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Nonparametric Dynamic Panel Data Models with Interactive

Fixed Effects: Sieve Estimation and Specification Testing ∗

Liangjun Su, Yonghui Zhang

School of Economics, Singapore Management University

May 5, 2013

Abstract

In this paper we analyze nonparametric dynamic panel data models with interactive fixed effects,

where the predetermined regressors enter the models nonparametrically and the common factors enter

the models linearly but with individual specific factor loadings. We consider the issues of estimation

and specification testing when both the cross-sectional dimension  and the time dimension  are

large. We propose sieve estimation for the nonparametric function by extending Bai’s (2009) principal

component analysis (PCA) to our nonparametric framework. Based on the asymptotic expansion of

the Gaussian quasi-log-likelihood function, we derive the convergence rate for the sieve estimator and

establish its asymptotic normality. The sources of asymptotic biases are discussed and a bias-corrected

estimator is provided. We also propose a consistent specification test for the linearity of the functional

form by comparing the linear and sieve estimators. We establish the asymptotic distributions of the

test statistic under both the null hypothesis and a sequence of Pitman local alternatives. A bootstrap

procedure is proposed to obtain the bootstrap -values and its asymptotic validity is justified. Monte

Carlo simulations are conducted to investigate the finite sample performance of our estimator and

test. We apply our method to an economic growth data set to study the relationship between capital

accumulation and real GDP growth rate.

Key Words: Common factors; Cross section dependence; Interactive fixed effects; Linearity;

Nonparametric dynamic panel; Sieve method; Specification test

JEL Classifications: C14, C33, C36

1 Introduction

Recently there has been a growing literature on large dimensional panel data models with interactive

fixed effects where both the individual dimension  and time dimension  pass to infinity. By the

adoption of time-varying common factors that affect the cross-sectional units with individual specific

factor loadings, these models allow individual and time effects to enter the models multiplicatively and
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can capture unobserved heterogeneity more flexibly than the traditional ones with additive individual

or time fixed effects. As common factors affect all individuals, interactive fixed effects have become a

powerful and popular tool to model cross section dependence in economics and finance. See Bai and Ng

(2008) for an overview.

Most of the literature on panel data models with interactive fixed effects falls into two categories

depending on whether the model includes additional regressors or not. The first category focuses on the

estimation of the common components (factors and factor loadings) or the determination of the number

of factors; see Bai (2003), Bai and Ng (2006a), Bai and Li (2012), and Choi (2012) for estimation, and Bai

and Ng (2002) and Onatski (2009) for the determination of the number of factors. The second category

concentrates on the consistent estimation of the regression coefficients. Pesaran (2006) proposes a com-

mon correlated estimator (CCE) for linear static panel data models with homogeneous or heterogeneous

coefficients. Bai (2009) proposes a principal component analysis (PCA) estimator for the same model

but with homogeneous coefficients and establishes its limiting distribution. Moon and Weidner (2010,

2012) reinvestigate Bai’s (2009) PCA estimator and put it in the Gaussian quasi-maximum likelihood

estimation (QMLE) framework; they allow dynamics in the model and show that the limiting distribution

of the QMLE is independent of the number of factors used in the estimation as long as the number of

factors does not fall below the true number of factors. Lu and Su (2013) propose an adaptive group

Lasso method for simultaneous selection of regressors and factors and estimation in linear dynamic panel

data models with interactive fixed effects. For more developments on panel data models with interac-

tive fixed effects, see Ahn, Lee, and Schmidt (2001, 2013) for GMM approach with fixed  and large

 , Zaffaroni (2010) for generalized least squares (GLS) estimation, Kapetanios and Pesaran (2007) and

Greenaway-McGrevy, Han, and Sul (2012) for factor-augmented panel regression, Harding (2009) for

estimation under structural restrictions from economic theory, Pesaran and Tosetti (2011) for models

with both multifactor error structure and spatial correlation, Su and Chen (2013) for testing for slope

homogeneity, Su, Jin, and Zhang (2013) for testing for linear functional form, among others.

Note that almost all of the above works are carried out in the parametric framework. Although

economic theory dictates that some economic variables are important for the causal effects of the others,

rarely does it state exactly how the variables enter an econometric model. Models derived from first

principles such as utility maximization or profit maximization have particular parametric relationship

under some narrow functional form restrictions. So it is not only meaningful but also necessary to extend

some commonly used parametric models to the nonparametric framework. Recently, Su and Jin (2012)

consider the sieve estimation of nonparametric static panel data models with multifactor error terms,

which is a nonparametric extension of Pesaran’s (2006) models; for the same models Jin and Su (2013)

propose a poolability test of nonparametric functions. Freyberger (2012) studies nonparametric panel data

models with multidimensional unobserved individual effects. He focuses on identification and estimation

when the unobservables have a factor structure and enter an unknown structural function non-additively

under fixed  and large  . However, there is still no work on the estimation of nonparametric dynamic

panel data models where interactive fixed effects and idiosyncratic errors enter the model additively.

Linearity assumption is widely adopted in empirical works for its convenience and interpretability. A

correctly specified linear model may afford precise inference whereas a badly misspecified one may lead to

seriously misleading inference. So it is important to test for the correct specification of linear functional

form. Recently several specification tests for linearity have been proposed in panel data models with fixed

effects. Lee (2011) proposes a residual-based test to check the validity of linear dynamic models with both

large  and large  ; Li and Sun (2011) propose a test for static panel data models with both large  and
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large  based on an integrated squared difference between a parametric and a nonparametric estimate; Su

and Lu (2013) propose a linearity test based on the comparison of the restricted estimate under the linear

assumption and the unrestricted nonparametric estimate for dynamic panel data models with large 

and fixed  But none of these tests are applicable to panel data models with interactive fixed effects. The

linear estimators for the regression coefficients and factor space generally cannot be consistent when the

underlying functional form is nonlinear, and the tests on the coefficients or the number of factors based

on the linear estimators could be invalid. To avoid the consequences of misspecification, Su, Jin, and

Zhang (2013) propose a residual-based test for linearity that works for panel data models with interactive

fixed effects. But they do not propose consistent estimates of the regression functions.

Based on the above observations, we consider the following nonparametric dynamic panel data models

with interactive fixed effects

 =  () + 00 
0
 + ,  = 1    = 1   (1.1)

where  is a  × 1 vector of observable regressors which may contain  lagged dependent variables

−1  − and  × 1 vector of exogenous variables 1,  (·) is an unknown smooth function, 0
and 0 are × 1 vectors of common factors and factor loadings, respectively, and ’ are idiosyncratic

error terms. Note that 0  
0
 and  are all unobserved. The superscript “0” in 0 and 0 indicates the

true parameters. We will assume that the true number of factors  is known for the theoretical part of

the paper but discuss how to determine  in empirical applications.

