.742 0.700 0.543 0.536

1.2 101.78  56.50 36.08 34.72 117.19  57.00 39.49 36.49 0.486 0.337 0.311

3 -1.2 2188 2.235 0.476 0.562 2.227 2.244 0.564 0.599 1.008 0.253  0.269
-0.6  0.469 0.136 0.056 0.088 0.541 0.140 0.061 0.089 0.259 0.113 0.165

0 0.038 0.041 0.012 0.026 0.094 0.055 0.015 0.033 0.590 0.160  0.350

0.6 0.099 0.092 0.059 0.075 0.151 0.093 0.065 0.076 0.617 0.430 0.502

1.2 1.060 0.728 0.526 0.548 1.099 0.744 0.606 0.587 0.677 0.552 0.534

4 -1.2 0.013 0.009 0.003 0.006 0.028 0.017 0.004 0.010 0.612 0.149 0.342
-0.6  0.092 0.090 0.028 0.042 0.138 0.094 0.029 0.043 0.681  0.208  0.309

0 0.709 0.714 0.312 0.397 0.935 0.714 0.339 0.404 0.763 0.363 0.432

0.6  5.192 4.817 2.864 3.238 7.129 4.876 3.406 3.487 0.684 0.478 0.489

1.2 102.19  56.67 34.60 32.97 11795  57.04 38.32 34.86 0.484 0.325 0.296

5 -1.2 0.135 0.174 0.163 0.170 0.143 0.214 0.215 0.201 1.492  1.501 1.402
-0.6  0.021 0.024 0.022 0.022 0.060 0.024 0.026 0.022 0.402 0.423 0.370

0 0.005 0.011 0.006 0.007 0.051 0.027 0.011 0.017 0.529 0.220 0.328

0.6 0.024 0.024 0.020 0.021 0.060 0.024 0.024 0.022 0.396 0.399 0.356

1.2 0.147 0.201 0.196 0.200 0.157 0.249 0.262 0.244 1.590 1.676 1.556

6 -1.2 0.001 0.001 0.001 0.001 0.005 0.002 0.001 0.001 0.327  0.227  0.250
-0.6  0.009 0.010 0.009 0.011 0.031 0.010 0.010 0.011 0.343 0.341 0.351

0 0.101 0.124 0.091 0.101 0.308 0.125 0.106 0.103 0.408 0.344 0.334

0.6 1.260 1.379 1.243 1.202 3.281 1.420 1.472 1.268 0.433 0.449 0.387

1.2 13.27 15.71 14.32 14.93 23.63 16.73 16.90 15.66 0.708 0.715 0.663

7 -1.2 0.138 0.147 0.154 0.168 0.159 0.157 0.180 0.176 0.983 1.128 1.107
-0.6  0.022 0.025 0.021 0.023 0.083 0.029 0.022 0.023 0.348 0.265 0.279

0 0.005 0.013 0.007 0.009 0.061 0.027 0.010 0.016 0.441 0.162 0.258

0.6  0.026 0.029 0.022 0.028 0.085 0.032 0.026 0.028 0.380 0.309 0.326

1.2 0.143 0.164 0.155 0.165 0.160 0.177 0.177 0.181 1.106 1.108 1.132

8 -1.2 0.002 0.003 0.002 0.002 0.016 0.011 0.004 0.007 0.687 0.242 0.434
-0.6  0.010 0.015 0.011 0.012 0.049 0.017 0.011 0.013 0.349 0.229 0.260

0 0.105 0.133 0.097 0.102 0.332 0.135 0.123 0.107 0.407 0.370 0.323
0.6 1.277 1.485 1.130 1.194 3.453 1.511 1.501 1.275 0.438 0.435 0.369
1.2 12.97 15.21 13.15 14.00 23.58 16.00 16.66 15.25 0.679 0.707 0.647
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Table 4: Comparison of our NR adaptive estimator and local profile likelihood (LPL) estimator with the
conventional local linear (LL) estimator for regression mean, d=2, n=200

DGP x Variance MSE Efficiency ratio
LL (1) NR(2) LPL(3) LL(4) NR(5) LPL(6) & o

9 (—1.2,-1.2)  0.090 0.114 0.199 0.099  0.115 0.200  1.163  2.019

(—0.6,0.6) 0.032 0.048 0.042 0.125  0.077 0.138  0.616  1.108

(0,0) 0.019 0.037 0.026 0.163 0.076 0.200  0.466  1.224

0.6,0.6 0.031 0.050 0.041 0.136  0.086 0.154  0.633  1.135

1.2,1.2) 0.095 0.130 0.217 0.101  0.130 0218  1.279  2.150

10 (-1.2,-1.2)  0.036 0.033 0.051 0.044  0.045 0.061  1.003  1.373

—0.6, 0. 0.013 0.023 0.022 0.109  0.033 0.132 0303  1.219

(0,0) 0.021 0.039 0.029 0.166 0.074 0.203  0.446  1.226

0.6,0.6 0.062 0.092 0.088 0.170  0.135 0211  0.796  1.242

1.2,1.2) 0.268 0.364 0.398 0273 0.369 0.399  1.351  1.458

1 (-1.2,-1.2)  0.075 0.095 0.133 0.257  0.246 0.356  0.958  1.388

—0.6, 0. 0.029 0.051 0.044 0276  0.123 0.344 0445  1.243

(0,0) 0.017 0.039 0.025 0.175  0.064 0.255  0.366  1.453

0.6,0.6 0.031 0.054 0.050 0.297  0.140 0.378 0470  1.270

1.2,1.2) 0.083 0.110 0.151 0.276  0.282 0.376  1.023  1.365

12 (-1.2,-1.2) 0.021 0.022 0.035 0.206  0.151 0.198  0.733  0.961

—0.6, 0. 0.010 0.030 0.023 0.262  0.050 0.390  0.192  1.488

(0,0) 0.019 0.039 0.030 0.178  0.064 0.249 0359  1.397

0.6,0.6 0.062 0.098 0.086 0.334  0.200 0.402 0598  1.202

1.2,1.2 0.255 0.335 0.335 0.453  0.517 0.582  1.142  1.285

Table 5: Comparison of our NR adaptive estimator and local profile likelihood (LPL) estimator with
the conventional local linear (LL) and local linear exponential-tilting (ET) estimators for conditional

variance, d=2, n=200

DGPs Variance MSE Efficiency ratio
LL(1) ET(2) NR(3) LPL(4) LL(5) ET(6) NR(7) LPL®) & @ &
9 @y 0739 1471 0879 1017  2.663 1922 1820 1739 0.722 0.681 0.653
zy  0.095 0146 0136  0.110 0208 0192 0137 0119 0923 0.657 0.575
z3 0035 0041 0058 0039 0256 0258 0120  0.137 1005 0470 0.534
zy 0098 0144 0142 0123 0229 0202 0142  0.136  0.882 0.621 0.594
x5 0757 1525 0837 1195 2915 1888 1.726  L.776  0.648 0592 0.609
10 @ 0181 0052 0028  0.040 2682 0091 0040  0.061 0.034 0015 0.023
zy  0.006 0007 0009  0.008 0072 0056 0013 0031 0773 0186 0.424
x3 0057 0066 0065 0051 0209 0136 0069  0.068 0.651 0330 0.328
zy 0659 0941  0.694  0.669 0937  0.960 0928  0.789  1.024 0990 0.841
x5 9276 13.970 8765  9.814 12175 17.978 18.142 16.755 1477 1490 1.376
11 2 0556 1322 0939 0951 0941 1503 1.379 1319 1597 1466 1.402
Ty 0090 0109 0133 0086 0383 0343 0179  0.141  0.895 0.466 0.369
z3 0035 0039 0060 0038 0360 0372 0144 0148 1031 0400 0.412
zy 0093 0120 0148  0.099 0406 0365 0195  0.159  0.898 0480 0.391
x5 0561 1371 1.025 1038  1.052 1486  1.364  1.320 1412 1297 1.255
12z 0.021 0006 0003 0004 0679 0006 0.003  0.004 0.008 0.005 0.006
zy  0.007 0008 0016 0012 0220 0228 0060 0.108 1.036 0275 0.493
z3 0055 0069 0071 0051 0294 0193 0083  0.080 0.655 0282 0272
zy 0613 0806 0.760 0581 1135 0.832 0819 0614 0733 0721 0541
x5 8659 11262 8230 8211 9520 14.075 14426 13459 1477 1514 1413

Note. 21, ..., T5 represents points (—1.2, —1.2), (—0.6,0.6), (0,0), (0.6,0.6), and (1.2,1.2), respectively.
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APPENDIX

In this appendix we first define some notation and provide some technical lemmas that are used in the
proof of the main results in the text. The proofs of all technical lemmas are provided in the supplementary
material.

A Notation and Some Preliminary Results

We use C to signify a generic constant whose exact value may vary from case to case. Let e; = (1,0, ...,0)
denote an N x 1 vector with one in the first position and zero elsewhere. Let Zl = H IXi and Z; =
H*IXZ-, where H; is defined as H but with Ay in place of h. Let

Kis = K ((z — X;) /h) and Kipj = ((X; — ) /h) K. (A1)
We write A,, ~ B, to signify that A,, = B,, (14 0, (1)) as n — co. Let

=y (8%) = LB (8] uz+5 = Yo PB) _wtdiou(@) o,

and [N 5
Jom@) e Jo(pida) o (rib)
where §; =m (X;) — P; (8Y) , vi; (2) = Pi(B3,) — P; (,8?) , and ¢ (u) = u or exp (u) . Further, define
Von = hy + n_l/Qh;d/Q\/log n, vi, = BT 4 n_l/Qh;d/Q\/logn, and va, = v1, (14 (R/h1)P). (A.3)

Let ﬂ(s) (e;) = #OH D i k(()s) (ei}:ogj> , s =0,1,2,3, where k(()o) = ko. We first study the uniform

consistency of fi(s) () with f) (g;) by the following two lemmas.
Lemma A.1 Suppose that Assumptions A1-A7 hold. Then

{énax}\f“( D)= (&) | =0, (vsns) fors=0,1,2,3, (A.4)

where vs, s = Uzn—l—(vonhal_s—I—ams)n_l/thd/Q\/log n+vd, ho " and oy, o = hlEPHD/A=(+D](1og n)s+1,
Lemma A.2 Suppose that Assumptions A1-A7 hold. Then

max | (@) = 1 ()| = O (R 40205 V2 flogm + w1 Jors =0,1,2, (A.5)

and the above result is also true if one replaces €; = ¢; (ﬁo) by €;.

To proceed, we use linear functional notation and write P = [ £dP for any probability measure P
and random variable £ (Z), where Z = (X T Y)T . P, denotes the empirical probability measure of the
observations {71, ..., Z, } sampled randomly from P.

Lemma A.3 (USLLN) Letd = (:ET,ﬁT)T be an element of © = X x B. Let ¢,,.1 (Z,0) =log (f (¢ (8)))
Gy (f (£ (B)) K ((w = X) /h), and qn2 (Z,60) = P (B5) Gy ( (¢ (8))) K (= X) /h), where Z = (XT,Y) ",
P(B,) (r=1,2) is defined as P; (83,) with X; replaced by X, and ¢ (B) = (Y — P (8B;)) /v/exp (P (B5)).

Under the conditions in Theorem 8.2, we have

sup }h nq'n, r (Z 9) PQn,r (Zza 9)” = Oq.s. (n_1/2h_d/2 V log n) , r=12
0co

b

Lemma A.4 (Equicontinuity) Let § = (xT,ﬁT)T be an element of © = X x B. Forr = 1
let p1(Z;,0) = log(f(ci (B )))(1; Gy (f (e (B)Kn (z — Xi), p2(Zi,0) = Pi(By) (1 -Gy (f (€: (B)
Kp(x—X;), and Z; = (XZT, YZ) . Then under the conditions in Theorem 3.2, P, . (0) = E [Pup, (Z,

18 equicontinuous, r = 1, 2.

