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Nonparametric Dynamic Panel Data Models with Interactive

Fixed Effects: Sieve Estimation and Specification Testing *

Liangjun Su, Yonghui Zhang
School of Economics, Singapore Management University

May 5, 2013

Abstract

In this paper we analyze nonparametric dynamic panel data models with interactive fixed effects,
where the predetermined regressors enter the models nonparametrically and the common factors enter
the models linearly but with individual specific factor loadings. We consider the issues of estimation
and specification testing when both the cross-sectional dimension N and the time dimension T are
large. We propose sieve estimation for the nonparametric function by extending Bai’s (2009) principal
component analysis (PCA) to our nonparametric framework. Based on the asymptotic expansion of
the Gaussian quasi-log-likelihood function, we derive the convergence rate for the sieve estimator and
establish its asymptotic normality. The sources of asymptotic biases are discussed and a bias-corrected
estimator is provided. We also propose a consistent specification test for the linearity of the functional
form by comparing the linear and sieve estimators. We establish the asymptotic distributions of the
test statistic under both the null hypothesis and a sequence of Pitman local alternatives. A bootstrap
procedure is proposed to obtain the bootstrap p-values and its asymptotic validity is justified. Monte
Carlo simulations are conducted to investigate the finite sample performance of our estimator and
test. We apply our method to an economic growth data set to study the relationship between capital

accumulation and real GDP growth rate.

Key Words: Common factors; Cross section dependence; Interactive fixed effects; Linearity;

Nonparametric dynamic panel; Sieve method; Specification test

JEL Classifications: C14, C33, C36

1 Introduction

Recently there has been a growing literature on large dimensional panel data models with interactive
fixed effects where both the individual dimension N and time dimension 7' pass to infinity. By the
adoption of time-varying common factors that affect the cross-sectional units with individual specific

factor loadings, these models allow individual and time effects to enter the models multiplicatively and
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can capture unobserved heterogeneity more flexibly than the traditional ones with additive individual
or time fixed effects. As common factors affect all individuals, interactive fixed effects have become a
powerful and popular tool to model cross section dependence in economics and finance. See Bai and Ng
(2008) for an overview.

Most of the literature on panel data models with interactive fixed effects falls into two categories
depending on whether the model includes additional regressors or not. The first category focuses on the
estimation of the common components (factors and factor loadings) or the determination of the number
of factors; see Bai (2003), Bai and Ng (2006a), Bai and Li (2012), and Choi (2012) for estimation, and Bai
and Ng (2002) and Onatski (2009) for the determination of the number of factors. The second category
concentrates on the consistent estimation of the regression coefficients. Pesaran (2006) proposes a com-
mon correlated estimator (CCE) for linear static panel data models with homogeneous or heterogeneous
coefficients. Bai (2009) proposes a principal component analysis (PCA) estimator for the same model
but with homogeneous coefficients and establishes its limiting distribution. Moon and Weidner (2010,
2012) reinvestigate Bai’s (2009) PCA estimator and put it in the Gaussian quasi-maximum likelihood
estimation (QMLE) framework; they allow dynamics in the model and show that the limiting distribution
of the QMLE is independent of the number of factors used in the estimation as long as the number of
factors does not fall below the true number of factors. Lu and Su (2013) propose an adaptive group
Lasso method for simultaneous selection of regressors and factors and estimation in linear dynamic panel
data models with interactive fixed effects. For more developments on panel data models with interac-
tive fixed effects, see Ahn, Lee, and Schmidt (2001, 2013) for GMM approach with fixed T' and large
N, Zaffaroni (2010) for generalized least squares (GLS) estimation, Kapetanios and Pesaran (2007) and
Greenaway-McGrevy, Han, and Sul (2012) for factor-augmented panel regression, Harding (2009) for
estimation under structural restrictions from economic theory, Pesaran and Tosetti (2011) for models
with both multifactor error structure and spatial correlation, Su and Chen (2013) for testing for slope
homogeneity, Su, Jin, and Zhang (2013) for testing for linear functional form, among others.

Note that almost all of the above works are carried out in the parametric framework. Although
economic theory dictates that some economic variables are important for the causal effects of the others,
rarely does it state exactly how the variables enter an econometric model. Models derived from first
principles such as utility maximization or profit maximization have particular parametric relationship
under some narrow functional form restrictions. So it is not only meaningful but also necessary to extend
some commonly used parametric models to the nonparametric framework. Recently, Su and Jin (2012)
consider the sieve estimation of nonparametric static panel data models with multifactor error terms,
which is a nonparametric extension of Pesaran’s (2006) models; for the same models Jin and Su (2013)
propose a poolability test of nonparametric functions. Freyberger (2012) studies nonparametric panel data
models with multidimensional unobserved individual effects. He focuses on identification and estimation
when the unobservables have a factor structure and enter an unknown structural function non-additively
under fixed T" and large N. However, there is still no work on the estimation of nonparametric dynamic
panel data models where interactive fixed effects and idiosyncratic errors enter the model additively.

Linearity assumption is widely adopted in empirical works for its convenience and interpretability. A
correctly specified linear model may afford precise inference whereas a badly misspecified one may lead to
seriously misleading inference. So it is important to test for the correct specification of linear functional
form. Recently several specification tests for linearity have been proposed in panel data models with fixed
effects. Lee (2011) proposes a residual-based test to check the validity of linear dynamic models with both
large N and large T'; Li and Sun (2011) propose a test for static panel data models with both large N and



large T based on an integrated squared difference between a parametric and a nonparametric estimate; Su
and Lu (2013) propose a linearity test based on the comparison of the restricted estimate under the linear
assumption and the unrestricted nonparametric estimate for dynamic panel data models with large N
and fixed T. But none of these tests are applicable to panel data models with interactive fixed effects. The
linear estimators for the regression coefficients and factor space generally cannot be consistent when the
underlying functional form is nonlinear, and the tests on the coeflicients or the number of factors based
on the linear estimators could be invalid. To avoid the consequences of misspecification, Su, Jin, and
Zhang (2013) propose a residual-based test for linearity that works for panel data models with interactive
fixed effects. But they do not propose consistent estimates of the regression functions.

Based on the above observations, we consider the following nonparametric dynamic panel data models

with interactive fixed effects
Yie=g(Xit) + N0 +ey,i=1,..,N, t=1,...T, (1.1)

where Xj; is a d x 1 vector of observable regressors which may contain d, lagged dependent variables
Yit—1,- Yit—a, and d, x 1 vector of exogenous variables X1 ;;, g (-) is an unknown smooth function, i
and A? are R x 1 vectors of common factors and factor loadings, respectively, and e;;’s are idiosyncratic
error terms. Note that )\?, f? and e;; are all unobserved. The superscript “0” in )\(Z-) and f? indicates the
true parameters. We will assume that the true number of factors R is known for the theoretical part of
the paper but discuss how to determine R in empirical applications.

The model specified in (1.1) is fairly general and encompasses various panel data models as special
cases. If f0 = (1, f°) and ) = (5\?, 1)’ where both f° and 5\? are scalars, the interactive fixed effects
reduce to the traditional two-way fixed effects; if f{ is time-invariant, i.e., f? = f for some constant
vector f, the interactive fixed effects become the commonly-used additive individual fixed effects. When
f2 is time-invariant and g (X;;) = X/,6°, (1.1) becomes the classical dynamic linear panel data models
with individual fixed effects given by AY'f; when f0 is time-invariant and X;; = Yi;_ 1, (1.1) reduces
to the nonparametric dynamic panel data model in Lee (2013); when f is time-invariant and only
exogenous regressors are included in X, (1.1) becomes the fixed effects nonparametric panel data model
in Henderson, Carroll, and Li (2008); when f is time-invariant and X;; includes both Y; +—1 and exogenous
regressors, (1.1) becomes the general nonparametric dynamic panel data model investigated by Su and
Lu (2013); when f? is time-invariant and g (Xi;) = h (X14) +60°Y;;_1, (1.1) becomes the partially linear
dynamic panel data model in Baglan (2009); when g (X;;) = theo, (1.1) becomes the model studied by
Bai (2009) and Moon and Weidner (2010, 2012). These authors propose various estimators for g (-) (or
0°) and ()}, f?) and establish their asymptotic properties.

Here we are mainly interested in consistent estimation and specification testing for the unknown
function ¢ (-) in (1.1). By combining the method of sieves with the Gaussian QMLE, we propose a
nonparametric sieve estimator of g(-). Following Moon and Weidner (2010, 2012), we establish its
consistency, derive its convergence rate based on the perturbation theory of matrix operator in Kato
(1980), and establish its asymptotic normal distribution. We also discuss different sources of biases and
propose a bias-corrected estimator. In addition, we consider the specification test for the commonly used
linear functional form for g (-). Using an empirical Lo-distance, we compare two estimators for g (+), the
linear estimator under the null hypothesis and the sieve estimator under the alternative. We establish
the asymptotic distributions for the proposed test statistic under both the null hypothesis and a sequence
of Pitman local alternatives. To improve the finite sample performance of the test, we also propose a

bootstrap procedure to obtain the bootstrap p-values and justify its asymptotic validity.



The paper also contributes to the literature on nonlinear dynamic panel data models. Many asymp-
totic theories for traditional dynamic panel data models are established with large N and small T'; see
Arellano (2003), Baltagi (2008), and Hsiao (2003). By contrast, we derive the asymptotic results when
both N and T tend to infinity simultaneously. With large T, we need to investigate the properties of
(Xit, e;+) along the time dimension. Stationarity and mixing conditions are usually imposed on the ob-
served data and the error terms. But the correlation between X;; and randomly realized fixed effects
( 1, )\?) complicates the analysis substantially. Specifically, the randomness of )\? leads to the persistence
of Y;; along the time dimension such that we cannot directly assume mixing conditions on { X, €it}?:17
and the randomness of f; gives rise to cross-sectional dependence among {Yit}ﬁ\f:l . Following the idea of
Hahn and Kuersteiner (2011), we adopt the concept of conditional mizing as defined and discussed by
Prakasa Rao (2009) and Roussas (2008). We assume that {Xj, eit}thl is strong mixing conditional on
the o-field D generated by the factors and factor loadings and then establish the asymptotic properties of
our estimator and test statistic. The concept of conditional mixing is also used in Ahn and Moon (2001),
Gagliardini and Gourieroux (2012), Su and Chen (2013), and Su, Jin, and Zhang (2013).

The paper is organized as follows. In Section 2, we propose a sieve estimator for g (-). In Section 3,
based on the asymptotic expansion of the Gaussian quasi-log-likelihood function, we prove the consistency
of the sieve estimator, derive its convergence rate, establish its asymptotic normality, and provide a bias-
corrected estimator. We propose a specification test statistic for linearity and study its asymptotic
properties in Section 4. In Section 5, Monte Carlo simulations are conducted to investigate the finite
sample performance of our estimator and test statistic. In Section 6, we apply our model to a set of real
data. Section 7 concludes. All the proofs of the main theorems are relegated to the appendix. Additional
proofs for the technical lemmas are provided in the online supplementary material.

NOTATION. Let p1; (A) denote the ith largest eigenvalue (counting eigenvalues of multiplicity multiple
times) of a symmetric matrix A. For an m x n matrix B, let | B = \/m denote its Frobenius
norm and || B|| = \/u; (B'B) its spectral norm. For an n x 1 random vector & = (&, ...,£,,)’, let 1€, =
(B3, [€;/M)]'/7 denote its Ly-norm, and [|€]|, » = {E[(X]L, 1&")|P]}/? its Ly-norm conditional on
D. For an n x m matrix A, let Py = A(A’A)_1 A" and My = I, — P4, where I, is an n x n identity
matrix, and (A’A)”" denotes some generalized inverse if A does not full column rank. For any real
square matrices A and B, we use A < B (or A < B) to signify that B — A is positive definite (or positive
semi-definite). For a positive definite symmetric matrix A, we use A'/2 and A~1/? to stand for the unique
symmetric matrices that satisfy A/2A4'/2 = A and A=%/2A4-1/2 = A='. For a real number a, let |a]
denote its integer part and [a] be the largest integer that is strictly smaller than a. We use “a.s.” to
denote “almost surely”. The operators £ and % denote convergence in probability and distribution,

respectively. (N,T) — oo denotes N and T passing to infinity simultaneously.

2 Sieve-based quasi-likelihood maximum estimation

Since g () is an unknown function in (1.1), we propose to estimate g (-) by the method of sieves. For some
excellent reviews on sieve methods, see Chen (2007, 2011). To proceed, let p¥ (z) = (p1 (z),--- , px (z))
denote a sequence of basis functions that can approximate any square-integrable function of = very well
(to be more precise later). Then we can approximate g (x) in (1.1) very well by 5'pX (z) for some K x 1
vector 8 under some conditions. Let K = Kyp be some integer such that K — oo as (N,T) — oo.

We introduce the following notation: pix = pr (Xit), pir = pX(Xi), P = (pi,--- ,piT)/, P =



(Pirks - spirk) s P =Py, Pyog)  Yi= Yir, -, Yir) , Y = (Y1, -, YN) , O = (0, -, 1),

A\ = ()\(1), e ,)\?V)/ . We use 3° to denote the true vector of coefficients § in the sieve approximation of

g () given basis p¥ (). Here we suppress the dependence of p;;, Y, and 8 on K for notational simplicity.
To estimate g, we consider the following approximating linear panel data models:

Y = piuB° + N 7+ wir (2.1)
where u;; = e;s+e€g4 ¢ is the new error term, and ey ;; = g (X)) — pgtﬁo represents the sieve approximation
error. Let u; = (u1,- - ,uiT)/ and u = (ug,--- ,uN)/. In matrix notation, (2.1) can be rewritten as

K
Y =) AP+ A +u (2.2)
k=1

Following Bai (2009) and Moon and Weidner (2010) we propose to estimate the model in (2.2) by
the Gaussian QMLE method. Specifically, the QMLE estimator of (,BO,AO,fO) is given by (B,Xf) =
argming x 5y £ (8, A, f) , where L (3, A, f) is the approximating negative quasi-log-likelihood function:

K ! K
LB f)= %u (Y — > BiPr - Af’) (Y — > BiPi— Af') : (2:3)

k=1 k=1

B= By, Br)s f=(fi, fr) and A= (Ar,-- Ax)". In particular, § = argmingegx Ly (5)
where Lyt () is the profile approximating negative quasi-log-likelihood function:

Lyt (B) = If\li}lﬁNT (B A f) (2.4)

1 K K !
min st (Y - kz::l ,BkPk> M; (Y - };,@’kPk> (2.5)

!/

. I K K
NT > o (Y—ZﬁkPk> (Y—ZﬂkPk> : (2.6)

t=R+1 k=1 k=1

See Moon and Weidner (2010) for the demonstration of equivalence of the above three expressions. Based
on (2.6), one only needs to calculate the T — R smallest eigenvalues of a T' x T matrix at each step of
the numerical optimization over 5. Note that the objective function Lyt () is neither convex nor
differentiable with respect to 8. Multiple starting values for numerical optimization should be used to
find the global minimum. After obtaining 3, one estimates g () by

g(x)=p" ()" B. (2.7)
The expression in (2.6) is our starting point to establish the asymptotic theory. Following Moon and
Weidner (2010), we also adopt the perturbation theory for linear operator in Kato (1980) to derive the

asymptotic expansion of Ly (/) around 3%, The key idea is to form the following decomposition

K K
Y—kz::lﬂkPkZ )\O/fo +Z(ﬂ2—ﬂk) P, +e+e, (2.8)

leading term k=1

perturbation terms

where e4 is an N x T matrix whose (i, t)th element is g (X;) —pgfﬂo. Compared with the decomposition in
eqn. (3.1) in Moon and Weidner (2010), (2.8) has a diverging number of perturbation terms (as K — 00)



and includes the additional sieve approximation error term. If there were no perturbation term in (2.8),
Lyt (8) would be equal to zero. By the continuity of the eigenvalue operator, Ly () should be close to
zero when these perturbation terms are small enough. Using the perturbation theory of linear operators,
we can work out an expansion of Lyr (8) in the perturbation terms and show that this expansion is
convergent as long as the spectral norm of the perturbation terms is sufficiently small. Based on the
first order asymptotic theory for QMLE, we show the consistency of § (x) and establish its asymptotic

normality under suitable conditions.

3 Asymptotic properties of §(-)

In this section, we first derive the convergence rate for g(x) and then establish its asymptotic distribution.

We also analyze the sources of asymptotic biases and propose a bias-corrected estimator.

3.1 Convergence rate of §(-)

To estimate the unknown function by the method of sieves, we assume that g (z) is a smooth function.
Let X =Y x X1 € R% x R% be the support of X;;. Typical approximation and estimation of regression
functions require that X be compact; see Newey (1997). In our model, it seems restrictive to impose the
compactness of X because of the presence of lagged dependent variables. To allow for the unboundedness
of X, we follow Chen, Hong, and Tamer (2005), Blundell, Chen, and Kristensen (2007), and Su and Jin

(2012) and use a weighted sup-norm metric defined as
9 —w/2
90l = 50 Jg (@)| [1+ Jl2l*] " for some w > 0. (3.1)
TEX

If w = 0, the norm defined in (3.1) is the usual sup-norm which is suitable for the case of compact support.

Recall that a typical smoothness assumption requires that a function g : X — R belong to a Holder
space. Let @ = (aq, -+ ,aq) denote a d-vector of non-negative integers and || = 27:1 «y. For any
x = (z1,++ ,24), the |a|th derivative of g : X — R is denoted as V¥g(z) = 91®g(z)/(9z{" - - - 9z5%).
The Holder space A7(X) of order v > 0 is a space of functions g : X — R such that the first [v] derivatives
are bounded, and the [vy]th derivatives are Holder continuous with the exponent v — [v] € (0, 1]. Define

gllxy = sup |g ()] + max .
|| || ! x€X| ( )| le|=[7] z£z* ||{17 — :1'*”’}/7[’ﬂ

the Holder norm:

The following definition is adopted from Chen, Hong, and Tamer (2005).
Definition 1. Let A7(X,w) = {g: X — R such that g(-)[L+]|- [[*]~*/? € AY(X)} denote a weighted
Holder space of functions. A weighted Hélder ball with radius c is

ALXw) = {g € M (Xw) s g0+ 1117772 <e<oo}.
Function g(-) is said to be H(vy,w)-smooth on X if it belongs to a weighted Hélder ball A) (X, w) for some
¥>0,c>0 and w > 0.

K a — a a
Let Py = >, axPy, Q;p{NT = (NT) ! P(a)P’(a), and Q,(Jp) = ED[Qz(yp),NT]’ where a = (ay, ..., ax)
with [|la]| = 1, and D = o (f°, A°) is the o-field generated by f© and A’. Let Qupp, v = w7 Zf\il Zthl Wit PitPhe



and Qupp = Ep [Qupp,nT], Where w;; = w (X;;) and w (-) is some nonnegative integrable function. Let
Wivr = w0 X000 Xty ZuZy where

1 N 1 T 1 N T
Zit = pit — 5 > aipj - T > espis + NT DD Qi (3-2)
j=1 s=1

j=1s=1
aij = N (FAYN) AL and = (3O F) D Let W= Ep(Wyr) and Z; = (Za,., Zir) =
MfOPZ‘ — Nt Zjvzl O(ijMfOPj.

We first state assumptions to be used in the derivation of convergence rate for the sieve estimator.

Assumption 1. (i) \AY\°/N L5y as N - 0o and 0 < ey < pp(Ba) < pq (B)) <8\ < oo
(i7) fOfO)T it YpasT —ooand 0 <cp < pp(Xf) < py (Bf) <¢ < oo;
(i34) |le|| /V'NT = Op(85r) where Sy = /min (N, T).

Assumption 2.(i) [|Qupp NT — Quppll = 0p (1) and 0 < cg < i (Qupp) < i1 (Qupp) < T < 00 ass.
for given w (-) and all K as (N,T) — oc;
(@) W — W] =op (1) and 0 < ¢y < piie (W) < iy (W) < T < 00 a.s. for all K as (N, T) — oo;
(iii) There exist positive constants C and C such that MingoerK |af|=1} Zf\imﬂ ul(ngNT) >C>0
and Ml(Q;(;;),NT) = ||P o] /VNT < C < oo for any a € R¥ with [la]| = 1 as (N,T) — cc.

Assumption 3. (i) g(-) is H(y,w)-smooth on X for some v > d/2 and w > 0;

(#4) For any H(y,w)-smooth function g (x), there exists a linear combination of basis functions
oo, xg = B;pK () in the sieve space G = {g (-) = 8'p™ ()} such that ||g (-) — Hoo,Kglloo@ -0 (K—fy/d) ;

(#47) Piim(x 7y oo (ND) 'Y S (1 + HXitHz)w (wit + 1) < oo for some @ > w + 7;

(0) |25, Sy pirerl| = Op(VNTK);

(vi) |30, [Zies — B (Zie)] || = Op(VNTE) and || 0L, Ep(Zie:)|| = Op(v/NK/T).
Assumption 4. As (N,T) — 0o, K — 0o and Kdy% — 0.

Assumptions 1(4)-(i7) are widely used in the literature on panel data models with interactive fixed
effects; see Bai (2009), Moon and Weidner (2010, 2012), and Su and Chen (2013). Assumption 1(%i7)
is also adopted by Moon and Weidner (2010) and can be verified for various error processes; see the
supplementary material in Moon and Weidner (2010). Assumptions 2(4)-(4¢) impose restrictions on the
eigenvalues of conditional probability limits of Qupp,v7 and Wxr. Assumption 2(ii4) is essential for
the consistency and it requires that P(,) be still full rank after one projects the sieve terms onto the
factor space (fY) and factor loading space ()\0). In other words, we need that the sieve terms are all
high rank regressors as defined by Moon and Weidner (2010). The low rank regressors such as time-
invariant or individual-invariant regressors deserve special attention. Assumption 2(i4i) implies that
||P(a) || /V/NT is uniformly bounded. Assumption 3(i) imposes smooth conditions on g (-). Assumption
3(it) quantifies the approximation error of functions in H (v, w) by a linear combination of basis functions.
Assumption 3(4i7) is used to handle unbounded support, which can be replaced by some conditions
on the tail behavior of the marginal density of X;; as in Chen, Hong, and Tamer (2005) and Su and
Jin (2012). Assumptions 3(i%)-(4i%) jointly imply that (NT)fl/2 legll, = Op (K~7/9); see Lemma
A.2 in Su and Jin (2012). Assumptions 3(v)-(vi) can be verified for various data generating processes
(DGPs) and various sieve bases. The second part of (vi) is similar to the assumption on @ in Lee
(2013). If X;; excludes lagged dependent variables, Ep(Zle;) = 0 and then Assumption 3(vi) reduces to
(NT)fl/2 Ziil Zle; = Op(K'/?). In the next section, we will provide primitive conditions on the DGPs

and sieve bases. Assumption 4 imposes conditions on K.



Let @ = \° (A”2%) " rofo - . Let cV. and 2. be K x 1 vectors whose kth elements are
NT NT
respectively given by

1
C\ry = ot (MyPiMpou), (3.3)
1
Cxri =~ (Pu®'uMpou'Myo + PpMpou' Myoud’ + PyMpou'du'Myo) (3.4)
2,a 2,b 2,c
= CI(VT,ZC + CJ(VT,)k + C](VT,)k’ (3.5)

where C’J(\?Ts )k denotes the kth element of C](\?; ) for s = a, b, and c. We derive an asymptotic expansion
for g (x) and establish its convergence rate in the following theorem.

Theorem 3.1 Suppose that Assumptions 1-4 hold. Then
3 (@) = g(@) =™ (@) Wit (CVF + CFL) + 5 (@) 8° = g (@)] + 9% (@) Rz, (36)

where Ryt is a K X 1 vector with ||Ryrl|| = Op[(K"V{dJr\/fé;,%w)(éz_vlTﬂ + K—7/C)]. FPurther, suppose
1 [[p% (2) p¥ (2) w (z) da] < o0 and [, (1 + ||$H2) w(z)dx < co. Then

/X §()~g@Fw(@de = Op (K/(NT)+ Koy + K 277), (3.7)
T
=a Z Z [§(Xi) =g (Xi)Pw(X) = Op (K/ (NT) + Kdyp + K727/d) : (3.8)

Remark 1. In (3.6), §(z) — g (z) is decomposed into three parts: the first part contributes to the
asymptotic variance and bias, the second part signals the sieve approximation error, and the third part
summarizes higher order terms from the asymptotic expansion of Ly7(3). Theorem 3.1 also states the
convergence rates for both the weighted integrated mean square error (MSE) and weighted sample mean
square error in (3.7) and (3.8), respectively. Op (K/(NT) + K6&4T) and Op (K~2/?) come from the
first and second terms in (3.6), respectively. Apparently, K/ (NT)+ K(S&%« = O(K(FXIZLT), but we keep the
first term in the expression as it corresponds to the usual variance term for a sieve estimate. It is easy
to show that the optimal choice of K, say K,p:, to minimize the integrated or sample MSE is of order
5?\{7[5%/(1)“], yielding the minimized integrated or sample MSE of order Op(éﬁlT/[d/(QwH]). If there were
no lagged dependent variables in X;; and no cross-sectional heteroskedasticity and serial correlation in
the error terms conditional on D, then the rates in (3.7) and (3.8) should be Op (K=27/¢ + K/ (NT)),

and K, would be proportional to (NT)"/!27/+1]

3.2 Asymptotic distribution of §(x)

To study the asymptotic distribution of § (z), we introduce the concept of conditional strong mixing.

Definition 2. Let (2, A, P) be a probability space and B be a sub-o-algebra of A. Let P (-) = P (-|B).
Let {&,,t > 1} be a sequence of random variables defined on (2, A, P). A sequence {&,,t > 1} is said to
be conditionally strong mizing given B (or B-strong-mizing) if there exists a nonnegative B-measurable
random variable ag (t) converging to 0 a.s. as t — oo such that

|Ps (AN B) — Pg(A) Ps(B)| < ag(t) as. (3.9)

forall A€o (&y,...,6,), B€o (§qtEppigrr-) and k> 1, 6> 1.



The above definition is due to Prakasa Rao (2009). When one takes ap (t) as the supremum of the
left hand side object in (3.9) over the set {4 € 0 (£;,...,&,), B € 0 (§yysEpprprs ) s k > 1}, we refer to
it as the B-strong-mixing coefficient.

Define

~ 1 N 1 N T o _ 1 N T
WNTEN—Z: N—ZZ_;ZM z{t andQNTEN—ZZ_: tezt,

where Zz = (Zz{lv ey ZZ(T)/ = Pi—PfoE'D<PZ‘)—N_1 Zjvzl OzijMfoED(Pj)7 Zit = pit—N_l Zj'vzl OéijE'D<pjt)
T Yy s Ep(pis) + (NT) ™ S2000 S00 ) gty E(pjs). Let W = Ep(Wyr) and © = Ep(Qnr)-
We add the following assumptions.

Assumption 5. (i) For each i = 1,..., N, {(Xit,it) : t = 1,2, ...} is D-strong-mixing with mixing coeffi-

%H)/@M) (s) < oo where

cients {ap; (t),1 <t <T —1}. ap (-) = maxi<;<n ap, (-) satisfies Do | s%«
0 is given in Assumption 6;

(i1) E [ex]| 74 "] = 0 as. where F§ ' = o{A%, £, (Xit, Xise—1, €i0—1, Xisp—2, €ip—1, - )fvzl};

(41) (eit, Xit) L (ejs, Xjs)|D for all i # j and all ¢, s = 1,...,T, where ALB|C denotes independence
between A and B given C.
Assumption 6. There exists 0 > 0 such that

(5
(i) sup;, Eleq|* ™ < oo;
0 8-+445 0
(1) sup; E || A7 | < oo and sup, E || f{ < 00;
s L

(iii) supy, sup, , B |pzt7k|8+4 < 0o and supy, sup; ; | Zis i

Zit.

H8+45

|3+49 < o0, where Zj;  is the kth element of

Assumption 7. There exist constants c,,, ¢y, cq, and ¢q that do not depend on K, N, and T such that
0<cy < prg(W) < (W) <&y < o0 as. and 0 < ¢ < pup(Q) < 1y (Q) < & < 0o as. for all K as
(N.T) —

Assumption 8. As (N,T) — oo, K — 0o and max{vVNTK "/ K§yi, VNTKSy 5/2} 0.

Assumptions 5(¢) imposes strong mixing on {(X, eit)}le conditional on D. Its unconditional version
is widely used in the time series literature; see, e.g., Bosq (1998) and Fan and Yao (2003). In the time
series literature, one can find various sufficient conditions for the strong mixing property of a nonlinear
autoregressive (AR) process with identically and independently distributed (IID) errors or nonlinear
ARCH/GARCH type of errors; see Tjgstheim (1990) and Doukhan (1994) for nonlinear AR process with
IID errors, Fan, Yao, and Cai (2003) for functional coefficient AR processes, and Meitz and Saikkonen
(2010) for nonlinear AR-ARCH/GARCH processes. When the nonlinear time series contains exogenous
regressors, sufficient conditions are also available for the strong mixing property; see Doukhan (1994) and
Chen, Racine, and Swanson (2001) for nonlinear ARX processes where exogenous variables and errors are
both IID, Franke and Diagne (2006) for nonlinear ARX-ARCHZX processes but the exogenous variables
are lagged exogenous variables, and Hahn and Kuersteiner (2010) for dynamic Tobit models with mixing
exogenous regressors which follow an AR process. Similar tools used in the time series literature can be
used to establish the conditional strong mixing property for {Yit}?:l in our framework. On the other
hand, if one assumes that the interactive fixed effects are not random (which is analogous to treating

the individual fixed effects as nonrandom in a classical linear panel data model), it suffices to use the



concept of strong mixing.! Assumption 5(ii) imposes a martingale difference sequence (m.d.s.) condition
on {(ei, Xit) ,fé}le. Assumption 5(4i7) imposes the conditional independence between (e;:, X;) and
(€js, Xjs) for i # j given D. This assumption implies that all the cross-sectional dependence comes from
the common factor f{. We can relax this assumption to allow for weak cross-sectional dependence among
{(X1,i, eit)}i]\; conditional on D at the cost of more complicated proofs.

Assumption 6 imposes moment conditions on e;;, )x?, /P, and pjt . Assumption 6(ii) imposes the
existence of (8 + 40)th moments for the factors and factor loadings and thus relaxes the uniform bound-
edness of || f?|| and H)\?H in Moon and Weidner (2010, 2012). Assumption 6(¢i7) is a little stronger than
what is typically assumed for sieve estimation in the IID framework (e.g., Newey, 1997), but is more
general than that in Lee (2013) where a uniform bound over a truncated support is used. In the case
of compact support, it is generally assumed that sup,c HpK (:E)H = Op (¢ (K)) for a non-decreasing
function ¢ (). But for the case of infinite support, this assumption is not reasonable for general sieves
except for some special sieves (e.g., Fourier series and Hermite polynomials) that can automatically deal
with the tail behavior or are uniformly bounded over the infinite support. For this reason, we impose
moment conditions on p;; x instead. One direct implication of Assumption 6(i44) is that sup; ; £ |[pi|| =
Op (K 1 2), which allows for cubic splines or trigonometric series, but excludes polynomial functions. See
Newey (1997) for more discussions on sieves. In addition, we remark that it is possible to relax this

|8+46 < (o (K) for some non-decreasing function ¢, (:) to include more

assumption to supy sup; ; F [pis k
sieve bases. Assumption 7 imposes some restrictions on the eigenvalues of W and 2. Assumption 8 spec-
ifies the relative rates at which N, T, and K pass to infinity. Note that we allow for N/T = ¢ € [0, o0].

When N/T € (0, 00), the assumption reduces to N/K7/¢ 4+ K?/N — 0, i.e., K € (N%7, N/?),

3.2.1 Asymptotic distribution

Let Vi (z) = pX (z) W1QW = 1pX (2) and Ay = VNTV,. /% (). Let by, by, and bs denote K x 1 vec-
tors whose kth elements are respectively given by by , = %tr [Pfo Ep (e'Pk)] ybo g = %tr[ED (ee’) MyoP®],
and bz j, = %tr [ED (e'e) MfoP;;I)’} . Define

BK (.’13) = —ANTpK (:L')/ Wil (T71b1 + N71b2 + T71b3) = —KJNTbl (:L') — Iﬁj\,lTbQ (ac) - HNTbg (i[,’) 5 (310)

where Ky = /N/T. Clearly, b, (z) = 1;1/2 (z) p¥ (z) Wb, for s = 1,2, 3. We establish the asymp-
totic normality of g (z) in the following theorem.