The model specified in (1.1) is fairly general and encompasses various panel data models as special

cases. If 0 = (1 ̃0 )
0 and 0 = (̃

0

  1)
0 where both ̃0 and ̃

0

 are scalars, the interactive fixed effects

reduce to the traditional two-way fixed effects; if 0 is time-invariant, i.e., 
0
 = ̄ for some constant

vector ̄ , the interactive fixed effects become the commonly-used additive individual fixed effects. When

0 is time-invariant and  () =  0


0, (1.1) becomes the classical dynamic linear panel data models

with individual fixed effects given by 00 ̄ ; when 0 is time-invariant and  = −1, (1.1) reduces
to the nonparametric dynamic panel data model in Lee (2013); when 0 is time-invariant and only

exogenous regressors are included in , (1.1) becomes the fixed effects nonparametric panel data model

in Henderson, Carroll, and Li (2008); when 0 is time-invariant and includes both −1 and exogenous
regressors, (1.1) becomes the general nonparametric dynamic panel data model investigated by Su and

Lu (2013); when 0 is time-invariant and  () =  (1)+ 0−1, (1.1) becomes the partially linear
dynamic panel data model in Baglan (2009); when  () =  0


0, (1.1) becomes the model studied by

Bai (2009) and Moon and Weidner (2010, 2012). These authors propose various estimators for  (·) (or
0) and

¡
0  

0


¢
and establish their asymptotic properties.

Here we are mainly interested in consistent estimation and specification testing for the unknown

function  (·) in (1.1). By combining the method of sieves with the Gaussian QMLE, we propose a
nonparametric sieve estimator of  (·). Following Moon and Weidner (2010, 2012), we establish its

consistency, derive its convergence rate based on the perturbation theory of matrix operator in Kato

(1980), and establish its asymptotic normal distribution. We also discuss different sources of biases and

propose a bias-corrected estimator. In addition, we consider the specification test for the commonly used

linear functional form for  (·). Using an empirical 2-distance, we compare two estimators for  (·), the
linear estimator under the null hypothesis and the sieve estimator under the alternative. We establish

the asymptotic distributions for the proposed test statistic under both the null hypothesis and a sequence

of Pitman local alternatives. To improve the finite sample performance of the test, we also propose a

bootstrap procedure to obtain the bootstrap -values and justify its asymptotic validity.
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The paper also contributes to the literature on nonlinear dynamic panel data models. Many asymp-

totic theories for traditional dynamic panel data models are established with large  and small  ; see

Arellano (2003), Baltagi (2008), and Hsiao (2003). By contrast, we derive the asymptotic results when

both  and  tend to infinity simultaneously. With large  , we need to investigate the properties of

( ) along the time dimension. Stationarity and mixing conditions are usually imposed on the ob-

served data and the error terms. But the correlation between  and randomly realized fixed effects¡
0  

0


¢
complicates the analysis substantially. Specifically, the randomness of 0 leads to the persistence

of  along the time dimension such that we cannot directly assume mixing conditions on { }=1,
and the randomness of 0 gives rise to cross-sectional dependence among {}=1  Following the idea of
Hahn and Kuersteiner (2011), we adopt the concept of conditional mixing as defined and discussed by

Prakasa Rao (2009) and Roussas (2008). We assume that { }=1 is strong mixing conditional on
the -field D generated by the factors and factor loadings and then establish the asymptotic properties of
our estimator and test statistic. The concept of conditional mixing is also used in Ahn and Moon (2001),

Gagliardini and Gourieroux (2012), Su and Chen (2013), and Su, Jin, and Zhang (2013).

The paper is organized as follows. In Section 2, we propose a sieve estimator for  (·). In Section 3,
based on the asymptotic expansion of the Gaussian quasi-log-likelihood function, we prove the consistency

of the sieve estimator, derive its convergence rate, establish its asymptotic normality, and provide a bias-

corrected estimator. We propose a specification test statistic for linearity and study its asymptotic

properties in Section 4. In Section 5, Monte Carlo simulations are conducted to investigate the finite

sample performance of our estimator and test statistic. In Section 6, we apply our model to a set of real

data. Section 7 concludes. All the proofs of the main theorems are relegated to the appendix. Additional

proofs for the technical lemmas are provided in the online supplementary material.

NOTATION. Let  () denote the th largest eigenvalue (counting eigenvalues of multiplicity multiple

times) of a symmetric matrix . For an  ×  matrix , let kk ≡
p
tr (0) denote its Frobenius

norm and kk =
p
1 (

0) its spectral norm. For an × 1 random vector  = (1  )
0, let kk ≡

[(
P

=1 ||)]1 denote its -norm, and kkD ≡ {[(
P

=1 ||)|D]}1 its -norm conditional on

D. For an  × matrix  let  =  (0)−10 and  =  − , where  is an  ×  identity

matrix, and (0)−1 denotes some generalized inverse if  does not full column rank. For any real

square matrices  and , we use    (or  ≤ ) to signify that − is positive definite (or positive

semi-definite). For a positive definite symmetric matrix  we use 12 and −12 to stand for the unique
symmetric matrices that satisfy 1212 =  and −12−12 = −1. For a real number , let bc
denote its integer part and de be the largest integer that is strictly smaller than . We use “a.s.” to

denote “almost surely”. The operators
→ and

→ denote convergence in probability and distribution,

respectively. ( )→∞ denotes  and  passing to infinity simultaneously.

2 Sieve-based quasi-likelihood maximum estimation

Since  (·) is an unknown function in (1.1), we propose to estimate  (·) by the method of sieves. For some
excellent reviews on sieve methods, see Chen (2007, 2011). To proceed, let () ≡ (1 ()  · · ·   ())0
denote a sequence of basis functions that can approximate any square-integrable function of  very well

(to be more precise later). Then we can approximate  () in (1.1) very well by 0 () for some  × 1
vector  under some conditions. Let  ≡  be some integer such that  → ∞ as ( ) → ∞.
We introduce the following notation:  ≡  (),  ≡ (),  ≡ (1 · · ·   )0, · ≡
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(1 · · ·  )0  P ≡ (1· · · ·   ·)0   ≡ (1 · · ·   )0  Y ≡ (1 · · ·   )0  0 ≡ (01  · · ·  0 )0
0 ≡ ¡01 · · ·  0¢0  We use 0 to denote the true vector of coefficients  in the sieve approximation of
 () given basis  (). Here we suppress the dependence of  

0 and  on  for notational simplicity.