2
)
0)]
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B Proof of the Main Results

B.1 Proof of Proposition 2.1

T T

Let a, = 1/vVnhi and 8* = (8;7,8;)" with 8 = VahiH (8, — 8°) for r = 1,2. 1t B = (B, .B,)

=%k _*T _*T
maximizes (2.3), then 8" = (8; , B, )T maximizes
* 1 - 0 w 0 -
L0 (B) = =Y log f (Yii P (B) + B Zi, P, (88) + By %) Ko
i=1

To study the asymptotic properties of B", we resort to the quadratic approximation lemma of Fan et al.
(1995) to the maximization of

Lo (8) =Y {log f(Yi; P, (BY) + anfB; Zi, Pi (85) + B3 Zi) —log f (Yis Pi (8Y) . P, (B9))} K
i=1
Notice that 3" also maximizeb L, (BY).
Let qr( 'ﬁl,ﬁz) = 52-log (f (4 81, 82)) » @rs (43 51, B2) = 5525~ 108 (f (3 B, B)) » and gt (43 By, Bs)
og (f (v; 81,83)), 1, 8,t =1,2. One can verify that

aB,. Bﬁ o8,
L PEB) o (B [£E(B)
q1 (yvﬁlvﬁ2)_ @(52) f(c‘:(ﬁ))’ d qQ(yvﬁhBQ) 2(,0(,82) [f(&(/@))g(ﬂ)—’_l )

where ¢ (8) = (y — 81)/v ¥ (B3). The expressions for ¢,s and g5 are complicated and are given in sup-

Ill (1') 112 (.’L‘) where ) = 0 |
Iy (z) Iz (x) >7 here I;s (2) = Elg,(Y3; 51 (Xi) ,

Bg (X:))gs (Y3 6(1) (X3) ,Bg (X:))|X; = x]. Tt is easy to verify that

plementary Appendix D. In addition, let I () = (

Fa)— Ayl mwguoenl | T g 0 AR 0
= Bu@ueeil  BR@ealt | | 0 1/20%()] 0 1/20%()]

E[y*(e)] Elp () (¢ (e)e+1)]

Efp(e) (@ (Ee+1)]  ER()e+1)
I(z)isp.d. as 0 < o(x) < oo.
By Taylor series expansions,

where A = is p.d. by Assumption A2(ii). As a result,

2 n
L.(B) = a Y. a (Y P (8Y). P (8Y)) KinZ; B

r=11i=1

052 2 n - .
7”222% Yii P (8Y), P (83)) KB Z:Z, B
ag rgl sgl 5 .

D e (Vi P Ph) Ko Zi B2, B2 B;

=1 =1 1i=1
= Lnl (B*)+Ln2 (/6*)+Ln3 (/6*)5 say,

+ a0 Zl,r—l 2. Let

")
). Pi (89)) KixZi and A = Ap1r Ani2
) . O ) /L b n — b

Anor An2o




where Ay s = 023" grs (Yii P (8Y) , P (89)) KinZZ; . Then Ly = W, 8 and Ly, = 18 4,8".
By Assumption A2(iv) and the explicit expressgons for qrst (y; 81, 82), ry8,t = 1,2, in Appendix D,
| L3 (B7)] < C3 Ly for 187 < C, where Lz = gﬁu“ Zi 1 Zi 1 Z? 1 Z? 1 (Vi) Kig ||Z1||3 . Noting that
E(L,3) = O(nh?a3) = O((nh*)~%/?) = o(1) by Assumption A5, L,3 = o, (1) by Markov inequality.
Consequently L3 (8%) = o, (1) uniformly in 8% in a compact set. Consequently, L, (3") = W; B+
%,B*TAnﬁ* + 0, (1), which implies that B = —A'W, + op (1) provided that A, is asymptotically
non-singular.

By Taylor series expansions,

n rs Z (}/176 ) 62( )) KWCZZZZT
=1

S ' 104 (w) iy g7
—a, Zqut (Yu 51 Xi, $) 62 (Xza?)) K, Z Fm (Xi - $) VAV
i=1t=1 lil=p+1
= An,rs,l + An,rs,27 say,

where 3] (X;,z) lies between P; (8)) and A7 (X;) for | = 1,2. By the weak law of large numbers (WLLN)
and the information matrix inequality (e.g., White (1994, Ch. 4),

An,rs,l - h_dE [QTS (Y;a 6(1) (Xz) ;5(2) (Xz)) KzzZzZ::| + Op (1) = _fX (x) Irs (.’E) M + Op (1) .

By Assumptions A1-A5 and Markov inequality, we can show that A, ,s2 = O, (hp‘H) . It follows that
Anyrs = —fx () Irs (x) M + 0, (1) and that A, = —Zgo (z) ® M + 0, (1) is asymptotically non-singular.

By the Liapounov central limit theorem, we can readily show that W,, — E (W,,) 4N (0,Zg0 (z) ®T).
Combining these results, we have

B+ ALEW,) =B —{ U(2) @ M~ +op(1)]E(Wn)iN(O,Iﬁ_Dl(:r)QQ[M’lFM’l]).

In addition, by Taylor expansions and Assumption A2,

E(W,) = WE(ql

. 30 ) 0 . . .
—\/_E ZT 1 q1r (Yza 5(1) Xf ,53 (Xz) K%EIYri (z) Zf + WO (hp+2)
Zrzl q2r (}/2761 Xz 762 (Xz) Kla:fym‘ (:E) Zz
0(p+1)
= Vnhih’t! (I (z) ® B) ( 55@“) (=) ) +o(l),
By (z)

where v, () = Y541 5 % (X; — )’ and we use the fact that E [q1 (Yi; 83 (X:), 55 (X,)) | Xi]
= —E[ ()] /o (Xi) = 0 and E [g2 (Yi; 81 (Xi), B9 (X)) [Xi] = —E[p(e:)] ¢ (85 (X2)) /[202 (Xi)] = 0
by Assumption A2. Then Proposition 2.1 follows. B

B.2 Proof of Theorem 3.1

For notational simplicity, denote I,,(8 () ; f) as I, (8) and S, (3 (z) ; f) as S, (8) . We frequently suppress

(B
the dependence of 3 (z), B (z), B (z), etc., on z. Denote Gy(fi(c5(8))) as G; and Gy, (f (&) as Gy, where
g, =¢; (ﬁ ). Write

() (18 ) s
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Expanding 3;(3) in (2.16) around 8°, we obtain 3;(3) = 3 (ﬂo) + %(,@ —B°) + R; (B%), where * is
the element-by-element intermediate value between 8 and 3°, and the jth element of R; (B) is given by
R, ; (B) = (ﬁ Jé; )T s (”(B) (B — 3°) with § 5i(j) (B) being the jth element of 5; (3). Let

2pop"
5.(88) = gk () eX,
Ru (8.8) = WZK( ) (6552 e %) + 1.9,
Ra, (B°.B) = nhdz ( )GR(ﬂ) @ X,

where recall &, (8) = Gy fi (2(8)))3i (B) + 57(B), and 3f (B) is defined in (2.17). Then S,(8) =
Sn(8°,8) — I, (B°) (B — B°) + Rin(8°,B)(B — B°) + Ran (8", B).
It follows that

= Vohd (B L@E|H7S.(8°.8)
HB -8\ (gt a7, (89 - HBy — 1)
%%ﬁ<ﬂ@®>wﬁmmH1 W”MWH1%W< H(B, - éJ}

+\/W[‘*1~ (~)H*1} H™'Rin(8°,B)H'H(B - B°)
[H (B H ] VnhiH 'Ry, (8%, B).

It suffices to prove the theorem by showing that

a1 [fn(B) -1, (,Bo,f)} H™' = 0,(h%) for some e >0, (B.1)
Vaht [A715,(8% B) - S (8°.5)] = o, (1), (B2)
H'Rin(8°,B)H™ = 0,(1), (B-3)
WH?lRQn(B*MB) = Op (1) . (B4)

B.2.1 Proof of (B.1)

Recall &; =¢; (B"), Ti = £:(B8), Gi = Go(fi (T3)) and G; = Gy (f (8:)) . Note that
~ = = 1 2 - X; ~ (. = . =T T

AL @A = YK <x . ) G [5:@5B) | @ 22,

i=1

and a typical element of H‘lfn(ﬁ)f_{_l is #Z?:l Kiw7jéicjr7i(ﬁ)qsz(ﬁ), where K, ; is defined in
(A1), r,s = 1,2, and 0 < [j| < 2p. It suffices to show Ty (r,s) = nhd S 1KHJ{qu”( )q“(,@) —
ar (Yi; P; (ﬂ(l)) , B (ﬂg)) s (Yi; Pi (,3(1]) B (,33))} = O, (h¢) for r,s = 1,2, and 0 < |j| < 2p. Noting that
GrGs — Grqs = qr (ds — qs) + qs (@r — @») + (Gr — qr) (@s — qs) , We have Tpj (r,8) = Ty (1, 8) + Tonj (1, 8) +
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Ts,j (1, ), where

Tig(r,9) =~ > KiagGians (8) [d:4(8) — 00 (8)]
i=1

1 « ~ (. = _ =
Top (rys) = o ZKix,jGi {qm'(ﬁ) — Qri (ﬁo)} {qs,z'(ﬁ) — s, (ﬁo)} ;
i=1
_ 1 % 0 0
Tsnj (r,s) = —d ZKm,J’ (1 - Gi) ari (8°) ¢s,i (B°)
i=1
and ¢, ; (B) = ¢s (Ya; P (81) , P (By)) for s = 1,2. We complete the proof of (B.1) by showing T},; (r,s) =
Op (k) for1=1,2,3,r,s =1,2, 0 < |j| < 2p in Lemmas B.1-B.3 below.

Lemma B.1 Suppose that the conditions in Theorem 3.1 hold. Then Ti,j (r,s) = O, (h¢) forr,s =1,2,
0 <j| <2p.

Lemma B.2 Suppose that the conditions in Theorem 3.1 hold. Then Tayj (r,s) = O, (h€) forr,s =1,2,
0<j| <2p.

Lemma B.3 Suppose that the conditions in Theorem 3.1 hold. Then T3, (r,s) = O, (h€) forr,s =1,2,
0 <[j| < 2p.
B.2.2 The proof of (B.2)

Note that \/nhdﬂ'flgn(ﬁo,,é) —V/nhdH~1S, (,Bo;f) = (nhd)~1/2 YLK (m
—S; (ﬁo)] ® Z;, of which a typical element is

]X"') (G5 (50) +558))

Sur = o= Z_;KJ (G (89 + 224(3)) — ans (8°)] (B.5)

where 7 = 1,2, and 0 < |j| < p. It suffices to show that S,;j, = o, (1), r = 1,2. We only consider the
r = 2 case, since the r = 1 case is similar but simpler. (Without bias correction, the proof for the case
r = 1 would be analogous to that in Appendix A.2.2 of Linton and Xiao (2007)). We make the following
decomposition:

n

Snj,Z

20 (P; (83))

Kiaj {Q2 i (8°) [Gi — 1] — log (f &) (P (53))‘1/2) a0 (FED f & M}

W{ [G2,i (B°) — a2, (ﬁo)]}

i ws {106 (700 (RB) ) (7 (20) el G

2¢ (Pi(/62))

- oy —1/2 B (B (5(2)))
— log (f &) ¢ (P (82)) )9b (f (&) [ &) m}
= Sinj + Sonj — S3nj, say.
By Lemmas B.4-B.6 below, Sp;2 = 0, (1) .
Lemma B.4 Suppose that the conditions in Theorem 3.1 hold. Then Siny = o, (1) for 0 < |j| < p.
Lemma B.5 Suppose that the conditions in Theorem 3.1 hold. Then Sanj = 0, (1) for 0 <|j| < p.

Lemma B.6 Suppose that the conditions in Theorem 3.1 hold. Then Ssn; = 0, (1) for 0 <|j| < p.
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B.2.3 The proof of (B.3)
To show (B.3), we first decompose H 1Ry, (8°,8)H ! as follows

HilRln(ﬁoa B)Eil

- #ZK (gﬁ hXZ H'(Gii (8°) 5 (8°) | — Gisi (8°) s: (8°) ) o0 (KX, )
1=1
1 (=X = ||~ 05:(8°) 9s: (8") _
*WZK< - )Hl{l g g | o% a!

= Rin+ Raon + Rsn, say.

By Lemmas B.7-B.8 below, R1, = o, (1) and Ra,, = 0, (1) . We are left to show that Rs, = o, (1) . Using
(2.8), we can readily obtain

0 W (E) ¢ (Pi(B2))[¥/ Eo)Ei+v(Eo)]
0s; (5 ) _ o(P:(8Y)) 20(Pi(BY))** - XT
98" - o (Pi(BY)) W (E)Ei+¥(E:)]  2eip[(E)Ei+1)+¢ (Pi(BY)) 8 [0 (2:1)Ei+4(E:)] i
20(Pi(83))""” ag(P:(83))"
2
where ci, = ¢ (P; (85))” —¢" (P (83)) ¢ (P: (89)) -
(30
For notational simplicity, we focus on the case where ¢ (u) = exp (u) . In this case, we have % =
—_ o~ T —
A ® XiT and s; (,60) Si (,@0) = B;, where
1{’,(?) ) (é(i)ngF“/’)()Ei)/ P (&) Y(E)[YP(E:)Ei+1]
_ oxp(P; (BY fexp(P, 1172 - exp(P:(B9)) 2fexp(P:(BY))]1/2
Ai = ' (8;)E; (&, ) & [y (B:)Ei+v(E:)] and B; = 1#(?1:)[1/1(51);1:-"-1] [w(éi)gij-l]z
2[exp(P; (BY)))! 1 2[exp(P;(89))11/2 1

Using these notation and H_lf(i = Z,;, we have

Ran = #ZK(JC
= nhdZK(

= Ran,1 + Ran,2, say.