Theorem 3.2 Let Assumptions 1-8 hold. Then Ant [§(z) — g (x)] — Bk () 4N (0,1) as (N,T) — oo.

Remark 2. The proof of the above theorem is quite complicated despite the fact that we establish the as-
ymptotic normality by a version of martingale central limit theorem (CLT). Let ant = An7p™ (z) Wit
Theorem 3.1 suggests that the leading terms in the expansion of Ay [§ (x) — g ()] are given by a NTCI(\}%,
aNTCJ(\?’Ta ), and aNTCJ(\?%)). aNTCJ(\})T contributes to both the asymptotic variance and asymptotic bias
(—kNTD1 (). The latter also arises in linear dynamic panel data models and is caused by the endogene-

ity of Z; defined in (3.2): Ep (Zisey) = =T~ 1 Zg;tH (1 = N7 i) m,4Ep (piseir) # 0 by Assumption

L An alternative for strong mixing is Near Epoch Dependence (NED), which is a much weaker condition and easily verified
for many DGPs; see Gallant (1987), Gallant and White (1988), Davidson (1994), Pstscher and Prucha (1997), and de Jong
(2009). However, there are no works on the sufficient conditions for the NED of {Yz‘t}thl when the models include both
nonlinear ARX and nonlinear ARCHX/GARCHX error. We conjecture that one can apply NED to study our model but

the proofs are much more complicated in various places. For this reason, we adopt the notion of conditional strong mixing.
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5(iid). It is easy to see that an equivalent expression for by is by = = DORITD DD Dy 11 M Ep (piseit) -
aNTCJ(\?’Ta ) contributes to the second bias term, i.e., —n&lTbg (z), and is caused by cross-sectional het-
eroskedasticity of errors conditional on D; aNTC]%?) contributes to the third bias term, i.e., —kn7b3 (),
and is caused by serial correlation and heteroskedasticity of errors conditional on D. In the special case

where e;;’s are IID conditional on D across both i and ¢, the last two bias terms disappear.

3.3 Bias correction

In this section, we propose a bias-corrected estimator for g (x). Let i; be a T' x 1 unit vector that has
unity at position t. For an N x N matrix A, define the diagonal truncation of A as AP = diag(A),
whose (i, j)th element is given by A;;1 (¢ = j) with 1(-) being the usual indicator function. Let I" (-) be the
truncation kernel: T'(s) =1 (|s| < 1). Let My be a bandwidth parameter such that My /T+1/Mp — 0 as
T — co. The right truncation of matrix B is defined by B <R = S"T2V S D((s — ) /Myp)igd) Bisi,.

To construct consistent estimates for the asymptotic bias and variance, we need consistent estimates
of A” and f© under suitable identification restrictions. We use the same identification restrictions as Bai
(2009): f'f/T = Ir and X'\ =diagonal matrix. Given 3, we can obtain (A, f) as the solution to the

following set of nonlinear equations:

1 & . o\
W;(Yi—aﬁ) (vi- r)

where V 7 is a diagonal matrix that consists of the largest R eigenvalues of the matrix in the above

f=FVnr, (3.11)

bracket, arranged in descending order, and

/

A= (2\1,--. ,2\N)/ — 71 [f’ (Yl —Pl,B) L f (YN —PNB)} . (3.12)

o

The projection matrices Ppo and Pyo can be estimated respectively by P; = ff'/T and P = ;\(5\/5\)’1/\ .
Then M; = Ir — P;, My = Iy — Py and & = f(f'f)'(N'\)'A" are estimators of Mo, Myo, and
~l A ~l Al A ~ ~ ALA A ~
®, respectively. Let é; = Yie — §(Xit) — A\ifes @iy = N(AN/N)TIN, i = f1(F /7)Y fs, and Ziy =
N . T . N T -~ »
DPit — % Zj:l QiPjt — % > i1 Msbis + ﬁ Zj:l > s=1 Qijflyspjs- Define

| DT T
Wyr = —= ZZZA” Az{tv OnT = = ZAitZAl{té?tv
NT i=1 t=1 NT i=1 t=1
Vi (x) = pf (:10)' Wﬁ%QNTVAV];}pK (z), and Ant = NT/VK (),

which are estimators of Wxr, Qnr, Vi () and Ay, respectively. For by, by, and bs, define their
corresponding estimates as 131, 52, and 133 whose kth elements are respectively given by

7 1 ~ runcR 2 1 ~ ~/\ truncD S > 1 A~/ antrunc 2
by = Ntr [(e’Pk)t i Pl bog = Ttr {(ee')t M;\qu)} and b3 = Ntr [(e’e)t D MfP;@/ ,

where & is an N x T matrix with (4, t)th element é;;. Let B (x) = — Anrp¥ (x)/ W]}Alp(T_llA)l + N~1hy +
T~ 'bs3) = —knrby (2) — Kb (z) — Kyrbs () and

Bre = B4+ WRAT by + N1by 4+ T 1bs). (3.13)
The bias-corrected estimator of g (z) is given by

be () =p™ () By = g (x) — Ay B (2) . (3.14)
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To estimate the asymptotic bias and variance consistently, we add the following assumption.
Assumption 9. (i) As (N,T) — oo, My — oo and max{Mr /T, \/NK/TY 72, ag+26)/(4+26) (1),
Mry/NK/Téyy} — 0;

(#4) As (N, T) — oo,

max (/{Np /{1};) {K?’/z (K_W/d + 6]}%)} — 0,

max (mxr K% k) (NDYVU K (K74 63%) = o,
Ky VEINTY4 £ NS (K= 4 VS + T INY? — 0,
entVE[T VA4 T/3(K=/4 L VKSR ) + N2 — 0.

Assumption 9(¢) imposes conditions on the bandwidth parameter Mr. Assumption 9(ii) seems quite
complicated but can be simplified under some extra conditions. If we assume kyr — ¢ € (0,00), then
Assumption 9(i4) reduces to K/N'/3 — 0, K3/2=7/4NY/2 _ o, K1/2=7/dN5/8 _ 0, which, in conjunction
with Assumption 8 and the additional requirement v/d > 3/2, implies that K € (NVO,N1/3), where

_ 1/2 5/8
o = max{ytes . Sy b
The following theorem establishes the asymptotic distribution for the bias-corrected estimator gy () .

Theorem 3.3 Let Assumptions 1-9 hold. Then Axt [Gye (z) — g (z)] 4N (0,1) as (N,T) — .

4 A specification test for linearity

In this section, we consider a specification test for the commonly used linear dynamic panel data models
with interactive fixed effects. We propose a test statistic based on the comparison of the linear estimator

under the null hypothesis and the sieve estimator under the alternative.

4.1 The hypothesis and test statistic

For the model in (1.1), we are interested in testing the null hypothesis:
Hp : Pr [g (X;¢) = X[,6°] = Lfor some 6" € ©, (4.1)
where © is a compact subset of R?. The alternative hypothesis is
H; : Prig(X;:) = X/,0] <1 for all § € O. (4.2)

To facilitate the asymptotic local power analysis, we shall consider the following sequence of Pitman local

alternatives:

Hi (vvr) 1 9 (Xit) = X50" + vnp (Xar) (4.3)
where A (-) = Ayt (+) is a measurable nonlinear function and vy — 0 as (N, T) — oo. Let A; =
(A (Xﬂ) gt ,A (XZT))I and A = (Al, cee ,AN)/.

We propose a test for Hy versus Hy by comparing the Lo-distance between two estimators of g (-),

i.e., the linear and sieve estimators. Intuitively, both estimators are consistent under the null hypothesis

of linearity while only the sieve estimator is consistent under the alternative. So if there is any deviation
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from the null, the Lo-distance between two estimators will signal it out asymptotically. This motivates
us to consider the following test statistic

LA )
Iyt = ~NT Z Z {gbc ) — gt (Xit)] w (Xit),

where g (z) = 2’0, 6 is Moon and Weidner’s (2010, 2012) linear estimator of the coefficient # under Hy,
and w (z) is a user-specified nonnegative weighting function.? Similar test statistics have been proposed
in various other contexts in the literature; see, e.g., Hirdle and Mammen (1993) and Hong and White
(1995). We will show that after being appropriately centered and scaled, I' 7 is asymptotically normally
distributed under the null hypothesis of linearity.

4.2 The asymptotic distribution under H; (7y,)

N T N T
Let wam,NT = ﬁ Zi:l Zt:l witXith{ta mex = ED[wax,NT]v prac,NT = ﬁ Zi:l Zt:l witpitXl(ty
and Qupz = Ep [Qups,nT| - Let Dy be a d x d matrix with its (K1, k2)th element given by

DN yky = r (MyoXg, MpoX,) . (4.4)

NT

Let D = Ep [Dnr] - Let T yp be a dx1 vector whose kth element is given by Yy = NT (M/\o X Mpo A/ )
We add the following assumptions.

Assumption 10. A (z) is H(y,w)-smooth, and there exists 4 € RX such that Hﬂg” < oo and
1A C) =P () Ball o = O (K79

Assumption 11. (i) 0 < C < 13 (Quaa) < f11 (Quaa) < Cg < 00 as. as (N, T) — 0;
(1) ||Qupsll < Co < o0 as. for all K as (N,T) — 0;
(iii) 0 < Cp < g (D) < py (D) < Cp < 00 as. as (N, T) — 0;

where C, Cq, Cq, Cp, and Cp are constants that do not depend on K, N, or T.

Assumption 12. As (N,T) — oo, K3/N — 0, max (s, ,.g;/lT) K-1/4 -,

KMYA/NIT S, oy 20000 (0) 4 KA/ NIT My —
max(mNT,mNT) {K5/4 (K v/d—|—5_ )} —
HR[}FKlM[N*l/‘l NS/S(K7V/d + ‘/_51TIT> + TﬁlNl/Q] -
Ny KYAT Y4 £ T8(K= 4 VK§ )+ NTITY? -

o o o o

Assumption 11 imposes some restrictions on the eigenvalues of certain matrices. Assumptions 11(7)
and (7i7) are reasonable as both Q.. and D are d x d matrices. Assumption 11(4¢) is a high-level assump-
prp prx

{wpx wa:(‘
it is commonly assumed that 1 (Qupp) is bounded above from infinity and below from 0 uniformly in K in

tion. Let Q,, = , an augmented version of Qypp. In the literature on sieve estimation,

large samples. Under this condition and Assumption 11(¢), if one further requires that p; (Qu) < C < o0,
then one can readily demonstrate that [|Qupe||> = 11y (QupeQiupe) < 11 (Qupp) 11 (Quaa) < 00. Note that

2In theory, the restricted parametric estimator 6 can be bias corrected or not. Intuitively, the asymptotic bias of 0 is of
order dy,

test has power to detect converge to the null. Of course, in practice a bias corrected parameter estimator is recommended.

NT, which is of smaller order than (NT)’l/2 K1/%. The latter is the rate at which the nontrivial local alternatives our

13



Assumption 12 imposes much weaker requirement on (N, T, K, Mr) than that for the bias-correction of
sieve estimator. But it is still necessary to use bias-corrected sieve estimate in specification testing.

Assumption 12 also allows for the case where N/T = ¢ € [0,00]. If we restrict ¢ € (0,00), Assump-
3426 . .
tion 12 reduces to K'/*max{} 27, a5 (T),%} — 0 and K3/N — 0, K € (N"1,NY3), where

_ 1/2 5/8
’yl = max{m, m}
We define the asymptotic bias and variance terms as follows

Byt = tr (VNVAprpW%Q) and V7 = 2tr (WﬁleppW%Qﬁ/*leppW%Q) .
The following theorem establishes the asymptotic distribution of our test statistic under Hy (v )-

Theorem 4.1 Suppose that Assumptions 1-8 and 10-12 hold. Under Hy (ynp) with ¥y = (NT)_l/2 V}\{;{,

Jnt = (NTT Nt — BNr) // Ve 4N (AA7 1),
where A® = plimx 7)o 7 vazl 23:1 (Ay — X{tDXéwTNT)Q wi is assumed to exist and be finite.

Remark 3. The proof of the above theorem is tedious and is relegated to Appendix B. The idea is to
express Jyr as a degenerate second order U-statistic plus some smaller order terms and then apply de
Jong’s (1987) CLT for independent but non-identically distributed (INID) observations. As Su, Jin, and
Zhang (2013) notice, even though the CLT in de Jong (1987) works for second order U-statistics associated
with INID observations, a close examination of his proof shows that it also works for conditionally
independent but nonidentically distributed (CINID) observations. Noting that A% = 0 under Hy, an
immediate consequence of the above theorem is that (NTTn7 — Byr) /VVNT 4, N (0,1) under the
null. In view of the fact that Vyr = Op (K), we have yyp = (]\7T)_1/2 V}V/;,{ = Op((NT)_l/2 K4,
This indicates that Jy7 has power to detect local alternatives that converge to the null hypothesis at
the rate (NT)fl/2 K'* provided that A® > 0. This is the rate we can obtain even if f) and A are
observable. We obtain this rate despite the fact that the unobserved factors f{ and factor loadings )\?
can be only estimated at slower rates (N ~'/2 for the former and T—'/2 for the latter, subject to certain
matrix rotation), which suggests that the slower convergence rates of the estimates of f2 and A} do not
have adverse first-order asymptotic effects on the asymptotic distribution of Jy7.

To implement the test, we propose to estimate By and Vy7 by IEBNT Etr(W;,%prp,NTW;,%QNT)
and Vyp = 2tr(VAV]§71«prp’NTVAVJG%QNTWIQ%QWW,NTWJQ%QNT), respectively, where Wit = (NT)f1 Zfil
S ZiZl, and Qnp = (NT) ™ Zf\;l S ZitZ!,é%. Then we define a feasible test statistic:

jNT = (NTFNT — BNT) / @NT. (45)

The following theorem establishes the asymptotic distribution of .Jy under H; (YnT)-

Theorem 4.2 Suppose that Assumptions 1-8 and 10-12 hold. Under Hy (yyy) with yyp = (NT) /2

Remark 4. The above theorem implies that Jn7 has nontrivial asymptotic power against local alterna-
tives that converges to the null at the rate (NT)fl/2
Pr (jNT > z|H; (nyT)) —1-® (z— A%) as (N, T) — oo, where ® (-) is the standard normal cumulative
distribution function (CDF).

Under Hy, A2 =0, and Jyr is asymptotically distributed N (0,1). This is stated in the following

corollary.

K4, The asymptotic local power function satisfies
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Corollary 4.3 Suppose that Assumptions 1-8 and 11-12 hold. Then under Hy, InT 4N (0,1).

Remark 5. In principle, one can compare Jnr with the one-sided critical value Zo, the upper ath
percentile from the standard normal distribution, and reject the null when JnT > za at the o significant
level. An alternative approach is to use bootstrap p-values.

Remark 6. To understand the asymptotic behavior of Jnr under global alternatives, we need to
study the asymptotic property of 6 under H;. In this case, we define a pseudo-true parameter 6*
as the probability limit of 6. Then A(Xy) = g(Xiu) — X,,0° is not equal to 0 as. Let A, =
[A (Xi1), - ,A(XiT)]/ for i = 1,..,N and A = (Al,n- ,AN)I. With the additional assumption
Al = 0p[(NT)1/2}, we can show that 0 — 6* = Dy%Tnr + op (1), where Ty is a d x 1 vec-
tor with kth element Yy = (NT)_ltr(M/\oXkaoA’). By some calculations, we can show that
Inr = %7 Ziil Zthl A (Xi)? wit 4+ op (1) = Op (1). This, together with the fact that By = Op (K)
and Vyp = Op(\/E) under Hy, implies that our test statistic Jy7 diverges at the rate Op(NT/\/E)
under Hy. That is, Pr(jNT > byr|Hy) — 1 as (N,T) — oo under H for any nonstochastic sequence
byt = o( NT/VK). So our test achieves consistency against global alternatives.

Remark 7. With a little modification, our test can also be applied to testing for the specification of
various other models with interactive fixed effects. First, one can consider a partially linear panel data
model with interactive fixed effects where g (X;¢) = g1 (X1,i¢) + 9g’X27it, X = (X{’it, Xéﬁ)l, and gq (*)
is an unknown smooth function. In this case, the hypotheses are Hj, : Pr[g1 (X1,::) = 9(1)’X1’it] =1 for
some 9[1) € 01 vs. Hj : Prigr (X144) # 9’1X1’it] < 1 for all 8; € ©1. One can continue to apply our
test by estimating the model under the null and under the general nonparametric alternative for g (-)
without imposing its partially linear structure. But this test may suffer some loss of efficiency as it
does not impose the partially linear structure under the alternative. Alternatively, one can establish the
asymptotic distribution theory for the sieve estimator for the partially linear model and compare it with
the linear estimator under the null. The asymptotic distribution theory for the resulting test statistic is
similar to what we have above. We omit the details to save space. Second, our test can also be applied to
models that include both additive and multiplicative fixed effects. Let (Ag 1, ..., Aq, ~) be the N individual
fixed effects. We can write the common component as Mg i far + Ay f0 = X?/ f_tb for individual 4 at time
period t, where fq; =1, fto = (1, fto’)/, and X? = ()\w-, A?')/. In this case, fq: is known. We can obtain
the sieve QMLE without estimating f, ; in the optimization process. With some minor modifications, we
can establish the asymptotic distributions for the resulting estimator and test statistic. Third, we can also
modify our test statistic to test for the hypotheses: HJj : Pr[g (X;t) =0] =1 v.s. HY : Pr[g (X;:) = 0] < 1.
This testing problem is particularly important in the nonlinear autoregressive panel data models (e.g.,
Yiie=9Yit—1)+ )\?/fto + ei¢) because it is equivalent to testing for the presence of dynamic effects. It is
also important to test the presence of anomaly effects in the asset pricing literature. Apparently we can

compare the sieve estimate of g () with 0 to construct a test statistic, which is a special case of our test.

4.3 A bootstrap version of the test

Despite the fact that Jn is asymptotically N (0, 1) under the null, it is not wise to rely on the asymptotic
normal critical values to make statistical inference in finite samples because of the nonparametric nature of
our test. In addition, even though the slow convergence rates of our factors and factor loadings estimates
do not affect the asymptotic normal distribution of our test statistic, they tend to have adverse effects in

finite samples (see, Su and Chen, 2013). As a result, tests based on standard normal critical values tend
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to suffer severe size distortions in finite samples. Therefore we propose a bootstrap procedure instead to
obtain the bootstrap p values. The procedure is in the spirit of Hansen’s (2000) fixed-regressor bootstrap

and goes as follows:

1. Under Hy, obtain the linear estimators @, ft(l), 5\@ 0

; , and &, where the superscript “({)” denotes
estimates under the null hypothesis of linearity; under Hj, obtain the bias-corrected sieve estimators:
N A ~ ~ ~l ~1 ~ ~

Bpes ft> Ai, and é;. Calculate the test statistic Jyr based on gpe (Xit) = By p™ (Xit), 0 Xit, Mi, fr,

and éit .

1)

2. For ¢ = 1,..., N, obtain the wild bootstrap errors {e;*t}tT:1 as follows: e}, = Vitégt where vy, are

S0y < (
IID N (0,1). Then generate the bootstrap analogue Y;; of ¥;; by holding (X, t(l), )\Z(» )) as fixed:

R ~ (1) ~
Y= X0+ A fO f et fori=1,..,Nandt=1,..T.
3. Given the bootstrap resample {Y;;, X;;}, obtain the sieve QMLEs g;. (X;¢), 5\:, f# and &%, and
Ak o (Dx 0 A1)« ~(1)* .. S
the linear estimators ¢ , )\z(, ) , ft(l) and egi) . Calculate the bootstrap test statistic J3, based on
. (Xun), X407, fr, X, and é,.

7

4. Repeat Steps 2-3 for B times and index the bootstrap statistics as {jj{,T)b}f:l. Calculate the
bootstrap p-value: p* = B~} Zle 1(jj§,T7b > Jnr).

It is straightforward to implement the above bootstrap procedure. Note that we impose the null
hypothesis of linearity in Step 2. Since the regressors are treated as fixed, there is no dynamic structure in

the bootstrap world. The next theorem implies the asymptotic validity of the above bootstrap procedure.

Theorem 4.4 Suppose that the conditions in Theorem 4.2 hold. Then jj{,T TN (0,1) in probability,

where & denotes weak convergence under the bootstrap probability measure conditional on the observed
sample Wyt = {(X3t,Yit) :i=1,..,N, t=1,..,T}.

5 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performance of our
estimators and test.

5.1 Data generating processes

We consider the following data generating processes (DGPs):

DGP 1: Y = 0.5Yi 1 + AV f2 + eu,

DGP 2: Yy = 0.5Y; -1 + X + N f0 + €it,

DGP 3: Yiy = 0.5i-1 + 0.5 | ittt — 0.5 42V 10 + e,

DGP 4: Yy = 0.5Y; 41+ 05 [® (Vi1 — Y1) — 0.5] + A f2 + ean,

DGP 5: Yy = 0.5Y; ;1 +0.25 [¢ (Yi—1) — 1/v2r] + 0.5 [¢ (X10) — 1/V27] + AV [ + ear,

DGP 6: Y;; = 0.5Y; ;1 + 0.25X1 3[® (Yie—1) — 0.5] + 0.5 [ (X1,5¢) — 1/vV27| + A 2 + ear,

where )\? = ()\?1,)\?2)l, = (ftol,f%)/, i=1,...N,t=1,.,T, ®(-) and ¢ (-) are the standard normal
CDF and PDF, respectively. The regressors X;; in DGPs 2, 5, and 6 are generated according to
Xpit = 05040 + 0.500 ;1 f2 + 0.5M) o f + cit, where M)y, ADy, AD i1, AD o, and &5 are IID N (0,1), f7),

x,il) Nx,i2

12, and e are IID N (0,0.25), «; , are IID U[—0.25,0.25], and they are mutually independent of each
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other. Clearly, the exogenous regressor X ;; has a factor structure and is correlated with the common
factors f and f%. All the above six DGPs are used to evaluate the finite sample performance of our
estimator and test statistic. In the specification testing for linearity, DGPs 1-2 and 3-6 are used for
level and power studies, respectively. For all DGPs, we discard the first 200 observations along the time
dimension when generating the data.

Note that the idiosyncratic error terms in the above six DGPs are all homoskedastic (conditionally and
unconditionally). To investigate the effect of conditional heteroskedasticity for the estimation and testing,
we consider another set of DGPs, namely, DGPs 1h-6h, which are identical to DGPs 1-6, respectively, in
the mean regression components but different from the latter in error terms. For DGPs 1h, 3h-4h, we
generate the errors as follows e;; = /hizeit, hit = 0.1 +0.2th71, and €;; ~IID N(0, 1) across both i and ¢.
For DGPs 2h, 5h-6h, the errors are generated according to e;; = v/hiz€it, hir = 0.1+ O.lYfF1 + 0.1X12’Z-t,
and €;; ~IID N(0,1) across both ¢ and t.

5.2 Estimation: implementation and evaluation

In each DGP, we compute six estimators. We first compute the sieve estimate § (x) and its bias-corrected
version gpe (z). Then we compute the bias-corrected infeasible estimate grp (z) which is obtained by
treating { ff}il as observables. We also calculate another three estimates by pretending the regression
function takes the commonly assumed linear functional form and term them as the linear QMLE §() (x),

its bias-corrected version gé? (), and the infeasible linear estimate gY} (z) by treating the factors as

observables, respectively. The infeasible estimates g}l} () and grr (x) provide a reference for efficiency
comparison in DGPs 1-2 (or 1h-2h) and 3-6 (or 3h-6h), respectively. Compared with the sieve estimates
(9 (), Gbe (x)), the linear estimates (3 (z), ggf} (2)) signify the bias due to functional form misspec-
ification in DGPs 3-6 or 3h-6h. Although there is no conditional heteroskedasticity across i, or serial
correlation or heteroskedasticity across ¢ for some DGPs (e.g., DGPs 1-6), we correct all three bias terms
to obtain gy (z) and Qélc) ().

To obtain these estimates, we need to choose the bandwidth My for the bias correction. Throughout
the simulation, we use Mp = LT 1/ 7J. The cubic B-spline is adopted as the sieve basis in all DGPs. The

basis b; , of a B-spline of degree n > 1 (of order m = n + 1) is given recursively by

bjn(2) = (@) bjn—1(2)+[1—jr1n (@) bjt1n-1(2),
bjo(x) = 1(z€ [vj,v541)),

1 (vj4n # v;) and {v; }]Jiol is a sequence of non-decreasing real numbers (i.e.,
J+m—1
=0

for x € [vg,vy41]. For more details on the recursive construction of B-spline basis, see Racine (2012). In

where «; ,, (z) = FE—

knots). We can approximate any smooth scalar function B () by a linear combination of {b; ,, ()}

DGPs 1, 3, 4, 1h, 3h, and 4h where g (z) is a univariate function, we use the cubic B-spline basis (n = 3)

)

/
P () = [0 )b ), 0 )] (5.1)

where the superscript “(Y")” denotes its correspondence to {Y;;_1}. The knots {vyj}jiol are chosen as
the empirical quantiles of {Y; ;1,7 = 1,...,N, t = 2,...,T}, ie., v, ; denotes the j/(J + 1)th sample
quantile of {Y;;—1}. So the total number of approximating terms in the sieve basis is given by K = J +4.
In DGPs 2, 5, 6, 2h, 5h, and 6h, we consider two choices of sieve bases depending on whether we impose

additivity on g (y,x) or not. When we impose additivity, i.e., g (y,z) = g1 (y) + g2 (z), the basis can be
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chosen as follows

p* (y,2) = [Py () o3 (2) (5:2)
where p33 (z) = [béig) (z), bf? (x),--- =bfl)i)2,3 (x)] with b;ig) (x) being analogously defined as b%) ().
For convenience, we adopt the same number of knots for different regressors. Note that we leave the last

element bfjﬁé,3 (z) out of p%3 (2) to avoid perfect multicollinearity as Z}Hg’ b%) (z) = 1. For this case,

the total number of approximating terms is K = 2J 4+ 7. When we do not impose additivity, the basis is

chosen as follows
p* (y,2) = [y (y) @ piH ()] (5.3)

where ® denotes the tensor product. Then the total number of approximating terms is K = (J + 4)2.
Even for as small values as J = 3, 4, and 5, we have K = 49, 64, and 81 terms in the sieve estimation,
respectively. In all cases, to evaluate how the estimators are sensitive to the choice of J, we consider
choosing J = |C (NT)1/7‘5J for C =1, 1.5, and 2.3

We consider the (N, T) pairs with N, T' = 20, 40, and 60. To evaluate the finite sample performance
of different estimators, we first calculate the root mean squared error (RMSE) for each replication:
RMSE(j) = \/% SN S 19 (X)) — g (Xin)]?a (Xit), where a(-) is used to trim out 2.5% tail ob-
servations along each tail of each dimension of X;;. Then we obtain the average RMSE (ARMSE) by

averaging RMSE(§) across 2000 replications, where § is a generic estimator of g. Other evaluation criteria
like the median of RMSE, the average or median mean absolute deviation are also considered and they
tend to yield qualitatively similar behavior for various estimators considered here. We only report the
results based on the ARMSE to conserve space.

Tables 1-2 report the estimation results for homoskedastic or heteroskedastic errors, respectively, when
we do not impose additivity for the bivariate regressions in DGPs 2, 5, 6, 2h, 5h, and 6h. Table 3 reports
the estimation results for the latter six DGPs when we impose additivity. We summarize some important
findings. First, for all DGPs, the ARMSEs for g, gy and g;p decrease as either N or T increases. The
results for homoskedastic and heteroskedastic errors are similar. Second, as expected, when the regression
functions are linear in DGPs 1, 2, 1h, and 2h, the linear estimate is more efficient than sieve estimate; when
the regression functions are nonlinear, the sieve estimates (bias-corrected or not) outperform the linear
estimates in terms ARMSE significantly, and the ARMSEs of the linear estimates tend to be stabilized at
some large constant due to their inconsistency in the case of misspecification of functional form. Third,
the bias correction works well for almost all DGPs and combinations (N,7') under investigation. The
reduction of the percentage of ARMSE due to the bias correction is diminishing as T" increases, which is
consistent with our asymptotic result that the dominant first bias term is of order Op(v/K /T). Fourth,
the infeasible estimates always beat the feasible ones but the differences in ARMSEs for different types
of estimates are shrinking as either N or T increases. Fifth, when additivity is correctly imposed for the
bivariate regressions in DGPs 2, 5, 2h, and 5h, a comparison across the three tables suggests it leads
to more precise estimation and significant reductions of ARMSEs for all estimates under investigation
when compared with the case it is not imposed. When additivity is not correctly imposed for DGPs 6
and 6h, it generally results in large ARMSEs in large samples; exceptions may occur when there are too
many sieve approximation terms that tend to result in large variance. Lastly, the above results are kind
of robust for the three choices of J for both univariate regressions and additive bivariate regressions.