To estimate , we consider the following approximating linear panel data models:

 = 0
0 + 00 

0
 +  (2.1)

where  ≡ + is the new error term, and  ≡  ()−00 represents the sieve approximation
error. Let  ≡ (1 · · ·   )0 and u ≡ (1 · · ·   )0  In matrix notation, (2.1) can be rewritten as

Y =
X
=1

0P + 000 + u (2.2)

Following Bai (2009) and Moon and Weidner (2010) we propose to estimate the model in (2.2) by

the Gaussian QMLE method. Specifically, the QMLE estimator of
¡
0 0 0

¢
is given by (̂ ̂ ̂) =

argmin() L (  )  where L (  ) is the approximating negative quasi-log-likelihood function:

L (  ) = 1


tr

⎡⎣ÃY − X
=1

P −  0
!0Ã

Y −
X
=1

P −  0
!⎤⎦  (2.3)

 = (1 · · ·  )0,  ≡ (1 · · ·   )0  and  ≡ (1 · · ·   )0. In particular, ̂ = argmin∈R  ()

where  () is the profile approximating negative quasi-log-likelihood function:

 () = min


L (  ) (2.4)

= min


1


tr

⎡⎣ÃY − X
=1

P

!


Ã
Y −

X
=1

P

!0⎤⎦ (2.5)

=
1



X
=+1



⎡⎣ÃY − X
=1

P

!0Ã
Y −

X
=1

P

!⎤⎦  (2.6)

See Moon and Weidner (2010) for the demonstration of equivalence of the above three expressions. Based

on (2.6), one only needs to calculate the  −  smallest eigenvalues of a  ×  matrix at each step of

the numerical optimization over . Note that the objective function  () is neither convex nor

differentiable with respect to . Multiple starting values for numerical optimization should be used to

find the global minimum. After obtaining ̂, one estimates  () by

̂ () =  ()0 ̂ (2.7)

The expression in (2.6) is our starting point to establish the asymptotic theory. Following Moon and

Weidner (2010), we also adopt the perturbation theory for linear operator in Kato (1980) to derive the

asymptotic expansion of  () around 0. The key idea is to form the following decomposition

Y −
X
=1

P = 000| {z }
leading term

+
X
=1

¡
0 − 

¢
P + e+ e| {z }

perturbation terms

(2.8)

where e is an × matrix whose ( )th element is  ()−00. Compared with the decomposition in
eqn. (3.1) in Moon and Weidner (2010), (2.8) has a diverging number of perturbation terms (as  →∞)
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and includes the additional sieve approximation error term. If there were no perturbation term in (2.8),

 () would be equal to zero. By the continuity of the eigenvalue operator,  () should be close to

zero when these perturbation terms are small enough. Using the perturbation theory of linear operators,

we can work out an expansion of  () in the perturbation terms and show that this expansion is

convergent as long as the spectral norm of the perturbation terms is sufficiently small. Based on the

first order asymptotic theory for QMLE, we show the consistency of ̂ () and establish its asymptotic

normality under suitable conditions.

3 Asymptotic properties of ̂(·)
In this section, we first derive the convergence rate for ̂() and then establish its asymptotic distribution.

We also analyze the sources of asymptotic biases and propose a bias-corrected estimator.

3.1 Convergence rate of ̂(·)
To estimate the unknown function by the method of sieves, we assume that  () is a smooth function.

Let X ≡ Y ×X1 ⊂ R ×R be the support of . Typical approximation and estimation of regression

functions require that X be compact; see Newey (1997). In our model, it seems restrictive to impose the

compactness of X because of the presence of lagged dependent variables. To allow for the unboundedness

of X , we follow Chen, Hong, and Tamer (2005), Blundell, Chen, and Kristensen (2007), and Su and Jin
(2012) and use a weighted sup-norm metric defined as

kk∞ ≡ sup
∈X

| ()|
h
1 + kk2

i−2
for some  ≥ 0. (3.1)

If  = 0, the norm defined in (3.1) is the usual sup-norm which is suitable for the case of compact support.

Recall that a typical smoothness assumption requires that a function  : X → R belong to a Hölder
space. Let α ≡ (1 · · ·  )0 denote a -vector of non-negative integers and |α| ≡ P

=1 . For any

 = (1 · · ·  ), the |α|th derivative of  : X → R is denoted as ∇() ≡ ||()(11 · · ·  ).
The Hölder space Λ(X ) of order   0 is a space of functions  : X → R such that the first de derivatives
are bounded, and the deth derivatives are Hölder continuous with the exponent  − de ∈ (0 1]. Define
the Hölder norm:

kkΛ ≡ sup
∈X

| ()|+ max
||=de

sup
6=∗

|∇()−∇(∗)|
k− ∗k−de



The following definition is adopted from Chen, Hong, and Tamer (2005).

Definition 1. Let Λ(X  ) ≡ ©
 : X → R such that (·)[1 + || · ||2]−2 ∈ Λ(X )ª denote a weighted

Hölder space of functions. A weighted Hölder ball with radius  is

Λ (X  ) ≡
n
 ∈ Λ(X  ) :

°°°(·)[1 + || · ||2]−2°°°
Λ
≤  ∞

o


Function (·) is said to be ( )-smooth on X if it belongs to a weighted Hölder ball Λ (X  ) for some
  0,   0 and  ≥ 0.
Let P() ≡

P
=1 P, 

()
 ≡ ( )−1P()P0() and 

()
 ≡ D[

()
 ] where  = (1  )

0

with kk = 1, andD ≡ 
¡
0 0

¢
is the -field generated by 0 and 0 Let ≡ 1



P
=1

P
=1

0
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and  ≡ D [ ]  where  =  () and  (·) is some nonnegative integrable function. Let
 ≡ 1



P
=1

P
=1 

0
 where

 ≡  − 1



X
=1

 − 1



X
=1

 +
1



X
=1

X
=1

 (3.2)

 ≡ 00 (
1

000)−10  and  ≡ 00 (

1

000)−10 . Let  ≡ D( ) and  ≡ (1   )

0 ≡
0 −−1

P
=1 0 

We first state assumptions to be used in the derivation of convergence rate for the sieve estimator.