Xi) Gi(A, + B) © (Z.2])

) (A; + B;) ® (Z;Z]) —i——ZK(

) (Gi — 1) (Ai + By) ® (2Z:Z])

We want to show that Rs,1 = 0, (1) and Rs, 2 = 0, (1). Consider Ry, 1 first. Using the deﬁnition of
g; in (A.2), we can readily show that Rz,1 = Ran.1 + op (1), where Rgn 1= hd S K ( ) (4; +
B;) ® (Z;Z]), and A; and B; are analogously defined as A; and B, respectively with &; belng replaced

by €;. Consider the following auxiliary location-scale regression model

Y =P (8Y) + \/exp (P (BY))e:

Recall that ¢; is independent of X; and has PDF f (). So the conditional density of YiT given X; is
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(B, X)) = f (EI (ﬁ)) /\/exp (P (Bs)), where E;r (B) = (YZT — P (ﬁl)) /v/exp (P; (Bs)). The corre-

sponding conditional-log-likelihood function is given by
_1¢ i 1o ; 1
Qus (B)= — > 105 (1 (1(8)) /Vexp (P (B2)) =+ > [bgf (f®) - 3P @)} :
i=1 =1

It is easy to show that for this auxiliary maximum likelihood estimation problem, the Hessian and
information matrices for the ith observation, when evaluated at the true parameter values ,6? and ,83,

- =T = =T
are given by 4; ® X;X, and B; ® X;X, , respectively. By the information matrix equality, we have
- ST
Bl + B) o XX, |X1-] =0.

It follows that E (Rg3p,1) = 0. In addition, we can show that Var(Rsn,1) = O((nhd)il) = 0(1). Hence
Rsn,1 = 0p (1) by Chebyshev inequality.

We are left to show that Rs,.2 = 0, (1) . By Minkowski inequality, the fact that | A ® B| = || 4| || B]|
(e.g., Bernstein (2005, p. 398)), the compact support of K and Assumption Al, we have

E||Rsnzl| < W 9E [Kip (1 — Gy) ||Ai + Bil| | Z:Z] ||] < C ER3p 2.

where ERs, 2 = h™E [K;, (1—G;)||A; + B;l|] - By the fact that 0 < 1 - G; < 1{f(&;) < 2b} and
Holder inequality,

ERsn2 = h™'E[Kiy(1-G;)||4 + Bi|]
(B (|| &+ Bi||" K]} (B P(f (5) < 26X K}

IN

Under Assumption A2 and as in the proof of Lemma B.2, we can readily show that h=¢F [H‘le + B; H’Y Km}
= O(1) and h @B [P(f (z;) < 2b|X;)Kiz] = O (b*/?). 1t follows that ERs,» = O (b0~1/27) = o(1).
Then Ran,2 = op (1) by the Markov inequality.

Lemma B.7 Suppose that the conditions in Theorem 8.1 hold. Then Ri, = o, (1).

Lemma B.8 Suppose that the conditions in Theorem 8.1 hold. Then Ra, = o, (1).

B.2.4 The proof of (B.4)

To show (B.4), note that a typical element of vnh?H 'Ry, (8%, B) is given by

~ a2q~r,i (/6*)

G’L 3,3rj3,351 (IBTJ rj)(ﬂsl sl)‘

1 n
- Kiwj
2vVnhd ; !
So it suffices to show ||G;0%G,.; (8) /(858,@T)H = 0,(V'nhd) for any B €By = {8 : ||B — B°|| < Cn~1/2h=4/2},
This is true because, by Lemma A.1 and Assumption A7 we can show that uniformly in 3 €8, ||C~¥i82(jm (B)
T
/(0898 )| = Op(l + b711}3n73 + b72fU3n,2 + b73U3n,1) = Op( nhd). |

B.3 Proof of Theorem 3.2

Let Q,, (z,8) and Q (x,8) be as defined in (2.21) and (3.3). By White (1994, Theorem 3.4), it suffices
to show

sup  |Qn (z,8) —Q(z,8)| = 0wp— 1, (B.6)
(z,8)eX xB
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and for every neighborhood By of 3°,

limsup sup [Q(z,8)—Q (at,,@o)] < 0 uniformly in z. (B.7)
n—oo BeB/BO

We first show (B.6). Write
Gn,8) = 3 tog (i (e (8)) G (e (8)) Ko — X0) = 5= 3" P (82 Go (i (24 (8)) Ko (v — X)
i=1

=1

= in (xa/B)_QnQ ($7’8)

Let 0 = (xT,,BT)T . We expand Q,,; (0) about f (¢; (8)) :
Gua(0) = > log(f (& () Gy (J (= () Ki z ~ X0)
1« 1 - .
LT (7 (i (8)) K (2 = X0) (fi (=1 (8)) — £ (=4 (8)))

£ 3 tog (77 @ 8)) a (Fr (e (8) Ko (o X0 (Fi (e (8)) —  (<:.(8)
i=1
= Qui (0) + Rp1a (0) + Ryrp (),

where f7 (g; (8)) lies between f; (g; (8)) and f (; (8)) . First, uniformly in 3,

n

1
sup — K (x—X;)| = 0wp — 1,
zegngl n (@ —X)| p

file) =1 (&)

1
sup |Rn1q (0)] < 7 Sup
0 5

where the last line follows from the fact that sup,

fite)—f (6)‘ /b — 0 wp— 1 by Lemma A.2 and

n

1
sup —

xeXni:l|Kh(x—Xi)|: sup/K(u)fX(x—hu)du§C’/K(u)du:C’.

reX

Similarly,

—log(b ~ 1 &
Sl;p|Rn1b )] < '75( )‘Sup fie) = f(e) sugﬁ E | Kp (v — Xi)| = 0 wp — 1.
£ Te i=1

Thus uniformly in 0, Q1 (0) — Qn1 (0) wp— 1. Similarly, we can show that uniformly in 6, Q2 (6) —
Qnz () wp— 1, where Qu2 (0) = (2n) " S Pi(By) Go (f (6:(B))) K (z — X;) . Now by Lemma A.3,
uniformly in 6 and wp— 1,

Q0 0) = £ { 1oz (s ((8)) = 3P 82| Go (£ (8) K (o= )}

Now, let P, (0) = [log (f (¢i (8))) — 3P (B2)] [1-Gb (f (i (B)Kn (z — X;) . By Lemma A.4, P, (0)
E [P, (9)] is equicontinuous. Notice that E |K}, (x — X;)| < oo and

E

o8 £ 65 () = 374 (8)] 1 = 6o (f e ()] i (o - X0

< F

o8 £ 65 () = 374 (8)] 17 21 8)) < 2} K o~ )

=o0(1)
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by the dominated convergence theorem. So P, (8) = o(1). It follows from Rudin (1976, Exercise 7.16)
that supy P, (8) = o (1) . Consequently, Q, (§) — @ (#) uniformly in § wp— 1.

Now, note that the elements of 8° () correspond to m (x) and log o (z) and their derivatives of up
to order p, which are uniquely defined for each x in the interior of X’ (c.f., Aerts and Claeskens, 1997).
Hence (B.7) holds. B

B.4 Proof of Theorem 3.3

Given Assumption A3, an element-by-element mean value expansion of E?Qn(a:, ,6+) /0B about B° gives

C0Qn, i 0Q, >*Qn

op
where 3" is a random variable such that elements of 8* lies on the segment joining the corresponding
elements of 3% and B, and hence 8" — 3, a.s. From (B.8), we have

(z,8°) + (x,8%) (B" - B°), (B.8)

~ —1 ~
WRAI (BY — 8°) = —{HI;;TQ;T(x,ﬁ*)Hl} \/nhdH’l%%(m,ﬂo)
= B, (2,875, (z,8°). (B.9)

The proof is completed by showing that

S (2,8°) — Vnhih? T4 (z) @ B 4N (0,Zg0 (z) @ M),  (B.10)

— 1 9%Qn _
== NA-T|| =0, (1 B.11
308" (z,8°) op (1), (B.11)
rr— aQQn * 82@71 0 o
| — = H Y =0,(1). B.12
H laﬁaﬁT (z,8%) 2398 (z,8°) op (1) (B.12)

The study of (B.11) parallels that of (B.1). We can prove (B.12) by showing that

g1 [ 82Qn (:L’,ﬁ) 82Qn (SC,,BO)] -1

sup
1B-B°|I<Cn—1/2h=d/2

aﬁaﬁT 78ﬂ8ﬁ-r :Op(l)

by standard uniform consistency arguments and applying Lemmas A.1-A.2 repeatedly; see also the proof
of (B.4). Below, we focus on the proof of (B.10).
By a geometric expansion, we can write

S, (2.8°) = \/%H—l i % [(logﬁ» (i (8°)) — %Pi (,68)) Gy (.fz (& (ﬂo))ﬂ Kz = éjm

1 ¥ (g) /\/exp (P (B9)) -
Jr=-— —ra Zai=1 Gy fz &i
" { LwE)E+1) ) (7))
+ ( 51 ) log (f (&) /\Jexp (P (ﬂ%))) g (fE))f (si)} @ ZiK iz,

JiE) = 1)) [yJexp (i (83)) -
(@) (];Z/ ) - f (Ei)) -, ) ® Z;Gy (fi (51')) Kig,
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fil € Nz/ g Ei ex 1 /Bg ~
e Y e
FRE) ) ) () - FE) Jen @ @)
o 1( L E e ) (RE) - 16) 2 (1))

Ts = =i ( ; ) ®ZiKp (v — X;) [bgfi (Ei) 9 (fz (Ei)) fi (&) —log f () gs (f () f' (51‘)} :
and

To = =57k L ( . ) @ 2P (89) (0 (5 @) JL @) = v (F G ' (20) K

It suffices to show J1 — Vnh¢h?™ T g (z) ® B <, N(0, Zgo (z) ® M) and each of other terms is o, (1).
To analyze Ji, let f; = f; (&), Z—f( i), and

o <ez<>>/\/e_xp<PZ-<B2>> e
(8) {( AN ) V(& (8)

( N ) log ( f (ei (B)) //exp (P (/32))) g (f (£ (B)) f (&4 (ﬁ))} ® XKy

Noticing that Gy(f;) — Gy (fi) = g (i) (fi — fi) + a5 () (fi — fi)?, where f; lies between f; and f;, we
have

B 1 - 62/ exp(PZ- (ﬂg))

2 [7/) (8:)&i +1]

&) /\/exp (Pi (B2)) o (FF
QM ; ( é [’lb (51) € + 1] ) @ Zng (fz ) (f fl) ix
= —Ju +Ji2 + T3, say.

Using a rough bound on the last term, we have by Lemma A.2 and Assumption A7
2
Jis = Vnhio, <(h§+1 +n Y20 Y2 flogn + v1n> > =0, (1).

Let @y, (8) = [log (f (i (8))) — 3P (B2)] G (f (6: (B))) Kizs Qin (B) = [log f (¢i (8)) — 5P (B2)] K.
and 5, (B8) = h"4{{E @m (ﬁ)] —FE[Qin (B)]} — 0. We can verify that i) S, (,60) — 0, (i) 3, (B) is
differentiable in a small ep-neighborhood N, (ﬁo) of B, (iii) <, (B) converges uniformly on N, (ﬁo) .
Then by Theorem 7.17 of Rudin (1976), we have

Efu = Vah iE [a; (8°)] = Vah B [33 (ﬂ“)]
= Vo E[ Qm(ﬁo)] {1+0(1)}

e (( 20 (yexp (P, (89) )K) Lo

s (E)E+1]
= Vnhdh?t (Tgo (x) @ B) {1 +0(1)}.
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Similarly, Var(J11) = h_dVar(al- (50)) ~ h~%Var vie)/ \/ XP ( ! ('62)) RZiKip | = Zpo () ®
5[0 (e e +1]
M. By the Liapounov central limit theorem,

T 2N Tgo (2) @ B, I g0 (x) ® M). (B.13)

For Jio, by Lemma A.2, f; (5;) — f (&) = =i {ko (éih_fj) — ko (Eih_oaj )} can be written as

() 2 (452) ).