3 Alternatively one can follow, e.g., Lee (2013), to use the leave-one-out cross-validation (CV) to choose K adaptively.
Another possibility is to apply the Lasso-type techniques to achieve simultaneous variable selection and estimation. We
leave these as a future research topic.
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Table 1: ARMSE comparison for DGPs 1-6: homoskedastic errors

=1 Cc=15 =2 Linear
0GP N T §  Goe  dir 0 e Qi 0 e grr 99 g0 W
1 20 20 0.0575 0.0559 0.0453 0.0639 0.0625 0.0520 0.0688 0.0675 0.0572 0.0304 0.0277 0.0135
40 0.0384 0.0380 0.0310 0.0408 0.0406 0.0342 0.0475 0.0474 0.0410 0.0206 0.0199 0.0105
60 0.0307 0.0303 0.0248 0.0364 0.0361 0.0309 0.0388 0.0385 0.0337 0.0157 0.0152 0.0085
40 20 0.0401 0.0384 0.0317 0.0439 0.0422 0.0358 0.0511 0.0497 0.0440 0.0240 0.0212 0.0107
40 0.0268 0.0262 0.0216 0.0319 0.0314 0.0272 0.0344 0.0339 0.0296 0.0147 0.0140 0.0072
60 0.0230 0.0227 0.0195 0.0248 0.0245 0.0215 0.0289 0.0287 0.0258 0.0117 0.0113 0.0061
60 20 0.0347 0.0322 0.0268 0.0401 0.0379 0.0331 0.0424 0.0403 0.0356 0.0209 0.0175 0.0085
40 0.0230 0.0226 0.0197 0.0253 0.0249 0.0222 0.0289 0.0285 0.0261 0.0115 0.0105 0.0059
60 0.0181 0.0178 0.0159 0.0195 0.0192 0.0174 0.0224 0.0222 0.0204 0.0088 0.0082 0.0046
2 20 20 0.1107 0.1102 0.0844 0.1312 0.1312 0.1025 0.1480 0.1472 0.1194 0.0297 0.0294 0.0251
40 0.0843 0.0841 0.0566 0.0932 0.0931 0.0675 0.1076 0.1072 0.0913 0.0187 0.0186 0.0158
60 0.0732 0.0731 0.0459 0.0772 0.0772 0.0652 0.0844 0.0842 0.0747 0.0156 0.0156 0.0133
40 20 0.0860 0.0858 0.0594 0.0960 0.0959 0.0709 0.1142 0.1128 0.0947 0.0192 0.0190 0.0170
40 0.0679 0.0679 0.0402 0.0685 0.0685 0.0572 0.0729 0.0726 0.0658 0.0127 0.0125 0.0113
60 0.0583 0.0581 0.0394 0.0630 0.0629 0.0462 0.0659 0.0657 0.0605 0.0100 0.0100 0.0094
60 20 0.0756 0.0755 0.0480 0.0828 0.0824 0.0681 0.0912 0.0904 0.0778 0.0156 0.0154 0.0141
40 0.0592 0.0591 0.0405 0.0643 0.0643 0.0477 0.0676 0.0673 0.0623 0.0110 0.0108 0.0100
60 0.0511 0.0511 0.0322 0.0544 0.0543 0.0381 0.0566 0.0566 0.0500 0.0084 0.0084 0.0077
3 20 20 0.0590 0.0576 0.0468 0.0647 0.0634 0.0523 0.0686 0.0673 0.0563 0.0963 0.0956 0.1017
40 0.0398 0.0395 0.0326 0.0426 0.0424 0.0359 0.0490 0.0488 0.0429 0.0928 0.0929 0.1036
60 0.0308 0.0305 0.0259 0.0371 0.0368 0.0321 0.0392 0.0390 0.0344 0.0923 0.0924 0.1046
40 20 0.0410 0.0397 0.0336 0.0443 0.0431 0.0371 0.0511 0.0501 0.0442 0.0934 0.0933 0.1038
40 0.0276 0.0271 0.0230 0.0317 0.0313 0.0274 0.0339 0.0336 0.0297 0.0905 0.0906 0.1033
60 0.0245 0.0243 0.0214 0.0261 0.0259 0.0231 0.0294 0.0293 0.0264 0.0912 0.0913 0.1045
60 20 0.0346 0.0326 0.0278 0.0405 0.0386 0.0340 0.0423 0.0406 0.0361 0.0902 0.0899 0.1016
40 0.0245 0.0241 0.0217 0.0264 0.0260 0.0236 0.0297 0.0293 0.0272 0.0900 0.0902 0.1035
60 0.0192 0.0190 0.0173 0.0203 0.0201 0.0183 0.0232 0.0230 0.0213 0.0895 0.0897 0.1031
4 20 20 0.0591 0.0576 0.0472 0.0645 0.0632 0.0523 0.0687 0.0674 0.0566 0.0869 0.0861 0.0892
40 0.0404 0.0401 0.0336 0.0424 0.0422 0.0360 0.0486 0.0484 0.0425 0.0831 0.0832 0.0905
80 0.0324 0.0321 0.0278 0.0373 0.0370 0.0323 0.0394 0.0391 0.0345 0.0825 0.0825 0.0912
40 20 0.0417 0.0403 0.0346 0.0445 0.0432 0.0373 0.0509 0.0498 0.0440 0.0838 0.0836 0.0905
40 0.0293 0.0288 0.0253 0.0322 0.0318 0.0280 0.0343 0.0340 0.0300 0.0808 0.0809 0.0901
60 0.0252 0.0250 0.0223 0.0263 0.0262 0.0234 0.0293 0.0291 0.0262 0.0814 0.0815 0.0911
60 20 0.0358 0.0338 0.0294 0.0405 0.0386 0.0340 0.0424 0.0406 0.0361 0.0809 0.0805 0.0888
40 0.0254 0.0250 0.0227 0.0268 0.0264 0.0241 0.0300 0.0296 0.0274 0.0804 0.0805 0.0903
60 0.0203 0.0201 0.0185 0.0209 0.0207 0.0190 0.0232 0.0230 0.0213 0.0798 0.0800 0.0898
5 20 20 0.1176 0.1132 0.0831 0.1403 0.1344 0.0990 0.1623 0.1552 0.1145 0.0893 0.0872 0.0785
40 0.0742 0.0723 0.0537 0.0893 0.0864 0.0655 0.1224 0.1182 0.0899 0.0803 0.0799 0.0768
60 0.0594 0.0586 0.0435 0.0854 0.0834 0.0628 0.0989 0.0965 0.0721 0.0787 0.0784 0.0760
40 20 0.0842 0.0786 0.0576 0.1024 0.0951 0.0688 0.1374 0.1276 0.0929 0.0825 0.0809 0.0762
40 0.0536 0.0520 0.0382 0.0783 0.0753 0.0555 0.0911 0.0877 0.0645 0.0776 0.0773 0.0755
60 0.0504 0.0493 0.0378 0.0629 0.0611 0.0449 0.0831 0.0807 0.0590 0.0780 0.0778 0.0760
60 20 0.0677 0.0638 0.0467 0.0996 0.0928 0.0668 0.1135 0.1059 0.0769 0.0798 0.0791 0.0752
40 0.0521 0.0503 0.0383 0.0655 0.0629 0.0456 0.0862 0.0827 0.0598 0.0774 0.0771 0.0753
60 0.0419 0.0410 0.0313 0.0522 0.0507 0.0372 0.0704 0.0683 0.0491 0.0773 0.0771 0.0755
6 20 20 0.1164 0.1121 0.0832 0.1400 0.1343 0.0988 0.1611 0.1542 0.1144 0.0885 0.0867 0.0792
40 0.0732 0.0713 0.0540 0.0886 0.0859 0.0660 0.1220 0.1180 0.0907 0.0802 0.0798 0.0771
60 0.0585 0.0577 0.0433 0.0850 0.0830 0.0626 0.0981 0.0957 0.0718 0.0781 0.0780 0.0761
40 20 0.0835 0.0781 0.0575 0.1010 0.0940 0.0688 0.1354 0.1260 0.0928 0.0820 0.0804 0.0765
40 0.0524 0.0510 0.0381 0.0777 0.0748 0.0555 0.0904 0.0869 0.0645 0.0776 0.0773 0.0761
60 0.0495 0.0485 0.0377 0.0619 0.0602 0.0447 0.0820 0.0797 0.0586 0.0778 0.0777 0.0765
60 20 0.0664 0.0627 0.0466 0.0983 0.0916 0.0668 0.1121 0.1048 0.0772 0.0790 0.0784 0.0755
40 0.0512 0.0496 0.0384 0.0648 0.0623 0.0456 0.0854 0.0820 0.0599 0.0771 0.0769 0.0757
60 0.0402 0.0394 0.0312 0.0510 0.0496 0.0370 0.0691 0.0671 0.0487 0.0770 0.0769 0.0761
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Table 2: ARMSE comparison for DGPs 1h-6h: heteroskedastic errors

=1 Cc=15 =2 Linear

0GP N T §  Goe  dir 0 e Qi 0 e grr 99 g0 W
1h 20 20 0.0724 0.0693 0.0531 0.0765 0.0733 0.0558 0.0802 0.0770 0.0596 0.0527 0.0488 0.0299
40 0.0488 0.0480 0.0381 0.0517 0.0510 0.0406 0.0560 0.0554 0.0449 0.0346 0.0326 0.0216

60 0.0389 0.0385 0.0314 0.0429 0.0426 0.0348 0.0446 0.0443 0.0363 0.0249 0.0235 0.0179

40 20 0.0492 0.0474 0.0384 0.0528 0.0511 0.0415 0.0575 0.0559 0.0462 0.0381 0.0333 0.0219

40 0.0334 0.0329 0.0271 0.0368 0.0365 0.0302 0.0385 0.0381 0.0317 0.0228 0.0211 0.0141

60 0.0290 0.0288 0.0242 0.0304 0.0302 0.0256 0.0327 0.0324 0.0278 0.0211 0.0203 0.0141

60 20 0.0454 0.0420 0.0329 0.0509 0.0477 0.0371 0.0525 0.0494 0.0390 0.0340 0.0288 0.0177

40 0.0299 0.0293 0.0248 0.0314 0.0308 0.0262 0.0332 0.0326 0.0280 0.0199 0.0185 0.0128

60 0.0234 0.0230 0.0194 0.0244 0.0239 0.0204 0.0261 0.0256 0.0220 0.0156 0.0150 0.0101

2h 20 20 0.1447 0.1450 0.1161 0.1685 0.1682 0.1317 0.1806 0.1791 0.1481 0.0483 0.0474 0.0453
40 0.1050 0.1053 0.0777 0.1164 0.1161 0.0890 0.1274 0.1267 0.1124 0.0345 0.0342 0.0327

60 0.0899 0.0898 0.0620 0.0928 0.0926 0.0806 0.1003 0.0997 0.0898 0.0264 0.0262 0.0245

40 20 0.1054 0.1051 0.0794 0.1161 0.1158 0.0911 0.1337 0.1320 0.1151 0.0340 0.0326 0.0310

40 0.0802 0.0802 0.0549 0.0825 0.0824 0.0720 0.0860 0.0856 0.0807 0.0230 0.0228 0.0220

60 0.0695 0.0695 0.0521 0.0755 0.0755 0.0589 0.0764 0.0761 0.0724 0.0194 0.0192 0.0180

60 20 0.0910 0.0910 0.0659 0.0976 0.0971 0.0861 0.1076 0.1062 0.0960 0.0269 0.0267 0.0253

40 0.0688 0.0686 0.0513 0.0736 0.0735 0.0580 0.0761 0.0758 0.0726 0.0195 0.0192 0.0180

60 0.0598 0.0598 0.0433 0.0630 0.0630 0.0489 0.0676 0.0676 0.0605 0.0166 0.0165 0.0159

3h 20 20 0.0813 0.0777 0.0612 0.0850 0.0815 0.0634 0.0873 0.0838 0.0660 0.1139 0.1119 0.1087
40 0.0545 0.0542 0.0461 0.0576 0.0573 0.0479 0.0613 0.0610 0.0509 0.1018 0.1023 0.1080

60 0.0453 0.0449 0.0382 0.0493 0.0490 0.0409 0.0504 0.0502 0.0417 0.1013 0.1015 0.1089

40 20 0.0566 0.0547 0.0455 0.0596 0.0576 0.0476 0.0634 0.0617 0.0511 0.1024 0.1017 0.1077

40 0.0399 0.0396 0.0347 0.0422 0.0418 0.0359 0.0430 0.0426 0.0364 0.0970 0.0975 0.1056

60 0.0356 0.0354 0.0309 0.0365 0.0362 0.0315 0.0368 0.0365 0.0317 0.0976 0.0981 0.1073

60 20 0.0520 0.0494 0.0408 0.0562 0.0534 0.0433 0.0577 0.0550 0.0444 0.0989 0.0981 0.1045

40 0.0350 0.0346 0.0307 0.0360 0.0356 0.0314 0.0375 0.0370 0.0320 0.0954 0.0963 0.1057

60 0.0299 0.0297 0.0267 0.0301 0.0298 0.0266 0.0303 0.0300 0.0263 0.0948 0.0953 0.1041

4h 20 20 0.0788 0.0754 0.0598 0.0815 0.0783 0.0611 0.0837 0.0805 0.0638 0.1023 0.1002 0.0956
40 0.0543 0.0541 0.0466 0.0559 0.0556 0.0464 0.0596 0.0592 0.0489 0.0914 0.0914 0.0940

80 0.0461 0.0458 0.0402 0.0476 0.0473 0.0396 0.0485 0.0483 0.0402 0.0899 0.0899 0.0944

40 20 0.0565 0.0548 0.0468 0.0581 0.0564 0.0470 0.0611 0.0596 0.0496 0.0921 0.0912 0.0936

40 0.0413 0.0410 0.0372 0.0403 0.0400 0.0346 0.0410 0.0407 0.0348 0.0866 0.0867 0.0915

60 0.0349 0.0347 0.0306 0.0352 0.0350 0.0307 0.0357 0.0354 0.0304 0.0866 0.0869 0.0928

60 20 0.0515 0.0490 0.0417 0.0539 0.0512 0.0414 0.0552 0.0524 0.0423 0.0888 0.0877 0.0909

40 0.0347 0.0343 0.0305 0.0350 0.0345 0.0305 0.0356 0.0351 0.0305 0.0851 0.0856 0.0915

60 0.0296 0.0294 0.0265 0.0291 0.0288 0.0257 0.0287 0.0284 0.0248 0.0841 0.0845 0.0899

5h 20 20 0.1213 0.1200 0.0889 0.1444 0.1380 0.1042 0.1627 0.1520 0.1184 0.0937 0.0915 0.0833
40 0.0777 0.0773 0.0623 0.0878 0.0876 0.0716 0.1102 0.1088 0.0924 0.0843 0.0836 0.0804

60 0.0649 0.0641 0.0499 0.0816 0.0802 0.0661 0.0939 0.0919 0.0738 0.0808 0.0806 0.0788

40 20 0.0855 0.0826 0.0615 0.0992 0.0953 0.0726 0.1293 0.1210 0.0942 0.0846 0.0826 0.0786

40 0.0548 0.0542 0.0439 0.0745 0.0728 0.0580 0.0842 0.0822 0.0663 0.0794 0.0789 0.0774

60 0.0512 0.0505 0.0407 0.0591 0.0582 0.0462 0.0773 0.0751 0.0584 0.0776 0.0774 0.0769

60 20 0.0706 0.0674 0.0506 0.1006 0.0931 0.0683 0.1129 0.1042 0.0768 0.0830 0.0815 0.0785

40 0.0514 0.0505 0.0408 0.0609 0.0587 0.0473 0.0783 0.0752 0.0596 0.0775 0.0772 0.0763

60 0.0432 0.0422 0.0338 0.0510 0.0502 0.0384 0.0670 0.0651 0.0487 0.0772 0.0770 0.0766

6h 20 20 0.1229 0.1193 0.0904 0.1423 0.1368 0.1040 0.1598 0.1526 0.1177 0.0931 0.0908 0.0846
40 0.0813 0.0796 0.0603 0.0935 0.0907 0.0711 0.1208 0.1164 0.0915 0.0825 0.0819 0.0798

60 0.0649 0.0643 0.0487 0.0853 0.0833 0.0652 0.0965 0.0941 0.0732 0.0795 0.0793 0.0776

40 20 0.0895 0.0849 0.0635 0.1048 0.0974 0.0732 0.1351 0.1250 0.0947 0.0872 0.0841 0.0796

40 0.0563 0.0552 0.0428 0.0785 0.0755 0.0575 0.0890 0.0854 0.0650 0.0790 0.0785 0.0775

60 0.0530 0.0521 0.0409 0.0618 0.0602 0.0472 0.0789 0.0767 0.0594 0.0784 0.0783 0.0774

60 20 0.0730 0.0692 0.0513 0.1005 0.0933 0.0691 0.1127 0.1048 0.0782 0.0818 0.0803 0.0776

40 0.0553 0.0539 0.0419 0.0650 0.0625 0.0478 0.0825 0.0792 0.0598 0.0781 0.0777 0.0766

60 0.0436 0.0429 0.0345 0.0507 0.0492 0.0392 0.0660 0.0639 0.0494 0.0775 0.0774 0.0767
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Table 3: ARMSE comparison for DGPs 2 | 5, 6, 2h, 5h, and 6h: additivity is imposed

=1 C=15 =2 Linear

DGP N T §  Goe  dir 0 e Qi 0 e grr 9O g0 gl
2 20 20 0.1105 0.0933 0.0636 0.1034 0.1032 0.0715 0.1024 0.1022 0.0785 0.0297 0.0294 0.0251
40 0.0547 0.0546 0.0426 0.0668 0.0668 0.0473 0.0734 0.0734 0.0561 0.0187 0.0186 0.0158

60 0.0445 0.0444 0.0358 0.0599 0.0599 0.0430 0.0607 0.0606 0.0467 0.0156 0.0156 0.0133

40 20 0.0554 0.0553 0.0463 0.0679 0.0677 0.0514 0.0755 0.0756 0.0614 0.0192 0.0190 0.0170

40 0.0377 0.0377 0.0311 0.0523 0.0523 0.0384 0.0533 0.0533 0.0415 0.0127 0.0125 0.0113

60 0.0417 0.0417 0.0293 0.0434 0.0434 0.0324 0.0437 0.0437 0.0374 0.0100 0.0100 0.0094

60 20 0.0446 0.0445 0.0374 0.0610 0.0610 0.0451 0.0606 0.0606 0.0490 0.0156 0.0154 0.0141

40 0.0427 0.0427 0.0291 0.0434 0.0434 0.0316 0.0432 0.0432 0.0365 0.0110 0.0108 0.0100

60 0.0357 0.0357 0.0243 0.0370 0.0370 0.0263 0.0357 0.0357 0.0298 0.0084 0.0084 0.0077

5 20 20 0.0762 0.0748 0.0627 0.0853 0.0839 0.0706 0.0921 0.0909 0.0770 0.0893 0.0872 0.0785
40 0.0465 0.0460 0.0400 0.0514 0.0509 0.0455 0.0605 0.0601 0.0546 0.0803 0.0799 0.0768

60 0.0390 0.0388 0.0343 0.0469 0.0467 0.0421 0.0506 0.0505 0.0461 0.0787 0.0784 0.0760

40 20 0.0517 0.0499 0.0441 0.0567 0.0551 0.0495 0.0650 0.0634 0.0586 0.0825 0.0809 0.0762

40 0.0314 0.0311 0.0281 0.0382 0.0379 0.0347 0.0413 0.0410 0.0381 0.0776 0.0773 0.0755

60 0.0289 0.0287 0.0267 0.0320 0.0317 0.0299 0.0373 0.0371 0.0354 0.0780 0.0778 0.0760

60 20 0.0401 0.0387 0.0347 0.0481 0.0468 0.0431 0.0518 0.0505 0.0471 0.0798 0.0791 0.0752

40 0.0293 0.0289 0.0267 0.0319 0.0316 0.0295 0.0365 0.0362 0.0347 0.0774 0.0771 0.0753

60 0.0225 0.0223 0.0207 0.0248 0.0246 0.0230 0.0289 0.0288 0.0273 0.0773 0.0771 0.0755

6 20 20 0.0916 0.0900 0.0796 0.0976 0.0961 0.0853 0.1034 0.1019 0.0912 0.0885 0.0867 0.0792
40 0.0675 0.0669 0.0620 0.0708 0.0703 0.0652 0.0792 0.0787 0.0732 0.0802 0.0798 0.0771

60 0.0605 0.0604 0.0574 0.0658 0.0657 0.0625 0.0683 0.0681 0.0650 0.0781 0.0780 0.0761

40 20 0.0716 0.0697 0.0648 0.0745 0.0726 0.0677 0.0825 0.0808 0.0758 0.0820 0.0804 0.0765

40 0.0567 0.0564 0.0548 0.0611 0.0608 0.0591 0.0628 0.0626 0.0610 0.0776 0.0773 0.0761

60 0.0552 0.0551 0.0536 0.0566 0.0565 0.0550 0.0595 0.0594 0.0580 0.0778 0.0777 0.0765

60 20 0.0622 0.0613 0.0583 0.0674 0.0665 0.0636 0.0700 0.0691 0.0662 0.0790 0.0784 0.0755

40 0.0549 0.0548 0.0534 0.0564 0.0562 0.0548 0.0592 0.0591 0.0579 0.0771 0.0769 0.0757

60 0.0519 0.0518 0.0512 0.0528 0.0528 0.0520 0.0548 0.0548 0.0541 0.0770 0.0769 0.0761

2h 20 20 0.1101 0.1101 0.0920 0.1240 0.1239 0.1010 0.1324 0.1325 0.1091 0.0483 0.0474 0.0453
40 0.0715 0.0714 0.0613 0.0820 0.0820 0.0656 0.0915 0.0915 0.0760 0.0345 0.0342 0.0327

60 0.0584 0.0584 0.0503 0.0723 0.0723 0.0584 0.0752 0.0752 0.0625 0.0264 0.0262 0.0245

40 20 0.0748 0.0747 0.0644 0.0866 0.0866 0.0701 0.0952 0.0951 0.0813 0.0340 0.0326 0.0310

40 0.0496 0.0496 0.0436 0.0624 0.0623 0.0513 0.0650 0.0650 0.0552 0.0230 0.0228 0.0220

60 0.0502 0.0501 0.0393 0.0527 0.0525 0.0422 0.0542 0.0541 0.0478 0.0194 0.0192 0.0180

60 20 0.0602 0.0600 0.0534 0.0739 0.0738 0.0618 0.0770 0.0769 0.0662 0.0269 0.0267 0.0253

40 0.0525 0.0525 0.0407 0.0539 0.0538 0.0436 0.0552 0.0551 0.0485 0.0195 0.0192 0.0180

60 0.0435 0.0435 0.0326 0.0441 0.0441 0.0351 0.0459 0.0459 0.0403 0.0166 0.0165 0.0159

5h 20 20 0.0898 0.0875 0.0723 0.0956 0.0937 0.0798 0.1018 0.1001 0.0855 0.0937 0.0915 0.0833
40 0.0567 0.0558 0.0485 0.0614 0.0606 0.0534 0.0700 0.0692 0.0622 0.0843 0.0836 0.0804

60 0.0444 0.0443 0.0386 0.0515 0.0514 0.0456 0.0551 0.0550 0.0492 0.0808 0.0806 0.0788

40 20 0.0606 0.0585 0.0505 0.0649 0.0628 0.0548 0.0731 0.0711 0.0641 0.0846 0.0826 0.0786

40 0.0377 0.0372 0.0339 0.0448 0.0442 0.0411 0.0480 0.0474 0.0444 0.0794 0.0789 0.0774

60 0.0322 0.0319 0.0297 0.0347 0.0345 0.0323 0.0393 0.0391 0.0369 0.0776 0.0774 0.0769

60 20 0.0488 0.0470 0.0418 0.0556 0.0540 0.0490 0.0589 0.0573 0.0526 0.0830 0.0815 0.0785

40 0.0338 0.0333 0.0303 0.0364 0.0359 0.0329 0.0403 0.0399 0.0372 0.0775 0.0772 0.0763

60 0.0274 0.0272 0.0254 0.0294 0.0293 0.0274 0.0332 0.0331 0.0316 0.0772 0.0770 0.0766

6h 20 20 0.1014 0.0997 0.0886 0.1065 0.1046 0.0932 0.1116 0.1099 0.0983 0.0931 0.0908 0.0846
40 0.0739 0.0732 0.0672 0.0773 0.0767 0.0702 0.0843 0.0837 0.0774 0.0825 0.0819 0.0798

60 0.0651 0.0649 0.0612 0.0705 0.0703 0.0660 0.0727 0.0725 0.0684 0.0795 0.0793 0.0776

40 20 0.0788 0.0765 0.0698 0.0821 0.0798 0.0731 0.0903 0.0881 0.0811 0.0872 0.0841 0.0796

40 0.0604 0.0599 0.0578 0.0650 0.0646 0.0619 0.0666 0.0662 0.0639 0.0790 0.0785 0.0775

60 0.0573 0.0572 0.0556 0.0587 0.0587 0.0570 0.0618 0.0617 0.0602 0.0784 0.0783 0.0774

60 20 0.0675 0.0658 0.0615 0.0728 0.0712 0.0669 0.0750 0.0735 0.0692 0.0818 0.0803 0.0776

40 0.0577 0.0574 0.0555 0.0590 0.0587 0.0569 0.0618 0.0616 0.0599 0.0781 0.0777 0.0766

60 0.0539 0.0538 0.0529 0.0548 0.0547 0.0537 0.0570 0.0569 0.0558 0.0775 0.0774 0.0767

Note: Here the additivity of functional form is imposed in the estimation, which is correct for DGPs 2, 5, 2h and 5h,
but incorrect for DGPs 6 and 6h.
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5.3 Testing: implementation and evaluation

To conduct the specification test, we choose the same My, J, and basis functions as in the estimation
stage. We use w (X;1) = 1 (X € U) where U is chosen to trim out 2.5% tail observations along each tail
of each dimension of X;;. For the bivariate regression function g in DGPs 2, 5, 6, 2h, 5h, and 6h, we
only consider the test by imposing additivity of g although g has nonadditive nonlinear component in
DGPs 6 and 6h. For each scenario, we consider 250 replications and adopt 200 bootstrap resamples in
each replication for both the size and power studies.

Tables 4-5 report the empirical rejection frequencies of our test at 1%, 5%, and 10% nominal levels
for the case of homoskedastic and heteroskedastic errors, respectively. We summarize some important
findings from these tables. First, when the null hypothesis of linearity holds in DGPs 1, 2, 1h, and 2h,
these tables suggest that the level of our test behaves reasonably well for almost all DGPs, sample sizes,
and all choices of J under investigation despite the fact that slight to moderate size distortions may occur
in the case of heteroskedastic errors terms. Second, the power of our test generally increases very fast as
either N or T increases, and it not very sensitive to the choice of J.

6 An application to the economic growth data

The relationship between the long-run economic growth and investment in physical capital has been
studied extensively and has played a crucial role in the evaluation of different growth theories. A positive
association between the investment as a share of gross domestic product (GDP) and per capita GDP
growth rate is supported by the early endogenous growth models such as the AK model. However, the
exogenous growth theories such as the Solow model assert that an increase in investment can only raise
the level of per capita GDP, but have no effect on the steady-state growth rate. Many empirical studies
show that there is little or no association between the investment and the long-run growth rate; see Jones
(1995) and Easterly and Levine (2001). Recently, Bond, Leblebicioglu, and Schiantarelli (2010) reassess
the relationship between these two by using a panel data of 71 countries covering 41 years (1960-2000).
By estimating a dynamic panel data model with both individual and time fixed effects they find strong
evidence of a positive relationship between the investment as a share of real GDP and the long-run growth
rate of GDP per worker.

Note that most empirical works are carried out under the linear framework and only include additive
fixed effects to control unobservable heterogeneity. In this section, we re-investigate the problem using

the following nonparametric dynamic panel data model with interactive fixed effects
Yit = g (Yie—1, Li, ALr) + X; fr + ea

where Y;; = log (GDP;;) — log (GDP; 1), GDP;; is the real GDP per worker for country ¢ in year ¢,
1I;; is the logarithm of the investment as a share of real GDP, Al; = I;; — I; ;—1, and the multi-factor
error structure \,f; + e; is used to control for heterogeneity and capture the unobservable common
shocks. Y;;_; is included in the unknown function g (-) to partially control serial correlation; see some
recent empirical studies on growth such as Chambers and Guo (2009) and Meierrieks and Gries (2012)
that consider dynamic panel data models. Su and Lu (2013) also consider nonparametric dynamic panel
growth regressions but with individual fixed effects only.

The data set is from the Penn World Tables (PTW7.1); see Heston, Summers, and Aten (2009).

We use the almost same set of countries as Bond, Leblebicioglu, and Schiantarelli (2010) but exclude
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Table 4: Rejection frequency for DGPs 1-6

=1 C=15 =2
DGP N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 20 20 0.016 0.064 0.128 0.012  0.068 0.124 0.008 0.040 0.100
40 0.016 0.044 0.108 0.016 0.052 0.108 0.012 0.048 0.116
60 0.004 0.052 0.100 0.016 0.040 0.112 0.012 0.056 0.100
40 20 0.010  0.060 0.096 0.012  0.052 0.088 0.016  0.060 0.104
40 0.012 0.052 0.096 0.012 0.036 0.100 0.012 0.044 0.104
60 0.008 0.056 0.096 0.016 0.044 0.088 0.012 0.048 0.092
60 20 0.010 0.072 0.116 0.010 0.050 0.100 0.010 0.040 0.096
40 0.008 0.036 0.072 0.012 0.036 0.080 0.012  0.040 0.096
60 0.016 0.048 0.108 0.012 0.040 0.104 0.016 0.056 0.112
2 20 20 0.016  0.048 0.080 0.008 0.068 0.100 0.008 0.060 0.096
40 0.016 0.056 0.100 0.008 0.056 0.088 0.012 0.072 0.104
60 0.020 0.056 0.088 0.012  0.052 0.096 0.008 0.044 0.096
40 20 0.032 0.088 0.132 0.032  0.060 0.136 0.012 0.076 0.120
40 0.012 0.084 0.116 0.004 0.064 0.100 0.012 0.048 0.112
60 0.024 0.064 0.096 0.024 0.068 0.116 0.008 0.056 0.104
60 20 0.008 0.048 0.124 0.012  0.048 0.108 0.008 0.052 0.112
40 0.004 0.052 0.104 0.000 0.044 0.104 0.016 0.052 0.092
60 0.020  0.060 0.100 0.016 0.052 0.120 0.020 0.068 0.100
3 20 20 0.248 0.460 0.616 0.184 0.432 0.568 0.176 0372 0.532
40 0.740 0.888 0.932 0.676 0.848 0.904 0.572  0.764 0.852
60 0.904 0.964 0.984 0.832  0.912 0.960 0.808 0.904 0.944
40 20 0.656 0.820 0.908 0.608 0.784 0.888 0.536  0.752  0.840
40 0.984 1.000 1.000 0.976  0.996 1.000 0.972  0.996 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000
60 20 0.848 0.948 0.984 0.748 0.876  0.940 0.716 0.864 0.916
40 1.000  1.000 1.000 0.996 1.000 1.000 0.996 1.000 1.000
60 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 20 20 0.248 0.488 0.620 0.224 0.436 0.592 0.180 0.408 0.548
40 0.740 0.888 0.944 0.688 0.864 0.912 0.608 0.796 0.872
60 0.908 0.976 0.988 0.848 0.924 0.964 0.824 0912 0.956
40 20 0.684 0.864 0.928 0.664 0.848 0.912 0.596 0.776 0.872
40 0.992 1.000 1.000 0.984 1.000 1.000 0.976  1.000 1.000
60 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 20 0.920 0.972 0.988 0.852 0.952 0.964 0.848 0.944 0.956
40 1.000  1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000
60 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 20 20 0.440 0.632 0.716 0.396 0.564 0.668 0.352  0.484 0.644
40 0.844 0.924 0.968 0.796  0.908 0.940 0.696 0.872 0.924
60 0.968 0.988 0.992 0.948 0.980 0.988 0.932  0.980 0.992
40 20 0.860 0.928 0.948 0.836  0.900 0.936 0.736  0.860 0.904
40 0.992 1.000 1.000 0.992  0.996 0.996 0.988 0.992 0.996
60 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 20 0.972  0.992 0.992 0.936 0.984 0.992 0.892  0.952 0.980
40 1.000  1.000 1.000 0.996 1.000 1.000 0.988 0.992 1.000
60 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
6 20 20 0.246  0.400 0.516 0.208 0.388 0.472 0.196 0.312 0.448
40 0.572  0.740 0.852 0.492 0.692 0.776 0.368 0.576 0.708
60 0.828 0.928 0.972 0.744 0.880 0.920 0.728 0.872  0.900
40 20 0.580 0.752 0.848 0.488 0.712 0.804 0.440 0.628 0.712
40 0.944 0.988 0.992 0.912 0.952 0.976 0.884 0.936 0.972
60 0.996 1.000 1.000 0.996 1.000 1.000 0.988 0.996 1.000
60 20 0.780 0.900 0.952 0.716  0.864 0.912 0.664 0.836 0.884
40 0.988 1.000 1.000 0.984 1.000 1.000 0.980 0.996 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Note: J :LC(NT)l 7'5J where C' = 1, 1.5, and 2.
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Table 5: Rejection frequency for DGPs 1h-6h

C= c=15 =
DGP N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
1h 20 20 0.024 0.060 0.112 0.024 0.080 0.136 0.028 0.072 0.124
40 0.020 0.076  0.136 0.020 0.084 0.128 0.024 0.088 0.144
60 0.032 0.076 0.124 0.028 0.056 0.108 0.024 0.056 0.112
40 20 0.032 0.064 0.144 0.036 0.072 0.136 0.028 0.068 0.120
40 0.040 0.080 0.128 0.036 0.076 0.136 0.040 0.080 0.132
60 0.028 0.064 0.128 0.024 0.064 0.128 0.020 0.064 0.108
60 20 0.024 0.072 0.124 0.032 0.068 0.116 0.032 0.064 0.116
40 0.016 0.056 0.096 0.016 0.052 0.100 0.020 0.056 0.096
60 0.012 0.060 0.100 0.012 0.060 0.088 0.008 0.056 0.092
2h 20 20 0.020 0.052 0.120 0.016 0.040 0.120 0.028 0.076 0.128
40 0.024 0.060 0.136 0.016 0.056 0.136 0.032 0.076 0.120
60 0.028 0.068 0.124 0.016 0.064 0.124 0.020 0.068 0.132
40 20 0.020 0.076 0.124 0.016 0.076 0.124 0.004 0.072 0.128
40 0.012 0.064 0.108 0.016 0.056 0.100 0.012 0.044 0.104
60 0.008 0.048 0.096 0.008 0.052 0.096 0.012 0.056 0.100
60 20 0.016 0.056 0.104 0.016 0.060 0.104 0.012 0.052 0.104
40 0.008 0.044 0.096 0.012 0.036 0.092 0.016 0.056 0.104
60 0.016 0.064 0.132 0.012 0.056 0.120 0.016 0.064 0.124
3h 20 20 0.140 0.296 0.448 0.152  0.292 0.436 0.140 0.288 0.396
40 0.372 0.588 0.680 0.352 0.560 0.652 0.336  0.472 0.612
60 0.532 0.684 0.772 0.504 0.652 0.796 0.484 0.664 0.780
40 20 0.348 0.508 0.672 0.348 0.500 0.680 0.308 0.488 0.620
40 0.616 0.816 0.872 0.620 0.828 0.912 0.628 0.812 0.896
60 0.808 0.936 0.956 0.800 0.948 0.960 0.808 0.948 0.964
60 20 0.400 0.556 0.656 0.368 0.568 0.684 0.368 0.556 0.692
40 0.760 0.904 0.932 0.760 0.912 0.928 0.748 0.908 0.964
60 0.996 1.000 1.000 0.992 0.996 1.000 0.996 1.000 1.000
4h 20 20 0.148 0.300 0.424 0.168 0.324 0.436 0.144 0.276  0.400
40 0.380 0.600 0.672 0.404 0.612 0.684 0.360 0.536 0.660
60 0.524 0.676 0.768 0.548 0.724 0.824 0.536  0.740 0.832
40 20 0.364 0.536 0.676 0.392 0.572 0.724 0.348 0.520 0.672
40 0.604 0.820 0.856 0.712 0.852 0.928 0.708 0.852 0.932
60 0.876 0.972 0.988 0.868 0.972 0.984 0.868 0.968 0.988
60 20 0.460 0.676 0.780 0.548 0.736  0.808 0.528 0.696 0.800
40 0.824 0.948 0.980 0.820 0.948 0.976 0.808 0.944 0.976
60 0.988 0.996 1.000 0.984 0.992 1.000 0.980 0.988 0.996
5h 20 20 0.344 0.516 0.616 0.316 0.504 0.616 0.284 0.484 0.592
40 0.744 0.848 0.916 0.660 0.820 0.876 0.604 0.796 0.840
60 0.920 0.964 0.976 0.892 0.940 0.972 0.864 0.940 0.960
40 20 0.756  0.880 0.896 0.716  0.848 0.900 0.620 0.784 0.832
40 0976 0.996 1.000 0.956 0.988 0.996 0.936 0.984 0.992
60 0.996 1.000 1.000 0.996 0.996 1.000 0.996 0.996 1.000
60 20 0.892 0.944 0.972 0.840 0.924 0.944 0.804 0.896 0.944
40 0.996 1.000 1.000 0.992 0.996 1.000 0.992 0.996 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
6h 20 20 0.228 0.384 0.464 0.204 0.336 0.456 0.188 0.296 0.408
40 0.400 0.612 0.708 0.356  0.552 0.712 0.332 0.476 0.588
60 0.692 0.824 0.896 0.584 0.772 0.840 0.596 0.764 0.840
40 20 0.416 0.632 0.756 0.416 0.584 0.688 0.412 0.556 0.664
40 0.848 0.932 0.972 0.800 0.896 0.948 0.772 0.892 0.940
60 0.964 0.984 0.996 0.952 0.976 0.992 0.944 0.980 0.992
60 20 0.580 0.736  0.828 0.556 0.696 0.792 0.520 0.664 0.764
40 0.964 0.984 0.992 0.948 0.976 0.988 0.924 0.976 0.988
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: J ZLC(NT)I 7'5J where C' =1, 1.5, and 2.
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Guyana and include other four countries according to the data availability. The number of countries is
74 (N =74) and the time period is 1960-2010 (T = 51).