Assumption 1. () 000 → Σ as  →∞ and 0   ≤  (Σ) ≤ 1 (Σ) ≤  ∞;
() 000 → Σ as  →∞ and 0   ≤  (Σ ) ≤ 1 (Σ ) ≤  ∞;
() kek 

√
 =  (

−1
 ) where  ≡

p
min ( )

Assumption 2.() k −k =  (1) and 0   ≤  () ≤ 1 () ≤   ∞ a.s.

for given  (·) and all  as ( )→∞;
() k −k =  (1) and 0   ≤  ( ) ≤ 1 ( ) ≤  ∞ a.s. for all  as ( )→∞;
() There exist positive constants  and  such that min{∈R kk=1}

P
=2+1 (

()
 ) ≥   0

and 1(
()
 ) =

°°P()°° √ ≤  ∞ for any  ∈ R with kk = 1 as ( )→∞.
Assumption 3. () (·) is ( )-smooth on X for some   2 and  ≥ 0;
() For any ( )-smooth function  ()  there exists a linear combination of basis functions

Π∞ ≡ 0 (·) in the sieve space G ≡
©
 (·) = 0 (·)ª such that k (·)−Π∞k∞̄

= 
¡
−

¢
;

() plim( )→∞ ( )
−1P

=1

P
=1

¡
1 + ||||2

¢̄
( + 1) ∞ for some ̄   + ;

() ||P
=1

P
=1 || =  (

√
);

() ||P
=1 [

0
 −D (0)] || =  (

√
) and ||P

=1D(
0
)|| =  (

p
 )

Assumption 4. As ( )→∞,  →∞ and −2 → 0.

Assumptions 1()-() are widely used in the literature on panel data models with interactive fixed

effects; see Bai (2009), Moon and Weidner (2010, 2012), and Su and Chen (2013). Assumption 1()

is also adopted by Moon and Weidner (2010) and can be verified for various error processes; see the

supplementary material in Moon and Weidner (2010). Assumptions 2()-() impose restrictions on the

eigenvalues of conditional probability limits of  and  . Assumption 2() is essential for

the consistency and it requires that P() be still full rank after one projects the sieve terms onto the

factor space (0) and factor loading space (0). In other words, we need that the sieve terms are all

high rank regressors as defined by Moon and Weidner (2010). The low rank regressors such as time-

invariant or individual-invariant regressors deserve special attention. Assumption 2() implies that°°P()°° √ is uniformly bounded. Assumption 3() imposes smooth conditions on  (·). Assumption
3() quantifies the approximation error of functions in ( ) by a linear combination of basis functions.

Assumption 3() is used to handle unbounded support, which can be replaced by some conditions

on the tail behavior of the marginal density of  as in Chen, Hong, and Tamer (2005) and Su and

Jin (2012). Assumptions 3()-() jointly imply that ( )
−12 kek = 

¡
−

¢
; see Lemma

A.2 in Su and Jin (2012). Assumptions 3()-() can be verified for various data generating processes

(DGPs) and various sieve bases. The second part of () is similar to the assumption on Φ in Lee

(2013). If  excludes lagged dependent variables, D( 0) = 0 and then Assumption 3() reduces to
( )−12

P
=1 

0
 =  (

12). In the next section, we will provide primitive conditions on the DGPs

and sieve bases. Assumption 4 imposes conditions on 
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Let Φ ≡ 0
¡
000

¢−1 ¡
000

¢−1
00. Let (1) and 

(2)
 be  × 1 vectors whose th elements are

respectively given by


(1)
 ≡ 1


tr
¡
0P0u

0¢  (3.3)


(2)
 ≡ − 1


tr
¡
PΦ

0u0u
00 +P0u

00uΦ
0 +P0u

0Φu00
¢

(3.4)

≡ 
(2)
 + 

(2)
 + 

(2)
 (3.5)

where 
(2)
 denotes the th element of 

(2)
 for  =   and  We derive an asymptotic expansion

for ̂ () and establish its convergence rate in the following theorem.

Theorem 3.1 Suppose that Assumptions 1-4 hold. Then

̂ ()−  () =  ()
0
−1

³

(1)
 + 

(2)


´
+
£
 ()

0
0 −  ()

¤
+  ()

0
  (3.6)

where  is a ×1 vector with kk =  [(
−+

√
−2 )(

−12
 +−(2))] Further, suppose

1[
R
X

 ()  ()
0
 () ] ∞ and

R
X
³
1 + kk2

´̄
 ()  ∞. ThenZ

X
[̂ ()−  ()]

2
 ()  = 

³
 ( ) +−4 +−2

´
 (3.7)

1



X
=1

X
=1

[̂ ()−  ()]
2
 () = 

³
 ( ) +−4 +−2

´
 (3.8)

Remark 1. In (3.6), ̂ () −  () is decomposed into three parts: the first part contributes to the

asymptotic variance and bias, the second part signals the sieve approximation error, and the third part

summarizes higher order terms from the asymptotic expansion of  (̂). Theorem 3.1 also states the

convergence rates for both the weighted integrated mean square error (MSE) and weighted sample mean

square error in (3.7) and (3.8), respectively. 

¡
 ( ) +−4

¢
and 

¡
−2

¢
come from the

first and second terms in (3.6), respectively. Apparently,  ( )+−4 = (−4 ) but we keep the

first term in the expression as it corresponds to the usual variance term for a sieve estimate. It is easy

to show that the optimal choice of , say  to minimize the integrated or sample MSE is of order


4[(2)+1]
 , yielding the minimized integrated or sample MSE of order  (

−4[(2)+1]
 ). If there were

no lagged dependent variables in  and no cross-sectional heteroskedasticity and serial correlation in

the error terms conditional on D, then the rates in (3.7) and (3.8) should be 

¡
−2 + ( )

¢
,

and  would be proportional to ( )
1[(2)+1]



3.2 Asymptotic distribution of ̂ ()

To study the asymptotic distribution of ̂ (), we introduce the concept of conditional strong mixing.

Definition 2. Let (ΩA  ) be a probability space and B be a sub--algebra of A. Let B (·) ≡  (·|B) 
Let {  ≥ 1} be a sequence of random variables defined on (ΩA  )  A sequence {  ≥ 1} is said to
be conditionally strong mixing given B (or B-strong-mixing) if there exists a nonnegative B-measurable
random variable B () converging to 0 a.s. as →∞ such that

|B ( ∩)− B ()B ()| ≤ B () a.s. (3.9)

for all  ∈  (1  )   ∈ 
¡
+ ++1 

¢
and  ≥ 1  ≥ 1
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The above definition is due to Prakasa Rao (2009). When one takes B () as the supremum of the

left hand side object in (3.9) over the set { ∈  (1  )   ∈ 
¡
+ ++1 

¢
  ≥ 1} we refer to

it as the B-strong-mixing coefficient.
Define

̃ ≡ 1



X
=1

̃0̃ ≡
1



X
=1

X
=1

̃̃
0
 and Ω̃ ≡ 1



X
=1

X
=1

̃̃
0


2


where ̃ ≡ (̃01 · · ·  ̃0 )0 = −0D()−−1
P

=1 0D() ̃ ≡ −−1
P

=1 D()
−−1P

=1 D() + ( )−1
P

=1

P
=1 D(). Let ̃ ≡ D(̃ ) and Ω̃ ≡ D(Ω̃ )

We add the following assumptions.