O j#i

where o, (n"1/2h=%/2) holds uniformly in {K;, > 0}. Using f; — f; = (f; = f;) + (f; — f;) and the
expressions for V (;) and B (g;) in (C.30) and (C.31), we can decompose J12 as follows

1 i(w(s)/\/e)cp( z(ﬁg))) Zogy (f3) h2zk0 (al;s-)m(Xj)—Th(Xj)Kix

L ()& + 1 e 7 (%))

N 1 & (w(a)/ exp (P; (83)) )@Zng () Zko( ) jU(Xj>—5(Xj)Km
i 0 j#i

/1/exp (Pi (,63)) ) ®Zigy (f;)V (8i) Kix

+ I & ¥GE
nht = 30 (E)E+1]

| I ¥ (8:) /y/exp (P; (ﬁg)) . 4 N
) ’ ;( 3 [ (E) &+ 1] @ Xigo (fi) B (%) Kiz + 0p (1)

= Ji2a + J12b + J12¢ + J12qa +0p (1) .

~—

For Ji12, and Ji2p, we can write them as the sum of a third order U-statistic and a term that is as-
ymptotically negligible. Using the standard theory for third order U-statistics (e.g., Lee, 1990), we
can show Ji2, and Jigs are each o, (1). Writing Ji2. as a second order U-statistic we can verify that
E[Ji2.)” = 0(1) and thus Jiz. = 0, (1). For Jisa, we verify that Jisq = o, (n'/2h¥/2hP+1) = 0, (1).
Consequently Ji2 = 0, (1) and J; 4N (Zp(2)® B, Zg(z) @ M) .

For J5, a typical element of 75 is

IZKW,Jf 2) (Fl ) -7 @) & fexo (B (B))] 7 G (i )

~ -1 ZKlaZ,Jf (;’( g)—f (éi)) &7 [exp (P, (ﬁg))]_% G

mH Z:ij @) (7 @)~ 1 ) & fexo (P (89)] 7 G
J21 + J22,
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where 0 < |j| < p, r =0,1, and recall G; = G, (f;) . A typical element of J2; is

121%”0 ) hzx[%(&‘ '>_kg(ei;{fﬂ‘ﬂg;[exp(pi(gg))r¥ci

JF#i
~ 12[(1“]“ h3Zk; ( i~ ¢ >(J—5J)el [exp( Z(ﬂg))} 2;TG1
0 j#i
k! g ﬁl(X)*’fTL(X)f 0 -
- N Kigf ! - ; Lzt fexp (P (83))] 7 G
Z h3 ; < ) o (Xj) ?
// g &(X ) *O—(X) 0 =
-1 szjf o . . [exp( 2(182))} : Gz
Z nhi ; < ) o (X;)
+op (1)
= —Jora— T+ 0p(1).
Decompose J214 as
(i ey Myt (X)) U (X)) _, -4
Y Kinsf m;(yo) S e (P () G
-1 // € —&j\¢ M (X)B n(Xj)—r -3r

The analysis of these two terms is similar to the analysis of Si,j212 in the proof of Lemma B.4. In
particular, the first term is o, (1) by the replacement of M, ! (X;) by [M fx (Xj)]_l and moment calcu-
lations and the second term is O, (vVnheh?™) = o, (1) . Similarly, we can verify that Ja1, = o, (1). Next,

decompose Joo as follows
Ej £ _ %
) - [k (22 e (2 ()
0 0

1 _ n 1 B —
H'YN K1 (&) — {k;’ ( .
P A b M Ll

A Kusf ™ )4 — Y0 B {%(Q;Q)]_f(ei) 27 exp (P, (89)] 7 G
i=1 0 0

J#i

Analogous to the study of Sapj.12 in the proof of Lemma B.5, we can show that J22 = 0, (1).
For J3, a typical element of J3 is

IZKM,Jf e (R - fE0) e e (P (8] 7 6 ()

AY. Kangf 1 @) e (£ )~ £0) 2 oo (P (80)] 7% G (1)

where 0 < |j| < p, and r = 0, 1. The rest of the proof is similar to that of J» and thus omitted.
For 74, we apply Lemma A.2 and the remark after it:

2
Ji = Vnhib20, ((hg“ +n 20y logn + um) > =0,(1).

Js and Jg can be analyzed by similar techniques to the above. B
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THIS APPENDIX PROVIDES PROOFS FOR TECHNICAL LEMMAS IN THE ABOVE PAPER.

C Proofs of the Technical Lemmas

To facilitate the proof, we define an N x N matrix M, (z) and N x 1 vectors ¥ ,(z) (s = 1,2) as:

Mmo’()(x) Mn)071($) Mn,O,p(x) \Ils,mo(m)
M, ) Myi1(x) ... My1,(x Wyna(x

Mn (;p) _ n,l.,O( ) n,l.,l( ) . n,l.,p( ) ’ \Ilsm(x)z sn.l( ) , (Cl)
My po(x) Mppi(z) . Mipp(z) Ws,n,p(T)

where M, || k(%) is an Njj| x N submatrix with the (,7) element given by

1 n X — ¢|j|(l)+¢\k‘(7’) X i
[Mn il k (l’)] = L r K i T 7
PR = i h1 hy

Wy 1| (2) is an Nj; x 1 subvector whose r-th element is given by

_ 1 - Xi—x ¢m(7)) Xz'—.’E
[\Ill’n’j(x)h:mi_zl( hy > K( h1 )Yi’

and Wy ,, ;1(2) is an Nj; x 1 subvector whose r-th element is given by

n

1 X;—a\% " X —x\
[\Ilg,n,u(x)L,:WZ( hi ) K( hi )ul

=1

Define Wy, () analogously as Wy, (x) with u2 being replaced by @2, where @; = Y; — 7 (X;). The p-th
order local polynomial estimates of m (z) and o2 (z) are given respectively by

i (z) = ey MY (2) Uy (2) and 62 (z) = e, M " () Uan ().

For s =1,2, let
Us7n,0(x) Bsm,O(:E)
U, B
U, (:L') = k,n,l(x) ’ Bsm (i[,’) = k,n,l(x) 7
Ut,np(T) By np()

where Us 1 (z) and B, ;1 (z) are defined analogously as W, ,, ;(z) so that Us ,, |; (x) and B, ;| (z) are
N X 1 subvectors whose 7-th elements are given by

1 Z" X, -2\ X —a
[Us,n,\j\ (x)}r - nh'f < lh1 ) K( zh1 >US7Z.’
1=

1 i Xi—.%' QSM(T) Xi—ZC
L Th?;( hy ) K( hy )As,i(x),




where w1; = ug, u2; = uf — E(ufX;) = 0 (X5) (67 — 1), and A, (2) = B, (X3) — Yo<ji<p Bsj ()
x (X; —z)’. We further define Us,, () analogously as Uy, (z) but with uy; being replaced by i ; =
@? — F (u?|X;) . Then

T

m(z)—m(z) = e Mn_l(a?)ULn (z) + eI Mn_l(ac)BLn (x), and (C.2)
(@)= 0* (@) = e M (@) (@) +e; M ' (2) B (@)

s

By Masry 1996(a), we can readily show that
1
i(z) —m(z) = e [fx - Z K, (x — X;) Zoug + B2 ey M7 Bm®) (2) + 0, (R2F1) (C.3)

uniformly in z. Furthermore,

Sup [Mn (@) = fx (2) M| = Op (von) and sup m(z) —m ()| = Op (Vin). (C4)

The following lemma studies the asymptotic property of the local polynomial estimator 62(x) of o%(z).

Lemma C.1 Suppose Assumptions A1-A5 hold. Then 6%(z) — o?(z) = 61 ) Us () + €1TMn_1(x)
X B p (z) + Op ((Von + V1n)v1n) uniformly in x.

Proof of Lemma C.1. Let K* (X;,2) = e, M (z)K ((X; — 2) /h1) Z;. Then 5(z) = (nh¢)~! S K*
(X, z)a?. It follows from M, (x)M, (z) = Iy that

1 N =
hdZK (X, x) = hdZel K(X;i—z)/h)Z; =1,
and
1 n . X 1 n - _ - .
— > K (Xi,2) (X; —a) = —= ) ey M (0)K (Xi — ) /h) Zi (X; — 2)) =0,
nhy — nhi =

for 1 < |j| < p. Consequently,

7(@) = 0*(w) = € My () n(0) = g 30K (K 2) (3~ 0% . X)),

where 7 (2, Xi) = Y o< jj<p (DWo?) () (X; — )’ . Noting that @? = [V; —m(X;)]? = [o0(Xi)es +m (X;)
—m(X;)? = 0?(Xi)e} + 20(X;)ei[m (X;) — m(X;)] + [m (X;) — m(X;)]?, we have

Fa) - o@) = —= 3 KT (X2 {o?(X) — 7 (1, X))}

nh{ pt

1 <, ) ,
+n_h‘11 ;K (Xi, @) 0?(X;) (67 — 1)

2 K )
o Zl K* (X, 2) 0(X)ei [m (X;) — m(X,)]

+n%; 0K (Xiw) fm (X)) — ()

Ay () + As (z) + 243 (z) + Ay (2), say.



Noting that Ay ; (x) = o2(X;)—72 (z, X;), we have Ay (z) = ¢, M ( )B2.p (z) . In addition As (z) =
eI 1 (z)Us,, (z) by the definition of us;, and sup,cy |44 (z)] = v}, by (C.4). For A;(z), write
—As ( ) = As1 (z) + Ase (z) , where

1 &, T
A31 (ac) = n—h% ; K (Xl, .’17) u;eq Mn 1(Xi)U17n (Xz) y and
J T
Ay (z) = i ZK (Xi, ) ue; My, (X)) By (X5).
Note that
1 — _
A31 (.’E) = W ZK* (qu :C) uielT [fo (Xl)] ! Ul,n (XZ)
—— S K (X)) M (@) = M x (X)) O (X))

1i=1
= Aszi1(x) — As12(x), say.

We dispose Agi o (x) first. By (C.4), the facts that sup,cy [|[Urn (2)]| = Op(n_l/zh;dm\/logn) and
SUpP,c v #l‘f S KT (Xi2) wil = O, (1), we have

- - 1 ¢
sup [ A1z ()] < sup || Mo (2)™" = [Mfx (X1 || sup [ Usn (@) sup— > 1K (X, )
TEX TEX TEX a:e?(nh1 i1

= Op(UOn)Op(nfl/th_d/Q\/logn)Op(l) = Op(UOnnfl/th_d/Q\/log n).

Using Ut (2) = iz Y7, K (X — ) /h1) Zju; and K* (X;,z) = e, M7 (2)K (X; — x) /h1) Zi, we
have

Az (z) = 22% ZZK =) [hn) Zoey [Mfx (X)) VK (X, — X;) /1) Zjusu,
=1 j=1
= n222d ey My ; K ((Xi = @) /h1) Ziey [Mfx (X)) K (X5 = X5) /) Zjwi,
1<i#j<n
el M ZK Xi =) fh) Zuey (MAx (X)) K (0) 2

As114 (2) + As1.1 (2 )

Let <5 () = {ey [M[fx @) K (X; =) /ln) ZiMey [M[fx (X)) K (X; = Xi) /h) Z;}uzu;. Then
by (Cé‘:)7 A31,1a (.’E) = [1 + Op (UOn)}Aiﬂ,la (LL') s where

- 1
Az11a (2) = 2p2d Z Sij () .

L a1<i#j<n

is a second order degenerate U-statistic. We can readily show that Az i1, (z) = O, (n~th{?) for
each x by Chebyshev inequality. By using Bickel’s (1975) standard chaining argument, we can show
sup,e v |4s1,1a ()| = O, (n‘lhl_dlog n) . For Az 1, (x), we have

IA

SO

sup [As1,16 ()] — sup || M, ! (z)|| sup
reX ’flhl reX reX

o SR (X ) /1) B} DS (X7 K (0

= 0,(n'h{%) 0,(1)0, (1) =0, (n"'hi?).



It follows that sup,c y |As1,1 (z)] = Op (R~ hy “logn). Consequently, we have shown that sup,¢ y |4z ()] =

Op (Uonn_l/Qh;d/Q\/log n).
Note that

Ay (z) = #ZK*(XM)WI [M fx (X)) By (X3)

NMZW*&Mmq@aw*ﬁM&mmﬁBmw»
= A32,1( )— A32,2( ), say.

As in the study of As; (z), using (C.4) and the fact that sup,cy |Bi, ()] = Op(h2™") we can readily
show that sup,c y |As22 (2)] = Op(vonhtt") and that sup,cy |Asza ()] = Op(n*1/2h1_d/2\/lognh’f“).
Hence sup, c v |As2 ()| = Op(von ™). Consequently, sup,c v |4z ()| = Op(vonv1n,). This completes the
proof. B

Remark C1. Using the notation defined in the proof of Lemma C.1, we can also show that A; (z) =
W el M—1Ba2W D) (z)+0,(hEH), and \/nhiAs (z) 5 N(0, (6% (2)/ fx (z)) E (62— 1)% e, M~'TM e)).
By standard results on local polynomial estimators, Lemma A.1 implies

sup }U ’ = Uln ) (C-5)
zeX

where vy, is the rate we can obtain even if the conditional mean function m (z) is known.