We use the cubic B-spline to approximate the unknown function g. Note that g has three variables.
Without imposing any structure on g, we need to use the tensor product of the sieve bases for each
variable to approximate the unknown function. Then the total number of sieve approximation terms is
K = (J+4)3. Even for a small number of knots J = 1, 2, or 3, we have K = 125, 216, or 343, respectively.
This is the notorious “curse of dimensionality” in nonparametric regression. For this reason, we only
allow bivariate interactions and a single trivariate interaction term in our sieve estimation. Specifically,
our sieve approximate terms are comprised of p{,+4 (Yii—1) ® pf+4 (Iit) , p1‘7/+4 (Yii—1) ® pi‘}'?’ (AL),
P (ALy) @ pl ™3 (L), and Y; ;1 I;; Al where we have avoided perfect multicollinearity. In this case,
the total number of sieve approximating terms is (J + 4)% + (J +4)(J + 3) + (J + 3)% 4 1. To choose the

number of factors, we follow Bai and Ng (2002) and adopt the following information criteria:

. N+T NT
PCy(R) = V(R,fR>+R&2( N+T )ln(N—i—T)’

PCy(R) = V(R %)+ Rs® (NN+TT

) In [min (N, T)],

ICi(R) = In [V (R, fR)} +R <NN+TT) In ( NN+TT> :
16(R) = w[v (R +R (NN+TT) In [min (N, T)],

where V(R, fR) = (NT) ' SN S (6B)2, 6B = Yiy—gR (Xi)—Ar fR, g7 (), fR and A, are estimates
when R factors are used, and 2 is a consistent estimate for (NT) ™" Ziil Zle E(e?,) and is replaced by
V (Rmaxs f R"‘a") in applications. Here R,.x denotes the maximum number of factors under consideration
and has to be specified in advance. In simulations we find that IC; and ICy work fairly well in finite
samples for different choices of knots in cubic B splines, but PC; and PC5 tend to choose a larger number
of factors, which may be close to the largest upper bound sometimes. When this occurs, we use the number
of factors recommended by IC; and IC5. We follow Bai and Ng (2006b) and set Ryax = 8 throughout.
For both estimation and testing, we use Mpr = LTl/ 7'5J for bias correction as in the simulations and
consider a sequence of knots in the cubic B-spline: J = 3,4, ..., 8.

To reduce the risk of structural change, we partition the full sample (1960-2010) into two subsamples
(1960-1985 and 1986-2010). For both the full sample and two subsamples, IC; and ICs recommend 1 « 2
factors both for linear estimation and sieve estimations with different choices of J. So we set R = 2 for
all samples. We first consider the problem of estimation and report the estimation results for the two
subsamples in Figures 1 and 2, respectively. Figure 1 plots the estimation of g(-,-,-) against each of its
three arguments when the other two are fixed at their sample medians. For example, Figures 1(a)-(c)
report the estimates of g(-, I, AI) together with their bootstrap-based 90% pointwise confidence bands for
J = 3,5, and 7, respectively, where I and AT are the respective sample medians of I;;’s and Al’s in the
first subsample (1960-1985). Figure 2 repeats the above exercises for the second subsample (1986-2010).
We summarize some important findings from these figures. First, as expected, the fitted curves tend to
be smooth for a small value of J and rough for a large value of J. By looking at those plots alone,
whether one can conclude a regressor (e.g., lagged economic growth rate) has significant nonlinear effect
on the economic growth rate simply depends on the choice of J. This calls upon a formal test for the
linear functional form. Second, Figures 1(a)-(c) and 2(a)-(c) suggest that lagged economic growth rate
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Table 6: Bootstrap p-values for testing the linear economic growth model

Subsamples\ J 3 4 5 6 7 8
1960 — 1985 0.0000 0.0001 0.0001 0.0002 0.0003 0.0000
(T=26, N="74)

1986 — 2010 0.0030 0.0028 0.0022 0.0019 0.0021 0.0019
(T=25, N=74)
1960 — 2010 0.0498 0.0427 0.0390 0.0338 0.0299 0.0261

(T=51, N=74)

is globally positively related to the current economic growth rate when investment share and its growth
are fixed at their sample medians. Third, Figures 1(d)-(f) and 2(d)-(f) suggest that investment share
generally has positive effect on the economic growth rate. Fourth, Figures 1(g)-(i) and 2(g)-(i) indicate
that the effect of the change of investment on the economic growth rate is nonlinear and non-monotone,
and the effect tends to vary across subsamples. This suggests that some sort of structural change may
occur during the full sample period.

Table 6 reports the bootstrap p-values for the specification test of linearity for both subsamples and
the full sample based on 10000 bootstrap resamples. The p-values are smaller than 0.05 across all J’s for

both subsamples and the full sample as well. This suggests a strong degree of nonlinearity in the data.

7 Conclusion

In this paper we consider the estimation and testing for large dimensional nonparametric dynamic panel
data models with interactive fixed effects. A sieve-based QMLE is proposed to estimate the nonparametric
function and common components jointly. Following Moon and Weidner (2010, 2012), we derive the
convergence rate for the sieve estimator and establish its asymptotic distribution. The sources of different
asymptotic biases are discussed in detail and a consistent bias-corrected estimator is provided. We also
propose a consistent, specification test for the commonly used linear dynamic panel data models based
on the Ly distance between the linear and sieve estimators. We establish the asymptotic distributions of
the test statistic under both the null hypothesis and a sequence of Pitman local alternatives. To improve
the finite sample performance of the test, we also propose a bootstrap procedure to obtain the bootstrap
p-values and justify its asymptotic validity. Through Monte Carlo simulations, we investigate the finite
sample performance of our estimator and test statistic. We apply the model to an economic growth data
set and demonstrate that lagged economic growth rate, investment share and its change have significant

nonlinear effect on the economic growth rate.
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APPENDIX

Throughout the appendix, let C signify a generic constant whose exact value may vary from case to
case. Let Ep(-) = E(-|D) and Varp (-) =Var(-|D). Let Epg)(-) denote expectation with respect to

variables indexed by set S conditional on D. Let ¢ = umin (AYA?/N) and ¢ = pyn (£ f°/T) where
Linin (A) denotes the minimum eigenvalue of A. Let e, = 8% — 8, for k =1,..., K, ¢ = |Ju|| /V/NT and

Py = (VNT/ [ul)u. Let Onr = S P, dunax (A, 1) = /11 (5 )\O’fofO’AO) and din (0, f) =

Admax (N0, 16dmax (A2, F°
\/“R (wrA”OfA%). Define r (A, f0) = ( . <(A0 f°>) + sgmmorgy ) andany = LA 7”(( ,fO))

Below we prove the main results in Sections 3 and 4. The proofs of all technical lemmas and Theorem
4.4 are given in the online Supplementary Material which is available on the first author’s website.

A  Proofs of the main results in Section 3

A.1 Convergence rate of §(x)

Lemma A.1 Suppose that Assumptions 1-4 hold. Then ||B - BOH = Op(K~7/(2d ¢ 5;,1T/2).
Proof of Theorem 3.1. Let a; = (3, — 8%)/||8 — £°|| and P, = ZkKﬂ arPy with ||a|| = 1. By

. 9 e ey P
Lemma A.1, Assumptions 1(i44), 2(ii), 3(¢)-(i7), and 4, we have ”\/N—TH <l 1‘/& I 118 = 8| [Pl ( >H

Op (Ont + K=/1) + Op(K—7/(2d) + 64 = op (1) . By Assumptions 1()-(ii), o (A%, f0) = Op( ) :
follows that ||[Un7| /VNT < rg (/\07 fo) w.p.a.1l. and we can apply Proposition C.1 in the supplementary
appendix to expand Lyt (8) as follows

K K
1
Lyr (B) = NT Z Z eren, LB (N0, fO, Py, Py,)
k1=0ko=0
1 K K K
+ﬁ Z Z Z k16k26k3L(3) (onfovpklkawP%) +Op (aleT)

= —o
= Lyt (8°) + Lint (B) + Lant (B) + Lrvt (B) + Op (k) — Op (€5) 5

where L(?) and L(®) are defined in Proposition C.1,

1 1
Lyt (8°) = NT€OL V(A% f°,Pg, Po) + NT O oL (X%, f0, P, Py, Pg) + Op (¢5) ,
Linr () = N ZekeOL@) (A% 1, Py, Po) + —Zeke%@ (A, 1, Py, Po, Po) ,
s
Lozt (8) = 7 S e, LD (X, 0, Py, Py,) , and
k1=1ko=1
1 K K K
Lent(B) = w7 YYD emensens LY (A 1O Py, Py Py
ko=1ko=1k3z=1

g K K
NT S erereol® (X, f Py, Py, Po) + Op [(Hb’ - 8°| + €)' - eé}

ko=1ko=1

= 0p ([8=81 co+ 18— 81"+ 18— 5l ) (A1)
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Clearly, L1, n7 (8) and Lo y7 (8) are linear and quadratic in €, k = 1, ..., K, respectively, and Lg nr(5)
includes the third and higher order asymptotically negligible terms in the likelihood expansion. Noting
that LG ()\0 O Py, 7Pks) is linear in the last s arguments, we have

Ly nr () = =28 — 8°) (CRy + CSp) and Lo nr (8) = (8 — B°) Wz (8 — 8°),
where Cz(\}%" and C’](\?% are defined in Theorem 3.1. Then
Lyt (8) = Lnr (8°) —2(8 - B°)(CRy + CRp) + (B — B°) Wr (8- 8°)
v0p (|18 =81 eo + 18— 8"+ (18~ 2l 3} (A2)

Noting that rank(P® uM o' Myo + P Mou’ Myoud' + Py Mpou'®u’'M,o) < 3R and using the trace
inequality tr(A) <rank(A) ||A|| for any real square matrix A, we have C’](\?)T p = s tr(Pr®uMpou’ Myo
+PyMpou' Myoud'+ Py Mpow' D' Myo) < 32 [Py || @] [u]® [|Myo | | Mo || = LR Op (K-27/4 4 537) .
It follows that

e H—{Z'Pk'} Op(K 11 1 033) = 0p [VE(K™ 4 5530 . (A

1 N . _1eN
For Oy, we have |[WypOxrl| = Wy (NT) ™' S50, Zes| + [[Wyp (NT) ! 2L, 2 u
tion 3(v )_,)the ﬁrs_t)term is OP(5N£K1/2/T1/2). Let €4 = (¢, -;}e.’gw)’, Z=(Z,---,Z)) and W =
(NT)"'Z'Wxr Z . Noting that W is a projection matrix with j;(W) = 1 and by Assumptions 2(ii) and

— — —
3(i)-(iid), ||Wypser Somy Zieg,i| = wamtr(€g Z' Wyt Wyt Z € g) < fimin (Wit)] ™ yatr(€,We)
< Op (1) || €%/ (NT) = Op (K~27/9) . 1t follows that
|warcSr| = or (635 V/ETT + K1), (A4)
Let "
rNT = WNTCI(V + WNTC and Ry = ﬁ ,6 —TNT- (A5)

From (A.3) and (A.4) we have
Irnell < || Wrr Ol + [Wabeir || = o (VRSN + K77, (A.6)

Since LNT(B) < Lyt (50 + 'I"NT), we can apply (A.2) to the objects on both sides of the last inequality
to obtain

| Ryl
< i W) (B = 80 = rvr) Wi (B = 6° =)
< twin Wrr)) ™ |Livr (8° 4+ rvr) = Lr (8 + (B = 6%)
< Op (Irwrll? o + Irwrll € + lrnel®) + Op (13 = 8120 + 113 — 8°11€d + 113 — 8°11°) (A7)

We now argue that ||B BO|| = Op (Irnrl]) by contradiction. Suppose ||[ry7|| = op(||8 — 8°|]). Then
by (A.5) and (A7), ||5 = 8% = Op(|Bxr]”) < Op(||B — 5°/|€}), implying that [|5 — 8°|| < Op (c}) .
Noting that €} = Op (855 + K=37/4) = op (||ryr||), this further implies that [|3 — 8%/ < op(|[rnr])), 2
contradiction. It follows that

|3~ 8| = 0r lIrnzl) = Op (VESRE + K/7) (A.8)
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e Ryr = Op (lIrwrll ) = Op | (VESRE + K0/9) (5332 + K—/@0) ] (A.9)

because €2/||rnr|| = Op (1) and ||ry7|| /€0 = Op (1) by Assumption 4.
Now we derive the convergence rate of g (z). By the C; inequality, (A.8) and Assumption 3(%)

[o@-g@ruwa = [ @ (5-5)+ b @ 8- g @)} v
2 [ @) (=) wdar2 [ o) - @ 8 w)do

201 @ppe) |3 = 2] + 2o ) =" @)

IN

IN

. 2
0 (= 26724) = 0 (s c741).
where Qpp.w = [ pX (2) p¥ () w () dz with py (Qppw) < 0o and Cu1 = [, (1 + ||:10H2)w w (z) dz < co.
Similarly, using §(X;) — g (Xi) = p;t(ﬁ — B9 + [9 (Xi) — pl,8°], the C, inequality and Assumptions
3(i4)-(i41),
[9(Xit) — g (Xit)]Q Wit
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A.2 Asymptotic normality of g (z)

Proof of Theorem 3.2. Recall that Vi (z) = pX (z)) W1QW ~1pX (z) and Anr = (NT)/2Vc /2 (2).
Write

Ant 1§ (2) - g (2)]
= Axep® @) (B-8") + Anr [9(2) =" (2)' B

Antp™ (&) WRhOGy + Antp” () WrkCy + Anrp™ () Ryt + Anr [9(x) — ™ (2) 8°]
= ILint + oyt + Usyr + IynT, say.

It suffices to show that: (¢) IIjy7 + KnTb1 () <, N(0,1), (i) Moyt = —kjpba () — knTbs (2) +0p (1),
(731) Uy = op (1), and (iv) Hyn7r = op (1) . We prove (i) and (é¢) in Propositions A.6 and A.7 below,
respectively. For (iii), by Cauchy-Schwarz inequality, (A.9) and Assumptions 7 and 8, we have

NT

avr < /3 1P @Rl < (@) (F)VNT | Rovr|
= Op [VNT (VEb3 + K1%) (53> + K=/C0)] = op (1),
as Vi (z) = pX(x)WrQW1p5 (2) > u72(W) g (Q)|[p% (2)|]2. For (iv), by Assumptions 3()-(i4), and

- ©/2
8, we have for any =z € X, Iy = ( )1/2V 12 (2) g (z) — p¥ () B°] < C||p¥ (2)|| ' (1 + ||z )
xVNT |lg (z) = p* ()" 8°||  , = Op(VNTK /%) = 0p (1) as infocx [[p" ()] = C > 0. W
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Next, we state some lemmas are used in the proofs of Propositions A.6-A.7 below.

Lemma A.2 Let v¥ = VIEI/Q () W 'pX (2) and dy = v Ziy. Suppose that the assumptions in Theo-
rem 3.2 hold. Then
) T N 2
(1) N7 rm1 2ie ||d§lt||27p =Op (K');
.. T N 2
(i4) w7 2om1 (it Hdl?tHQ,D)Q =Op (K*).
Lemma A.3 Suppose that the assumptions in Theorem 3.2 hold. Then
(i) ||Wnr = W|| = 0p(x/VNT);
(i) HWNT - WNTHF — Op(K/VNT).

Lemma A.4 Suppose that the assumptions in Theorem 8.2 hold. Then \/Jir_TZZ\Izl 23;1 vE'(Zy —

Zit)eir —Ep[(Zit — Zit)ew]} = op (1).

Lemma A.5 Suppose that the assumptions in Theorem 3.2 hold. Then
(@) [|\"ef°||, = Op(VNT);

4 ||F =0p(1);

iii) || f”e'P ()| , = Op(VNTK6nr);

iv) H-Pfoe/P(a)HF = Op(\/W(SNT);

v) H)\O’eP'(a)HF — Op(NVTEK);

(
(
(
(
(i) HP,\oeP'(a) .= Op(VNTE);
(
(
(
(
(

<

i) ir S o S AN [ejiei — Ep (ejien)] = Op(VE);
viid) N~V (1712 550 ol (5, — pi) SOG°|2 = Op (K);

iw) N~ HNT) 2S00 S A [eaeji — B (enese)] |2 = Op (1)

7) o S Y St BufY [eaeis — B (eneis)] = Op(VE);

i) ﬁ ZtT:1 I Zjvﬂ ”f/[p% -7t Zszl Utlpﬁ])\?/GOHQ =Op (K);

(i) iz Yooy || o0y aey £ [eireis — Ep (esess)] | = Op(1);
where A; = vX'[Ep (P, — P))1f°GO/T, P> = N' SN i Ep (Py), GO = (££°/T) ™ (A\YA°/N) ",
P, = pis — Bp (pis). P = pl — Ep (p), i = N™VY0L, aijpjss By = vI'Ep(Py — PLYA°GONT,
P-]; =71 23;1 P, and Py = (pyy, -+~ 7p/Nt)/'

Proposition A.6 Let the conditions in Theorem 3.2 hold. Then Iy Nt + knTb1 () 4, N(0,1).

Proof. Recall v& = Vgl/Q (z) W=p® (). One can readily show that |vE]|| = Op (1). Note that
My = = S, S, o Ziwi — Vid ' (2) p% (2) (W1 = W) A= S, 0, Zuwa = Ty

+II1n72, say. We complete the proof by showing that (i) IIinr1 + kN1 (2) 4 N(0,1) and (i7)

IIinr2 =o0p(1).
First, we consider (ii). By (A.4), Lemmas A.3(7)-(4¢), and Assumption 8, we have

L1 &
W&Tﬁ ; tzzl it

Op (1) Op (K) Op (VE[To Ny + K=/1) = Op (K/K]Toxy + K'71/7) = op (1).

IN

Mvral < Ve @)p* @) W | {VAT [wivr - 7]} ‘
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. . . . . _ 1 N T
Now, we consider (¢). Using u;; = e;1+eg i, we decompose Iy yp 1 as follows: IIi 71 = T Y oie D

AN —l—ﬁ Zf\’:1 Zle vf'Ziteg’it = Ilinr11 + Mg 12, say. By Cauchy-Schwarz inequality and
Assumptions 3(¢)-(4i7) and 2(44) we have

L N 1/2 LN 1/2
hinr12 < VNT{UE/ (ﬁzzzitzz{t>vf} {ﬁzzeﬁ,n}

i=1 t=1 i=1 t=1
1 N T o 1/2
< ol WNT)HQ(ZE)pK(SC)Iﬁ(JHOO@{WZZ(1+|Xit||2) }
i=1 t=1

= Op(VNTK™ /%) =0p(1).

We are left to show IIiyp 11 + £nrbr () 4, N(0,1). We further decompose IT; 711 as follows

N N
1 1
MinTa1 + knTh (2) = —\/WE > vl nen+{—N > > vl Ep ( neit)Jrf%NTh(w)}
=1

=1 Ti=i=
. N
= ¥ {(Zit - Zit) eit — Ep [(Zit - Zit) 6#} }
NT ==
= Ihinrite + Nt 11s + vt 116, S2Y,
5 1T 1N T
where Ziy = piy — N7V N i Bp [pjs] — T7V 1y 0y B [pis] + (NT) TV 200 S0 cigne B [pjs] -

We complete the proof by showing that: (ia) IIin7 114 4, N (0,1), (4b) 1N 116 = op (1), and (ic)
ILinT11e = op (1). (ic) follows from Lemma A.4. We are left to show (ia) and (

Proof of (ia). Note that IIjN7114 = Zt 1 \/ﬁ ZZ V' Zie = Zt 1 §NTt where {np, =
(NT)" 25N 0K/ Zyey. Recall that Fo ' = o(A\°, £, {Xit, Xiy—1, €541, -} ). By Assumption
5(ii), E [§NT7t|]-"§ Y= (NT) V2SN WK ZyE [en] FeY] = 0. That is, {€yp,, Fb}, | is a martingale
difference sequence (m.d.s.). Consequently, we can apply the martingale CLT (e.g., Pollard, 1984, p.171)
to prove that ITy N7 114 4N (0,1) by verifying that (ial) € yp = Zz;l E [g?VTAféfl] =op (1) and (ia2)
Yter €y —1=0p (1).

Since &np > 0, we will prove (ial) by showing that ED{ZZ;I E [.fleTA]:é_l}} =op(1). Let diz =
vf’fit. Noting that {(pi, e;)},—, are independent across i conditional D and {&nrsr .7-"5}?:1 is an m.d.s.,
we have

B T N N N N
Ep [gNT} = NQTQ Z Z Z Z Z Ep [diytdiytdigtdigeeiiteiytCist€iyt]
=1 ir=1is=1ig=1i,=1
T N 2 3 TN ,
= NQT tzz D [dhel] N2T2 Z{ZED e}, } —WEE{ED [d2e2] }

= {ur(D)+ ENT( )*351\/7’( ), say.

By Holder inequality, Lemmas A.2(4)-(i4), and Assumption 6(i), we have

ENT(l) < N2T2 ZZHeltHQDHd H2D

t=1 i=1
1/2

T N 1/2 T N N
—{%Zgleﬁl»ip} {Nizgndznz,p} =00 (357 =or (0.

IA
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and

. T N 2 1 T N , N ,
fr® < S Mlolb | < i L1l {1 |
T[N e Y 2y 1/2
<M%ZZHM > (Sl
t=1 Li=1 t=1 Li=1

2

= (NT)0, [(TN*K")*| 0p [(TN?)"%] = Op (K*/T) = 0p (1),

Similarly, we can show that &y (3) = Op (K?/(NT)) = op (1) by Lemma A.2(i) and Assumption 6().
Then (ial) follows by conditional Markov inequality. Now, note that Zthl Ep [f?VT)J = o (NT)~!
ZZ 1 Zt VEplZiZl,e3] K = 1. By some straightforward moment calculations, we can show that
ED[(Zt:I §NT7t 1)?] = op (1). Thus (ia2) follows.

Proof of (ib). Noting that Ep(p;seir) = 0 for s < ¢, we have

N T N
1 K1 kNT K
S B () = o [ e
NT ; ; NT — 1§Z;§T
+ ;]2?2 > musiiBp [V piseir]

i=1 1<t<s<T
= —KJNTbl (.’E) + Op (Kl/z/(NT)1/2) = _HNTbl (ZL’) +op (1) s

where the term Op (K'/2/(NT)/?) is obtained by similar arguments as used in the proof of Lemma A.4.
So HlNT,llb = op (1) . n

Proposition A.7 Let the conditions in Theorem 3.2 hold. Then IlanT = —K/NTbQ( ) —knTbs () +
op (1) .

Proof. Let ¥ = Vglm (2) Wyrp® (z) and ﬁKk be its kth element. Let Iyyy = \/Nva’CJ(\?%.

Then we have Iloyr = VNTvE'Cyy 2) 7+ VNT [vf — ¢t ] C}f} = Tlyn7 + op (1) where the op (1) term
comes from the fact that

VNT |[off = 5] )| = [VRTVE? @) 0" @)W (Wvr = W) Wit O |
< VT Wit []ok | vie' @ o @[ we - i
— VNTOp (KVHW v Kl/Qag,?T) 0(1)Op (K/\/NT) = op (1)
by (A.3), Lemma A.3, and Assumption 5. Let a = vX/||vX]| and P, Zk 1 axPr. We decompose
oy as follows
I _ ] Myou' MyoP ()@ MyouM P/, ' "MoP (o) Myou'®’'
ONT = m{tr [u rou MyoP () ]—l—tr {u aouMpo Py ]—i—tr[u APy Mypou ]}

= Iyt +1onT2 + Nt 3, say.

We complete the proof by showing that (i) IIonr1 = /-zg,lTbg (x) +op (1), (4) Honr2 = —knTbs (T)
+op (1), and (i43) Ianr3 = op (1).
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First, we consider (7). Observing that Ilon71 = \/W {tr [quo u' MyoP g <I>] [uu’MAoP(a)CI)} } =

o711 +1on7 12, we prove (i) by showing that: (ia) Honr11 = op (1) and (3b) Honr 12 = —/i;llTbg (x)+
op (1) . We first consider (ia). Using Myo = In —Pyo and u = e + ¢4, we have

Monrn| < (NT) 2| oX]| |tr [ePjoe' Myo Py @] | + (NT) /% ||| |t [eg Pjoe!, MyoP (1)) |
+(NT) "2 |[o|| |tr [ePjoel, Myo Py @] | + (NT) ™/ || [tr [eg Proe’ Myo P o @] |

= Ibnti1a + Mont 116 + Hont11c + onT, 114, S8Y.

N

By Lemmas E.3() and (v) in the supplemental appendix and Lemmas A.5(7)-(i7),

Montial = (NT) 2ol [tr [eProe' Py ®]| + (NT) ™/ ||| [t [Proe’ PyoP (o) e |
< e [ [(5770) 7 1P @ef| |+ C (NT) ™ [ix [Ppoe/ PPy el
< vy 2R () 0N 1l A% e P |

+C(NT) "2 R @] e [P | [[Proe’ Pro]|
CR(NT)*0p (T72) Op (N!) Op (TV/2) Op (VNT) Op (VNTKdnr)
+RC (NT)™? 0p (NT)™%) Op (VNTo5}) Op (VNT) Op (1)

= Op (KM*T71255} + 63p) = Op (93r) = or (1),

By Lemmas E.3(i) and (v), Hanz115 < C (NT) " ? R|ley||* [P @] = Op(VNTEK~21/4) = 0p (1).
By Lemma A.5(i), Honrie < C(NT) 2 [er\"efO(f £0) 1 foe, MyoP (o) FO(f £O) T (AYA) ]| <
OV R 710 0N 11 el [Pl = Op (K1)  For arna, by
Lemmas A.5(i¢) and (vi) we have

C(NT) ™' |tr [ey Proe’ MyoP (o) @] |

O (NT) ' {Jtr [egProe' P @] | + |tr [, Proe’ PyoP () @] |}

RONT) ™2 e | [9] [ Ppoe P + ]| Proe Pas | [Pro ]

(NT)—l/Q Op (Kf’y/d) {OP (W) +O0p (\/ﬁﬂ =0Op (Kl/%v/d) =op(1).

It follows that Ilon7,11 = op (1).
Now we consider (ib). Noting that u = e + e,, we rewrite IIonr,12 as follows

IonT 114

ININ A

onriz = — (NT) 2|l tr [ee’ MyoP oy ®] — (NT) /2 ||| tr [ege!, Myo P (o)D)
— (NT) M2 [0k || tr [eel, MyoP (o) ®] — (NT)™? ||| tr [eye/ Myo P o) @]
= Ionr12qa + Hont 12 + HonT 120 + HonT 124, SAY.

First, onr,100 = — (NT) /% ||oX ||t [Ep (e€’) Myo Py @] —(NT) ™ /? [0 ||tr{ [ee’ — Ep (e€)] MyoP (,)®}
= HQNTJQaa“FHQNT’lQab, say. Clearly, HQNTJQQQ = —K;é«bg (.’L‘) and |I€;[§«b2 (.’L‘)} S RK;VIT ||U£<|| ||E'D (ee’/T)H
Mol [Py || 110 (£210) (A2 TN = Op (kiyk) by Lemmas E3(i) and (v). Recall P> =
NS apP, GO = (Ff0/T)"'(AYA°/N)~" and A; = vX' [Ep(P!) — Ep(PY)] f°GOT~'. Then
IIonT,1245 can be decomposed as follows

T N N
1

MonT 1200 = N1z N\/_ Z Z ZA )\ ejtezt —Ep (ejtezs)]

t=1 i=1 j=1
N
Z Z A? leitejt — Ep (eiejt)] )
j=1t=1

T

1
N3/2T3/2 Z { [Z Uv’ll"(/ pzs pzs’ fOIGO]
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The first term is Op (K'/2/N1/2) by Lemma A.5(vii), and the second term in the above expression is
bounded by

9N 1/2 2y /2

1 N N
o [ s B e

i=1 |[j=1 t=1

pzs’ pzs ) fO/GO

N

which is of order T~-Y20p (K1/2) Op (1) =0p (Kl/zT_l/z) by Lemmas A.5(viii) and (zx) SollanT, 1240 =
Op (KY2(N=Y2 4+ T=1/2)). For Ianr2, we have |onrios] < CR(NT) 2 |ley|? [Pl @] =
Op((NT)l/2 K~27/4) = op (1). For IIonr12c and Ilon7 124, We can show that they are both bounded
from above by CR(NT) "?|le,| llell [Pl @] = Op(VNTK7/453}) = op(1). It follows that
IonT12 = —kjyrbs (z) + op (1).

Now we consider (7). Noting that Myo = In—Pyo, we have [lonp 2 = — (NT) _1/2 [|loE ]| {tx [wWulMp P, @]

—tr[u’ P)\oquoP/ '} = Honr,21 + a7 22, say. Noting that u = e+ e, and HUKH = Op (1), we have

IN

(NT)™2 [0 || |tx [/ Proed Pl @]

+ (NT)2 [[of || |tr [/ Proey Mpo P, @]

MonT 22

+(NT) 2 o | +(NT) V2 ||l

tr [€} ProeM o P, @]

tr € Proe, Myo P, @]

= llonT224 + anT 226 + HonT 220 + [laNT 224, S2Y.

For IanT 224, by Lemmas A.5(7) and (v) we have

IN

N7 224 (NT) 172 [|lvX| + (NT)71/2 oz |

tr [/ PyoePl,, @]
Il

+(NT) V2 oK R)HAO'epfoH HP

tr [e' PyoePp P, @]
ey o

L o
C(NT) " 0p(NVTR)Op (VN) Op (N2) Op (T1) Op (VNT)

+(NT) " 0p (VN) Or (VNT) Op (VN) Op (N72) Op (T7) Op (VNT) = 0p (1).

As in the study of II1 1,12, we can show that Ilang 225 = op (1) for s = b, ¢,d. Thus Ilanr22 = op (1).