Assumption 5. () For each  = 1   {( ) :  = 1 2 } is D-strong-mixing with mixing coeffi-
cients {D ()  1 ≤  ≤  − 1}. D (·) ≡ max1≤≤ D (·) satisfies

P∞
=1 

2
(1+)(2+)
D () ∞ where

 is given in Assumption 6;

() 
£
|F −1

0

¤
= 0 a.s. where F−1

0 ≡ {0 0 (−1 −1−2 −1 · · · )=1};
() ()⊥ () |D for all  6=  and all   = 1   , where ⊥| denotes independence

between  and  given .

Assumption 6. There exists   0 such that

() sup ||8+4 ∞;
() sup

°°0°°8+4 ∞ and sup
°°0 °°8+4 ∞;

() sup sup ||8+4 ∞ and sup sup|̃|8+4 ∞, where ̃ is the th element of
̃

Assumption 7. There exist constants  ̄ Ω and ̄Ω that do not depend on  and  such that

0   ≤ (̃ ) ≤ 1(̃ ) ≤ ̄  ∞ a.s. and 0  Ω ≤ (Ω̃) ≤ 1(Ω̃) ≤ ̄Ω  ∞ a.s. for all  as

( )→∞

Assumption 8. As ( )→∞,  →∞ and max{
√
− −1 

√


−52
 }→ 0

Assumptions 5() imposes strong mixing on {( )}=1 conditional on D. Its unconditional version
is widely used in the time series literature; see, e.g., Bosq (1998) and Fan and Yao (2003). In the time

series literature, one can find various sufficient conditions for the strong mixing property of a nonlinear

autoregressive (AR) process with identically and independently distributed (IID) errors or nonlinear

ARCH/GARCH type of errors; see Tjøstheim (1990) and Doukhan (1994) for nonlinear AR process with

IID errors, Fan, Yao, and Cai (2003) for functional coefficient AR processes, and Meitz and Saikkonen

(2010) for nonlinear AR-ARCH/GARCH processes. When the nonlinear time series contains exogenous

regressors, sufficient conditions are also available for the strong mixing property; see Doukhan (1994) and

Chen, Racine, and Swanson (2001) for nonlinear ARX processes where exogenous variables and errors are

both IID, Franke and Diagne (2006) for nonlinear ARX-ARCHX processes but the exogenous variables

are lagged exogenous variables, and Hahn and Kuersteiner (2010) for dynamic Tobit models with mixing

exogenous regressors which follow an AR process. Similar tools used in the time series literature can be

used to establish the conditional strong mixing property for {}=1 in our framework. On the other
hand, if one assumes that the interactive fixed effects are not random (which is analogous to treating

the individual fixed effects as nonrandom in a classical linear panel data model), it suffices to use the
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concept of strong mixing.1 Assumption 5() imposes a martingale difference sequence (m.d.s.) condition

on {() F 
0}=1  Assumption 5() imposes the conditional independence between () and

() for  6=  given D. This assumption implies that all the cross-sectional dependence comes from
the common factor 0 . We can relax this assumption to allow for weak cross-sectional dependence among

{(1 )}=1 conditional on D at the cost of more complicated proofs.

Assumption 6 imposes moment conditions on , 
0
 , 

0
  and  Assumption 6() imposes the

existence of (8 + 4)th moments for the factors and factor loadings and thus relaxes the uniform bound-

edness of
°°0 °° and °°0°° in Moon and Weidner (2010, 2012). Assumption 6() is a little stronger than

what is typically assumed for sieve estimation in the IID framework (e.g., Newey, 1997), but is more

general than that in Lee (2013) where a uniform bound over a truncated support is used. In the case

of compact support, it is generally assumed that sup∈X
°° ()°° =  ( ()) for a non-decreasing

function  (·). But for the case of infinite support, this assumption is not reasonable for general sieves
except for some special sieves (e.g., Fourier series and Hermite polynomials) that can automatically deal

with the tail behavior or are uniformly bounded over the infinite support. For this reason, we impose

moment conditions on  instead. One direct implication of Assumption 6() is that sup kk =


¡
12

¢
, which allows for cubic splines or trigonometric series, but excludes polynomial functions. See

Newey (1997) for more discussions on sieves. In addition, we remark that it is possible to relax this

assumption to sup sup ||8+4  0 () for some non-decreasing function 0 (·) to include more
sieve bases. Assumption 7 imposes some restrictions on the eigenvalues of ̃ and Ω̃ Assumption 8 spec-

ifies the relative rates at which  ,  , and  pass to infinity. Note that we allow for  =  ∈ [0∞].
When  ∈ (0∞), the assumption reduces to  +2 → 0, i.e.,  ∈ ( , 12)

3.2.1 Asymptotic distribution

Let  () ≡  ()0 ̃−1Ω̃̃−1 () and  ≡
√


−12
 (). Let 1, 2, and 3 denote ×1 vec-

tors whose th elements are respectively given by 1 ≡ 1

tr
£
0D (e0P)

¤
, 2 ≡ 1


tr[D (ee0)0PΦ],

and 3 ≡ 1

tr
£
D (e0e)0P

0
Φ

0¤  Define
 () ≡ − 

 ()0 ̃−1
¡
−11 +−12 + −13

¢ ≡ − 1 ()−−1 2 ()− 3 ()  (3.10)

where  ≡
p
 . Clearly,  () = 

−12
 ()  ()

0
̃−1 for  = 1 2 3 We establish the asymp-

totic normality of ̂ () in the following theorem.

Theorem 3.2 Let Assumptions 1-8 hold. Then  [̂ ()−  ()]− ()
→  (0 1) as ( )→∞

Remark 2. The proof of the above theorem is quite complicated despite the fact that we establish the as-

ymptotic normality by a version of martingale central limit theorem (CLT). Let  ≡ 
 ()0−1 .

Theorem 3.1 suggests that the leading terms in the expansion of  [̂ ()−  ()] are given by 
(1)
 


(2)
  and 

(2)
 . 

(1)
 contributes to both the asymptotic variance and asymptotic bias

(− 1 ()) The latter also arises in linear dynamic panel data models and is caused by the endogene-

ity of  defined in (3.2): D () = −−1
P

=+1

¡
1−−1

¢
D () 6= 0 by Assumption

1An alternative for strong mixing is Near Epoch Dependence (NED), which is a much weaker condition and easily verified

for many DGPs; see Gallant (1987), Gallant and White (1988), Davidson (1994), Pötscher and Prucha (1997), and de Jong

(2009). However, there are no works on the sufficient conditions for the NED of {}=1 when the models include both
nonlinear ARX and nonlinear ARCHX/GARCHX error. We conjecture that one can apply NED to study our model but

the proofs are much more complicated in various places. For this reason, we adopt the notion of conditional strong mixing.
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5(). It is easy to see that an equivalent expression for 1 is 1 =
1


P
=1

P−1
=1

P
=+1 D () 


(2)
 contributes to the second bias term, i.e., −−1 2 ()  and is caused by cross-sectional het-

eroskedasticity of errors conditional on D; 
(2)
 contributes to the third bias term, i.e., − 3 () 

and is caused by serial correlation and heteroskedasticity of errors conditional on D. In the special case
where ’ are IID conditional on D across both  and , the last two bias terms disappear.