Let 0; and v,; (x) be as defined in Appendix A. To prove Lemmas A.1-A.2; we will frequently use the
facts that

§; = O, (R’™) uniformly on the set {K;, > 0},
vei(z) = O, ((h’f“ T+ 2Ry (14 (h/hl)p)) on the set {K;, >0}, r=1,2,(C.7)
max |vy (z)] = Op(van), r=1,2. (C.8)

{Kiz>0}

To facilitate the asymptotic analysis, we also define the kernel density and derivative estimator based on
the unobserved errors {¢; }:

- 1 €; —€; s
fi(ei)zn—hozko( I )7 ndf = h1+szk()< )f0r5—123

J#i J#i

We will need the result in the following lemma which is adopted from Hansen (2008).

Lemma C.2 Lete;, i =1,...,n, be IID. Assume that (i) the PDF of €;, f (), is uniformly bounded, and
the (p + 1)th derivative of f*) (¢) is uniformly continuous; (ii) there exists ¢ > 0 such that sup, |¢|? f (¢) <
oo and |k;(()s) (e)| < Cle|™? for |e| large; (iii) ko (+) is a (p+1)th order kernel and [ leP T ko (e)| de < oo;
(iv) hog — 0 and nhi™?* /logn — 0o as n — oo. Then

max [T (z:) = £ )] = O (R +n~V/205 2% /logn).

1<i<n

Proof of Lemma C.2. The above result is essentially a special case of Theorem 6 in Hansen (2008)
who allows for strong mixing processes. For an IID sequence, the parameters 8 and 6 in Hansen (2008)
correspond to co and one, respectively. Another noticeable difference is that Hansen considers the usual
kernel estimates whereas we consider the leave-one-out kernel estimates here. The difference between these



two kernel estimates is uniformly (nhé"’s)*lk(()s) (0), which is o(n*1/2h51/2_5\/10g n) under condition (iv)

and thus does not contribute to the uniform convergence rate of 71(-8) () — f®) (&) to 0. W

Proof of Lemma A.1. We only prove the lemma with s = 0 as the other cases can be treated
analogously. Write f; () — f (&) = [f(&:) — f ()] + [f: (F:) — F (2:)]. Noting that ko is a (p + 1)-
th order kernel with compact support by Assumption A6, the conditions on the kernel in Lemma C.2
are satisfied. One can readily check that the other conditions in that lemma are also satisfied under
Assumptions Al, A2, and A7. So we can apply Lemma C.2 to obtain maxi<;<n |?Z (&) — f(éz)| =
O, (h2+Y + n=1/2h5 1 /Togn). Let

o ® [so (P (89)"" —sO(Pi(Bz))l/Q] (@) m(X;) — m(X;)
Yoo o(Pi(By))1/? o(Pi(Ba)) 12 o (X))
m(X;) —m(X;)] o (X;) — o (X))
" [Ej " o (X;) ] 7 (X;) (C9)
Then
?z —E‘j (éi*6j)+7"1ij. (ClO)

FE)-FE) = —Y [ko

. —_1 ; [ Ei—€j Uli(:ﬂ)
- nhéZkO( ho ) (Pi(B,))1/?

i ¥
+n2;; Ko ( = ) i [P (89))2 = o(Pu(B)) 2] o(Pi(Ba))
i 2 () [
g, [ () - (552 s
= —By; (z) + Boi (x) + Ba; (v) + By (x) + Bs;i (x), say. (C.11)

We will establish the uniform probability order for Bj; (z), j = 1,2,...,5, in order.
For By; (z), we apply Lemma C.2 to obtain that, uniformly in 4,

1 Ei —Ej _ _
— > kK (5 - 5]) =f (&) + 0, (n /2 802 1ogn+hg+1) . (C.12)
0 jzi 0
Then by (C.8) and the uniform boundedness of f’ (¢), we have

{ﬂaf()} |B1i (z)| = Op (van) - (C.13)

Similarly, by (C.12), (C.8), and the uniform boundedness of f’ (¢)e, we have

{Iglma;(o} |Ba; ()] = Op (vap) - (C.14)



Expanding M, !(z) around its probability limit [M fx (x)]_1 , we have

e 24 (7

1751

2k ()7

—H(Xy)
h2 > ko ( ) LX) ey [Mfx (X)) Bia (X))
o (X;)

By (2) ) (X)) er M fx (X)) U (X))

er i (X;) M7 (X)) Ur (X;)

n s

0 j#i
1 ’ Ei — Ej
nhg ;ko ( ho )
= Bsi; () — Bsa; (¢) + Bssi (z) — Bsa; (),

;
j)er am (X5) M (X5) By (X;)

where a, (2) = [M fx (#)]" [My (z) — M fx (z)]. Write

1 E; — &5

Buslo) = i SOk () o (X)) MR (6] U ()
|

0 j#i
1

nhi
1

ts {k’é
nho 52

= Baiin (o) +
n—1 g — _

Lty [ (220 )] s o @1ef Dt 17 s 10 )
nhi ho zEX zeX

0, (1)0, (1) 0, (nil/Qh;d/Q\/log n) =0, (nil/Qh;d/Q\/log n) ,

where we use the facts that sup,c y [|U1,, (2)|| = O, (n~1/2h;*\/logn) by Masry (1996a), max; <<y, |hy>
X B,k ((Ei—¢j) /o) — ' (i) | = O(h5T") by standard bias calculation for kernel estimates and max; <<y,
[f" (€] < sup, [f'(¢)] < C < oo

Let vy (2) = K (2 — £1)/ho) — Iy (& — £1)/ho)]. Then

€ —€&j
ho

)] o1 (X;) elT [M fx (X)) U (X;)

(éiho5j> ~E; {k() (ézh—o%)] } o (X)) ey [Mfyx (X)) UL (X;)
Bsii 2 (), say.

For Bsi;1 (), we have

IN

max |Baiig (2)] < max

15 X —X;
Bsiiz (z) = thdhg ;zl:vj &) )61 M fx (X;)] Z,K (h—13> u
s (X - X
- n2hd 2 Z Z”J &) Xj)ey [Mfx (X)) ZiK (%) w
0 jsti 1£4,i 1
thhg ZUJ &)o' ( )61 [M fx (X )]_1 Z,K (0) u;
JFi

1 = -1 T —15 i — Ay
N v (B o (X)) e (M fx (X)) 2k (220 ) o
+n2h§lh(2) j#i’l}j (E)U ( 3)61 [ fX( j)] ( I )u
= Bgli,ga (SC) + B31i,2b (SC) + Bgugc (:E) , say.

By construction, Bsij o, () is a second order degenerate U-statistic (see, e.g., Lee (1990)) and we can
bound it by straightforward moment calculations. Let e, = Cn~Y/2h]*\/logn for some C > 0. By the



Boole and Markov inequalities,

" n E||Bsiza ()"
)< [ |

4

P(max ‘lezQa( )| > €
€n

1<i<n

Let ai; = e, [Mfx (X;)] " Z,K (X, — X;)/h1) . Note that

B S
E |:|B;}12,2( ) } (thfhg)4 Z

JsF#ls#i for s=1,2,3,4

X EA{ar, j, a1y, G155 G1,5,05, (80) i, V5, (80) Wi,V (Ei) wigvj, (Ei) wy 't

where the summations are only taken with respect to j and I’s. Consider the index set S = {js,ls,s = 1,2,3,4}.
If the number of distinct elements in S is larger than 4, then the expectation in the last expression is zero

by the IID condition in Assumption Al. We can readily show that E “3311'72 (:E)ﬂ = O(n~*h;%hg®).

It follows that

) nO(n~*hy2hg%) o (n*1h66 (log n)72)

Cn=2h7* (logn)? o B o

= 0 (nflh*@p“)*d) —0(1).

P ( max |B?>1z 2a( )| > €Enlin,0
1<i<n

where recall o, o = hlZPHD/4=(sTD](1og n)5+1. Then maxi<;<y, |B31i 24 ()] = Op(amon*l/zhl_dﬂ\/log n)
by the Markov inequality. Analogously, we can show that max;<i<y, | Bs1s.2¢ (z)| = o(n=2/2h;**\/logn).
For Bsi1;,9, (), we continue to decompose it as follows

Bsiiap (x) = thdhgz Yer M fx (X)) 7" Z; {v; (B0) uj — Bj [v; (5:) uy]}
YE)
nghthZ Der M fx (X)) 2B [v; (i) ]

= DBsiion (o ) + Baii o2 (),
where E; denotes expectation with respect to the variable indexed by j. We bound the second term first:

KO S o1 () [er s (51 2

j=1
O, (1) O(n~ "y *hg) = Op(n~ hy Phy ).

Jmax |Bsii2e (2)] < 1§?<Xn|ho Ej [vj (8:) ug| RETE

By the Boole and Markov inequalities,

3

E ||Bsyion (2)|* nO(n—6p—4dp~6
P ( max |Bsyi21 ()] > 6n> < { - } - _( _2d1 0 )2
1<i<n Cn th (log n)

En
= O(n~hy*hg® (logn)~?) = 0(1),

=1

implying that maxj<;<p, |Bs1i,201 (2)] = op(n_l/thd/Q\/log n). Hence maxi<;<p, |Bs1i,2 (2)] = Op(n_lhl_dhal)
—l—op(n_l/Qh;d/Q\/log n). Consequently, we have shown that

max B ()] = Op(n~ b *hg ) + (an o + 0/(1)) Op(n~ /207" /logm).



By (C.4), the fact that sup, ¢ |Urn ()] = Op(n~'/2h;*/?\/logn), and the fact that max; <;<,, nth i
kb ((Bi — €5)/ho)| = O(hg '), we can readily show that max; <;<,, | Bsai (z)] = Op(UOnn’l/Qh_d/zx/log nhy!)

For the other terms, we have max; <;<y | Bss; (z)] = O, (R ), and maxi <<y, [ Ba; (2)| = Op (R0, (von) Op (ht) =
O,(vonh? ' hgt). Consequently,
[pax, |Bsi ()| = Oy (”_1hfdh61 + V1n + VonvUinhg t + CYn,oﬂ_l/thd/2 V1og n) . (C.15)
K2
Now write
7 (X;)—o(X,)
Bule) = 22%( >€j ")
nh j;éz U(Xj)
Sk (s m(X;) —m (X;) 0 (X;) — o (Xj)
h2 22 o (X)) 7 (X))
= By (%) + Bai (33) -
By (C.4) and Lemma C.1, it is easy to show that max;<;<y |Bia; ()| = O, (v1,hg") . Using analogous

arguments as used in the analysis of Bs; () and Lemma C.1, we can show that maxi<;<y, |Ba1;i ()]
= Op(nilhl_dhal + UOn'Ulnho_l + hf—‘rl)- Consequently,

max |Bui ()| = Op(n hi hgt + vonvinhg * + HETH. (C.16)

where we use the fact that v3, kgt = o,(n " hy%hg! + BT, As argued by Hansen (2008, pp.740-741),
under Assumption A6 there exists an integral function k§ such that

e

j) |r1ij -

€5 + wrig; € —E&j _ € —
ky (21 2| < whg'kg
0( ho ) 0( ho )‘_wo 0( ho

It follows that

1 € —&j v ;
Bs; < ==Y k(=)= Q"E:k: —J g2 4 2
112113<Xn‘ 5 ( )| = nh% o 0 < h() >7"11] O s 0 (z’:‘, +5])
= 0, (v3,hy?). (C.17)

Combining (C.11), (C.13), (C.14), (C.15), (C.16), and (C.17) and using the facts that n='hy%hg" =
) (U%nhaQ) and that B2 = o(vs,) yield the desired result for s = 0.

When s > 0, we can decompose f(s) (T4) — f( )(51) as in (C.11) with the corresponding terms
denoted as Bf,f) (x) for r = 1,2,...,5. The probability orders of B(S)( ) and Bé?) (x) are the same as
those of By; (z) and Bs; (), those of Bé?)( ) and BS)( ) become O, (n~ hy ®hg '™ + (vonhg ' % +
an,s)n_l/zh;dm\/m + hP*1Y), and the probability order of Béf) () is Op(v3,hg > ). Consequently,
maxi<i<n |fi(8) (€4) - 7(8) (i) | = Op(van + (vonhy ' ~° + an,S)nil/th_d/zv Togn + v3,h5>"°). W

Proof of Lemma A.2. The proof is similar to but much simpler than that of Lemma A.1 and thus
omitted. W

Proof of Lemma A.3. The proof is analogous to that of Lemma USSLN in Gozalo and Linton (2000)
and thus we only sketch the proof for the » = 1 case. Let C,, = {q1 (-, 0) : 8 € ©}. Under the permissibility
and envelope integrability of C,,, the almost sure convergence of supyc g |h’d (Progni (Z,0) — Pgy1 (Z;, 9)]|
is equivalent to its convergence in probability. By the boundedness of © and measurability of the g, 1, the
class C,, is permissible in the sense of Pollard (1984, p196). We now show the envelope integrability of C,,.