For Iy 21, we have Tlonro1 = —y/N/T [|oF |[tx[Ep (e'e/N) MpoP|, &—(NT) ™ *tr{[e’e — Ep (e'e)]
M,coP’(a @'} = —knrbs (x) — HanT 214, say. It is easy to show that |knrbs (z)] = Op (kn7) by Lemmas
E.3(¢) and (v). For IIsnr 214, by Lemmas A.5(x) and (xi), we have

IN

(NT) ™2 [oE || R | AePY,,

Mowraia = (NT) 2 [[of]|tx {[e'e — Bo (e'e)] Mo P, @'}
1 1 N T T
= = Z Btfo [eztezs - ED (eiteis>]

N N T T
S S S SO e B e

where B; = vX'[Ep(Py — P,];)')\OGON_I, P,’; =71 Zl 1 M Py, and p]t = th Ep(pjt) By Lemma
A.5(z), the first term is Op (K*/2/T%/?). The second term is bounded by
2y /2 . o 1/2

Z

=1

1 T N
ﬁ Z val |:p]t p]t:| AO/GO
t=1

N T
Z Z eztezs - ’D (eiteis)]
i=1 s=1
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which is Op (K'/2/N1/2) by Lemmas A.5(xi)-(zii) .
Last, we consider (4ii). For the first term, using ® Pro = ® and Mo = I — Pyo, we have
onrs = —(NT) 2 |[ok]| tr [/ MyoP ) Mpou'®']
(NT) ™2 [0 || {tr [Prow! PyoP (o) Mpou'®'] — tr [Pjou'P (o) Myou'®']}
MonT 31 + onT 32, say.

By Lemma A.5(ii), we have

IN

(NT) ™2 |[oX]| [tr [Prow’ PyoP () M pou'®'] |
R(NT)™2 || Prow Pro [ [|P oy | [ M0]| ]l @]
— (NT)?0p (14 VNTK /") 0p (VNT) Op (354 + K/7)

p (14 VNTE ) (635 + K7)] = op (1),

[IanT,31]

IN

By Lemma A.5(iv), we have
CR(NT)™2 (|| ProePoy|| + || Pro| llegl [Py ) 1l @]
= CR(NT) ™ 0p (VNKéng + NTK ") Op (355 + K1) = op (1).

IN

[IIa N, 32]

This completes the proof of the proposition. m

A.3 Bias-corrected estimator

Lemma A.8 Suppose that the assumptions in Theorem 8.3 hold. Then
(i) ||Wwr - WNTH = Op [K(E~7" + 630)] 1

(i) |[90nr — Dl = Op Kok + (NT)* K(535 + K~7/%)]

(idd) || Wt Wi - Waw | = 0p [Koxk + (WD) K535 + K/9)].
Lemma A.9 Suppose that the assumptions in Theorem 3.3 hold. Then

(1) [lor = bil| = Op(VE X7y, o >/ (7) 4 M VE by

(i1) ||bz — bo|| = Op{VK[N~—V/* + N5/8(K /4 4+ VESNy) + T-INY2]},

(i) ||bs — bs|| = Op{VK[T~Y* + T5/8(K~/% 4 VK& %) + N~'T/2]}.

Proof of Theorem 3.3. We first make the following decomposition:
Anrline (@) =g (@)] = {Ant[§ (@) —g@)] - Bx (@)} — |Bx (@) = Bxc (2)]

+ (Avr/Avr = 1) {Anr [ (@) 9 (@) = Bxc (@)} + (Anr/Anr 1) B ()
= DB; — DBy + DBs+ DBy, say.

Noting that DBy -5 N (0,1) by Theorem 3.2, it suffices to show that (i) DBy = op (1); (ii) DB3 = op (1);
and DBy = op (1).

Proof of (i). Using Bg (x) = —knTby (z) — li]_leA)g ( ) — kNTbs (z) where by (x) = Vgl/z (z) p¥ (z)
xWypbs, we have DBy = k(b () — b1 (2)] + siyiplba () — ba ()] + £nrlbs (x) — bs ()] = DBay +
DBy + DBs3. We prove that DBy = op (1) by showing that

(i1) DBa1 = KNt ( V2 () p™ (x) Wytb — Vl/2 (z) p® (:E)/W_lb1> =op (1),
(2) DBz = nyy (Ve (@) 0" (@) WNsz —Vi? @) P (@) W) = 0p (1),
(3) DBys = e (Vid'? (@) p™ (2) Winpbs = Vi* (@)D" (@) Wlbs) = op (1)

40



Note that
DB = e [V ()" () Wigkhy — Vi/? ()" (o) W'
= Vi 2 @) 0" @) W (b= b)) Vi 2 @)% @) (Wi = W) (b= )
renrVie 2 @) @) (Wit = W) by + e [V (2) = Vie (@)] 0 @) Wik
= DBsia + DBaip + DBaic + DBaia, say.
Recalling that vX = Vo /2 (z) W=1pX () with |vE || = Op (1), by Lemma A.9(i) and Assumption 9 we

+
have |DBaya| < sy [[olf || |[br — b1 | = OP[HNT\/_(ZT Mz O‘fvm (1) + Mrdyy)
A.3 and A.8 and Minkowski 1nequa}1ty, W — Wxrllr = Op [K (K74 + 51_\/17")
with Assumption 7, implies that ||Wy1|| = Op (1). Then by Lemma A.9(i) and Assumption 9, we have

|DBa1y| = ‘m\erI;l/2 (x)pK (w)/ Wt (W — WNT> WJ}} (131 — bl))

e 1 [~ W, 5 5.

)
] =op (1). By Lemmas
]

. This, in conjunction

IN

w
S
>

knTOp (1) Op [K (K”/d + 5;;)} Op (1)Op lﬁ ( i an™ (1) + MT@;)] =op(1).
M

T=Mr

Similarly, DBs1. < kKnT H’U?H HW_WNTHFHWI;%H ||b1|| = rkn7Op (1) Op [K (K*’Y/d + 5]_\/17")] OP(\/E)
= op (1). Now, we decompose D Bs14 as follows

DB =y [Vil* @) [V (@) = 1] Vi (@) (@) Wik
= wnr [Vi? @) /0 (@) = 1 Vi (@) 0" (@) W

e [Vl (@) )V (@) =1 Vi @) (@) (Wi =71 by
DB141 + DBoyg 2.

By Lemma A.8(iit),

Vic(z) — Vi (m)‘

)pK (ac)/ {VAVJQ%QNTWJQ} — Wﬁlflwfl] pi (m))

IN

" ¢ H Op [Koxh + (NT) K (933 + K77

This, in conjunction with the fact that Vi (z) > ||p™ ( )||2umin(W*1(~2V~V*1) > C||p¥ (m)||2, implies
that

¥ VK (z) = Vi (z) -1 1/4 —2 —~/d
V2 (@) )V () — 1 - = Op |Koyh+ (NT)V K (632 + K/4)|.
’ 1/2( ) [V;(/Q( )+V1/2( )} [ ( )]
(A.10)
Consequently, |[DBa1g1] < KnT ’V;(/Q (z) /Vfl(/Q 1’ ||UKH HblH = KNTOP[K5NT + (NT)1/4 K(é;,ZT

+K~7/4)]0p (K'/?) = op (1) .. Similarly, we can show that |DBsq2| = op (1). Then (il) follows. Anal-
ogously, we can show (i2) and (23) by Lemmas A.8 and A.9.

Proof of (ii). By (A.10), - 1‘ o B Vil | = Op[Koyy+(NT)* K (035
@) V&2 @+V*@)]

+K~ z/‘;)] = op (1).It follows that | D B3| < \ANT/ANT—1| |AnT [ (2) — g (2)] — Bg (x)] = 0p (1) Op (1)
=o0op 1).

Proof of (iii). Noting that |Bg (z)| < |knrb1 ()] + ‘H;,Tbg ’ + |knTbs (x)] = Op (nNTKl/Q) +
Op (HNT) +Op (KNT) we have |DB4‘ < ’ANT/ANT — 1’ |BK | = Op[K(sNT+(NT)1/4K (6&27’ + K_W/d)}

x [Op (kxrK'?) + Op (ky7) + Op (knT)] = 0p (1). B
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B Proofs of main results for specification test

N T N T >
Let ¢;, = N i @i X + T MesXis — 77 D jm1 Dosm Qs Xjs and Xy = Xy— Ep (). Let
Qsznt = ~F Zz 1Zt 1 1thtezta QzzNT = ﬁzlj\; Zthl XuZle2, Qi = Ep[Quent], Qaz =
Ep[Qazz n1], Hpe = W Y'Qupz DY, and hip js = 21, Hpo Xjs- Let bgl), bél), bgl) denote d x 1 vectors whose
kth elements are respectively given by
1

N

1
T

1
tr [Ep (ee’) MyoX;®], and by}, = —tr [Ep (e'e) MpX},@'] .

l
bg,)k =

tr [PoEp (X)), 03, =
The following lemmas are needed in the proofs of the main results in Section 4.

Lemma B.1 Suppose that the assumptions in Theorem 4.1 hold. Then
() ||prp,NT - prpHF = Op(f(/(]\/v'l—’)l/Q)7
(Z’L) Hprw NT — prg;HF:Op(Kl/Q/(NT)l/Q);
(iii) |Dyt — D||p = Op((NT)~/?);
(iv) H w2, NT — Q“HF = Op(K'/?/(NT)V/2).

Lemma B.2 Suppose that the assumptions in Theorem 4.1 hold. Then Bbc—ﬁo = W‘lﬁ Zfil Zle Zirei
+Rp N1, where |Rg nrl| = op (Y1) -

Lemma B.3 Suppose that the assumptions in Theorem 4.1 hold. Then under Hy (vy7) we have 6—6°

e DYyt + D7 e SN SO Xyvei + Bonr + Ront, where Ront = op (yyr) and Bont =
—T'D1p{" - N~ 1D lbg” 71D,

Proof of Theorem 4.1. Recall that e, ;s = g (X;)—p/,8° and g (Xit) — X[,0° = vy Asr under Hy (7 7).

N T g 5 N T P
We can decompose 'y as follows Ty = 552 Y501 Y1 [Pl Boe — X501 wie = <7 >int Doi1 [P (Bpe

-3%) — eg,it FYNTA (Xit) — X{t(é —0?wit = Ty +Unre +Tnrs +Tves — 20 nrs —20 vre + 20 Npr +
ZFNTS — 2FNT9 — 2FNT107 Where

Inri = (Bbc - ,30>/ Qupp,NT (Bbc - 50> ; T'nre = (0= 0°) Quaa.nr (0 — 0°),

Unrs = Vr 5 sz\il 23:1 wit A, Inra = (NT) ™ 211\;1 23:1 witez,it’

Inrs = (Bbc - ﬂ(])/ Qupa,NT (0 — 6°), I'nre = (Bbc - 50)I ~7 S S wapieg it
U'nr7 = N1 (Bbc - /60)/ ﬁ Zﬁvﬂ 23:1 witpitAit, T'nrs = ﬁ Zz]‘V:I 23:1 witeg,ith(t(é - 6%,
TNTo = VNT T Zf\il Zle wir N X1, (0 — 0°), CNT10 = YNT WF Zf\il 23;1 Witeq it Nt

We complete the proof by showing that under H; (yy7), (1) (NTTn71 — ByT) /V1/2 d N (0,1); (i)
fy&QT (Cnr2 + Tnrs — 20 NT9) = AD + op (1); and (429) 'y]_VQTI‘NTS =op (1) for s =4,..,8,10. We prove
() in Proposition B.4 below.

For (i7), by Lemma B.3

N T

~ - _ 1 -
0-0° = yypDyyYNT+D lﬁ Z ZXiteit + Bo.n1T + Ro.nT
=1 =1
= YnrDyy YNt + Op[037 + (NT)_l/Q} = YDy Yne + op (Ynr) - (B.2)

Then we have 7;/2TFNT2 = 7&27“ [’YNTD;/%TN:H-OP (’YNT)]/waw,NT['YNTD;/%’TNT""_OP (Y1)l = TINTDIT/%
waw,NTDJTr}fTNT‘FOP (1), and 2'71_\7211FNT9 = 27N2Tﬁ Zf\; 23:1 VNTwitAitXl{t[’YNTDXrTTNT +op (’YNT)]
= &N ST wi A X[, DNy Y nrrop (1) . It follows that v % (Txr2 + Dyrs — 20nrg) = (NT) 7PN
Sy wit(Ai— X[, Dy Ynr)? = A% +op (1),
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For (idi), it is clear that Y32 nra = Op (YaeK ~27/%) = 0p (1) and 732D nr10 = Op (Yyp K14 =

p (1) by Assumption 4 and (B.2). We complete the proof of (i) by showing that (iiil) 7T N5 =

op (1), (iii2) yywL'nre = op (1), (i443) YL nr7 = op (1), and (494) v 53T nrs = op (1) . We first show
(#4i1) . By Lemmas B.2-B.3, we have

~ / A
TWiTnrs = Tag (ﬁbc—BO) Qupanr (B —0)

= WNTN ZZ teth prmNT (’YNTDNTTNT)
=1 t=1

N
NT NT ZZ teth prw NTD 1]\/vL Z::

i=1 t=1

zteit

HMH

N T

1
Jr’)/NT NT Z Z ZzteltW pr;c NTBo NnT + ’YNT

T
E Ztveit W Quopar, NT Ro,NT
i=1 t=1 t=1

2‘»—
an

"i_'VJTIQTR/B,NTszm,NT(é - 90)
= fNTSl + fNT52 + fNTSS + fNT54 + fNT55a say.
Recall that H,, = W’lemel. We further decompose T n7s1 as follows

N T N
- 1 1
Cnrst = Y NT S  ZieuHp Ynr + VNTN— Z

=1 t=1

nMﬂ

theitW_lepz,NT [DXIIT — D' Ynr

NTN Z Z Z/teltW pra: NT — prz} DilTNT
i=1 t=1

= Tnrsia + Inrsis + Tnvrsie, say.

Note that |[(NT)~1 sz\; Zle Z!eitW ' Qupe DY|| = Op[(NT)~'/2] by Chebyshev inequality and the
fact that Ep|lgz Yoim; Yy ZieiHpel? = Frtr( QW Qupe D72Q1, W) < d/ (NT) 1y ()pa (D72)
X[y (W1 ( wprwpw) = Op((NT)~') by Assumption 11 and Lemma E.3(vi). It follows that
ICnrsial < Yarllnr Sivs et ZheiW ! Qupn DI [ Yzl = Op (var(NT)~Y/2) = op (1). By the
fact that |57 Zfil Zle e Zl, W=t = Op (KY/*(NT)~%/?), Lemma B.1, and Assumption 11(ii), we

= - N T 51 vir— — _ - _
have [Cnrsip| < Y 1Qupe N7l 17 ity Xemy e ZiW | | Dy = D[ o ITne | = vy Op (NT)~H2)
Op (KY2(NT)~'/2) Op (1) = op (1) and [Tnrsicl < vl g7 Sy Siet € Z6W 1 Qupr Nt = Qupell
1D IT Nl = v yrOp (KY2(NT)=1/2) Op (KY2(NT)~/2) Op (1) = op (1) . It follows that ' yps1 =
op (1). For r NT52, we decompose it as follows:

N T

3 1 1 3 3

Inrs2 = ’YNQT N2T2 E § Zz/thijSe]Sezt + FYNT N2T2 E E Z{thacXitse?t
1<1;£]<N 1<t#s<T i=1 t=1

+AVNTN2 QZ Z Zz{thinseiseit‘*"YNTNz 22 Z Zl Hpa X jeeitejt
i=1 1<t£s<T t=1 1<7,;£_7<N

T
NT NT Z Z zteltW prz NT — pra: D_ Z teit

zltl

Cnrs2a + Tvrsay + Dnrsze + Dnrsed + Dnrsze, say.
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Recall that h; js = Zl;Hpe Xjs. Apparently, Ep [T yrs24] = 0 and

~ 1
2 — —_— . . . . . . . .
ED[FNTSQa] = 1 N4T4 E E E § Ep [hlltld181€]151611t1 hlztz,stzejzszelztz]
TN 1<i1£j1 <N 1<ia£j2 <N 1<t1£51 <T 1<to#s2<T

= ’Y N4 4 Z Z ED 1tjs jS 1t}

1<i#j <N 1<t#s<T

< S N4 T Y M P (XX ) Mo B (ZaZiid )|
1<4,j<N 1<¢,s<T
2 -1 -1 -1 =10
= 4 N2T2 |: sz szD Q/pr sz:|

Wm@u) i (D7) 1 )iy (@) a7 [ = 05 (%) |

So T'nrs2e = op (1) by Chebyshev inequality. For L nrsop, we have Dyrsop = ﬁtf(HPmng) +

\/ﬁtr{Hm (QzznT — Qz2)} = f‘NT52b71 + f‘NT52b,2, say. For f‘NT52b71, using Lemma B.1(v), we have

Cnrsasn < Vi 1/2tr( 1prx )
< Vy 1/2 {tr (Qi,eW 'QupaD _1QZUPIW_1Q%2>]1/2 [tr (D_l)]1/2
< Vil {M (QprW_lﬂézQiZW_lem)}1/2 tr (D7)

< VR (W) | Qupel [252] Op (1) = O (K—1/2> ,

where we use the fact Hsz I” < 1 (Q)py (Qaz2) = Op (1) by Assumption 7 and additional assumption that
1ty (Q3z) = Op (1). For Tnrsap2, we have |Tnrsop 2| < V_1/2 D71 - IV Qupe | Q22,87 — Qs
= V]_VlT/QOp(Kl/QN 127-1/2) = op (1) . Similarly, we can show that I'xrs0s = op (1) for s = ¢, d. For,
I'nT52¢, we have

|fNT526| < ’YNT

T ZZZﬁtezt T ZZthezt
=1 t=1

= 7];2Top(K1/2N—1/2T-1/2)op( )Op(K'VAN=12T=1/20p (1) Op[(NT)~V/?] = Op(1/vV/NT).

HW HanmNT Qupell [|D7Y

Consequently, T nrso = op (1).

Following the proof of T'y7s1 = op (1), we can show that T nTs3 = 0p (1) . In addition, it is straight-
forward to show that I'yrss = op (1) for s = 4, 5 by using the rough probability bound for the remainder
terms Rg nr and Rg yr. It follows that ’YX]QTFNTS =op(1).

For (ii32) , by Cauchy-Schwarz inequality and Lemma B.2, we have

|772p|:f2LNTA_0'.,.
NTL NT6 YNT NTZZ(BZ)C 6) W;itPit€yq,it
i=1 t=1
LN A ) ) 1/2 LN 1/2
< ’YRTQT {ﬁ ZZ (5bc - 5()) WitPit Dy (ﬁbc - BO)} {ﬁ Zzeg,u}
i=1 t=1 i=1 t=1
S 'YNTH/Bbc /8 H M1 menNT)] 1/2 OP (Kﬁv/d)
< 350p (K2 /VNT ) Op (K7/7) = 0p (VNTE /") = 0p (1),
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Similarly, vy5>I nrs = Op (’y_l K- 'Y/d) = op (1), proving (iii4) .

We now show (#73) . By Assumption 10, there exists a K x 1 vector 8% € R satisfying HBAH <Ca <
oo and ||A (z) — p¥ (m)/BOAHoo@ = O (K~/?) for as K — oo. Using Ay = P BN + (A fp;tBOA) =
pgtﬂOA + ea i, we have

1 & . '
’YEQTFNT7 = NT NT Z Z (51,0 ) witpitp;tﬂoA + ’valTﬁ Z Z (Bbc - 50) PiteA,it Wit
i=1 t=1 i=1 t=1
= Tnrra+ D, say.

Analogously to the study of \7]*\,2TFNT6| , we have ’fNT7b’ < Oy HBbC - BOH Op (K*W/d) =op (1). For

I'NT7a, by Lemma B.1 we have
N T

- 1
Tnrra = Dnrra + NT Z Z et ZiW ™ (QuppNT = Qupp) BA + VN R, NT Qupp, NTSA
NT

i=1 t=1
= Tnr7a1 +735O0P (Kl/Q(NT) 1/2) Op (K(NT)*”Q) Op (1) + Op (vy7Ra,NT)
= DInrra +op (1),
where fNT?al = WZZ\HZE leitZ( W_lepp,BOA. Noting ED[fNT7a1] = 0 and E’D[f‘?\’Thzl} =

1 _ _ ~ o 2
(NT) ! ’YN?T tr[QW 1prp/6A/8 QuppW ] < (NT) ! Ml(Q)M% (W 1) ’YNZTN% (Qupp) H/BOAH = OP['Y?VT
/(NT)] =op (1), T NT7a1 = Op (1) by Chebyshev inequality. It follows that 71?,2TFNT7 =op(l). A

Proposition B.4 Suppose that the assumptions in Theorem 4.1 hold. Then (NTT 1 — ByT) /VViNT N
N (0,1) under Hy (vnr) -

Proof. Noting that ||Qupp, N7 — Quppll = Op[K/ (NT)l/2 and Hﬂbc 50H = Op (K1/2/( )1/2),

we have 'yNTl"NTl I'n71 1+7NTOP(K/\/ T)Op (K/(NT)) =op (1), where 'yp1 1 = 'yNT(ﬂb —BO)'
prp(ﬁbc -p° ). We are left to show that Jyr1 = (NTTnp11 — IB%NT) /V1/2 Y (0,1).
Let Qpp = W' QuppW 1, Hijus = Zz/tQpPZJ"” Hi; = Z Qpp 5, and JInr = W Ziv 1 Z;V 1€ Hije;.

Note that 7N2TFNT171 = NzT%_’Y?VT Zz 1 Zj 1 zHljeJ+2’Y QU/PP(BbC B )‘*"YN%fRﬁprpRﬂ = Jnr+
7 BnT 1
op (1) . Further, Jyp — — = —N2T2’Y?VT Zlgi;éjSN eiHijej + TS, Zi:l Zlgt;ésST Hij iseiteis =

jNT,l + jNTVQ. We complete the proof by showing that: (7) jNT,l 4N (0,1) and (i7) jNT,z =op(1).
Proof of (¢). Note that Jyr1 = W Y<izjen €iHize; =30 cicj<n Wij where Wi = Wi (us, uj)

=2(NT)~ VN1/2 Zlgs,th H;jiseirejs and u; = (Z~;, e;)’. Noting that jNT,1 is a second order degener-
ate U-statistic that is “clean” (Ep[Wnrt (u;,u)] = Ep[Wnr (u,u;)] = 0 a.s. for any nonrandom u), we
apply Proposition 3.2 in de Jong (1987) to prove the CLT for Jyr,1 by showing that (¢1) Varp(Jyr,1) =
L+op(1), (i2) Gr = Zl§i<j<N ED(VVZ%) =op(1), (i3) Gir = Zl§i<j<l§N ED(Wi%szl + ngWfl +
W2ZW2) = op (1), and (i4) Grrr = Y1 <icjerercn Ep(Wis Wi Wiy Wi A-Wig Wi Wy Wy +-Wi W Wi, W)
=op (1). For (i1), by Assumption 5(i3), ED(JNT 1) =0 and

~ 4
VarD(JNT,1) = N Z ZZED .s€E5s)

1<i<j<N t=1 s=1

T T
- o X XY { Qe (226) Qo (2uZich)

1<i<j<N t=1 s=1

2 L | A -
T (QPPQQPPQ) S e ;tr (QpriQpri> —1-0p (N7



where §; =T Zthl ED(Z”ZZ{tE?t) with N4 Zf\; 111(€:)? < C < oo, and we use the fact
N N _ _
S (@0, < NS (@2 | 2o () 1
. ) < 1 Qz 2 | Fal\pp)t \Wpp) 1 1) N
N=Vnr ; " (QprZQprZ) - {N ; ) } NVyr Or(1)Op N op (1)

Proof of (i2). Let g, be the (ki, k2)th element of Qpp- Let Bir e = Zit’keit. Noting that Hj; ;s =
. P oo ~ N
ZiQZjs = Zm:l Zk2:1 Tiey ko Zit k1 Zjs ko » We have

_ 16 —
Gr = vz > Ty koy ks ks ks kg Thir ks
1<k,...,ks <K

X Z Z Ep <¢it17k1 ¢it37k3¢it57k5¢it77k7) Ep (qj)jtz,kz¢jt47k4¢jt5,k6¢jt8,k8) :
1<I<G <N 1<ty ts<T

First, note that the term inside the last summation takes value 0 if either # {t1,t3,t5,t7} = 4 or
#{ta,ts,t6,ts} = 4. So it suffices to consider three cases according to the number of distinct time
indices in the set S = {t1,...,ts} : (a) #S = 6, (b) #S = 5, and (c) #S < 5. We use G4, Gp,
and Gy, to denote the corresponding summations when the time indices are restricted to cases (a), (b),
and (c), respectively. Then G; = Gro + Gy + Gre. For Gj,, we must have # {t1,13,¢5,t7} = 3 and
# {ta, t4,t6,ts} = 3. Without loss of generality, assume that t; = t3 > t5 > t; and t3 = t4 > tg > tg. By
the conditional Davydov inequality (see Lemma E.1) in the supplementary appendix, we have

i(i
ED (¢it1,k1¢it1,k3¢it5,k5¢it77k7) S 8 H¢it17k1¢it17k3¢it57k5 (8+46)/3,D H¢it77k7H8+46,’D a%H (t7 - t5)
148
< 8 Hd)im,lm H8+45,D ”¢it1,k3 H8+46,D Hd)its,ka H8+45,D ”¢it77k7”8+45,D Oélz;—é (t7 o t5)

146
5

1
< 2(Puity by + Prity ks + Puits ks T Priitrkr) ap (t7 — Us)

-

4 my e
where @1 ;1 = ”¢itvk"8+45,l)' Let C14 (T) = 25:1 ag+6)/(2+6) (m) and Cy,, (T) = ZT (1 — T) anst’ (m).

Clearly, max {C14 (T'),C24 (T)} < o0 by Assumption 5(i). Then

|G1a| < WZLV%T Z |Qk1/€2‘ |q_k3k4| |(jk‘5k6| |qk7ks‘
1<k,....ks <K

N 145
- {Z > (Prits ke + Pits ks + Pty ks + Pite k) ' (b7 — t5)}

1=11<t;<t5<t1<T

N 1es
" { 2 > (P jta ks + P jtn ks + Phitg ke + Pt ks) p (L8 — tﬁ)}

J=11<tg<te<t2<T

IA

ﬁ‘lvzm . Zk <K|67k1k2\ |Tres s | | Ths k| 1Thris |
SRl R8>S

> (Pt + Puitks) + Con (T)

=
=

,_.
-
Il
—
~
Il
A

(D1,it ks + <I>1,¢t,k7)}

=
M=

s
I
-
o~
Il
_

T
‘ {cm (T)3° 3 (@1500, + Briery) + Coa (T)
=1t=1

= yoperOp (K°N?T?) = Op (K°/N?).

(D1,it ks T q>17it7kg)}

Similarly, we can show that G, = Op (K°/N?) = op (1). It follows that G; = Op (K°/N?) = op (1) *

4This is a rough bound but it suffices for our proof. With more complicated arguments, we can show that G; =
Op (K2/N?).
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For (i3), we write G5 = 21§i<j<l§N ED(Wi%WJ»QZ + WZQJWZ% + WZW@) = G]],l + GILQ + G1173. By
Assumptions 5(i7), we have

16
— E E 2 2
Gll,l = N4T4V2 ED [eitlejtZHil,tltgHil,t1t4Hjl,tzt5Hjl,tzt6elt361t4elt5eltﬁ]
NT 1<i<j<I<N 1<ty,...,te<T

192

2 2 2 2

NAT4y2 § E : E : Ep [eitlejtzHil,t1t3Hil,t1t4Hjl,tzteelt3elt4elt6]
NT 1<i<j<I<SN 1<t1,t2<T 1<t3<t4<te<T

48

2 2 772 2 2 2

+N4T4V2 Z Z Z Ep [eitlejtzHil7t1t3Hjl7t2taelt3elt6]
NT 1 <i<j<I<N 1<ty to<T 1<t3#tg<T

= G+ Grre, say.
N SO - .
Observe that Gry,11 < NQ%Z%/?\,T 21:1 Zl§t3<t4<t6§T ED{tr[elt4Zl/t4QprQplet3elts]tr[QprQpletsZl/tael%te]}'

Noting that Eple, Z~1/t4 QppﬁQpngt3 eit;] = 0, by the conditional Davydov inequality we have

’E’D {tl“ [elm let4Q:DPQQPPth3 elt:s} tr [QPPQQPPZ”B lete efte} H

146
+45

< 8||tr {elt4Zl/t4QprQpletaelta} )4+26,D tr [Qppﬂ@ppzltszl/tael%&g] ‘4+26,D ap”’ (te —ta)

< 90000 [l ], o ] o8 0ot

< CK? z z 2 o7 33

= ||€lt4\|s+45,p Plty,8+46 Helt3||s+45,p Pits,8+468 ||€l756H8+45,D Plte,8+45 | A (te — ta)

146
< CK?(Caatye + Catap + Caiitge + Caittg p + 203,116, + 23115 p) a5 (t6 — ta)
N N _ - _ 8445
where Cs1t.e = Helt||2+45,pv Csaip = Sp?t,8+45a Gisg = K Y\ Zis . and E |%‘s,q} < 00 by As-
sumption 6(ii¢) . Then 7
192C0K? & 5)/(2+6
Grrin < NITIVE Z Z {ang )2+ )(ta — tg)
NT =1 1<ts<ta<ts<T
X (Citg,e + Csitap + Caitg,e + Caita,p + 2C3,116,¢ + 203,lt6,p)}
CK? a
= ——————[TCy (T) +3TC1 (T Csite +Csi1p) =Op (N1
NQTQWVT[ 2 (T') + 3T Cha ( )];;( 3ite + C3itp) = Op (N71)
by Assumption A5(7). Similarly,
48 -~ _ LA
Grriz < NITIVI_ Z Z Z Ep {tr [ED(ethlZitlZl{t1)QpPel2t3th3ZlIt3Qppj|
N

T 1<i<j<I<KN 1<ty,t2<T 1<t37#tc<T
2 7! A 2 7 A
X tr |:ED(ejt2th2th2)Qppelt6thGthGQpp:|}
8

N
N2T2V2 Z Z Ep {tr {QQPPGIth Zit, Zl/t3 Qpp} tr [QQppethG Zits Zl/ts QPP} }
NT =1 1<t3#t<T

< ﬁ i Z {ED {tr (QQppe%t;ngtaZl/thpp)} Ep [tr (QQPPGZ%GZUGZ;%QPP)}
NT =1 1<ty #te<T

1

o5 (1t - t3|>}

9

+8 Htr {QQPPe%tg th3 Zl/tg Qpp}

Htr {QQppe%te tha Zl/tg Qpp}

’4+26,’D ‘4+26,D
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8#%( )Ml Qpp

_2 ~ 2
N2T2V2 Z Z Ep |:€l2t3 Zitg ] Ep [ezzf,ﬁ Zitg ]
I=1 1<tz #ts<T
6413 (2) 1t (Qpp) & e e .
N2T2V2 Z el2153 Zity 61275,3 Zigg 2 (Jte — t3])
NT 4425, D 4+426,D

=1 1<t3#tc<T

Op <W) [Op (NT?K?) + Op (NTK?)] =Op (N71).

Thus Gy = op(1). Similarly, we can show that Grr2 = op (1) and Grr3 = op (1). It follows that
GU = op (1) .
For (i4), we write Grr1 = 321 <icjeparan Ep WigWar Wi Wiy + Wiy Wy Wi Wiy + Wi, Wy Wi W) =

Zi:l Grir,s, say. By Assumptions 5(ii), we have
16

GIII,l = W E E ED [Hij,tltz eitlethHiT,t3t4 eit3€T’t4Hlj,t5t66lt5 ethHl’l‘,t7tg elt7€’l‘t8]
NT 1<i<j<r<I<N 1<ty,...ts<T
= L g E ED[€2€2' e er H"ttH'ttHl'ttHltt]
N4T4V2 it1 Cgte Clts Crtg T tita Attty Jyts5t2 Tis5ta
NT 1<i<j<r<I<N 1<ty to,ts,ts<T
16 -~ 5 -~ = -~ = ~
_ i 2 ) ;2
= NATay2 E E {ED (QppZztZitez’tQpersererstlelepepoppZ quejq)}
NT 1<i<j<r<I<N 1<t,s,p,q<T
oD DI () T Yo
- tr(Q 00,000,040 Q)
24 NAY2 pp>Li<pp ér&pp ppo L]

NT 1<itjtr£I<N

2 1 1
= 3V%\/Ttr (QPPQQPPQQPPQQPP ) +Op (NK) =Op (?) ;

where we use the facts that tr (QprQprQprQpr) < 1t (Qpp) 13 (t2(Q) = Op (K) and NP SN 1 O,
= in the last line. B

For (ii), we can easily show that Jyro = Op (N_l/z) = op (1) by conditional Chebyshev inequality.
The details are omitted to save space. m

R R 1/2
Proof of Theorem 4.2. Note that Jyr = M%/Z;V__TBM = JInr (%ﬁ) + _VMVL%B;EZ and VNT =

Op (K‘l) , by Theorem 4.1 it suffices to show that (7) Byt — Byt = op (Kl/Q) and (i1) Vnr — Vyr =
op (K). We first prove ().