3.3 Bias correction

In this section, we propose a bias-corrected estimator for  (). Let i be a  × 1 unit vector that has
unity at position . For an  × matrix , define the diagonal truncation of  as truncD = diag(),

whose ( )th element is given by 1 ( = ) with 1(·) being the usual indicator function. Let Γ (·) be the
truncation kernel: Γ () = 1 (|| ≤ 1). Let be a bandwidth parameter such that +1 → 0 as

 →∞. The right truncation of matrix  is defined by truncR =
P−1

=1

P
=+1 Γ((− )  )ii

0
ii

0


To construct consistent estimates for the asymptotic bias and variance, we need consistent estimates

of 0 and 0 under suitable identification restrictions. We use the same identification restrictions as Bai

(2009):  0 =  and 0 =diagonal matrix. Given ̂, we can obtain (̂ ̂) as the solution to the

following set of nonlinear equations:"
1



X
=1

³
 − ̂

´³
 − ̂

´0#
̂ = ̂V  (3.11)

where V is a diagonal matrix that consists of the largest  eigenvalues of the matrix in the above

bracket, arranged in descending order, and

̂ ≡
³
̂1 · · ·  ̂

´0
= −1

h
̂ 0
³
1 − 1̂

´
 · · ·  ̂ 0

³
 −  ̂

´i0
 (3.12)

The projection matrices 0 and 0 can be estimated respectively by ̂ ≡ ̂ ̂ 0 and 
̂
≡ ̂(̂

0
̂)−1̂

0


Then 
̂
≡  − 

̂
, 

̂
≡  − 

̂
and Φ̂ ≡ ̂(̂ 0̂)−1(̂

0
̂)−1̂

0
are estimators of 0 , 0 , and

Φ respectively. Let ̂ ≡  − ̂ () − ̂
0
̂ ̂ ≡ ̂

0
(̂

0
̂)−1̂ ̂ ≡ ̂ 0(̂ 0̂ )−1̂, and ̂ ≡

 − 1


P
=1 ̂ − 1



P
=1 ̂ +

1


P
=1

P
=1 ̂ ̂ Define

̂ ≡ 1



X
=1

X
=1

̂̂
0
, Ω̂ ≡ 1



X
=1

X
=1

̂̂
0
̂

2


̂ () ≡  ()
0
̂−1 Ω̂ ̂

−1


 ()  and ̂ ≡
q
̂ ()

which are estimators of  , Ω ,  () and  , respectively. For 1 2 and 3, define their

corresponding estimates as ̂1, ̂2 and ̂3 whose th elements are respectively given by

̂1 ≡ 1


tr
h
(ê0P)

truncR

̂

i
, ̂2 ≡ 1


tr
h¡
êê0
¢truncD


̂
PΦ̂

i
and ̂3 ≡ 1


tr
h
(ê0ê)truncD 

̂
P0Φ̂

0
i


where ê is an  × matrix with ( )th element ̂ Let ̂ () = −̂
 ()0 ̂−1 (

−1̂1+−1̂2+
−1̂3) ≡ − ̂1 ()− −1 ̂2 ()−  ̂3 () and

̂ ≡ ̂ + ̂−1 (
−1̂1 +−1̂2 + −1̂3) (3.13)

The bias-corrected estimator of  () is given by

̂ () ≡  ()0 ̂ = ̂ ()− ̂−1 ̂ ()  (3.14)
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To estimate the asymptotic bias and variance consistently, we add the following assumption.

Assumption 9. () As ( ) → ∞  → ∞ and max{ 
p


P∞
=


(3+2)(4+2)
D () 



p
−1}→ 0;

() As ( )→∞

max
¡
  

−1


¢ h
32

³
− + −1

´i
→ 0

max
³


12 −1

´
( )

14

³
− + −2

´
→ 0

−1

√
[−14 +58(− +

√
−2 ) + −112] → 0



√
[−14 +  58(− +

√
−2 ) +−1 12] → 0

Assumption 9() imposes conditions on the bandwidth parameter  . Assumption 9() seems quite

complicated but can be simplified under some extra conditions. If we assume  →  ∈ (0∞), then
Assumption 9() reduces to 13 → 0, 32−12 → 0, 12−58 → 0, which, in conjunction

with Assumption 8 and the additional requirement   32 implies that  ∈ (0  13), where

0 ≡ max{ 12
−32 

58
−12}.

The following theorem establishes the asymptotic distribution for the bias-corrected estimator ̂ () 

Theorem 3.3 Let Assumptions 1-9 hold. Then ̂ [̂ ()−  ()]
→  (0 1) as ( )→∞

4 A specification test for linearity

In this section, we consider a specification test for the commonly used linear dynamic panel data models

with interactive fixed effects. We propose a test statistic based on the comparison of the linear estimator

under the null hypothesis and the sieve estimator under the alternative.

4.1 The hypothesis and test statistic

For the model in (1.1), we are interested in testing the null hypothesis:

H0 : Pr
£
 () =  0


0
¤
= 1 for some 0 ∈ Θ (4.1)

where Θ is a compact subset of R. The alternative hypothesis is

H1 : Pr [ () =  0
]  1 for all  ∈ Θ (4.2)

To facilitate the asymptotic local power analysis, we shall consider the following sequence of Pitman local

alternatives:

H1 ( ) :  () =  0


0 + ∆ () (4.3)

where ∆ (·) ≡ ∆ (·) is a measurable nonlinear function and  → 0 as ( ) → ∞. Let ∆ ≡
(∆ (1)  · · · ∆ ( ))

0 and ∆ ≡ (∆1 · · · ∆ )
0
.

We propose a test for H0 versus H1 by comparing the 2-distance between two estimators of  (·),
i.e., the linear and sieve estimators. Intuitively, both estimators are consistent under the null hypothesis

of linearity while only the sieve estimator is consistent under the alternative. So if there is any deviation

12



from the null, the 2-distance between two estimators will signal it out asymptotically. This motivates

us to consider the following test statistic

Γ ≡ 1



X
=1

X
=1

h
̂ ()− ̂() ()

i2
 () 

where ̂() () = 0̂, ̂ is Moon and Weidner’s (2010, 2012) linear estimator of the coefficient  under H0
and  () is a user-specified nonnegative weighting function.2 Similar test statistics have been proposed

in various other contexts in the literature; see, e.g., Härdle and Mammen (1993) and Hong and White

(1995). We will show that after being appropriately centered and scaled, Γ is asymptotically normally

distributed under the null hypothesis of linearity.