By Assumption Al and the compactness of K, |log (f (¢; (8)))| < D(Y;) on the set K;, > 0. Consequently,
we can take the dominance functiong,, = D (Y) K ((z — X) /h).Let E[D (Y)|X] = D (X) . Assumptions

A1l and A3 ensure that
PG, =E[D(X)K ((z— X)/h)] :hd/D(x—hu)f(x—hu)K(u)du:O(hd).

The envelope integrability allows us to truncate the functions to a finite range. Let a,, > 1 be a
sequence of constants such that «,, — oo as n — oo. Define

Ci = {qzn = aglanl {G, <an}:qn€ Cn} .

Let b, be a non-increasing sequence of positive numbers for which nh%?2 > logn. By analysis sim-
ilar to that of Gozalo and Linton (2000) and Theorem II1.37 of Pollard (1984, p.34), to show that
sup |Ppgn,1 — Pgn 1| = 0, (h%by,) , it suffices to show

Cn

sup |anf;n — qun’ =0, (hdbn) , (C.18)
cy
which holds provided
9y 1/2 J
Plq: < hd/? C.19
ng{ 00"} (C.19)
and
sup Np (E,G, C;n) <Cie©for0<e<l, (C.20)

where N (e,G, C;n) is the covering number of C; , i.e., the smallest value J for which there exists
functions g1, ...,gs such that minj<; G |qg —g;| < € for each ¢ € C; , the supremum is taken over all
probability measures G, and Cy and Cs are positive constants independent of n.

(C.19) holds by construction. For (C.20), we need to show that C; is a Euclidean class (Nolan and
Pollard, 1987, p.789). Since the functions in C;, , ¢ = o, log(f (¢(8))) Gy (f (¢(8))) K ((x — X) /h)
1{q,, < a,}, are composed from the classes of functions

_ y=PB) \ . (a4
e = {cllogf<—exp(P(B2))>.(ﬁl,ﬂ2) € B, clgl},
_ y—P(By) (A" A’ '
C: = {chb<f<—eXp(P(ﬂ2))>>.(ﬂl,ﬂg) €B, c2§1},
C3 = {K (.’ET03+C4> 3 € RY, C4ER}, and Cy = {1{c5q,, < 1} : ¢5 € R},

it suffices to show that the C}s form Euclidean classes by Nolan and Pollard (1987, pp. 796-797) and
Pakes and Pollard (1989, Lemmas 2.14 and 2.15).

First, for j = 1,2, {P(B,)} forms a polynomial class of functions and is Euclidean by Lemma 2.12
of Pakes and Pollard (1989). By Example 2.10 of Pakes and Pollard (1989) and the bounded variation
assumption on f, the class {f (=) : m € R, s > 0} is Euclidean for the constant envelope sup, | f (¢)| . It
follows from Pakes and Pollard (1989, Lemmas 2.15) that C; is also Euclidean. Similarly, C5 is Euclidean.
By Nolan and Pollard (1987, Lemma 22) and the bounded variation of K, C3 forms a Euclidean class
with constant envelope sup,, | K (x)| . Finally, by Pollard (1984, Lemma I1.25) and the Euclidean property

of C;, 7 =1,2,3, C4 is Euclidean. Consequently

1 n
St;p i ; ¢in (Z;,0) — Eqin (Zi,0)| = 04.5. (by) .



Since Pollard’s Theorem requires that b, > n~'/2h=%/2,/logn, we can take b, = n~'/2h=%2,/logn to
obtain the desired result. B

Proof of Lemma A.4. The proof is analogous to that of Newey (1991, Corollary 3.2). We first show

P, 1(0) is equicontinuous. Let D, ; (S) = 1{Y; ¢ S} D (Y;) K}, (x — X;) for a compact set S on R. By
the Holder inequality and the law of iterated expectations,

ED, ;(S) = EE[D,;(9)|Xi]
< B[P ¢ SIX)MVHEDY (D)X} Kn (@ - X))
= B[{P(¥i¢ SIX} V1 [D(x0)] 7 K (@ - X)) (C21)
Note that
(D (X)) Kn (e - X)) = / (D (e~ ho)]" f (@ — ho) K (v) dv < C’/K (W) dv.  (C.22)

Consider €, > 0. By Assumption A2, we can choose S large enough such that P (Y; ¢ S|X;) is arbitrary
small to ensure ED,, ; (S) < en/4. Also, g, (z,0) is uniformly continuous on (X x S) x © for each compact
set X' xS, implying that for any 6 € © there exists N = N (6) such that sup(, g\ c(xx5yxn7 [P1 (2,0") —p1(2,
0)| < €/2. Consequently
sup |p1 (Zi,0') —p1(Z;,0)| <€/2+2-1{Y; ¢ S} D (V;) K, (x — X;) . (C.23)
0'eN

Let Ay, (e,m) = €/242D,, (S), where D, (S) =n~' Y1 | D,,; (S). By (C.23) and the triangle inequality

sup |Pnp1 (2,0") — Pup1 (Z, 9)‘ < Ay, (e,m).

0'eN
Also,
P(8n(em) > €)= P (Do () > e/4) < W <n.
Consequently
sup [P (0) = Pas )] = sup |E [Pops (2.0) — P (2,0
< E|sup |Pup1 (Z,0") — Pup1 (Z,0)|| < E[An (e,1)] < 1.

0'eN
That is, {Pn,l (9)} is equicontinuous.
Notice that under our assumption on the compactness of B and the support of K, P; (3,) is bounded.
So the proof for the equicontinuity of P, 2 () is simpler than that of P, ; (#) and thus omitted. W

Proof of Lemma B.1. We only prove the case (r,s) = (1,1) as the other cases are similar. For notational
simplicity, write T1,,; = T1p; (1,1) . By the fact that ¢( i(Bz))_l/Q —p(P; (ﬁg))_l/Q = O, (v2y,) uniformly
in 7 on the set {K;,; > 0}, we can write

01,i(B) — qui (,30) = ;E;z; P(Pi(By)) /2 - %¢(B ( (2)))71/2
= | LED TED) p )12 LD [opy @) 172 - o, (89)) 12
Z( 9 1) f (51) f (51)
= G T (89) 2 4 0y ()] + L0, (). (C28)
(2 fE) 1 &)




Thus

1 n
Tingl < —= >

i=1

~ oy | fi (€
KiziGiqr,i (B°) | = =3

+Op (v2n) i

d
nh i=1

+Op (v2n) i

nhd
=1

(
Kir iGiqr.i (8°) l j,(izi - ]Jt:((i))H
/

Kiz3Giqi,i (B°)

Since the last two terms are of smaller order, it suffices to show the first term (denoted as |Tin;|) is
O, (h°). By Lemma A.1, the definition of G;, and Assumption A7,

iz s F@rE -G
fi (F9) f@E)fi(E5)
< 0, (b—lusn,l) +(f ) /£ ) Op (67 vsn0) = O, () 1+ 1F &) /F G} (C25)

%

Therefore ‘Tlnj’ = ) S
ity and the fact that

Kizqu,i (8°) (1 + J;gg) o(P; (89)) 1/2‘ = O, (h*) by Markov inequal-

1 (30 [ (&) - (30\)—1/2 1 (&) [ (&) (301
th KZI7Jq1,Z (18 ) <1 + f ({_—:Z) > @(Pl (ﬁZ)) th le,] f (&_:Z> <1 + f ({_—:Z) > (Pl (ﬁZ))
e e £ (L
_ }ﬂE.KmJ (ng%&)(1+ )M1+ 1)}

(z
< ﬂ
(x)
where I (f) = E [¢” (¢;)] and we use the fact that ¢(P; (39)) is the p-th order Taylor expansion of o (X;)
around z. This completes the proof of the lemma. B

(H+1(H}=0(),

Proof of Lemma B.2. We only prove the case (r,s) = (1,1) as the other cases are similar. For
notational simplicity, write Toy,j = Topn; (1,1). That is, we will show

1 & - (L = 2 .
Tonj = —5 > Ky G {qu(ﬁ) —q (Yi; P (8Y), P, (53))} = Op (h9).
i=1
By (C.24) and (C.25) in the proof of Lemma B.1, we can write

2048) — an (Yis P2 (8) . P, (8)] €

_ e [ (&) ? (a0\\—1/2 v 2 [ E) ? 02 =
= oo (14 [EE) [ (82 4 0w+ (522 0,080 6
f/ (gi) 2 0\\—1 €
< <1+ e ) [o(P; (83)) " + 1] G;0, (h°)
Thus
0, (h¢ Z" ")\ 1 )
Tons < ni(zd ) el | Kz 5 <1 * J,;((;)) ) [p(P; (ﬁg» +1] =0, (h9)

11



by Markov inequality and the fact that

_ 2
%E Kin (1+ f/((;’)) ) [o(P; (83) " +1]
- LE|K.; (1+' /<5’)> [072(X;) +1+0(1)]|{1+0(1)}
h f&)
< fx@] /]K o du [141(7) 4202 ()] {1+ 0 () = 0(1).
This completes the proof of the lemma. H
Proof of Lemma B.3. We only prove the case (r,s) = (1,1) as the other cases are similar. For

notational simplicity, write Ts,; = T3 (1,1) . That is, we will show

T3p5 = hd Zwa.] ( - ) q1,i (,30)2 = Op (h°).

We decompose T3,; as follows
I < _ _
T = g > Kiag [1= Go (f E)]* (&)
i=1

b King [Gulf (50) — Gu( (F)] v2 @)

T3p5,1 + T3nj,2, say.

By Lemma A.1,
max |G =Gl = max [Go(fi (F0) = G (f )|
C — — — €
< B oA [fi(B3) = f(E) ] =b"0p (vsn0) = Op (h°). (C.26)

With this, we can readily obtain |Tspj2| < Oy (h€) =z S iy |Kia ¥ () = O, (h°) by Markov inequal-
ity. For 13,1, we have

BTisal < B | sl L Gy (] (G ¥ )

1
= ﬁE [[Kiz j

JE{[L =Gy (f ()] 9* () } {1 + 0 (1)} -

By the Holder inequality,

E{1-G(fE)v’ ()} < B[ () 1{f(c) < 2b}]
< {E[7 @)} P(f () < 2m) 0D
< CIP( () W)V =0 (s — 0 (n),

where the last line follows from Lemma 6 of Robinson (1988) and the Markov inequality because by taking
B = b2 we have P (f (g;) < 2b) < Qbflai\ﬁﬁ dz + P (|e;| > B) < 2b2b=Y2 + E|g;|b1/2 = O (b1/?) =
O (h*). This, in conjunction with the fact that 77E[|Kiz 3] = O (1), implies that Ts,51 = O, (h°) by
Markov inequality. Consequently, we have shown that T3,; = O, (k). B

12



Proof of Lemma B.4. Let f; = f; (€;) and f; = f(5;) .Note that f, ' = f7* — (fi — f:)/f? + Rai,
where Ro; = (fi — fi)?/{(f?fi). First, we expand the trimming function to the second order:

ColF) — O () = o () (i~ 1) + 5o () (Fi = 7)) (C.27)

where f7 is an intermediate value between f; and f;. Let p; (8) = ¢ (¢; (8))&: (B) + 1, p; = p; (B°), and
pi=v(e)e;+ 1. Let v, = ¢ (P (ﬁg))/gp(Pi (ﬁg)) Then we have

Sy = ﬁimm{pi [Go(fi) = 1] +1og (£ @) @(P: (88)72) gu (f (B ' 0) & |

- ﬁ > Kungioi {71 1Gy (£) = 1)+ 1og (£ G 0P (83)7%) s (f (20) f' (B0) &
+2\/% > Kiwspibign () (4~ 5)

4\/% ZKim,j‘pipigé (/i) (fz - fi)2
i=1

= Sinj1 + Sing,2 + Sinj,3, say.