N T
i 1
Byr =Bnr = NT Z Z ( tZZItWNTprp NTWNTZn tZz/t 1prp 1Zzt)
i=1 t=1
1 T ) )
B NT Zzéi [Z’{twileppwi Zit — Zz/twi prpWﬁlZzt}
=1 t=1
1 T ) o
+ﬁ Z Z (€ — e?t) ZEW T QuppW ™ Zy
i=1 t=1
;| NI R ) ) ) A
+W Z i [Zl{t (Wﬁ%Qpr’NTWJG”}” o W_leppW_l) Zit}
i=1t=1

= DBin7 + DBon7 + DBsn7, say.

Following the proof of Lemma A.9(7), we can readily show that DBsyr = op (1) for s = 1,2 because
ql,J/ng 17 and Q}U/ﬁp Zit behave similarly to Zi and Zm respectively. Let w = W&%«prp, NTW&%«
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and @ = W Qupp W' Then DB3ng =tr[(w — ) Q7). By Minkowski inequality,

o=l < | W Quarvt = Quan) W + |05k = W) Quopivr (Wt = W)

"]

= wiNT +WaNT + 2w3NT, Say.

F

By the matrix version of Cauchy-Schwarz inequality, the fact that tr(AB) < p, (B)tr(A) for any sym-
metric matrix A and p.s.d. matrix B, and Lemma B.1, we have

- - . - 1/2

WINT < {tI‘ |:W_1 (prpJ\fT - prp) W_1W_1 (prp,NT - prp) W_lj| }
- - . 1/2

1 (Wﬁl) {tr {Wil (prp,NT - prp) (prp,NT - prp) Wﬁl] }

~ 2
|::U“1 (Wﬁl):| Hprp,NT - prpHF = OP (1) OP(K/(NT)1/2) _ OP(K/(NT)1/2)

IN

IN

Similarly, we can apply Lemmas A.8 and B.1 and show that wsnro = Op(K2(K~27/1 4 §32)) and
wsnt3 = Op(K (K™% + §y%)). It follows that

i — @l = Op (K (K71 +63%)), (B3)

and ‘DBgNTl S ||’lf) — QI)HF HQNTHF = OP[K(K_’Y/d + (5;\/}1«)]019(}{1/2) = Op(Kl/Q). Thus BNT — BNT =
OP(Kl/Q).
(i4) Using the notation @ and @, we can decompose Vyp — V7 as follows

Vyr —Vyr = 2tr (wQNTwQNT - waQ)
- 2tr (wQNTwQNT - waQ)
+2tr | (@ — ) Qr (0 — @) Qe | + dtr | (@ — @) QyriQur|
= 26 [(Qnr — Dd(Qur — )] + 4 [5( Qv — D]
otr [(w — @) Qnr (i — ) QNT} + dtr [(w — @) QNTmNT}
= 2DVin7 +4DVonr + 2DVsyr + 4DVan7.

Observe that |DVyy7| < [uy ()] ||Qnr — Q|2 = Op(K2/(NT)) = op (1), and by (B.3)

|DVanT|

IN

{tr {(w — ) OO (@ — w)} }1/2 [tr (wQNTQNTw)} i

s Q)2 o = @l [0 = O (1) Op(K (K74 635 ))0p (K/2) = op (K1/2).

IA

Similarly, we can show that [DVsyr| = Op(K2(K~2/945,2%)) = op (1) and | DV, 7| = Op(K3/2(K /4
+055)) = op (K'/2) . Consequently, V7 — Vyr = op (K'/2) = op (K). B
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Supplementary Material On
“Nonparametric Dynamic Panel Data Models with Interactive Fixed Effects: Sieve
Estimation and Specification Testing”
Liangjun Su, Yonghui Zhang
School of Economics, Singapore Management University

THIS APPENDIX PROVIDES PROOFS FOR SOME TECHNICAL LEMMAS AND THEOREM 4.4 IN THE
ABOVE PAPER.

C Expansion of the quasi-log-likelihood function

We extend the expansion of the (negative) quasi-log-likelihood function of Moon and Weidner (2010) to
our nonparametric framework. This expansion is the starting point of our asymptotic analysis. Given
the sieve basis {py (z),k =1, ..., K}, we can linearize model (1.1) as (2.1). Compared with Moon and
Weidner’s (2010) linear model, the number of regressors increases as sample size (N, T') tends to infinity
in (2.1) and the new error term includes an extra component, i.e., the sieve approximation error. We can
modify the proof in Moon and Weidner (2010) and still resort to the perturbation theory of operator in
Kato (1980) to establish the first order expansion of approximating quasi-log-likelihood function.
Define

o, = f0 (f()/f())*l ()\0//\0)—1 (fO'fO)il £ and @y = \° ()\0//\0)—1 (fO/fO)il (AO//\O)—l G (C.1)

Recall that ® = fO(f% fO)~'(AYA%) =AY and dnr = i ex Pk, where ¢, = 3, — B4 for k = 1,..., K,
0 = |[u]| /VNT, and Py = (VNT/ ||u)) [[u] . Let dmax (A°, £°), dimin (A%, f°) . 70 (A% f°) , and anr be
as defined at the beginning of the Appendix.

Proposition C.1 Suppose that |9nT| < VNTrg (/\07f0). Let X(B) and f (8) be the minimizing para-
meters in (2.4). Let M (B) = My g and M; (B) = Mg Then

(7) the profile quasi-log-likelihood function can be written as a power series in the K + 1 parameters
e (k=0,1,..,K), ie.

K K
L7 (B) = Z Z erry L (X0, £, Py, Py,)

K K K
1
+W Z Z Z €k, EkQEkSL(:” ()\07 fo, Pk1 , sz,Pk3) + Op (O/IIVT) (CQ)

where L (X0, [0, Py, Pp,) =tr(MyoPy, MpoP} ) and

1
L (3, 1, Pia, Pio Py) = —5 2 tr (MyoPy, MpoPy, OP} ) ;

3! all 6 permutations for (ki,ka,k3)

(i1) the projector Mj () can be written as a power series in the parameters € (k = 0,1,..., K), i.e.,

K K K
Mj (B) = Myo + ZEkM,(\l) AP+ D> erer M (A, f0, Py, Pr,) + Op (ar)
k=0 k1=0 kp=0



where Mil) (A%, O, Py) = —MoP1,® — &P} Mo and

MP (X0, f°, Py, Py,) = MyoPy, Py, + &P} &P} Myo — MyoPy, MyoP} &,
—<I>2Pk2Mf0P;€1 Myo — MAUPk1®1P§€2MAU + @/P;CIMAOP]@(I);

(iit) the projector Mp (8) can be written as a power series in the parameters e, (k =0,1,..., K), i.e.,

K K K
M (B) = Myo + Z%M}l) AP+ > > e ek M (A0, fO, Py Pr,) + Op (o)
i F1=0 k2 =0

where MY (A, 1, Py) = —MpP,& — ®P; Mo and

MP (X0, fO Py, Pr,) = MpoPj &P} & + Py, @Py, Myo — Mo Pl MyoPy,d,
_(I)1P;€2 M)\o Pk1 M}o - MfOP;ﬁ q)QPk,? Mfo + @Pkl MfOP;CQ q)/;
Proof. (i) The proof follows the proofs of Theorems 2.1 and 3.1 in Moon and Weidner (2010) closely,
and is composed of two steps.

Step 1. We expand the quasi-log-likelihood function into the summation of an infinite sequence.
Observe that

K
Y_Z/kak =AY 4 Py + P+ -+ exPr, (C.3)
=1

where we can view the last K + 1 terms as perturbations to the leading term A\’ f’. Now we rewrite the
profile quasi-log-likelihood function in (2.6) as follows:

1 I K ! K 1 I
~NT Z Fit (Y - Z BkPk> (Y - Z 5kPk> =NT Z i [T (1)] (C4)
R+1 k=1 k=1 R+1
where T (32) = T + 3T 4273,
T = fONN Y TW =g (NOfY + fOAY), and 7@ = InrInr. (C.5)

Clearly, if €, = 0 for K =0,1,--- , K, then the T — R smallest eigenvalues of 7° are all equal to zero.
Since 7 (1) = 7° + 7MW 4 T3, under some conditions to be specified later (see (C.11) and (C.12)
below), we can expand the weighted mean A (1) of the A-group eigenvalues (A = 0 in this case) as

A(1)

T e’}
1 < (0)
w5 2 m[T W] =0+3 1947, (C.6)
R+1 9=0

where the coeflicients ;\(g) are given by

g
2 TlR St 3 i (5<k1>7<v1>5<k2>...S<kp>7<vp>5<kp+l>), (©.7)
(T'—R) =~ it Fop=g,
mi+-+mpr1=p—1
2>v,;>1,m;>0

_ _ _ k
S(O) = —MAO, S(k) = [)\0 ()\Ol/\()) 1 (fO/fO) 1 ()\0/)\0) 1 /\O/:| 7 (C8)



and T7() (s = 1,2) are defined in (C.5). Note that 2 > v; comes from the facts that 79 = 0 for
g=3,4,---, k; >0 and requirement —T' + R+ 1 < 0. See (2.12) in p. 76, (2.18) in p. 77, and (2.22) in
p. 78 in Kato (1980) for more details. Using the expressions in (C.5) for 7! and T3 we have

o g
WZM T(1)] = %ZZ(—UW 3 tr (5<m1>7(v1>5<m2>...g(my>7<vp)5(mp+1>)

=1p=1 v+ Fvp=s
mi+-+mpyr1=p—1
2>v;>1,k; >0

1 o K K K
= WZZ Z Zeklekz...ekgL(g) ()\O,fO,Pkla"' qug) (09)
ky=0

9g=2k1=0 ko=0 g

]
£
@
=

by noting that the term with g = 1 is equal to zero, and where

1 r-
L@ (X fO Py, Py,) = p [L<9> (A%, %, Py, -+, Py,) + all permutations of (ky, - ,kg)} ,
g
‘E(g) ()\07 f07 Pk17 e Pk?g) = Z (_1)P+1 Z tr (S(M1)77€(1v1)5(m2) e S(mp)T.(.i;:g)S(merl)) 9
p=1 v+ Fop=s,

mitetmyp1=p—1,
QZ’UJ' Zl,k‘j ZO

(C.10)
T = X fOP, + P fOAY, and T,7), = Py, P
To ensure that 7 (3¢) can be expanded at sc =1 in (C.9), we need the following conditions:

1. The perturbation terms must be small enough so that the quasi-log-likelihood function can be
expanded. The separating distance of eigenvalue 0 (with multiplicity 7' — R) is defined as d,, =
NTd? ()\0, fo). Then it requires that

min

NT ,

HT(” n T<2>H < S (A1) (C.11)

2. Convergence of the expansion in eqn. (C.9) in an infinite sequence with sc = 1 requires that the con-

-1
vergence radius is at least 1. Let a = vVNT ||9n7 || 2dmax (A°, ), ¢ = ||| [2\/NTdmax (X%, fo)} .
It is straightforward to show that

HT(l)H <a, H’T(Q)H < ac and HT(S) =0<ac® lfors=34,--. (C.12)

Then by (3.51) in Kato (1980, p.95), the sum of the power series for Lyt (8) is convergent if
1
1< (j—a +c) ie., if
sp

[Vl <ro (N0, ) = <4dmax (', £°) (C.13)

-1
= R )

Step 2. Finite order truncation of the quasi-log-likelihood function. To conduct the asymptotic analy-
sis, we need to truncate the expansion in (C.9) to a finite order. Noting that ||S\9|| = [NTd2, (\°, )],
HT(UH < a, and HT(Q)H < ac, we have

2p—>3v;

Hs(hnr]’(m)s(hz) e §) 7 (0n) glhpr) || < I:NTd?nin ()\07 fO)} LE (21 /NTdyax ()\07 f0)> 9Nl




; g P
Using Zvl+.“+vp:g)22%21 1 <29 and Zhl-s—‘»»-s-hpﬂ:p—l, hy;>0 < 4P, we have

1
L (h) - (01) G(ha) . .. G(hp) F(vp) Glhps1)
= 3 ‘tr(S“TlSz Sprsw))
vi+-tvp=g, hi+-+hpr1=p—1
2>v;>1, h;j>0

— g 0 P
Riioin (X, 1°) (2°NTdmaX<)‘o’fo)) " Wnrll® > (w>

oz \ G (X% 1°)
16dmax (A, 19) ) *
a2, (A%, £9)

min

IA

Rgdmm )‘0 fO H 79NT

16dmax (A, f°)
for g > 3. Recalling that ayr = H \/—15‘NTH W’ we have

1
L(])\f NT Z Z Z €k * €kgL(g) ()\O,fO,Pku'” 7Pkg)

g=2k1=0  ky=0
K K

= % Z Z"'Ze’fl ekL ()\0 P, Py)

g=G+1k1=0  ky=0
- f: Rgodrdi, (A, f°) _ R(G+1) afFld, (O, f°)
g=G+1 2 2 (1 - OéNT)

The infinite summation is convergent given oy < 1, which is implied by ()\O, fo) > 1. Letting G = 3,
we complete the proof of ().

(44)-(7it) Following the proof of (i) and that of Theorems 2.1 and 3.1 in Moon and Weidner (2010),
we can prove (it)-(ii7) analogously. m

D Proofs of the technical lemmas

D.1 Convergence rate

Lemma D.1 Suppose that Assumptions 1-4 hold. Then for any f € RTX% satisfying rank(f) = R, we
have

(i) sup; | wgtr (P Mse)| = Op (5]7\,17«) for any a € RE with ||a|| = 1;

(id) sup; ’ﬁtr (P(a)Mfeg)’ =0Op (K*'Y/d) for any a € RX with ||al| = 1;

(iii) supy | g tr (A fYMpu')| = Op (S5 + K—/4) ;

(iv) sup; | gz tr(uPpa’)| = Op ( (637 + K20/

Proof. (z) Using My = It — Py, we have

|tr[ @Mpe']| < |5tr [Pra)e]]

1
+ ‘ﬁtr [P(G)Pfe’]

+ mrank(P o) Pre) | Py [P o] lle]

RlIP@l el
Y ONT VNT

Op (Kl/Q/ (NT)1/2> +O0p (657) = Op (05r)

>~



by Assumptions 1(¢4¢)-(iv), 2(¢4), and 5, Lemmas E.3(vi), (¢), and (i), and the fact rank(Py) = R.
(1) Using My = It — Py, we have

1

1 1
N7 P@Msel]| < |\gtr [Pwey]| + | 57t [P Prey]
1 N T 1/2 N T 1/2 R
< W{a/;;pitp;ta} {E_:Z } +ﬁ||P(a)H 1Pl HelgH
2y lle | AIP@ll lleslle _ s
< i @upve)" ol "2+ TR = Op (K1)

by Assumption 2(¢), Lemma E.3(7), and the fact that = HegHi =< Zfil Zthl el < g (z) — p¥ (z) ﬂOHio 5

7 Zf\il 23:1 (1 + ||Xit|\2)w =0Op (Kﬁh/d) by Assumptions 3(z) and 4().
iy 0 0 M eli+leoll s —
(i77) By Lemmas E.3 (i) and (iv), w7 |tr (A" f¥Mpu')| <rank (A’ f¥Mu') H\/NH ”\/T_J‘ e =
Op (63 + K7/).

(iv) By Lemmas E.3 (ii) and (iv), w7 |tr (uPu’)| <rank(uPju’) & “u” |Ps]| = Op (07 + K~20/4)
=op (1) .

K
XY+ (B = By) Pr+u

k=1

K
Mf [AOfO/ + Z (62 - Bk) Pk +u

k=1

Proof of Lemma A.1. Let P, = 25:1 apPy and af = (ﬁ(,i —Be)/ HBO — BH We first give a lower
bound for Syt (8, f). Since Y — Z,[f:l BiPr = A\ f + Zszl (B — By) P + u, we have
!/
1
Snt (B, f) ﬁtr{ }
= Syt (Bo,fo) + Syt (B, f)
2 1
+ﬁt1‘ { P\Ofw + Hﬁo - ﬂ” P (a) } Mfll/} + ﬁtr{u(Pfo - Pf)u’}
> Snr (8% £°) + Swr (8.1) = (|8° = B8]) Op (K77 + 554 ) — Op (K774 + 534 )

where Syt B, f) = NT [()\O/fo + H,@O — ,8” P(a)) My (/\Ofo' + H,BO — ,BH P(a))l]. It is obvious that

N
Swr(.0) > minSwr 6.0 = [~ 61" Y w (@)

i=2R+1

N
18° = 81"y min e 30 Qe =018 - 8

=2R+1

by Assumption 2(zi¢). It follows that Syt (8, f) > Syt (BO, fo) +b H,BO — ,6”2 —op (H,@O - ,BH) —op(1).
Since SNT(vi) = minﬁ,f SNT (/vi) < SNT (ﬂovfo) , We have

bl B < 18° — 8l 0p (K77 4 55%) + 0p (B4 + 65

Then we get ||3° — || = Op(K~7/24 4 5§1T/2) =op(1). N
Proof of Lemma A.2. Recall Vi (z) = p™ (z)) W= 2QW ~1pX (2) and oK = Vgl/Q (z) W 1pX (z). By



Cauchy-Schwarz inequality, we have

d| = V% (x) ’pK (@) W12,
) {pK<x)’Vv—1pK<x)}”2{zgtv~v—lzt}”2< 9% @l (1) | 22
S rear s @} @l (2) m ()
= i (2) [ 2 -

5 N T N T
Recall that Ziy = pi — > =1 @i Ep (pjt) — T >am1 Mis B (Dis) + §7 D=1 2os=1 i B (pjs) =
pit + (;;- Note that ¢, is a K x 1 D-measurable vector, and

—-1 N 1 T
IGall < A 25 >IN @0l + 1521 T 21D (o
Jj=

2 ng ZZ IS HED (s6)]

j=1s5=1

where we use the fact that |a;;| < ' H)\?H H/\?H and [n;,] < st |2 |I1£2]] - For (i), noting that ) Zi
(il + 161" < 2* (Ipall* + 1call*) amd i, (2) = Op (1), we have

IN

23”“““( >22H|pz I+ el
2, (9) {Niii [Eo (Ipal®) + mﬂ} = Or (K.

where we use the fact that = S SN ¢ = op (K*). To see this, using [(a+ b+ c) /3)°
(a® + 6% +c¥) /3, we have g 37,21 Sy [Gall® < Cnr (4,0) + v (4,0) + (v (4, ¢), where

] 2
7 2= 2 il
t=1 =1

IN

37 T N §_1 N 8
Cvr(ha) = =D > LIINIR D2 IS D (i)l
t=1 i=1 J=1
g7 T N o 8
Cvr (4b) = sz(nft B znfon IEo (5 |>
t=1 i=1
37 T N I~ §
Cvr (4¢) = WZZ(HAOH 121 =57 T ZZHAOH IE 1D (pss II)
t=1 i=1 j=1s=1

For ¢ np (4,a), by Cauchy-Schwarz inequality

vt {53 {% > ||A2||2} %z{E (% ji_vjlmtn?) }

= Op(1)Op(1)Op (K*) =Op (K*).

IN

gNT (47 CL)

Similarly, we can show that (yp (4,b) = Op (K*) and (yq (4,¢) = Op (K*).

6

IN



For (ii), following the study of (i) and Jensen inequality, we have

A , 2 ) 2
W Zl (Z Hd?tHQ,D> < Homin ( ) N2T . < >
t= 1=1 t=
4Mmm T N N 2
< Nz( >;(ZHHpit|2H2D+Z|<it||4>
<

T N
SMmm() > Ep (NZHIMH) ﬁ;citng

t=1

= 0 (1) 00 (%) = Op (7). @

D.2 Asymptotic normality for the sieve estimator

Proof of Lemma A.3. (i) Let py = —+ Z —1 QijPjt — Zstl NesPis + R Zj\;l ZST:1 (ijn,spjs-Then
Zit = pir + Ep [pir]. We have

N T
Wr — W

Il
2|
ﬂ
™
M
5‘1
S
N
N
—

N ?
= Z Z {Ipitpiy — Ep (pipi)] + [(pie — Ep (pir)) Ep (9ir)') + [Ep (Bir) (P — Ep (07))]}

= DWlNT + D WQNT + DW?,NT, say.

| KK N K K N T
= WZZZE Z Covop (pit,ipit.k, Pis kPis,1) + NQTQZZZZVMD (pit,iPit. k)

=1 k=1 i=1 1<t#£s<T =1 k=1i=1 t=1

1446

8 K?
ar’ (t—s)+O0p <NT)

% o
S

M=
M=
-
™

K? K? K?
= Op|— Op|l— | = — .
(57) +or ) P <NT)
Then HDWlNTHF = Op(K/VNT) = op(1). Similarly, we can show that DWynt = Op (K/\/ ) for
s =2,3. Then (7) follows.
(74) Noting that Z;; = Zu-i—(ﬁit — Ep [pit]), we can decompose Wyt —Wnr = ﬁ vazl 23:1 [ZiZl,—
ZiwZ1,] as follows
| N LN
1 - M- — N - /
Wyt —Wnr = N_ g g it pzt - ED pzt W Z Z (pzt Ep [pzt])pit

i=1 t=1

;] MT | N
N—ZZ [Dit) (Dit — Ep [Pit]) N—ZZ (it — Ep [Dit]) ED [Z_?it]/

;2 pit — Ep [pit]) (it — Ep [Pir])’

DWinT + DWant + DWant + DWynT + DWsnr, say.

ﬂ



It is easy to see that HWNT - WNTHF < Z§:1 |IDWnT|l p = 2| DWinT| o2 || DWant|| g+ | DWsnr || -
For DWj 7, using the expression for p;; and by Minkowski inequality, we have

N N T N T T
HDW1NT||F S NQT Z Z Z azgpzt pjt - ED [p]t]) T2 Z Z stpzt Dis — ED [ zs])
i=1 j=1t=1 i=1 t=1 s=1
1 N N T T
!
+ || w2 DYDY aimepic (pjs — B [pss])
i=1 j=1 t=1 s=1 .
= DWinti + DWinTt2 + DWiNnT,3, say.
For DWinT,1, we have
N T 1 T
DWinr, = H NoT > i pie — Ep (pi))'|| + 2T > > aupi (pje — Ep [pir))
i=1t=1 P 1<i#j<N t=1

F

o (7x) +or (5) -0 (537)
"\vaer) TP \UNT P\ VNT
by Chebyshev’s inequality. Similarly, we can show that DW;; = Op(K/VNT) for s = 2,3. Hence

[DWint|lp = Op(K/VNT).
Analogously, we can show that [DWinr||p = Op(K/VNT) for s = 3,5. Thus (i) follow. W

Proof of Lemma A.4. Let Uy = ﬁ;fv:l Zle vE'{(Zy — Zi)ew —Ep[(Zix — Zi)ew}. Let
DS = pis — Ep (pis). We first make the following decomposition:

N T
1
\IJNT - T UNT Ufl Q5P €it
NT ;; N Z JEjt
1 N T 1 T
B Uf/ {_ Mts [ngseit - FEp (p(i:seit)]}
NT ; ; T ; ¢
1 LZ A
* NT ; ;,Ufl ﬁ ; ;O‘mnts I:pgseit - ED (piselt)]

= —VUnri1—UYn72+ Y73, say.

We want to show that: () \IJNT 1 =0p (1), (’LZ) \I/NT,Q =op (1), and (ZZ’L) \I’NT,B =op (1) .
First, we consider (7). Note that Ep(¥nr,1) = 0 and

1 N N N N T T
Ep (\I}NT 1) = N3T Z Z Z Z Z Z ailjlaizjzvflED (p§1t1p;;t26i1t16i2t2) Uf

J=1i=1 t=1
PET 1 R Sm S (401 1110
< N o7 2 2 2 INIHINSIIED (5esieds) |
i=1 j=1 t=1
N ||vf||2 e 0 0
< N NeT ZZ N[ A HZH%HMH%HM p (K/N).

F



It follows that ITjn7121 = Op(K'Y?/N'/?) = 0p (1) by conditional Chebyshev inequality.
Next, we consider (ii). We decompose ¥y o as follows

N
1
\I}NT,Q = — E E T’tsvx p’LSeZt—’_ o E E N5V [pzselt Ep (pzselt)]
NT3 =1 1<s<t<T T3 =1 1<t<s<T

= Unro1 + Un722, say,

where we use the fact Ep (p§,eir) = Ep (piseir) = 0 for s < ¢ in the first term. Following the study of
U N1, we can show that Wyg o1 = Op (Kl/z/Tl/z) = op (1) by conditional Chebyshev inequality. We
are left to show that Wyrp 20 = op (1). By construction, Ep [¥n7,2] = 0. By Assumption 5(iii) and
conditional Jensen inequality,

ED[\II?VT,QZ] = Varp (Unr22) = NT5 ZVMD Z Nes D (eitvflpz‘s)
1<t<s<T
N
< L >y > v Ep (e, p5,. i, 05 WE = EW (D.1)
= NT3 Ne1taMtsts Ve D\Cit1 Pit, €itsPity )JVz = NT,22{-

i=1 1<ty <to<T 1<t3<t4<T

There are three cases according to the number of distinct time indices in the set S = {t1,t2,¢3,t4} :
(a) #S = 4, (b) #S = 3, and (¢) #S = 2. We use EUnr9224, EUNT 205 and EWpnp 2o to denote
the summation when the time indices in (D.1) are restricted to these three cases, respectively. Then
EYnTr20 = EVNT 220 + EYNT 205 + EVNT 220, It suffices to prove Wyr 00 = op (1) by showing that
EVU N7 925 =0p (1) for s =a,b,c.

We dispense with the easiest term first. In case (¢), we must have t; = t3 and to = t4. By direct
moment calculations, we can readily show that EUnp 99, = Op (K/T).

Now we consider EVU np 29,. There are three subcases: (al) t1 < to < t3 <ty or t3 < tqg < t1 < to;
(a2)t1 <tz < tag < tgority <ty <ty < tog (a3)t1 <ty <ty <tyority <t <ty <ty Let
EV N7 2201, EYNT 2242, and EV N7 29,3 denote the corresponding summation when the time indices are
are restricted to subcases (al), (a2), and (a3), respectively, in the definition of EWU np 22,. We only prove
that EW N1 2241 = 0p (1) as the proofs of EW N7 2242 = 0p (1) and EW N1 2243 = 0op (1) are similar. For
subcase (al), by the symmetry of (t1,t2) «— (¢3,t4), we have

EUNT 2201 = 55 > > ey taMegta Vs BD (D5, €t D51, it ) VB
1=1 1<t1<ta<tz3<ts<T
Let dl = tl+1—tl, forl = 1, 2, 3. Let dlmax tlmaX,1 = MaXs=234 (ts - tsfl).
We consider two subsubcases for (al): (all) lpax = 2 or lmax = 4; (a12) lpax = 3. Let EV N7 22411 and
EV N7 22412 denote the corresponding summation when the time indices restricted to subsubcases (all)

be the largest increment, i.e., t;

max

and (al2), respectively. For subsubcase (all), without loss of generality (wlog) assume lpax = 2. Let
Pisg = K~/ [p5ll, p for 0 < ¢ < 8+44. By the conditional Davydov inequality (see Lemma E.1 in the
supplementary appendix) and Holder inequality, we have

145
|Ep (eit, vz Vi eieadft, v )| < 8llei s asp [v2 Pieitapit, v2 || ga9) 50 @5 (B2 — 1)
K 148

< 8K ||v) || it 145D Pits,s+45 | €its g+ a5.D Pita sasp  (t2 — 1),



and

|Ep (eitsvx Py earapit, v )P0 | ISE ST

< 8K H”KH (Hft1H leit s, D) (HftQH Dita, 8446) (HftsH ||€its”8+45,7>) (||ft4|| Pita, 84+46) O‘D (t2 —t1)
+5
S QKHUKH Cl 7,t16+01 zt2p+Cl Zt36+01 ity p)ap (t2 _tl)

where C1 it = HftOH ”eitH8+45,D and Cq i, = HftOH (w§t78+45)4. It follows that

272
EVN72a11 < gT Z > |Ep (i, 05 i, eits D51, 02 ) | || S 1 P 12
i=1 1<t <ta<t3<t4<T,
lmax=2 or lmax=4
_ AP S c c c c R (1t
S TNTS Z (Criitre + Chiitap + Clitg,e + Criitap) ap” (t2 — 1)
i=1 1<t] <to<ts<ts<T,lmax=2
CK L
S {ZZ Clzte+clztp}{zm o)) ( )}
=1 t=1 m=1
T N T N 1/2
< NT3 {ZHftOH } ZZ|‘€itHS+46,D + ZZ Pit8+45) ]
t=1 t=1 i=1 t=11=1

- ](ij?,\/_Op (ﬁ) Op (\/ﬁ) —0p <%) .

For subsubcase (a12), we have

1
E¥xramz < > (AN A YA P 2 O R A ]
=1 1<t1<to<t3<t4<T, do>dyi>ds3

1 & C C
78 2 > LI B (it 2Py eanaplt, x|

=1 1<t1<ta<t3<t4<T, do>dz>dy
= EUnr22a12 (1) + E¥ N7 22412 (2), say.

By the conditional Davydov inequality, Hélder and Jensen inequalities, we have

\ED (em Uf/pftg eitsp%ﬂf”

IN

i
8 Heih ||8+46,D ||Uf/pft2€it3p%4vfH(8+45)/37D a%ﬁ (t2 - tl)
2 146
8K HUfH lleit, Hs+45 D ‘Pftg 8+46 lleits Hs+45 D ‘Pfu 8+460‘%+6 (t2 —t1)

IA

and | Ep (ein, v ply, eitsif o) | | I 2 < 25 of I (Cuin e+ Crita p + Gt e + Crivan)

1438

xap™ (t2 —t1). It is easy to verify that Zi:l thl(cl,it,e + Chitp) = Op (NT). It follows that

CK & 148
EVUnr 22412 (1) < T3 Z (Critye + Chityp + Critge + Chitap) ap ° (t2 — 1)
i=1 1<ty <to<tsg<ta<T, da>d1>ds
T—3—ty da—1 T—3—ts da—1 146
- T X e @it T, 3 St
=1 do=2 di=1 t2=2 da=2 di=1

tz3=3 do=2d;=1 ta=4 do=2d;=1

T—1 tz—1 da—1 tg—2 da—1
Y G XY o )Y, Y Y 08 }

10



IN

{T Z (1-%)m a2 (m)} ﬁjﬁ fji (Critp + Chie)

i=1 t=1
CK

= Op (T)W

Op (NT) = Op (K/T) = op (1).

Similarly, we can show that EW n7 22412 (2) = Op (K/T) = op (1). Consequently EW n7 22412 = Op (K/T).
Thus EVU N7 2241 = 0op (1). As remarked early on, one analogously show that EVUxnp 22,5 = op (1) for
s = 2,3. Consequently, we have EVU 7 22, = 0op (1).

Now we study EW np 225. We consider two subcases: (bl) ¢1 = t3 or to = t4 and (b2) t1 = t4 or ty = t3.
Let EW N7 2251 and EW N7 22p2 denote the corresponding summation when the time indices are restricted
to subcases (bl) and (b2), respectively. For subcase (bl), wlog we assume ¢t; = t3. By the conditional
Davydov inequality,

i
o (t4 —t2) if t4 > to
K

|ED zztl f'pftzpm Vg )| <

{8||€zt1 @ plt2H(8+46)/3D w57, vs H8+45
s
0z

8”‘%1 Uz pzt4H(s+45 3Dlet2 z Hs+457) p o (2 —ta) if tg >ty

If t4 > to, by Holder and Jensen inequalities, each term inside the summation is bounded by

|Ep (€, 02wt o) | 221 1172 al

8 ek, e, a5y [0 s 0B 0= ) 1151 1 172

IN

IN

SKHUKH Hezt1||8+4m%tz,8+46%t4,8+45041> (ta —t2) ||ft1|| ||ft2|| ||ft4||
1+s
2+

< 2K ||11£(H (2C1it1,e + Criita,p + Criityp) ap° (ta — t2).

Similarly, if £o > t4, each term inside the summation is bounded by 2K ||v§ ||2 (2C1 ity ,e + Chitap + Cliitap)
146
xan? (ta — tq) . It follows that

N
2
|E\IJNT722b1| = NT3 Z Z + Z ‘ntlhntamvf/ED (pftz 61’1:117%4 eit3) Uf‘
i=1 | 1<t1<ta<ta<T  1<t1<ta<t<T
AK ||oK 1
< ]\|7|T3 H Z Z (2C1ity,e + Criityp + Chriity p) ap’ (ta — ta)
i=1 1<t1 <ta<t4<T
146
< Zfyrandl ¥ -
i=1t=1 1<ta<t4<T
N T
CKT 148
+ NT3 {Z Z (Critp + Critp) } { Z oz“‘s }
i=1 t=1

= Op(K/T)+O0p (K/T) = Op (K/T).