4.2 The asymptotic distribution under H1 ( )

Let  ≡ 1


P
=1

P
=1

0
,  ≡ D[ ],  ≡ 1



P
=1

P
=1 

0
,

and  ≡ D [ ]  Let  be a ×  matrix with its (1 2)th element given by

12 ≡
1


tr
¡
0X10X

0
2

¢
 (4.4)

Let ≡ D [ ]  LetΥ be a ×1 vector whose th element is given byΥ ≡ 1

tr
¡
0X0∆

0¢ 
We add the following assumptions.

Assumption 10. ∆ () is ( )-smooth, and there exists 0∆ ∈ R such that
°°0∆°°  ∞ and°°∆ (·)−  (·)0 0∆

°°
∞̄

= 
¡
−

¢


Assumption 11. () 0   ≤  () ≤ 1 () ≤ ̄ ∞ a.s. as ( )→ 0;

() kk ≤  ∞ a.s. for all  as ( )→ 0;

() 0   ≤  () ≤ 1 () ≤ ̄ ∞ a.s. as ( )→ 0;

where  ̄   and ̄ are constants that do not depend on   or 

Assumption 12. As ( )→∞ 3 → 0 max
¡
  

−1


¢
−14 → 0

14
p


P∞
=


(3+2)(4+2)
D () +14

p
 

−1
 → 0

max
¡
  

−1


¢ h
54

³
− + −1

´i
→ 0

−1
14[−14 +58(− +

√
−2 ) + −112] → 0


14[−14 +  58(− +

√
−2 ) +−1 12] → 0

Assumption 11 imposes some restrictions on the eigenvalues of certain matrices. Assumptions 11()

and () are reasonable as both  and  are × matrices. Assumption 11() is a high-level assump-
tion. Let  ≡

Ã
 

0 

!
, an augmented version of . In the literature on sieve estimation,

it is commonly assumed that 1 () is bounded above from infinity and below from 0 uniformly in in

large samples. Under this condition and Assumption 11(), if one further requires that 1 ()   ∞

then one can readily demonstrate that kk2 = 1
¡


0


¢ ≤ 1 ()1 () ∞ Note that

2 In theory, the restricted parametric estimator ̂ can be bias corrected or not. Intuitively, the asymptotic bias of ̂ is of

order −2


 which is of smaller order than ( )−1214 The latter is the rate at which the nontrivial local alternatives our

test has power to detect converge to the null. Of course, in practice a bias corrected parameter estimator is recommended.
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Assumption 12 imposes much weaker requirement on ( ) than that for the bias-correction of

sieve estimator. But it is still necessary to use bias-corrected sieve estimate in specification testing.

Assumption 12 also allows for the case where  =  ∈ [0∞]. If we restrict  ∈ (0∞), Assump-
tion 12 reduces to 14max{P∞=


3+2
4+2

D ()  √

} → 0 and 3 → 0  ∈ (1  13), where

1 ≡ max{ 12
−32 

58
−14}.

We define the asymptotic bias and variance terms as follows

B ≡ tr
³
̃−1̃

−1Ω̃
´
and V ≡ 2tr

³
̃−1̃

−1Ω̃̃−1̃
−1Ω̃

´


The following theorem establishes the asymptotic distribution of our test statistic under H1 ( ).

Theorem 4.1 Suppose that Assumptions 1-8 and 10-12 hold. Under H1 ( ) with  ≡ ( )
−12V14 

 ≡ (Γ − B ) 
p
V

→ 
¡
∆ 1

¢


where ∆ ≡ plim( )→∞ 1


P
=1

P
=1

¡
∆ − 0


−1
Υ

¢2
 is assumed to exist and be finite.

Remark 3. The proof of the above theorem is tedious and is relegated to Appendix B. The idea is to

express  as a degenerate second order  -statistic plus some smaller order terms and then apply de

Jong’s (1987) CLT for independent but non-identically distributed (INID) observations. As Su, Jin, and

Zhang (2013) notice, even though the CLT in de Jong (1987) works for second order  -statistics associated

with INID observations, a close examination of his proof shows that it also works for conditionally

independent but nonidentically distributed (CINID) observations. Noting that ∆ = 0 under H0 an
immediate consequence of the above theorem is that (Γ − B ) 

√
V

→  (0 1) under the

null. In view of the fact that V =  ()  we have  = ( )
−12 V14 =  (( )

−12
14)

This indicates that  has power to detect local alternatives that converge to the null hypothesis at

the rate ( )
−12

14 provided that ∆  0 This is the rate we can obtain even if 0 and 0 are

observable. We obtain this rate despite the fact that the unobserved factors 0 and factor loadings 
0


can be only estimated at slower rates (−12 for the former and −12 for the latter, subject to certain
matrix rotation), which suggests that the slower convergence rates of the estimates of 0 and 0 do not

have adverse first-order asymptotic effects on the asymptotic distribution of  

To implement the test, we propose to estimate B and V by B̂ ≡tr(̂−1 ̂
−1
 Ω̂ )

and V̂ ≡ 2tr(̂−1 ̂
−1
 Ω̂ ̂

−1
 ̂

−1
 Ω̂ ) respectively, where ̂ ≡ ( )

−1P
=1P

=1 ̂̂
0
 and Ω̂ ≡ ( )

−1P
=1

P
=1 ̂̂

0
̂

2
. Then we define a feasible test statistic:

̂ ≡
³
Γ − B̂

´


q
V̂  (4.5)

The following theorem establishes the asymptotic distribution of ̂ under H1 ( ).

Theorem 4.2 Suppose that Assumptions 1-8 and 10-12 hold. Under H1 ( ) with  = ( )−12

×V14 , ̂
→ 

¡
∆ 1

¢


Remark 4. The above theorem implies that ̂ has nontrivial asymptotic power against local alterna-

tives that converges to the null at the rate ( )−1214. The asymptotic local power function satisfies

Pr
³
̂  |H1 ( )

´
→ 1−Φ ¡ −∆

¢
as ( )→∞ where Φ (·) is the standard normal cumulative

distribution function (CDF).

Under H0, ∆ = 0, and ̂ is asymptotically distributed  (0 1). This is stated in the following

corollary.
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Corollary 4.3 Suppose that Assumptions 1-8 and 11-12 hold. Then under H0 ̂
→  (0 1) 

Remark 5. In principle, one can compare ̂ with the one-sided critical value , the upper th

percentile from the standard normal distribution, and reject the null when ̂   at the  significant

level. An alternative approach is to use bootstrap -values.