+

Using a crude bound on the last term, we have |Sinj 3| = Op (v3,, ob~?n'/2h%/?) = 0, (1) by Lemma A.1,
the fact that sup, |g; (s)| = O(b™2), and Assumption A7.
To show the first term is o, (1) , write

-1 n
St - - Kiw50:P;
it = o ) Kiese

oo 3 Koy [5G (1) +108 (£ (0 (P (89)72) a0 (f (50 £ )
i=1
-1 < 1
= i ;Kiw,jfu + Ny ;Kiw,jfzi

= —Sinj11 + Sing,12, sy,

where §;; = %l_’i%‘ and &y, = % {Z%‘Gb (fi) +log(f (&) w(P; (:3(2)))71/2)% (f &) f' (&) éi} Pi-

Let Q1n,i (B) = log{f (e (8)) ¢(Pi (B2)) " /*}Kn (x — Xi) , Qani (B) = log{[ (¢: (B)) o(P; (B2))'/*}
xGy(f (e; (B)) K (x — X;), and <, (B) = E[Q2n,i (B)] — E[Q1n,i (8)]. Then it is easy to show that (i)
Sn (,80) — 0, (ii) ¢, (B) is differentiable in a small ey-neighborhood N, (,60) of 3° with Ne, (,60) ={B:
||,8 — ﬁOH < ep}, (iii) ¢/, (B) converges uniformly on N, (ﬁo) . Then by Theorem 7.17 of Rudin (1976)
and the fact that h=H10Q1,,; (B°) /0By = —h ™% K5 and h=H10Qa,, ; (B°) /0By5 = —h™ %4 Kig 3, We
have

E(Sinji2) = —vnhi?plE
2j

9Qan.i (8°)
0

—/nhPp g

ann,i (/60) _
i {14+0(1)}=E(Sinj1) {1+0(1)}.

2j

Consequently, E (S1nj,1) = 0(1) E (Sinj11) = 0(1) as Sipj,11 = nt/2p—d/2F (Kiz3&1;) = O (nl/th/th“)
= O (1) . By straightforward calculations and the IID assumption, we can readily show that Var(Sip;1) =
0(1). Therefore, S1pj,1 = 0p (1) by the Chebyshev inequality.

13



_ 1 n
Now, we show that Sinj2 = 0p (1) . Decompose Sipj.2 = Sipj.21 + Sinj,22, Where Sipj 01 = ST Yo

Kiz 92, (B°) gv (f) (fz (€i)—f(E z)) yand St 22 = 5= 31 Kio jpide,i (B°) a0 (f:) (F (20) — [ (E3)) -
It suffices to show that Sinj2s = 0p (1), s = 1, 2. For Sip;21, by a Taylor expansion and (C.9)-(C.10), we
have

1 i 1 € —&; E; —E;
nj = — E Kz 5005 i) —— g 1) - -
St 2vnh? = il (1) nho [kio ( ho ) o ( ho ﬂ

J#i

1 i —E; -
= WZZKWJ%Png(ﬁ)kO( hoj)(?isjei%j)wp(l)

i=1 jqéz
= e 0 Kueseian (1 () )
282 hIPhE = o ho ) o(Pi(By))'/”
1 g —¢g;\ m(X;) —m(Xy)
N 2/971 7/019 Kzr ) k J 2 g
Qnd/th/QhQ ; ; 3PiP;igb (fi) ( ho ) o (X;)
1 i — & 7 (X;)—o(X;)
= a- Kzr i k : j . .
+2nd/2hd/2h2 ;; szngb (f) 0 ( hO ) €j &(Xj)
1 —€j ui +6;i  @(Pi(B3)? = o(Pi(B,))'/?
+7 Klﬂ? i1 7 k j) 3
s 2o 2 Kesrinon Uk (2 PPBT o(Pi(B)

i=1 j#i
+op (1)
= —Sinj211 + Sinj,212 + Sinj,213 + Sinj,214 +0p (1) .

For the first term, by Lemma A.2 and the fact that vy; (z) = O, (van) , P(Pi(Bs)) = ¢(F; (ﬁg))+0p (van)
uniformly on the set {K;, > 0}, we have

V14 (x)

P(Pi(Bo)) /2

|Sinjo11] =

\/_ Z Kwr,.lspzngb (fz) f (El)

+0p (1)

2W;Km,,]wzngb(fl)f ( l) (p( i(ﬁg))l/Q

_ 1 . (30 / e
2 10 (@) 5 3 Kiesoie (P ()™ i (1) £ @0

The first term in the last expression is o, (1) if n'/?h=42E | Ky jo,0(P; (53)) V2pigu (f:) f' (e3)| =
0 (UQn) by Markov inequality. Note that

IN

+0,(1).

g — e = {e:lo (Xs) — (P (B2))'/?] + 8:} Jo(Pi (82))"/* = esdi + 3. (C.28)

where d; = o (X;) p(P; (83))"Y2 — 1 =0, (h?*!) and §; = §;0(P; (89))"Y/2 = O, (h?*1) uniformly on
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the set {K;; > 0}. Then by the triangle inequality,
h™"E | Kz s00(P; (89)) 2 pige (fi) I (1)
= hE Ko goip(P (82) 72 [pign (£) £ (21) X0

(
Rrgp AR / [ (e)e +1]f" (e) g (f (€)) f (E F Si) de
di +1 b<f(e)<2b ge d; +1

= h%FE

Ny - (30))—1/2
R el NI CYACPAUC VCEE

IN

11;J(pz (Pl (ﬁg

wnoip| St B BN [ e p@mre [r(55) - o]

= Snl + Sng, say.

For S,,1, we have

Sm = hE|Kisgpip(P; (83)) (di+1)_1/ p(e) f'(e) go (f () f (e) de

b<f(e)<2b

< sw [fE)a(fE)hIE

Kivgoip(Pi (89) 717 (di + 1)~ /<f( )<2bp € f () de

b<f(e)<2b
< OB [KugeipP )@+ per e
b<f(e)<2b
1/2
< ChUB|Kugpie (P (89) 2 (di+ 1) {/ p(E)f(e) dﬁ/ ¥ (e) f(e) de}
b<f()<2b b<f(e)<2b

= O(hY)
where the third inequality follows from the Holder inequality and the independence between X; and
gi. By a Taylor expansion, f (H—d ) — f(e) = —f'(¢) (0; + die) . With this, we can readily show that

Sn2 = O (k) . Consequently, |S1nj,211] = Op(vanVnheh®) = o, (1).
For Sinj 212, using (C.2) we can write

1 i — €\ m(X;)—m(X;)
Slnj,212 = W Z Z sz J(pzngb (fl) kO < ho j) Jo-(Xj) J

i=1 j#i

zx i _ &_:i — &y T _
= n3/2hd/2h2 ZZ J ) Pidb (fi) ko <h—0]) er My, (X5) Ui n (X))

K, 901 _ g —€j T
R 1 2 g (g (8 () el M ) B ()

= Sipj212q + San,zlzb- (C.29)

Recall Z, is defined analogously to Z; with h; in place of h. So Si1pj,212¢ can be written as
S1nj,212a = ZZQn (Ei,fz‘j)-l—zz Z S3n (€ir€5,€1)
i=1 j#i i=1 j#i 14,145
where <oy, (€5,€5) = 2n5/2h<1i/2hdh2 Igl(zf% pigv (fi) kg (a{”) ey Mt (X;) Z,K (
Kivjpi — Ei—gj X;—X _

= 2n5/2h§/2h<1ih(2) 20(51(‘:) Pi9b (f’L) ko ( ) €1 M (X )Z K ( l) uy. Let X = {Xl, ,Xn} Then

)ui and ¢sy, (g4, €5, €1)
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E[Sinj21241X] = 32001 X5 B ls2n (26, 25) 1X] = Oy (n=Y/2h%/2p=1) = 0, (1) . For the variance of Si,,2124,
it is easy to show that

Var Z ZCQH (Ez’, Ej) |X

i=1 j#i

O(n*)E |:§2n (51‘753‘)2 + Son (€ir€5) S2n (g5, €:) |X

+0 (n®) E [San (€i,65) S2n (£1,€5) + S2n (€0, €5) S2n (€15 64) [X]
= Op(n A 72) + 0, (n7272) =0, (1).

Similarly, one can show that E (<3 (2i, 25, 21) |X) = 0 and Var [Z?:l D iti 2y San (2is 25, 21) |X} =
op (1). Consequently, Sinj 212 = 0p (1) by the conditional Chebyshev inequality. For Sinj 2125, we have
Sinj2126 = Op(nl/th/Qh’fH) = 0p(1). Thus we have shown that Sinj212 = 0, (1). By analogous
arguments, Lemma A.1, and (C.8), we can show that Sipj21s = 0p (1) for s = 3,4. It follows that
Sinj 21 = 0p (1).

For Siyj,22, we make the following decomposition:

1 n
Sinj22 = o/l ; Kiz 5$i2,i (50) gy (i) {V (&) + B(E:)} = Sinj,221 + Sinj 222

where

VE) = nihOZ{ko (Eii:j) —E [ko (Ei;ogj)]}, (C.30)

P
B(E) = n—OZE {k()(s’ ")]f(a), (C.31)

J#i

and E; indicates expectation with respect to the variable indexed by j. Writing 81,201 as a second order
degenerate statistic we verify that E [Slnj,221]2 = 0(1) and thus Sipj,221 = 0p (1) . For Sipj 222, we verify
that Sinj200 = Op(n1/2hd/2h8+1) = 0, (1). Consequently, Siyj22 = 0p (1). This concludes the proof of
the lemma. W

Proof of Lemma B.5. By a geometric expansion: f; = f~' — (f; — f)/f% + (fi — [)?/(ff;) where
fi = fi (&), we have

Sonj = \/_ ;Kw:d { (G2, (ﬁo) — @2, (ﬁo)]}

fl &
w— Z ¥ (

v&.ﬁ
\_/
Q

~ 12
1 & fi (&) fz E)—fGE)|
- Kiz jpi —&;G;
ki E TR E) T @)
= —Sonj1 + Sanj2 — Sonj,3-

where recall ¢; = ¢'(P; (85))/¢(P; (83)). It suffices to show that each of these three terms is o, (1) . For
Sonj,1, noticing that Gy(fi) — Gy (fi) = gv (fi) (fi — fi) + 2gb (fF )(f, fi)?, we can apply Lemma A.2
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and show that

S2nj71 = Z zz,_]‘Pl >_€'}; ( )Esz (f’L)

Z wspLEII 6, 1) 40,0

San,u + 52nj,12 +o0,(1).

For the first term, we have

- iR

) ()
0 i 0

B 2\/— Z fm’;% nh3 Z ko (6 > (& —ej) &Gy (fi) +0p (1)

05z
“%JQDZL n (B —gj\ m(X;) —m (X))
2\/_Z f (&) h%,zik()( ho > o (X;) giGh (fi)
Z$J<pz // € —¢ i U(Xj)*(}(Xj)_
2\/_Z 7 (&) nh3Z < )Ej ) &Gy (fi) +0p (1)

0z
= Sonj111 + Sonj1i12 +0p (1), say.

Write

. _ Kiz 50 K i —& elTMrfl(Xj)Ul,n(Xj)—l ]
Sopjan1 = 2\/—2 &) nhdz ( > (X)) &Gy (fi)

ix,j ¥ k! Ei —€&j T]wn_1 X‘B," XJ'—
\/—Zf’éfa g M (M) g e

0 ji

= Sopjitia + Sonjiiis-

Writing Sanj 1116 as a third order U-statistic, we can show that Sanji11a = Op(hd/z) = op (1) by con-
ditional moment calculations and conditional Chebyshev inequality. For Sapnj 1116, we have Sapj 111 =
O, (Vnhih?*') = 0, (1). Similarly, we can verify that Sanj 112 = 0, (1). Consequently Sopj11 = 0, (1).
For Sapj 12, we have

Sopjiz = \/_Z fzw;% ( )(—&J)N (gi)EiGb (fi)

z:v i 1 / 72’_ j / 71'_ ] _
2vn Z; 7 eJ:D n_h(%;{k()(E hogj)_Ej [ko(g hogj)” G (1)

\/_; fm;% nhQ; { ( 0€j>]—f'(€i) &G (fi)

= Sopji21 + Sonj 122,

where E; indicates expectation with respect to the variable indexed by j. Noting Sapj 121 is a second
order statistic, it is easy to verify that F [82@121]2 = O(h?) = 0(1), implying that Sonj,121 = 0p (1) . For
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SQn_j,122, IlOtiCiIlg that

B [ (S22 ) ] - @) = @) [l @ wtia,

0 j#i

we can show that Sapj 120 = Op(\/nhdth) = 0, (1) . Consequently, Sanj12 = 0p (1) and Sapj1 =0, (1).
For Sy,j,2, we can easily show that

Sansa = - FZ Fedfel B [ ) = £ (60] 5Go (5) + 0, (1),

The rest of the proof is similar to that of Sap;,1 and thus omitted. For Sapj3, by Lemma A.2, Sonj3 =
O,(Vnhdb=2v3,) = o0, (1) . This concludes the proof of the lemma. B

Proof of Lemma B.6. Write S35 = %{S:),nj,l — Sanj,2 + S3nj,3 — S3nj,a}, where

Sir = =3 Kuag {lon (7(0) 0 (. (F0) (B0 2B
~ log ( 51@») o (i (20) fi @) zie
Sz = Ko {los i (PUBD) 00 (F (20)) 7L (B BuslBo)
Cloe(p (ﬁ DA FACHESY
Swis = = King {log (7 G0) o0 (71 G0) 120~ log (7 @) o (7 ) 120 v

Swia = S 5" K glozo (P () {an (7.0) 7L G0 - (1) £/ G0}

2vnh® =

where ¢; (85) = ¢'(Pi (B2))/¢(P; (Bs)) and ¢; = ¢; (83) . We will only show that Ss,5,1 = o, (1) since
the proofs of Sz,j,s = 0p (1) for s = 2, 3,4 are similar.