Similarly, we can show that EU 7902 = Op (K/T). Thus EV Ny 2 = Op (K/T). In sum, we have
shown that EVU Ny 92 = Op (K/T), implying that Unr 22 = op (1) by Chebyshev inequality.
Using similar arguments as used in the study of WU 22, we can show that ¥y 23 = op (1). B

Proof of Lemma A.5. By straightforward moment calculations and Chebyshev inequality, one can
prove (i)-(#4) ; see also Moon and Weidner (2010, S.4 p.14).
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(#4i) Noting that the (r,s)th element of f¥e'P ,) is given by vazl Zthl fo.eia’pis, we have

R T /N T 2
Z Z ( ftoreita/]?is> ]
r=1s=1 \i=1 t=1
N T T T
= Y I3 S Ep [d'pisalpjseie;)

Ep (| Py = Eo

r=1i=1 j=1 s=1t=1 g=1
R N R
— § § 0 2 E : 2 : § : 0 f0 / 2
- (ftr) |: apls ei ] + ftr qrED (a pls) eitei‘]:|
r=11i=11<t,s<T r=114i=1 1<t#q<s<T

R T T T
Y D DY D fafoEolapisa’psene;]

r=11<i#j<N s=1 t=1 q=1
= Tinrt +Tont + IsnT), say.
2 . .
Note that Tynr < [la|? Zf\; D i<si<T | /21" Ep [||p¢s||2 e?t} = Op (NT?K) by Markov inequality. For
Tont and T3n7, following the proof of Proposition A.6 and by the conditional Davydov and Jensen
inequalities we have

|Tont| < zlj:i_v: Z ’ftrH

<t7$q<5<T

|: apls) ezteiq:|

+

< 16 Ha||2 KZ Z ||ft ” ”fOH ||eth8+45 D‘st 8+46 Hezq||g+45 Da”D *(q¢—1)
i=1 1<t<q<s<T
= Op (NT?K),
and
R
Tovrl < 32 5 30 (B 1Aa] 1o (il B (i)
r=11<i,j<N 1<t,q<s<T
N s—1 +26 2
< Ha” Z {8K1/2 ZZ Hft || ”eth8+45 D Pis, 8+45O‘ (5 - t)}
=1 t=1

= Op (NQTK).
It follows that ||f”€'P ,)||r = Op ((NTK)I/%NT)
(iv) By (iii), Pl < Hfo (f£°)~ H 1 £7€'P || = Op (T71/2) Op (NTK)/25x7) =
Op(VNKGSnT).

(v) Noting that (r, j)th element of /\O/eP’(a) is given by Zf\;l Zle M) eira'pji, we have

e [ii(iiﬁrem’pﬁﬂ

Ep “)Ao’ep’(a)

r=1j=1 \i=1 t=
R T N T )
-y > (%) Ep [e2] B (@pi)* + 303 (A)) Ep e (a'pan)’]
r=11<i#j<N t=1 r=1j=1t=1
T N T 5 )
= 3 S INI ] Bt + NI Eo | (pi’]
1<i#j<N t= j=1t=1

Op (N2TK) +Op (NTK) = Op (N’TK) .

~—
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1t follows that HAO’ePga) — Op(NVTEK).

< [0 )| IATe P, = O (V2) 0p (NTH)Y257) =

(vi) By ( HPAoePw

Op(VN K).

(vii) Noting that A; = T~ X'[Ep (P; — P)']f°G® is a 1 x R vector and D-measurable, we have

2

1 T N N
Ep{——= Z Z Z Ai)\g [ejteit —Ep (ejteit)]

=
~

t=1 i=1 j=1
5 T 2 | LN 2
< 2BEp{ —— Ai/\qe itCit +2Fp {— Al/\lo [ef — FEp (63 )]}
7,2 T 2 2 L e

N
- wry L I e (60 Bo ()

N2T ZZ [ Aill” H/\OH [Ep (€ir) = o (¢) Ep (€3]

t=1 i=1

= Op(K)+Op(K/N)=0p (K) by Assumption 6.

Then (vii) follows by Chebyshev inequality.
(viii) Note that 7= ZZ 1 Ep <HZS LU (pg, = pie fOGOH ) is bounded by

2 2

N
DI TS 9 IS

Sljl

9 N
N 2P

1 K/ c OGO
\FZ”

The first term is bounded by

N T T

77 20 2 2 Wl 91 o o] ]
i1=1 s=1 t=1

oo 5425
< 8 valHQK HGO ﬁ ZZZ ||ng HftOH <Pfs,8+45<ﬂft,8+45a14>+26 (Is —t]) = Op (K)
i=1 s=1 t=1
by the conditional Davydov inequality. Similarly, we can show that the second term is also Op (K). Thus
(viii) follows by Markov inequality.
(iz) Using similar arguments as used in the proof of (vii), one can prove (iv) by Markov inequality.
(z) Note that Ep{ﬁ Zf\il Zthl Zle BifY [eireis — Ep (eireis)]}? is bounded by

2

T 2
1
2E’D {—N E E Bt ?/ [e%t — ED (egt)]} —+ 2E’D E E Btf €it€is
t=1

i=1 i=1 1<t#£s<T

T
2 N T T
- NTQZZZBJ 'Bof{'Ep [}l — Ep (¢3) Bp ()] + w7 QZ > B Ifol Ep (ehel)

1t=1s=1 i=1 1<t#s<T

by Assumption 9. Then () follows by Chebyshev inequality.

13



(zi) Note that

2
N
1
Bo ) w7 | v (v 6
t=1 ||j=1
2 2
2T Kr_c 0/ ~0 2T lNT K1 _c 0/ ~0
< W;ED Zu P5 A G +N—g T;;nt”pﬁxa
2 T N D) T 1 N T
= WZ‘;Z‘;E@ (”K/Pﬁt) o +ﬁ lela(}ms vl Ep (p5.p5s) vE
t=1 j= j=1s=

326

2K K
HU H Z Z Z O( ntsntr(pjs 8+46<)0]r 8+46QD (|T - S|)

j=11<s#r<T
= Op(K )+0p( )+O0p (K) = Op (K),

where a? = )\(;’GOGO’ )\?. Then (z7) follows by Chebyshev inequality.

(i) The proof is similar to that of (z) and thus omitted. B

D.3 Bias correction

Let €(8) =Y — Zszl BePr — A(B) f(B)". Following Moon and Weidner (2010, 2012), we first derive
the asymptotic expansions for the projectors M f(ﬁ) and Mj (), and the residual matrix &(3), and then
establish some lemmas that are used to prove Lemmas A.8 and A.9.

Lemma D.2 Under Assumptz'ons 1 4, we have the following expansions

(i) My (8) = Myo + M) + MP) 4+ 57 (87 - By) M“ + M (8),

(#6) M (8) = Myo + M“ +M<2> + 30 (B - ﬂk) +M<”"” ),

(iii) &(B) = MyouM o ‘1‘ A(l) + Zk:l (/Bk Bk) '+ e(mn) (5)
where e,(cl) = MyoP Mo, el = —MyouM pou'®" — <I>’ u'MyouMyo — MyouduM o, the expansion coeffi-
cients of M5 (B) are given by

Mill)l = —Moud — &' Mo,
MS; = —M,0P,® — &P} Mo,
M(Q) =  Myoudud + &'u'd'uw' Mo — MyouM jou' @y — BouM jor’ Myo — Myoud; ' Myo + &'v’' Myoud,
u A A A f f A A A A
and, analogously, the expansion coefficients of Mf (8) are given by
MY = —Mpoud — du' My,
,u
M) = —MpPi@ — OPMpo,
M = Mpu/'@u'® + dubulyo — Mypow' Myoud; — &0’ Myoulpo — Mpou'Syubyo + uMpou'd'.
For the remainder terms, we have
em, — _ 2 _ _
1M (B)I] = OplGnt + K [|8° = Bl + [|8° = B]|" + (@ + K77,
1M (B)I| = Opl(nt + K% ||8° BH + 180 = BI* + (03 + K=/,
180 (B) || = Op{VNTI||B — B + (B + K4 |8 = 8% + (6x3 + K27/},
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and rank(&e™ (8)) < TR.

Proof. Since the symmetry of N < T, A < f, u < u/, and P, < Pj, the proofs for Mf (8) and

Mj (B) are similar. So we only consider the proofs of M} (3) and & (8).
Expansion of M (8). By Proposition C.1 (i) and the fact u = Py, we have
K
M;(B) = Mpo+MY (0 u) + MY (AO, £, ZekPk> + M (A, £, u,u)
k=1

K K
+ {M}Q) ()\0, f07 ZEkPka ZekPk> + Op (a?‘VT)}

k=1 k=1
K
= Mfo +M]g?l)l+z( 5k) 1) +M( ) JrJu—(?“e’m) (6)
k=1

Following the proof in Proposition C.1, we can show that

MU (8) = Op [ (o5 + K7/9) [|8° = 8| + [18° = BII” + (655 + K—27/)] .

Expansion of & (3). By the definition of & () and using the expansions of My and M, we have

é(p)

K
Y - ZﬁkPk -AB) f(B) = [Y ZﬁkPk

K

= Alu—z — BY) Py +)\0f0’] ;
1

MyouMyo — ||8 — B%|| MyoP (o) Mso — MyouM poud’ — Myou®'u'Mpo — &'w' MyouMyo + &™) (3).

Noting that HM(DH —Op 6 K ”Y/d HM(DH —OP Sy +K W/d HM(2 H =0p 5NT+K_2V/d)
HM(2 H_op (632 + K274, HZ’“ L (B — BR) M H_OP 18- 5°||) andHZk (B - 89 MH
=0Op (||ﬁ ﬂOH) we have

8 (8)|| = 0p (VNT [[18= 81" + (6% + K7%) (18— 8| + (67 + K74 ]) .

Let Ao = u— Y1, (B, — %) Pr, A1 = Ag — MyoAgMyo, Az = AV 10 — X(8)' f(B), and A3 = —&'",
where A(8) = P5 () A’ and f () = P (8) f°. Note that &™) (8) = Ay + As + As, rank(4;) < 2R,
rank(A;) < 2R, and rank(A3) < 3R. Tt follows that rank(é"™ (3)) < 7R. =

Lemma D.3 Under Assumptions 1-4, we hcwe
(i) [|P5 — Pyo|| = ||M5 — Myo|| = Op(d i + K~/4),
(id) ||P; — Ppol| = IM; — Myo|| = Op(6k + K~/4),

Proof. Noting that |lu|| /VNT = Op (655 + K~7/9), |Pw| /VNT = Op (1), and Hﬁo —BH =
Op (K1/2(5_ + K~7/4), we have by D.3(i1)

IA

|7y S (8- ) )| + s )

HM@
u

)
ﬁuH *

- o+ <0 i) o0 -3
+0p [ (93 + K) 80 — 8]+ 180~ B + (55 + K—74)]
= Op (03 + K1),
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Similarly, we can show that HP;\ — Pso H =O0p (6;,% + K*V/d). ™

Lemma D.4 Under Assumptions 1-4, there exists an R X R matrix H = Hyp such that

(@) [If = fOH||/VT = Op(dxp + K%

(id) || =X (H) "' [|/VN = Op(dyy + K/

(iii) VNT||® — ®|| = Op(65 + K7/,

Proof. (i) Noting that ||[P; — Ppol|[ = op (1), we have rank(P;P) = R, i.e., rank(Pffo) =R
as (N,T) — oco. Write f= PffOH with some non-singular R X R matrix H = Hyp. It is easy to
see that H = (f'P;fO/T)"*(f'f/T) = (f'f°/T)~" and [[H~Y[| < T~Y|f'f°]] = Op (1). Note that
f=fH+ (Pp — Ppo)f°H and H = (f¥ /7)1 fYf/T — (fo'fO/T)_lfO’(Pf - Pfo)fOH/'lj. Tt follows
that ||H|| < Op (1)+||H||Op(8 5+ K ~7/%), which implies that ||H|| = Op (1). Noting that f = PffOH,
we have Hf - fOHH - ‘(Pf - pfo)fOHH <R pr — Po| £ 1]l = Op VT (5 + K—7/4))].

(i4) Noting that \f'f = (Y - 25:1 BkPk> f, we have

A-NH)T = [A”f‘)’ = (80— ) Putu| F(7F) 20
k=1

-1

— N0 (Pf _ Pf()) 0 (fO/Pff())*l (H') ™" 4 200 f0 |:(f0/PffO) _ (fo’fo)l} ()"

K
S (A Pt
k=1
= Mint + Aont + Asnr, say.

—1

¥ P (77 Ps°) ()

. 2 — _ — _ .
First, Ayyvy < 28 ||X°)| |£2)) 11 CH) T 111P; = Proll[|(£” Ppf0/T) 7| = Op[V/N (85 + K~7/4)]. Noting
that

‘(f‘”PffO/T)_l — (fg0yr)”

IN

|7 (B =) 22550

'(fO’PffO/T)_lH

|P7 = Pro

1ol /|| (o) 7|

= Op (5;@ + K*W/d> :

(rorm) |

we have Aawr < ][ [l725°/T] (7 Ppso/T) = (£°/T) NG | = VROp (33 + K/4).
Now, [[Asnrll < £(18° = Bl [Pl + DI £ 1 Prfo/T) M || HH| = Op[VN(IB® = Bl +
S+ KN = Op[V/N (65 + K~7/%)]. Consequently, || X — \° (H’)fll =0p {\/N (63 + K*W/d)} .

(ii) Noting that |[A /N — H=]AY O (H)=1/N|| = ||IN-Y (A = -]\ + 2\ (H) V)| < N4 -
H=XOIM/VE + [1X)/VN [[(H) 7| = Op (S5 + K~7/4), we have

H (S\IS\/N) T (HAYXO(H')~/N) ™

< WA WA 0N )N | ([N )N = O (05 + K1Y

Similarly, [|(f'f/T)~* — (H’fo’fOH/T)_1 | = Op (6% + K~7/?) . Combining these results, we have
VNT ||| = [|(AVN)A NN F/T) 7 NT=(\ VN (H) ™ HZIXYA (H') ™ /NI (B O fOH)T)
H' Y /VT|| = Op (33 + K/4) . m

1
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Lemma D.5 Suppose that the conditions in Theorem 8.8 hold. Then we have
(Z) (NT)il Zf\il Z?:l e?t(Zthz/t - Zthz/t) Op (Kliwd + K(SJ_VT)
(i) (NT) ™ Sy (66 — €3) ZuZly = Op(KSyy + (NT) Koy + (NT) K 074).

Proof. (i) Note that ﬁ Zf\;l 25:1 ezzt(ZitZAz{t - ZitZz{t) = ﬁ sz\; ZtT:1 [ezzt(ZitZAl{t - ZitZz{t)]
+% Zivzl Zf:l |:612t (thZz/t — thZz/t)j| = All + Alg, say. Let Bl,it = Zit — Zit and B2,it = e?tZit. Then

WE
NE

ezzt (ZAthAzlt - ZitZét)

{ [(Zt - Zit) Zhel + Zies, (Zit - Zz’t)/] +eZ (Zit - Zit) (Zit - Zit)l}

N T
1 a b
(Blﬂ‘tBé,it + B27itBi it N_ Z Z ezztBlyitBiﬂ;t = Agl) + Agl)’ say.
i=1 t=1

s
I
—
o~
Il
_

N
Il
s
~
Il
-

WE
E

I
2|H Z‘H 2|H
~ ~ N
< M=
B

s
Il
_
o~
I
—

Define N x T matrices Bq and Bgj with their (4,¢)th elements given by the kth elements of By ;;
and Bs ¢, respectively. Then we have Ag?klkg = ﬁtr(BLleé,kz —|—B2,k1B/17k2>. Note that By =

(M; — Myo) PuMpo+ M, Py (Mf - Mfo> and |By | = Op (K~7/4 4 631.) | Py|. For By, we have
N T N T /2 ¢ N 1/2 )
sl < ity =33 {35 (XY —orem [
=1 t=1 =1 t=1 =1 t=1
here 2" = (37 2, T1, 21 e _ 121 ()
where 7, = ( 57 22521 211 Zitk . It follows that By || = Op[(NT)'°1Z, ",

6R
A < 57 1B Bas | + 1B, 1B s, ]

= op (K_”/d+57w)[ 0 1P+ 2 [Pl / (VD)2

and
K K 2 K K 2
A9 = > > (A =or (K2 4+ 038) 3o > (VD) 22 1Pkl + 2L [P ]
k1=1ko=1 k1=1ko=1
K 2 K
< op (K aiy) 2 [20] S )PP
k=1 k=1
K A 1/2
< Op (K014 633 )ﬁ{z[z“)} } Z P4/ (NT)
1 k=1

= OP

(et

where we use Zk 1[2(4 "= w7 Zk 1 Zz 1 Zt 1 Zir ;= Op (K) by Assumption 6.
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For A(lbl), its (k1, k2)th element is given by

AD, L = ﬁtr (B{,BYL) = %tr[(MAP(e)MA—M)\oP,(:l)Mfo) (M P M — MyoP () Mo )|
< o ([ = p) RO |+ [P (P - )|
<[lme = Pypary| + e (- 1)
< (NT)” (HPAO Py*+ [P - fH)HP(E HP,Q? i

= o (s ) o i),

(c)
|®t:

F}

where Bgel)g is an N x T matrix with its (¢,¢)th element given by the kth element of e;;B; ;; and Pl(:) is
an N x T matrix with its (¢,¢)th element p;; pe;. Then we have

(40,]" =00 (K- 538) 35 - [ovry )

k1=1ko=1 ki1=1ko=1
S 5 )2
—dy/d | 5=4 ) = E : H ()

= Op (Kﬂw/d + 6]_\/%,1) Op (K?) = op (K2 (K*M/d . 6]_\%)) |

|
M=
M=

A

2
b
|42,

(e)
F HP’“Q

IA

where we use the fact that Zszl ||P1(:)||%“ = Op (NTK) because 22{21 E[HP,(:)H%] = Zszl Zfil 23;1
E (pft’kefa = O (NTK) by Assumptions 6(i) and (iii). It follows that | Ay1||p = Op (K1~7/4 4 Kéyp) =
op (1).

Following the study of HWNT — WNTH in Lemma A.8, we can show that ||Az|» = Op(K/VNT).

Consequently, Hﬁ SN S e (Zul, - tht H =Op (K" + Kiyry).
y . N T 4 2
(”) Write ﬁZZ e %t_ zzt)ZitZ NT Zl IZt 1(ezt_€zt) thZzt“‘ NT Zz 1Zt 1 (Gir—eir)
xeltZtht = Aoy + 2As;. For Ay, we have Agg ko, = tr(M P,(:;)/M P( )) where P,(ﬂ) and P,(gz) are

N x T matrices with thelr (, t)th elements given by plt’kl (est — éi) and piy k,€it, respectively. Noting
that |A22J€1k2| < THP HFHP HFa we have

1 ]
N?Tka:lHP’C FZ

~ 2
P

2
(| A22 |7 .

IN

IA IN
—— 2
3= 3
M= o5
M= L
- 2
SNGE
K
—— :E-hm
——
2|H —
3
] =
9= 104
— kSl
H/_/H ;ﬂ?
i~ &
—— IS
2|H &
~
WE
M=
>
D
;H
Iy

N 1/2
< O0p(K)Op (K) {% NI eit)4} .

K N T . N T .
For Asp, we have || Aa; ||i“ < ﬁ{Zkﬂ Doic1 21 piQt,k (€t — eit)2}2 <Op (KQ) {ﬁ D i1 2=y (€it — eit)4}-
Now we consider the key term ﬁ Zf\’:1 Zle (&t — eit)4 . By Lemma D.2, we have é;; — e;; = (60 —

D\/ — — 1 N 1 T 1 N T _
B) Zit + € it + e Where € = D51 i€t + T Dy MsCit — NT Djem1 Dos—1 MesPij€is, and Tip =
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@MY + (8™, + (Myoe,Mjo)yy. Note that

2 2
| = Rl = 0p (NT (5% + K/)), (D.2)
é(rem)H2 < rank(é(rem)) é(Tem)H2 =Op {NT HB _ ﬁOH2 (5N2T + K—2’Y/d>} , (D.3)
|Mpoel Mo}, = Op (NTE27/1), (D.4)

by Lemma D.2, where we use the facts that HB BOH =op (5NT + K~7/?) and that S + K—20/d =
op(]|3 — 8°]]) in the second line. Then
N T

1 0 & 1 al —4 1 o 4
S99 SUSPRIRL (O 3p(EAIES 30 L N8 3 92)

i=1 t=1 i=1 t=1

N
(D.5)
It is easy to see that the first term in (D.5) is Op (HBO BH KQ) For the second term, we have

| NI 9 1 NI N 9 1 NI 1 I 4
EOMILEIEE o3 DI b I *Fﬁzz{ﬁxn“eﬁ}

=1 t=1 =1 t=1

= Op(N"?)+0p(T7?)+0p (N ?T?)=0p (N 2+T7?),

where Op (N _2) comes from Markov inequality and cross-sectional independence across ¢ for e;; conditional
on D, and the Op (T‘Z) and Op (N_2T_2) terms can be obtained by Markov inequality and the strong
mixing property of {e;+, t = 1, ..., T} conditional on D. For the third term in (D.5), we use a rough bound:

Lo~ , - 2 2\ 2
NI ) E IEP (A )

=1 t=1
4
et A(rem) H
NT © F)

Op [NT (535 + K=5/")| + 0p [NT (K~7/)]
+0p {[NT (K255 + K017) (534 + K-7)] }

Op (NT&;VST + NTK—‘Wd)

<[,

F

4

+

&
F

IN

(Il +

by (D.2)-(D.4). In sum, we have

1

N T
D (En—en)' =Op (5;} + NT6RS + NTK 41/ d) . (D.6)

i=1 t=1

It follows that ||Ag: |, = Op[Koy: + (NT)'/? K(SNT + (NT)l/ 2K 2v/d] and ||Ag| p = Op[Konh +
(NT)'/* K6 3%+(NT)"* K'=7/4). Consequently, = SN ST (€2 — €2) Zi 2}, = Op[Koyp+(NT)*
K632 + (NT)Y* K1-7/4), m
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Lemma D.6 Suppose that the conditions in Theorem 3.3 hold. Then we have ||&é —e|, = Op(N'/? +
TY?).

Proof. Note that

e —elp < |[ProePpll+ [Pellp+ |lePro]|

+ e, + 3-8 Iat0P o) Myo] . +

I

alrem) HF + H]wfoe/gjw)\0

by Lemma D.2. By Lemma A.5(ii), HP)\oePfo
show that [|[Pyellp, = Op (T"/?) and HePfoHF
OpIVNT (855 + K~2/4)], [[*m)| . < Op[VNT |3~ 8| (o5 + K~7/%)], and M€, My,
Op(vV/NTK~7/4). In view of the fact that w7 ||M,\0P(G)Mfo||i, < %5 Zf\il Zle th’(a) = o' Wnra <

1y (W) llal” = 1, we have |3 — B°|| || MyoP () Mo || ,. = Op(VES 7 + K~7/4)Op(VNT) = op(VN +
VT) by (A.8). Consequently, [|& —e|» = Op(vV'N +VT). m

= Op (1). By Chebyshev inequality, one can readily
= Op (NY2). By (D.2)-(D.4), we have ]égn ’F _

I

Lemma D.7 Suppose that the conditions in Theorem 8.3 hold. Then we have
(i) N7Y|Ep [¢'Myoe] — (&'8)""" || = op[T5/3(K~7/1 + VE6y7) + T~1;
(i) T | EpleMyoe’) — (68)"" || = op[N*/S(1 114 4 VESE) + N7/

Proof. We only prove (i) as the proof of (i7) is analogous. Note that the (¢, s)th element of
Ep (e’ Myoe) is given by

N L L
g Ep it — E i€t Cis = 37 g Qj€js =0
=1 j=1 j=1

because Ep [ejre;s] = 0 for t # s, we have Ep (¢ Myoe) = [Ep (€' Myoe)]"™™ " . Then

truncD )
(D.7)
For the first term in (D.7), noting the tth diagonal element of €’ Myoe — Ep (€’ Myoe) is given by

N N N
(€3 — Bp (e3)] — % Y501 i [ejeeir — Bp (ejeein)] + Rz 2o =1 2 ju—1 Qiji Qi [€4:0€50¢ — B (€5,1€,0)]

we have

1 runc 1 runc 1 Al A
¥ HED (e Myoe) — (&'8)™" P < ~ H[e’MAoe — Ep (e Myoe)]"™™ P ) t % H[e’MAoe — &g

e

1 run
N H[e'MAoe — Bp (¢ Myoe)]"™™ P

1
Ni

A

‘ <  max
1<t<T

(€3, — Ep (¢3)] ‘

Il
—

N N

1

+2 %ot | N2 § 1: E 1: aij lejiei — Ep (¢jteit)]
i=1 j=

1 N N N
+omax | > 0N D i gy €0 — B (€,165,0)]

i=1j1=1j2=1

max C1; +2 max Cy + max Cly, say.
1<t<T 1<t<T 1<t<T
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Noting that E|N~1/2 Zl L [elt — FEp ( )] |* < 0o, we have max; <;<1 C1; = op (N’1/2T1/4) by Lemma
E.2. For the second term, we have

N
1

< i . 2

1T£ta§XTC2t = 1<t<T N2 lela” jtcitl 1<ta§XT N2 .Zla“ED (€it)
i J =
N 0/y0\ —
1 1 0r )\ )\ 0r
< -
S N2 ( N;A ezt) ( N _ZA €it

1=1 =1
—1 1 N 2
SN 0 ( 1 1/4)_ ( -1 1/2) ( 1 1/4)
< == I -
< N 1r_élta<xT \/N;,l/\l eit] +op (| N™T op ( N™°T +op (N~ 'T

= op (NT'T'2)

by the fact that E[|N'/2 Zf\;l MWeir|Y] < oo and that E(e}) < oo. Similarly, we can show that
maxi<t<1 C3t = op (N_1T1/4). Then we have

[ Myoe — Ep (¢/Myoe)]'™ "

= H ) = op (N—1/2T1/4) . (D.8)
Write & = Myoe — MyoePyo + e(REM) ' where e(REM) — ég) + Zle (52 — Bk> é,(j) + alrem) 4
MyoeyMyo. Note that

) &

&

IN

K
(ﬁk By) el

R|je| + HB -4 ||MA°P<a>Mf0||F + [ Moeg Myol| . +
= Op (VNT (K=" 4533 ) ) + Op (VNT (KY2055 + K77))

+0p (VNTK /) + Op (VNT [ (533 VE + K17 (KV2533 + K14 ])
= Op |[VNT (K71 KM%

For the second term in (D.7), we have

(REM) H

DHF + + || MyoegMyo|| . +

é(rem) H

rem)

IN

H e M}\Oe B e}truncD ’
truncD
< N|[PpeMyoePp] ™ | 428 |[e 00 Ppo] || 4 N || [eAEMe(REM)]
truncD truncD
yoN~! {e(REM)IMAoePfO} oN~! [e(REM)’M)\oe]
Let ¢ be the (¢,¢)th element of N~ Ppoe’ MyoePro. We have
2
A T N
DI 5 3] 5 RIS o) st
i=1 s=1 =1j=1
2 1 1 « T O A A R iy 2
< 5y Z — = Zm&w) t = Zzaijntsejs = FCu,1 + 775 Crt 2, SAY-
TNi_1< T = NTN =\ VNT = T NT
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For c,1, we have

max |eg1| = max

 NTT 07 g0 000

1<t<T 1<t<T WZ Z Z fgl <T> t ft < T > 3261516152
07 O\ —1 N T T or foN —1

= lrgtzsztr{fP’fP (fo ) <NLZ Z Z 22’ 2161516152> (fo ) }

= Op(1l)op (T1/4) =op (T1/4)

because F ||ft0H8 < oo. Similar, we can show that maxi<;<7 |cu 2| = 0p[(NT)1/4]. By Lemma E.3(viii) ,

1 / truncD 2 _ ( —3/4)
< < = .
N H[Pfoe M’\OGPfO] 1I£ta<XT|Ctt| T1 <t<T NT 1<t<T' ™ T
Similarly, we have
2
1 & 1 &
—1 / truncD
N H[eMAoe] ’ < lrgntanT NZI eit_ﬁzlaijeﬁ)
1= Jj=
2
2 & 2 1L 1 &
2 o
S 2y B |y 2 | 2
= i= Jj=

— op (T1/4) +op (N—1T1/2> —op (T1/4)
(i

where the first term comes from Assumption 6(7) and Lemma E.2, and the second term comes from

2
N

N N N
1 1 1
max —E —E Q;j€jt = max —ZZ&--e-te-t
1<t<T | N 4 VN 4 KAt 1<t<T | N - . 71325911272
=1 i=1 J1=172=1

I
N

1 0 AO/)\O -1 1 N o
- (D) (7)) (e
1= Jj=
2

< ¢x _ 1/2)
= v % \/_Z)\ cit OP(T

because Ep <HN1/2 Z )\Oeﬁ

) < 00. By Cauchy-Schwarz inequality, we have

runc runc 1/2 — runc 1/2
N7 [featoePp] || < N |l agoe) [} N | [Proe MyvePp] |}
= op (Tl/S) op (T—3/8) =op (T—1/4> ]
Note that
truncD 1 N REM 2 1 T REM 9
N-1 {e(REM)/e(REM)] < & max Z {@Et )] < = ZZ [egt )}
¢ =1 i=1 t=1
<

wl



By Cauchy-Schwarz inequality, we have

8

op [(K—’Y/d + \/?5;%) T—l/S:

2{]\7‘1

= op [T93 (K44 VS|

truncD

N—l

IN

:| truncD :|truncD

‘}1/2

1/2
} {1 [Poe/ MyoePyo]

{e(REM)’M/\o ePyo

[e(REM)/e(REM)

and

truncD truncD

N1 {e(REM)/M)\O e}

-

IN

[e(REM)/e(REM)/:|

1/2
} {N_1 H [e/M)\U e]truncD

Finally, we have

1 run
< | o (e Myoe) — (@8) P

op (T7%4) +0p (T74) 4 op [T (K277 + Koy ) |

s [ VRS 4] o (54 55
= op [Ts/s ( —/d | K52 ) +T—1/4] .

u

Lemma D.8 Suppose that the conditions in Theorem 3.3 hold. Then we have N7Y||(&&)""" || =
On (T35,

Proof. By Lemmas E.3(iv), (vii), and D.6, we have

-

N = N7 (HeH +le—el*) <N (Jlell® + & e|7)
Op (Tox) + N7'0p (N2 4+ TY2) = 0p (T03%) .

N_ 1 [é/é]truncD

~max [&,]* < N7H[e'e|

‘gmax

IN

|
Now we prove the main lemmas used in the proof of consistency of bias-corrected estimator.

Proof of Lemma A.8. (i) We use WNT,k1k2 —WNT ky ks t0 denote the (k1, k2)th element of Wt —Wnr.
Noting that

WNT,k1k2 — WNT k1 ks tr ( M3Py, M P )

ot (M0, MoP, )‘

‘NT

S ‘NT (M M)\U) Pk;lM P ’N MAOPkl (M Mf0> Pk:2:|
< 2 ||M; - Mol [P | \|Pk2||+ﬁ |7 = Mo | 1P P

2R
— 7 (10 = 2ol + |31 = M) 1P P
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we have

HMN

X 1/2
. 2
HWNT—WNTHF Z (WNTk1k2 WNTkle) ]

){kz_j i_ 77 1P ||Pk2|r}1/2

(5;@ + K*V/d)) by Lemma D.3.

IN

R (|| M5~ My | + | M — Mpo

(it) We decompose Qnr — Q as follows:
N T

Z ZiZ e — (Zth t%&)

1
NT

1 PN J. S -
N_ { ZuZl, (é3, — €},) + (ZitZit - ZitZz{t) e + [Zitzz(tezgt —Ep (ZitZz{tezgt)} }

uMz HM
MH

= DQNT 1 + DQNT 2 + DNt 3, say.
By Lemmas D.5(i)-(ii), we have || DQ0vr1 + DOyl = Op (Ko yyt-(NT)V* Koy 2+(NT)Y* K1=7/d),
Following the study of HWNT — WNTHF, we can show that [[DQn7 3|z = Op(K/vVNT). It follows that

= Op(Koyh + (N K632 + (NT)Y* K1=7/4),
(7i1) By Minkowski inequality

HQNT *QNT‘

Wt OneWh — i

IN

| (s =) Qe+ [ (e — @) Wi
i i),
Iy + I + I3, say.