For Sapj,1, noticing that ; (z) = (¢(P; (83))"/2 — @(Pi(B2))'/?)/(Pi(B2))/? and iy, (x) = vy ()
Jo(Py(B5))Y/? are both O, (v2,) uniformly in i on the set {K;, > 0}, and &; — & = &;0a; (x) — 01 (),
we can show that

Sanj1 = \/—ZKMJ%{ i () gv (f (éi)) fi (8:) & {Eit2i (z) — D1, (2)}

+\/W ;ij% log (fz (51‘)) 9 ( ‘
)

JE(EZ)
1 & - -

Sang11 + S3nji2 + Ssngi3 +op (1)

74) f1(25) & {Eilai () — D4 ()}

) F1 @)z it (2) = 01i ()} + 0, (1)

18



By Lemma A.1, we can show
1 < . .
Ssnj1 W ZKia:,jSOM Ei) g (f (i) [/ (Ei) Ei {Eit2i () — Vs ()}, (C.32)

Sinjaz \/1—ZKzz,mlog(f(@))gé(f(@))f'(@)@{@@m(w)—?71i(:v)}, (C.33)

Singas =~ \/%;Kix,j%log(f(éi))gb(f(@))f”(Ei)éi{éiﬂzi(:c)ﬂli(m)}. (C30)

The rest of the proof relies on the repeated applications of the dominated convergence arguments. For
example, the right hand side of (C.32) is smaller than

1 n
£/ h {K >0} ‘UZZ )‘ zzzl ’Kz:m‘ﬂﬂﬂ (gz) 9b (f (g‘l)) f/ (é‘l) 51.2

1 . - ~ L
+\/W{Ig1ma§0} |91 ($)|;|Km,j%¢(5i)gb (f (&o) [ Ea) &l

Noting that

E|Kiwjoud &) oo (f @) f (E)E| = E Hu / bE e () (e

e —0;
di +1 f<d+1)%]
Kiz 30 ' (e)?
< su AR e"|lde + O (h€
p[gb ‘d-I—l b<f(e)<2b f(>| | ()
(6)
< Cf(e / "l de + O (b
S b<f(e)<2b [CH )
)2
< C’/ [ (e) o de+O(hP+1) :O(b('y_l)/(h)—l—hg),
b<f(e)<2b

f(e)

where the last equality follows from similar argument to the proof of Lemma B.3, we have Szpj11 =
Op(v2, Vnhd(bO1/27) 4 1€)) = 0, (1) . Similarly, we can show that Sznj1s = 0p (1), s =2,3. B

Proof of Lemma B.7. Observe that

R = g (T ) G ()58 G (8 08 ) (KK
= S () A ()5 (8 s (8 (8T (KK
o ZK ( _hXi) 17 (G Gi) s (8%) 5 (8°) T @ (XX )
+n2d§f<(ﬂ”ﬁ)l (G- Gi) 50 (8°) 50 (8) " =50 (8%) s (8) & (XX

= Rin1+ Ringz + Rin3, say.

It suffices to prove the lemma by showing that Rq, , = 0, (1) for r = 1,2, 3. We only prove Ri,,1 = 0, (1)
and Rin,2 = 0p (1) as Rip 3 is a smaller order term and can be studied analogously.
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First, we show that R1,1 = o, (1) . Note that

_PiE) o' (P;(B2))¥; (B )[~ (&: )€z+1]

c (30 (30 — #(P () 20(P:(88))°"

5i(8) 5 (6) LIRS HCRENS R TN cr? |
20(P:(83))* 10(Pi(8Y))”

Ring = WZK< - )Gz—

i=1
HE R CD) e {0, (E)[d, (a VEi+1] = (E) [P (E)E+1]}
o (P:(89)) 20(Pi(83))" T
eildi(E)[P:(E0)Ei+1] -9 (E) W (E)E +1] } 0} i (E)Ei+1]" —[(E)Ei+1)? ®(2iZ;)
20(P:(89))" !
_ Rin,i11 Rin1,12
= , say,
R1n,1,21 R1n,1,22

where recall ¢, = ¢’ (Pi (,@g)) /e (Pi (ﬂg)) , Rin121 = RI,L’LH, and Rip i, 7,8 = 1,2, are all N x N
matrices. We need to show that Rip 1,11, Rin,1,12 and Rin,1,22 are all o, (1) . Noting that

G2 N9 fE) FE) = Fi @) &)
Vi (&) — ¢ (&) fz )2 f (G )2
- )2

7@ = £ @) F @ + |1 @) - Fi @) £ @)

N \

we have

Rininn = #ZK(E
=1
1 < T
b 2K (x Xi) Gup (P (83) " Fie) P v @) [£: @) - £ie)*| 22
i=1

= Rini,t,a + Rini,11,6 say.

=) Gup (1 (09) " [i2 ) - 02 ()] 22

ﬁ\l

=) Gup (1 (89) ™ (e 2 71007 - 1 0] 2]

Noting that Gy f; (éi)_2 =0 (b7?), by Lemma A.2, we have

K (%) Gie (P (89) " Ziz]
1

= Op (’Ugn,lbiQ) Op (1) = Op (U3n71b72) = Op (1) .

IN

[Rin,1,11,al Op (v3n,1b7%) —

By the same token, |Rin 1,11,5] = 0p (1). Thus Ri,,1,11 = 0, (1). Analogously, we can show Ri, 1,12 =
op (1) and Rin,1,22 = 0p (1) . Hence we have shown that Ri,,1 = op (1) .

Now, we show that Ri,.2 = 0, (1). By (C.26) and Markov inequality, we have

< Op(he)#ZK(z Xi)
— 0,(1)0,(1) =0, ().

N

Rin,2|

58" 50 (8") " @ (z2])|
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This completes the proof of the lemma. B

Proof of Lemma B.8. Observe that

n 4 9z (80 (0 o
RQn = % K <$—th) H_l Giasz (é ) —GiGSZ (g ) ®XiH_1
[ op B
- 1 - T — )(Z r—1 v 351 (,30) 881‘ (ﬁo) < =1
= W;K< — | H G{l B op ®X; o H

)gl(@_ag{%%§2®i%ﬁl
+# Zn:K (m _hXi) A (Gi - Gi) {

= Ron1+ Ran2 + Ran,3, say.

93 (B°)  9si (B°)
o8’ 0BT

@X}H—

We prove the lemma by showing that Rs,, s = op (1) for s = 1,2, 3. We will only show that Ra,1 = op (1)
as the other two cases can be proved analogously. Recall ¢;, = ¢’ (PZ- (ﬂg))z — " (Pi (,63)) © (pi (,33))
and ¢; = ¢’ (Pi (,3(2])) /e (Pi (ﬂg)) . Noting that

. 0 qz;’.(gi) Wl[w (51)51+"2’z(51)}
95; (8°) B (Pi(BY)) 20(P;(83))"* ®XT
aI@T T eiBiEoEAdE)]  2eip[i )z 4! (Pi(BY)) 8 [$EDE+i (Ei)] o
20(Pi(89))"* 10(P:(83))"
and Os; (,80) /OB" has similar expression with v, (€;) in the place of ¥, (&;), we have
1 i xr — Xi
73271,1 = W ;K ( h ) G
PLE) =Y (5d) e {[#iE)—¢ E)]Ei+ [ ED)—vED] }
e(P(82)) 1( 5) 20(P:(83))."” Al
X o {[dLE) v E)]eit+ [ ()~ ()]} 2, [0, (5:)— ())& L ® (Z;Z; )
20(P.(88))""" 10 (Pi(89))” !

o RQn,l,ll R2n,1,12 sy
= T ) )
RQn,l,lQ RQn,1,22

where d; = &[0} (2;) — ' (8:)|&: + [¥; (Bi) — 1 (£5)]. As in the analysis of R1, 1, using Lemma A.2, we
can readily demonstrate that Rap,111 = 0p (1), Ran1,12 = 0p (1) and Rap 1,20 = 0, (1) . It follows that
Ran1 = 0p (1). Similarly, we can show that Ra, s = op (1) for s = 2,3. This completes the proof of the

lemma. W
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D Derivative Matrices in the Proof of Proposition 2.1

In this appendix, we give explicit expressions for the elements of some derivative matrices of the log-
likelihood function defined in the proof of Proposition 2.1. The elements of the Hessian matrix are

2
q11 (y; 81, B82) = log f(e(B) 1

de? ¢ (By)
, _ [2%log f(e(B)) dlog f((8)) | _ ¥ (By)
q12(y751,62) - { 852 6(6)—’_ e }290(B2)3/2’
- ol
w (i) = S [TELE (5 1]
¢ (Bo)” [0*log f(e(B) _ 2, 40l f (£(8)
+4S0 B, { 92 e(B)” + STs (B) + 2} )
and q21 (4 By, 82) = a1z (i B, B) by Young’s theorem, where, e.g., gt = LEUDLEN ang
i logaga(ﬁ)) = & lgff(s) . Note that when we restrict our attention to the case ¢ (u) = w or

exp (u), the above formulae can be greatly simplified.
In addition, in the proof of Proposition 2.1, we also need that g, (y; 51, 55) = Wgsaﬂt log (f (y; 81,52)) ,
r,s,t = 1,2, should be well behaved. Using the expressions

@) _(FEN_( “mmom | g Plef _ FEHE) — £
T\ )T\ e 76

and by straightforward calculations, we have

0*log f(e(B) 1

q111 (y§51a52)

Oe3 ¢ (Bq)’
_ _ PPlogf(e(B) d=(B) 1 log f (c(8)) ¢' (B2)
q112 (yaﬁlaﬁQ) - De3 8ﬂ2 ‘P(62) - 92 @(52)27
3 o 2 o /
Q121 (y; 81, B2) = {3 : gafggs (8) 62/5’?)6(6) JrQa : gafegg ®) Bgé?)} 2;([(5)23/2 = qu2 (y; 1, B2) »
_ [ PPlog f(e(B)) 9= (B) 0*log f (¢(8)) 9= (B) | ¢ (Ba)
Q122 (y3 81, B2) = { 923 3, e(B)+2 922 9B, }290([32)3/2’
8%lo 0lo " 3/2—% / 2 1/2
+{ g@igs(ﬁ))e(ﬁH gj(;is(ﬁ))} ¢" (B2) ¢ (Bs) 2@(/353(62) ¢ (Bs) 7
_ _ ¢ (By) [Blog f(e(B)) Olog f (£(8)] =(B) | ¢/ (Ba)* 1 9= (B)
q221 (:%61;52) - 2(,0(,62§ |: 862 6(B)+ Oe :| aﬁl +4§0(622)2I{(6) 851
= q22 (¥; B1,B2)
_ 9" (Bs) [9%1og £ (¢ (B)) dlog f (e (B))] 9= (B)
222 (:%61;52) - 2(,0(,62§ |: 862 6(B)+ 85 :| 852
9" (By) 9 (Ba) — " (By) ¢’ (By) [Olog f (e (B))
2 (8)° [ 0z 5(5)“}
¢ (By)° o 02(B)
+4<p(ﬁ22)2ﬁ(ﬁ) 9B,
' (Bs) 9" (B2) — ¢ (B2) 0 (By) [0*log f ((B)) , o2 Olog f (£(B))
+ 2% (/32)4 { 5o e(B8)"+3 e e(B)+ 2} ,
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3
G211 = G121 = qui2, and @212 = qiz2 = a1 by Young’s Theorem, where x(8) = 21812 logaﬁgg(ﬁ))f(ﬂf
2 2
+2%§8(ﬁ))5 (B)+ 3%&5(5))5 (B) +3%(6(ﬁ)). Note that under our assumptions (X; has compact

€
support, the parameter space is compact, o2 (x) is bounded away from 0) the terms associated with ¢ (-)

or its derivatives are all well behaved when ¢ (-) is evaluated in the neighborhood of 9 ().
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