F

By (i) — (i),
= [ (Wr = W) W bt
= e W (Wvr = W) Wit Qne Wik Wit Que Wit (Wavr = W) W1}
<

1y (WI;}QNTW];; W];}QNTWJQ;> tr {VT/—I (WNT - W) (WNT - VT/) W—l}

< (WihOnrWigh Wik Wigk) [t (W) e 7

= 0p (10 (1) [0p (K (535 + £7))]
So II; = Op ( (6NT + K_W/d)) . Analogously, we can show that IIy = OP(K(SX;T + (NT)I/4 K5NT +
(NT)Y* K1=7/4) and TIy = Op (K (53 + K~7/4)) . Tt follows that HWNTQNTWNT Wl HF _
Op(Kdyp + (ND)Y* Ko3% + (NT)Y* K1 =7/4). m

Proof of Lemma A.9. (i) Note that by can be rewritten as follows

;X T
b= =Y, >, B (pisen)
NT 4
1=1 1<t<s<T
1
-~ NT Z Z + Z N Ep (Piseit) = b§1) + b§2), say.

i=1 | 1<t<s<T,s—t>Mr 1<t<s<min(t+Mrp,T)
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3+26)/(4+26) (s—

Noting that ||Ep (pisei)| < 8K1/2g01S stas lleitllg a5 p t) by the conditional Davydov

inequality where ¢;, , = K~ /a [|pisll, p» we have

_1 N 3425
1
[ < 5525 IR K s lelsas 0E T (-
i=1 1<t<s<T,s—t>Mrp
4§_1K1/2 3428
= T Z Z (||elt||s+4573 £ ” + @l spas || 1] ) s (s —1)
i=1 1<t<s<T,s—t>Mr
4§_1K N T 5 -1 3425
= T Z Z ||ft H ( |eit||8+46,D + ‘Pzzt,s+45) Z Oé?;r% (m)
=1 t=1 m=Mrp+1
e 3426
— Op <K1/2 Z a5 (m)) —op (K1/4>.
m=Mrp+1
Now, we decompose by — ng) as follows:
2) RS
R 5 R .
by —by" = NT Z Z [74sPis€it — N ED (Pis€it)]
i=1 1<t<s<min(t+Mr,T)
| XN
-~ NT Z Z {(Myspisit — NysPiseit) + Mys [Piseit — Ep (Piseit)]}

1=1 1<t<s<min(t+Mr,T)
= Dby + Dby, say.

For Dby, let (; ;s = piseir and (7 4, = piseit — Ep (piseir). Then Ep (Dby) = 0 and

Ep [”Db2|| } N2T2 Z Z Z ntlslntzszE’D (gz tlSle,tQSQ) .

=1 1<t1<s1<min(t1+Mp,T) 1<to<so<min(ta+M7,T)

We consider two cases for the time indices {t1, s1, ta, s2} inside the last summation: (a) s1 < t3 or s < t1;
(b) all the remaining cases. Let FDbay, and EDbayp, denote Ep ||| Dby ||2] when the summation is restricted
to the time indices in these two cases, respectively. Then ED[HDb2||2] = E Dby, + EDbayyp. For case (a),
the two intervals (t1,s1) and (t2, s2) are separated from each other. Wlog we assume that s; < ¢3. Then
by the conditional Davydov and Jensen inequalities, we have

146
|ED ( % t151<§2,t252)’ < 8 HCl ti1s1 ||4+26 D H<127t282 H4+2§ D 2+6 (t2 - 81)
146
< 32 ||pis1 €ity ||4+25,D ”pizsz Cigty ||4+26,D a;;é (t2 - 81)

1o
32K%51,8+45 lleit, ||8+46,D Piose,8+46 €t H8+45,D % (t2 —s1)-

IN

It follows that

}E'D ( 1 t151C§27t252)| |77t151| |nt252|

9 =
< 327K Hftl H HftzH H H Hf H Pis1,8+46 ||€zt1|‘8+45 D Pissy,8+46 ||ezzt2||8+45 D% (t2 — s1)
1468
< 8§%2K (Cl,m,e +Coity e + Cl,isl,p + C1,i52,p) apt® (ta — s1)
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where C’l’is)p = ||f£”4 @?S,SJFM. Then similarly to the proof of Lemma A.4, we can show that

872K . . o
|EpDba1s| < 2 N2 Z (Cl,itl,e +Coitge + Crisyp + 0171‘32,;7) ap™” (ta — s1)

=1 1<ty <s1<min(t1+Mp,T)
1<to<so<min(to+Mr,T)

= Op(KM}/(NT)).

For case (b), it is easy to see that max (s, s3) — min (¢1,¢2) < 3My. Each term in the summation is
bounded by 5277 71,4, | M4, |Varlp/2 (pisleitl)VargQ (Pisy€it, )> and the number of such terms is of order
0] (TM%) By Markov inequality, £ Dby, = Op (TM%K/ (NTQ)) =0Op (M%K/ (NT)). Consequently,
EplIDbs|[?) = Op(MRK/ (NT) + MK/ (NT)) = Op(MEK/ (NT)) and ||Dby|| = Op(y/3FR] (NT)
by Chebyshev inequality.

For Db, we have Dby = w7 Zivﬂ 21§t<sgmin(t+MT,T) (s — Nis) Pis€it+MesPis (Eir — €it)+ (s — M)
XPis (€4 — €;¢)] = Db11+ Dbia + Dbys, say. For Dby1, we have by Cauchy-Schwarz inequality and Lemma
D.3(4),

1/2 1/2

L - 5 2 L - 2
Db < NT Z Z (s — Ms) NT Z Z [piseitl]

1<t<s<min(t+Mp,T) 1<t<s<min(t+Mrp,T)
1/2 1/2

=

Ipises|”

IN
(]
]
H;)
3
2|H

1<t,s<T i=1 1<t<s<min(t+Mr,T)

HPf — Pyo FOP [(MTK>1/2:| < \/rank (Pf — Pf0> pr — Pjo

= 0p (o5 + K1) V).

Similarly, by Cauchy-Schwarz inequality and Lemmas D.6 and D.3(i¢) , we have

N
1 .
IDbiall - < <77 > > 1M:5pis |l 13t — €itl

i=1 1<t<s<min(t+Mr,T)

Op [(MTK)UQ}

1/2 1/2
1 o 2 1 2
S \NT > > s s NT Z > (€ir — €it)
i=1 1<t<s<min(t+Mp,T) i=1 1<t<s<min(t+Mr,T)
A N 1/2
= Op (\/ MTK) {N_; (éit — eit)Q}
=1 t=1
= Op (\/MT ) M7/ (NT)||& — e, = Op (MT\/_é )
and
| X
Dbl < w7 > > 745 — Nes| IPis| |€3 — €it]
=1 1<t<s<min(t+Mr,T)
. 1/2 . N 1/2
< max||pisl| § = |es — 77ts|2 ~N (€t — eit)2
1,8 T N
' 1<t<s<min(t+Mrp,T) =1 1<t<s<min(t+Mp,T)
My
< Op |[(ND)VE] |Pr = Ppo| (57 &=l

= Op|[(NT)"*VE] Op (534 + K—v/d) Op (Vo)) = or (MrVESYy)
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Consequently, || Dbi|| = Op(MpVESyy) and ||by — 02| < || Dby || + || Dba|| = Op(MrVEKSyY). This
completes the proof of (7).

(i7) Recall that by = T—'tr[Ep (ee’) MyoPy®] and by = T—ltr[(éé/)““mDM;\Pké}. Then by
Lemmas D.2, D.3, D.7, and A.9, we have

b,y — bQ,k’ = %tr [(éé/)trunCD M;\P;ﬁ)} - %tr [Ep (e€’) MyoP®]
- %tr (&)™ MPy (& - @)] + %tr [(28)"™" (M ~ Myo) P10
1 A runc
+=tr{[(8¢) = Bp (eMpoe’)] ™ MyoPL0 )}
1

+=tr { [ B (ee) — Ep (eMpoc)

truncD:|

MAOP,@}

IN

ee

R fa A runc
7 1Pl [ I[85 || & = ]| + |25 = Pro | @] || (22) ™

1 runc runc
+R (Mol [1Px] 2] = { |[ B0 (ee) = Ep (ergoe))™ P || + | Ep (ePpoe) ™™

}
IPi)

= Or {Nony (K074 63k ) + N7V NS (K074 VRoRy ) + TN

[Pl “1/4 | n5/8 ((7e—v/d 2 17172
— \/WOP{N + NS (K VRS ) + TN

truncD

where we also use the fact that HED (ePfoe’)

2
T T
% Zt:l Ep [% 25:1 Utseis]

2
+ MaX1<;<N 77 S i Ep (e2,) = Op (T"'NY/?) because E ‘T*Q S i Ep (%)
oo. It follow that

K ) 1/2
o] = {3 e}

‘ < maxi<i<n

<

k=1

K 1/2
! 2 —1/4 5/8 ((gr—v/d -2 —1p71/2
—Z|Pk|} Op { N~V* £ N8 (K74 4 VK %)+ TIN
(e { ( ) e}
- Op {\/E {N71/4 4 N5/8 (K*’Y/d n \/E(SJ_VQT> +7171]\71/2} }
(#4t) The proof is analogous to that of (i4) by using Lemmas D.3, D.4, A.8, and A.9. &

D.4 Specification test

To establish the asymptotic distribution of our test statistic, we need to study the behavior of the
linear estimator §) (x) under H (yy7). Recall Ty is a d x 1 vector whose kth element is given by
Tnre = wrtr(MyoXgMpoA') and Dy is defined in (4.4). Let Cl(,ll\)/T7 and Cl(i\),T be d x 1 vectors whose
kth elements are respectively given by

Cl(,lz\)fT,k = ﬁtr (M)\oXkaoe:') , (D.9)
1
Cl(,QJ\)IT,k = _Wtr (Xk(I)/&?MfOf":/M)\O + XkaO&?/M)\OE(I)/ + X]ngOEI(I)€M)\O) (D.IO)
,a b b
= Cl(,QNT)’,k + Cl(,QN’l)",k + 01(72]\/’1)"7@ say, (D.11)
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where € is an N x T matrix whose (7, t)th element is €;; = e;z +7 A (X;e). Let 0 be Moon and Weidner’s
(2010, 2012) estimate for 8° without bias-correction. Following Su, Jin, and Zhang (2013), we can show
that under Hy (7 7) with vy = O(KY/*/V/NT)

0—0°= VNTDNTTNT + DNT (Cz( Nrt Cl(,QJ\)/T) + Ry,

where Ry = Op[(ynr + 6]_\,%,1) (’y}\{% + 5_1/2)] = oP((NT)_l/Q). Further, we can modify the proof of

Theorem 3.2 to show that
VNT (0 - 0° = yx4 DRy Tr) = BY 5 N (0, Vyo)

where BO) = —D*I(nNTbgl + Ky b(l) + HNTbél)) b(l) b(l), and bg) are all d x 1 vectors and their kth
elements are defined in (B.1), D = Ep [Dy7]|, and Vjyo is positive definite.

Our asymptotic analysis indicates it is not necessary to use the bias-corrected linear estimator for 6. In
order for this term related to B® to be asymptotically negligible under both Hy and H; (YnT), We need
B = op (K1/4) Under Assumption 12, we have BY) = Op{max (/-@NT, /-@]_\,%F)} =op (K1/4) . But if we
make bias correction, B(!) can be corrected up to order op (1) and then the ﬁnite sample performance
of our test can be improved. After obtaining 0, we obtain the estimators f(l Aqy and & under the
same identification restrictions as Bai (2009), and then use them to obtain estimates of the three bias
terms, i.e., B(ll), l;gl), and I;gl), which are analogously defined as lA)l, 52, and lA)s but with the sieve estimates
of (A%, f°, e) being replaced by Moon and Weidner’s (2010) linear estimates. Let Dy be a d x d matrix
whose (k1, k2)th element is given by DNT,klkg = ﬁtr(Miu)X;ﬁMﬂ,)Xfw). Define the bias-corrected
estimator Oy = 0 + ﬁ;,lT(T*IIA)gl) + N’llaél) + Tfllag)).

Proof of Lemma B.1. The proof is similar to that of Lemma A.8. W

Proof of Lemma B.2. Recall that By, = B+ Wxyh(T~'by + N~1by + T~ 'b3) by (3.13). By (A.5)
and (3.3)-(3.5), B — 8° = Wtk ~T i]\il Zthl Ziput + W&}[Cﬁ;) + CJ(\#) + C](\?if)] + Rn7. Decompose
By — ° as follows

N T

. 1o 4 1 (2,0 1. 45

5bc—50 = {WNTI“N Zzziteit+TWN71“b1}+{WNTI“C](VT)'i_NWNZI“b?}
=1 t=1

N T
— 2,0 (2,
+ {WN%“CJ(VT) + = WN } {NT Z; N1 Ziteq.it + WNTCNT + RNT}
= Byri+ Byre + Byrs + Byra, say.

We complete the proof by showing that (i) Byri = W‘lﬁ ZN:1 Z;F:l Zieir + op (Yyr), and (i1)
BnTs = op (ynr) for s = 2,3,4. We first study Byri. Note that

Bnr1 — Wﬁl% ; ; Zieir
1 T B 1 N T
= Wip (W=War) W= 303" Zuea + {WN}W SN (% Zia) e+ WNTbl}
i=1 t=1 i=1 t=1

= Byti1 + Byri2, say.

By Lemma E.3(¢i¢) and Assumption 7, we have

1 N T ~
T 23 Zie

v = <

=Op (\/—\/ J\I,(T> =or (Ynr) -
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For By712, we have
N
ByTi2 = WN%% Z Z { (Zit - Zit) eir — Ep [(Zit - Zit) eit] }
L1l ey |
+ WNTW Z Z Ep (Zirei) + TWNTbl = By1124 + BNT126, S3Y.

Following the proof of Lemma A.4, we can readily show that By7124 = Op ( %6;&«) =op (Yn7)- By
Lemmas A.8, A.9, and (D.9), we have

N
1. B 1o /s 1
Byri2y = T (WN% — WN%) b1 + TWN% (bl - b1) + WN%W ; 1<§<Taii"7tsE’D (piseit)
]. 3426 26 K
= 0 (K3/2 (5;@ +Kw/d)) 4 op (F 3 a i +MT\/?5;V1T> +O0p (N—C>
T=M~

= op(YnT)

under Assumption 12. Consequently, Byr12 = op ('y ~r) and (4) follows.
For Bnr2, we decompose it as follows: Byrz = 3 (WNTbg - WNTbg) + WJQ%F [C](\?ﬁ?) - %bg] = BynT12a +
BnT2p, say. As in the study of Byriop,

IN

1
e < [t Wi+ o[-
1 _ 1
or [ (K-14+553)] 4 e (swr1) = o

by Lemmas A.8 and A.9, and Assumption 12. For By7ap, recall that

o1 1 1 1
CJ(\/?%}C + NbQJC = —ﬁtr (uulM)\oP(k)(I)) + —b27k + ﬁtr (quou/MAoP(k)CI))
1 1
= —ﬁtr {[ee’ — Ep (e€’)] MyoP ()@} — tr (egel, MyoP () ®)
1 1 1
—|—NTtr (e€}, MyoP(1y®) + NTtr (ege/MAoP(k)CI)) + ﬁtr (uPpou’ MyoP ;) ®)

= —Cou .k — Conzk + Couz i + Coga i + Cogs iy sAY.

Denote Csy,s as a K x 1 vector whose kth element is CQask, for s = 1,...,5. Following the study
= ]| < W S Caul =
Op {\/ (6NT + K—’v/d)} = op (yn7) - It follows that ||BNT2H = op (yYn7) - Analogously, we can show

that HBNT3H = op (Ynr)-
Now we consider Byra. Following the study of IIsn7 3 in Theorem 3.2 we can show that W]\?%CI(\?; ) =

NFOp(Oyp+K /%), Noting that Wyixg i1y Y1y Ziyequ=0p(K /%) and Ryr=0p(||rnrlley”),
we have Byra = Op (K™ +/E£-0p (3 + K/ +0p[(VKS Ny + K~ V/d)((mle + K/2d)] =
op (ynr)- B
Proof of Lemma B.3. Let € = e + yypA and EO = ||l /VNT < (|le| +vnr |Al) /VNT =
Op (5NIT +7nr) - Let iy = Dyp [Cl Nt 01(21\;? + Cl NT + 01(721\’70:%]’ where Cl(,1]3fT7 Cz(,21\’ra:2’ Cl(,2J\7fb%7 and
Cl( 7 are defined in (D.9)-(D.11). Noting that

of Ilonp1 in Proposition A.7 we have ||Byras| < ||WNTH

1 1 1 _ -
Cirs = 7ot (Mpo€ MyoXi) +ywp ot (Mpo A MyoXe) = Op (T4 + (NT) ™2 4+ 1)
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and DNTCZ ~r = Dyr [01(21\;1:2 + C sz% + Cz(,QJ\’rc%] =O0p (SX/QT +7%r) » We have
177l = YT Dyr T + Op (T_1/251_\71T) +O0p (0§17 +7ir) = Op (VN1 +057) -
Using Proposition C.1 and following the proof of Theorem 3.1, we can show that
0 —0° = DRLC{r + Dy |G + CO0h + O3] + R,

where Ryr = Op[(|[inr| @ + |[Fnrl| & + |Fnr?)/2] = Op(lFnT] &/?); see Su, Jin, and Zhang (2013)
for details. Following the proof of Lemma B.2, with some minor modifications® we can easily show that
under Hy (yxn7)

N T
. - 1 _
0 —0° = ynrDyp Yt + D™ 1_]\7 ZZ e — D7 [Tb(l) + Nb(l) + = b(l)} + Ro NT

where

R - (pa-lyyx pi LSy le(l)
O,.NT = NTﬁzlg it€it — N—gg Xiteit +

(D RO+ < D 15 ) (DNlTC}?;Vb} - TD—lbg”) + DL O3 + Ryr
= R{'\y+R{Nr + REJ‘T’J)VT + DyLC+ Ryr, say.
5B ~ ~1/2y _ —2 1/2 1/2 . .
Clearly, Ryt = Op(|inT| €'7) = Op[(6 57 + Ynr) (Ont +VN7)] = 0op (Yn7) - Following the study of
IIynT,3 in Proposition A.7 we have D&%«C’l()zl\}c% = Op{[(NT) 1/2+T L ynrlOnr +vnr)} = op (V) -
To complete the proof of the lemma, it suffices to show that Ré.?\,T = op (ynp) for s =1,2,3. For RéTI)VT,
we have

R(SBVT = DE;% ZZ {( Xt — Xz't) eit — Ep [(Xit - Xz't) eit] }

MH

N
_ _ _ 1
+_(D1_DN}F)b()+(DNT 1 _Z

X .
NT it€it
=1t

1
(1,d)

— 1,a 1,b 1,c

= RE),N)T + Ré,N)T + R((? N)T + Ro NT> Say-
Following the proof of Lemma A.4, we have Ré Ny = Op 5;,1T/ VNT). Analogously to the proof of
(zb) in Prop051t10n A6, Ré N1 =O0p((NT)~ ). By Lemma B.1(iii) and the facts that bgl) =Op (1) and
N7 Loty Yoot Xuseir = Op((NT)™'/?), we have R0 = Op (N72T73/2) and Ry iy = Op((NT) ™).
It follows that R&)\,T = Op(65/V'NT) = 0p (7n7). For RéJ)VT, we have

2 _ 2,a 1. ¢ 1 _ 1 2,b)
Ré,J)VT = Dy (Cl(,NI)" + Nbg)> + N (D~' = Dy7) b( )= Ré NT T Ré NT» S8Y-

5There are two main differences. The first one is Hé —QOH = Op ('VNT +(5]_\]2T) under Hy (ypn7), compared with

H =0p (K—W/d + \/KJJ_\,2T) in sieve QMLE framework; the second one is the dimension d of unknown parameter
0 is fixed.
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It is easy to show that RQQA?)T = Op (I"*/>N—3/%) by Lemma B.1(iii) and the fact that b = 0p(1).
Following the proof of (i) in Proposition A.7, we can show that

RS r = Op((NT) 2 63 + 2 + (NT) 2y y7).

It follows Ré?J)VT = op (Yny7)- Similarly, we can show Ré?])\,T = op (Yny7)- The details are omitted for
saving space. ll

Proof of Theorem 4.4. Let P* denote the probability measure induced by the wild bootstrap condi-
tional on the original sample Wy = {(X,Yi¢) : ¢ =1,...,N, t = 1,...,T}. Let E* and Var* denote the
expectation and variance with respect to P*. Let Op« (-) and op- () denote the probability order under
P*; e.g., by = op~ (1) if for any € > 0, P* (|[byr|| > €) = op (1). We will use the fact that byt = op (1)
implies that by = op« (1).

Observing that Y} = @/Xit + /\ f(l) + e

7, the null hypothesis is maintained in the bootstrap world.
Given Wnr, e}, are independent across ¢ and ¢, and independent of Xj,, )\ and fs(l) for all ¢, ¢, j, and s,
because the latter objects are fixed in the fixed-design bootstrap world. Let Fi be the o-field generated
by {e;‘t,...,ez‘l}f\il. For each i, {e},, F;} is an m.d.s. such that E* (ef|F;_,) = éz(-i)E(vit) = 0 and
E*[(er)?|Fr ] = [eV2E (v) = [6!Y]2. These observations greatly simplify the proofs in the bootstrap
world. In particular, we can show that: () BZC - % = Wik i]\il Zthl Zivel, + R yp, where
185 nrll = op- (K4 /VNT) and 5 = (8", .., 6%) satistying |0z —p (@) 87 ||ow.0 = Op (K~7/);
and (ii) 67— 6° = D' SN Y K e, +Bj np + Ry v, where Ry = op-[6x7 + (NT)?),
By nyr = —N"'D— 1bél)* T-'D~ 1bél)* and bél)*, bél)* are the bootstrap analogues of bg ,bgl), respectively.
Let I'yp, Byr, Ve, Byp, and Vi be the bootstrap analogues of I'yr, IBNT, Var, By, and
Var, respectively. Noting that v;; are IID N (0,1), we have By, _tr(W LQuppW 19*) and VNT =
2tr(W prp oW 1prpW L0 ), where O = E*(NT Zl 1275 1Z1tZz/t )= NT Zl 1275 1{thZzlt

[ éir } }. Following the proof of Theorem 4.2, we can show that Vi, = Vyr+op (K) and By = Byr+

op (K'/?) under Hy (yy7). Let Jip = (NTTip — Biyr)//Viyr and J7 = (NI — Bir) // Vier
Similar to 7, we define vy = (Vi 1/4 JV/'NT. Let %, denote the bootstrap analogue of T yrs for
s € 8*=1{1,2,4,5,6,8}. Note that F*NTS =0 for s € {3,7,9,10} because the null is explicitly imposed
in the bootstrap world. As in the proof of Theorem 4.1, we have

(NTTN7 = Bir) /v Vir

= (NTTN71 = BN7) /v Ve + Ynr Cnre + Trs — 205 — 20 e + 20 Nrs) -

*
JNT

We prove the theorem by showing that: (i) J5, = (NTTp — Bivy) INVr 4N (0,1), (48) YNrLlhrs =
op- (1) for s € {2,4,5,6,8}, (iii) Bir = Byp + op« (KV/?), and (iv) Vi = Viyp + op- (K).

We only outline the proof of (i) as we can follow the proofs of Theorems 4.1 and 4.2 to show (i)-(iv).
Analogously to the proof of Proposition B.4, we can show that J&, = Yi<icjen Wi +op- (1), where
Wi = Wiip(uf,uj) = ﬁ\’walSt,sST e Hijis€s, Uy = (Zi,er), and e} is the bootstrap analogue
of e;. Noting that J§, is a second order degenerate U-statistic that is “clean” (E*[WjX, (uf,u)] =
E*[Wir(u,u})] = 0 as. for any nonrandom u), we can still apply Proposition 3.2 in de Jong (1987) to
prove the CLT for Ji, by showing that (i1) Var*(Ji,) = 1+op- (1), (i2) G = doi<icj<N E* (W)Y =
op~ (1), (i3) G}; = Z1gi<j<lg1v E” (W*QW*2+ W*QW{;Q + W{;QVVIEZ) = op+ (1), and (i4) Gj;; =
Zl§i<j<r<l§N EX(WEW5 WEWE + WEWIWEWE + Wﬁ,W;}Wﬁ,Wﬁ) = op~ (1). Note that v;; is IID
across i and 1, B°[(ef)] = 0, B*[(ef,)”] = [¢1)]%, and B*[(ef)"] = 3(ef;)*

31



For (i1), using the IID property of {v;;}, we can readily show that

*( 4 oD o o) o) po
Var (JNT) = W Z Z Z Z Z sz t151 ij,t252€it, €5, City ]82E (U’LtlvjslvthUJsz)

T1<7,<_]<Nt1 1ta=1s1=1s2=1

4
W Z ZZ ij, ts (l)]

NT 1<i<j<N t=1 s=1
N T T

_ 2 201275072
= 1- WWZZZHEZM[ 1°[e:]?
= 140p (N ') =1+o0p-(1),

where we follow the proof of Theorem 4.2 and show the term Op (N ~!) in the last line. For (i2), recall that
Tpo, ky 15 the (k1, k2)th element of Qpp, and Hyj s = 22:1 Zlgzl Thoy koo Zit ks Zjs k- L€t Ol o = Zig €y
Then we have

16 — = =~ =
G? = NATIV2 qk;lk;2 Qk3k4Qk5kGQk7k8
NT 1<kq,....ks<K
X Z Z E ((b;ktl,kl ¢;t3,k3¢;t5,k5¢;t7,k7) E (¢;t27k2¢;t4yk4¢;t6;k6¢;t87k8) :

1<i<j<N 1<ty . ts<T

First, note that the term inside the last summation takes value 0 if either # {t¢1,t3,t5,t7} > 2 or
# {t2,t4,t6,ts} > 2. So it suffices to consider three cases according to the number of distinct time indices
in the set S = {t1,....ts} : (a) #5 =4, (b) #5 =3, and (c) #S < 2. We use G7,, G7;, and G5, to denote
the corresponding summations when the time indices are restricted to cases (a), (b) and (c), respectively.
Then G} = G3, + G5, + G;.. For G3,, we must have # {t1,t3,t5,¢7} = 2 and # {to,t4,t6, 83} = 2.
Without loss of generality, assume that t; = t3 > t5 = t7 and to = t4 > tg = tg. By the IID property of
Vit [ (D1, o Bty s Bt ks Ot )| = Zits s Zits ks |E41)1* Zits ks Zits o647, 1% Then

|G7a| < W%;\TQT <k Zk <k ‘qk1k2| |(Ik3k4| |qk5k6| ‘(7167k8|
15---5R8>

> - SN2 5 - NG
X {Z Z Zitl,kl Zithks (ez(‘t)l)QZitE),ksZith (ez(‘ti)Q}

i=11<ts<t;<T
- > NONY NOR®
X Z Z Zitmkzthz,’M( ’Ltg) Zitfs,keths,ks( zte,)
JS11<te<ta<T
= i Or (KPN?TY) = Op (K°/N?) = Op- (K°/N?).

Similarly, we can show that G, = Op« (K®/N?) = op- (1) for s = b, c. It follows that G} = op~ (1) . For
(13), we write Gy = 3 i joreny BX(WiPWiP + WiEWR2 + Wi2Wi2) = Gy ) + G o + Gip . By the
IID property of v;;, we have

Gy = Niprye > S E[e et Hivs Hittyta Hittots Hil o1 €11, €51, €515 €t )
NT 1<i<j<I<N 1<ty,... ,te<T
48 2 (012150 121507275072
= NiTAWZ Z Z Z H oo H s [ (650, (€] 1@0,)
NT 1<icj<I<N 1<ty t2<T 1<t3;£t6<T
16 g2 1210 1275014
+ 442 Z Z Z Hll ,t1t3 jl tgtg[ ztl] []tg] [elt3]
NAT4V?,

T 1<i<j<I<N 1<ty to<T tz=1
_ * *
= Gir11+Gora9, say.
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*
For G7; 11, we have

Gin < ypwgm Y 3 {02 2 Qe 2 i, O]

T 1<i<j<I<N 1<ty to<T 1<t3#ts<T

X tr [( ;22) ZJtz thQpp( zts) thstltGQpp]}

8
< W Z Z tr {Q Qpp(eltg) thath Qpp} tr {Q Qpp( ) thletGQpp}

NT =1 1<t37£t6<T

813 ()it (Q ! = 1% .
< 3N2T2V*2 PP Z Z (el(ti HthS P (egt) )2
1=1 1<t3At6<T

8 [M%(QNT) +op (1 )} (i Qpp

- BN2T2V3E,, Z 2 e

I=1 1<t3#tg<T
= Op(N*T?K %) Op (NT?K?) =0p (N7 ") =0p- (N7).

2
Zit
H Sl

_ o2 2
ity Feftﬁ F+0p (NT2K2)

Then G7; 1, = op~ (1). With the same method we can show that G7; 15 = op- (1). Thus G7;; = op~ (1).
Similarly, we can show that G7;, = op~ (1) and G7; 3 = op~ (1). It follows that G7; = op~ (1).

For (i4), we write Gy = Y cpesorcren BXWEWaWEWE + WEWaWEW + WaWiWa W)
ZS 1 G714 say. Following the proof of Grrr1 = op (1) in Proposmon B.4, we have

16

111 = Naraye E (Hw,tltzez‘tlethHz7’,t3t4€zt3 rt4Hl]t tcelt e;tﬁle t7ts€lt7 rtg)
NT 1<icj<r<i<N 1<ti,...,ts<T
16 =~ o~ = ~ =
_ * i ] %2 ! *2 ! *2
- N4T4V*2 Z Z [E (Qppzltziteit QPPZTSerersQPPZZPZZp QPPZ Z]q ]q)]

NT 1<i<j<r<I<N 1<t,s,p,q<T

= 3V2*2 tr (QPPQ Qpr Qpr Qpp s ) =0Op (%) =op- (1)

where we use the facts that tr(Qpr*Qpr*Qpr*Qpr*) :tr(QprQprQprQpr> + op (1) and
tr (QWQQWQQWQQWQ> < ut (Qpp) 13(Q)tr(Q) = Op (K) in the last line. W

E Some technical lemmas

Let {£;,t > 1} be a D-strong mixing process with mixing coefficient ap (-). We will use the following
lemmas frequently.

Lemma E.1 (Conditional Davydov Inequality) Suppose that Ay and As are random variables which
are measurable with respect to o (&, ...,&,) and o (§,4r, ..., &p), respectively, and that both Al p and
Az, p are bounded in probability, wherep,q > 1 andp~t+q ' < 1. Then|Ep (A1As) — Ep (A1) Ep (Ay)| <

-1 -1
8 ||A1Hp,'D ||142 q,D 'lD P ! (T) .

Lemma E.2 Suppose maxi<i<7 F |A¢|? < 0co. Then maxi<i<r |4t| = op (Tl/q) .
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Proof. Let e = TY/4. We have

T T T
Pr<1r<nta<x At|>sT> < ; r (A > er) = Z 1(|A¢| > er)] Z { 1(|A¢| > er)
T
= ep" Y E[|A]"1(|A > er)] < maxE[|At|q (|A¢| > er)] — 0.
t=1

It follows that maxi<i<1 |A¢| = op (Tl/q) m

Lemma E.3 Let A be an n X m matriz, B and C be m X p matrices, and D be an n X n matriz. Then
@) 1Al < [|Allp < Al /rank (A);
i) [[AB| < [[A]l|BI|;
iit) |AB|p < |A[IBllp < | Allp 1Bl g

i) max {[[A]ly, [Allpax} < 1Al < Vm ||l where [|Al, = max; 3557 |Aij| and [|All o = max; 357, [Aijl;

(
(
(
(v) tr(AB) < Al |Bll 5

(vi) tr (D) < rank(D) || D|[;

(vii) ||D|| < tr (D) for any p.s.d. diagonal matriz D;
(viii) || D|| < maxi<i<n |Dii| for any diagonal matriz D;
(i
(
(
(

ix) [ Allp = [[vec(A)ll;

x) py (A'A) = py (AA');
x1) rank(AB) < min{rank(A) ,rank(B)};
xii) rank(B + C) < rank(B)+rank(C).

Proof. For the proofs of (7)-(vii), see Theorem S.3.1 in Moon and Weidner (2010). For the proofs of
(viii)-(x7), see Bernstein (2005) or Seber (2007). m
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