Remark 6. To understand the asymptotic behavior of ̂ under global alternatives, we need to

study the asymptotic property of ̂ under H1. In this case, we define a pseudo-true parameter ∗

as the probability limit of ̂. Then ∆̄ () ≡  () −  0

∗ is not equal to 0 a.s. Let ∆̄ ≡£

∆̄ (1)  · · ·  ∆̄ ( )
¤0
for  = 1   and ∆̄ ≡ ¡

∆̄1 · · ·  ∆̄

¢0
. With the additional assumption°°∆̄°° =  [( )12], we can show that ̂ − ∗ = −1 Ῡ +  (1), where Ῡ is a  × 1 vec-

tor with th element Ῡ ≡ ( )
−1
tr(0X0∆̄

0). By some calculations, we can show that

Γ =
1


P
=1

P
=1 ∆̄ ()

2
 +  (1) =  (1). This, together with the fact that B̂ =  ()

and V̂ =  (
√
) under H1, implies that our test statistic ̂ diverges at the rate  (

√
)

under H1. That is, Pr(̂   |H1) → 1 as ( ) → ∞ under H1 for any nonstochastic sequence
 = (

√
) So our test achieves consistency against global alternatives.

Remark 7. With a little modification, our test can also be applied to testing for the specification of

various other models with interactive fixed effects. First, one can consider a partially linear panel data

model with interactive fixed effects where  () = 1 (1) + 002 2  =
¡
 0
1

0
2

¢0
 and 1 (·)

is an unknown smooth function. In this case, the hypotheses are H00 : Pr[1 (1) = 001 1] = 1 for

some 01 ∈ Θ1 v.s. H01 : Pr[1 (1) 6= 011]  1 for all 1 ∈ Θ1. One can continue to apply our
test by estimating the model under the null and under the general nonparametric alternative for  (·)
without imposing its partially linear structure. But this test may suffer some loss of efficiency as it

does not impose the partially linear structure under the alternative. Alternatively, one can establish the

asymptotic distribution theory for the sieve estimator for the partially linear model and compare it with

the linear estimator under the null. The asymptotic distribution theory for the resulting test statistic is

similar to what we have above. We omit the details to save space. Second, our test can also be applied to

models that include both additive and multiplicative fixed effects. Let (1   ) be the  individual

fixed effects. We can write the common component as  + 00 0 = 
00

0 for individual  at time

period , where  = 1 
0
 =

¡
1 00

¢0
, and 

0

 =
¡
 

00


¢0
 In this case,  is known. We can obtain

the sieve QMLE without estimating  in the optimization process. With some minor modifications, we

can establish the asymptotic distributions for the resulting estimator and test statistic. Third, we can also

modify our test statistic to test for the hypotheses: H000 : Pr[ () = 0] = 1 v.s. H001 : Pr[ () = 0]  1

This testing problem is particularly important in the nonlinear autoregressive panel data models (e.g.,

 =  (−1) + 00 0 + ) because it is equivalent to testing for the presence of dynamic effects. It is

also important to test the presence of anomaly effects in the asset pricing literature. Apparently we can

compare the sieve estimate of  (·) with 0 to construct a test statistic, which is a special case of our test.

4.3 A bootstrap version of the test

Despite the fact that ̂ is asymptotically  (0 1) under the null, it is not wise to rely on the asymptotic

normal critical values to make statistical inference in finite samples because of the nonparametric nature of

our test. In addition, even though the slow convergence rates of our factors and factor loadings estimates

do not affect the asymptotic normal distribution of our test statistic, they tend to have adverse effects in

finite samples (see, Su and Chen, 2013). As a result, tests based on standard normal critical values tend
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to suffer severe size distortions in finite samples. Therefore we propose a bootstrap procedure instead to

obtain the bootstrap  values. The procedure is in the spirit of Hansen’s (2000) fixed-regressor bootstrap

and goes as follows:

1. Under H0 obtain the linear estimators ̂, ̂ () , ̂
()

 , and ̂
()
 , where the superscript “()” denotes

estimates under the null hypothesis of linearity; underH1 obtain the bias-corrected sieve estimators:
̂, ̂, ̂, and ̂. Calculate the test statistic ̂ based on ̂ () = ̂

0


(), ̂
0
 ̂, ̂

and ̂

2. For  = 1   obtain the wild bootstrap errors {∗}=1 as follows: ∗ = ̂
()
 where  are

IID  (0 1). Then generate the bootstrap analogue  ∗ of  by holding ( ̂
()
  ̂

()

 ) as fixed:

 ∗ =  0
̂ + ̂

()0
 ̂

()
 + ∗ for  = 1   and  = 1   .

3. Given the bootstrap resample { ∗ }, obtain the sieve QMLEs ̂∗ (), ̂
∗
 , ̂

∗
 and ̂∗ and

the linear estimators ̂
∗
, ̂

()∗
 , ̂

()∗
 and ̂

()∗
 . Calculate the bootstrap test statistic ̂∗ based on

̂∗ (), 
0
̂
∗
, ̂∗ , ̂

∗
  and ̂∗

4. Repeat Steps 2-3 for  times and index the bootstrap statistics as {̂∗}=1. Calculate the
bootstrap -value: ∗ = −1

P
=1 1(̂

∗
 ≥ ̂ ).

It is straightforward to implement the above bootstrap procedure. Note that we impose the null

hypothesis of linearity in Step 2. Since the regressors are treated as fixed, there is no dynamic structure in

the bootstrap world. The next theorem implies the asymptotic validity of the above bootstrap procedure.

Theorem 4.4 Suppose that the conditions in Theorem 4.2 hold. Then ̂∗

∗→  (0 1) in probability,

where
∗→ denotes weak convergence under the bootstrap probability measure conditional on the observed

sample W ≡ {( ) :  = 1    = 1  }.

5 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performance of our

estimators and test.

5.1 Data generating processes

We consider the following data generating processes (DGPs):

DGP 1:  = 05−1 + 00 0 + 

DGP 2:  = 05−1 +1 + 00 
0
 + 

DGP 3:  = 05−1 + 05
h

exp(−1− 2
−1)

1+exp(−1− 2
−1)

− 05
i
+ 00 0 + 

DGP 4:  = 05−1 + 05
£
Φ
¡
−1 −  2

−1
¢− 05¤+ 00 0 + 

DGP 5:  = 05−1 + 025
£
 (−1)− 1

√
2
¤
+ 05

£
 (1)− 1

√
2
¤
+ 00 0 + 

DGP 6:  = 05−1 + 0251[Φ (−1)− 05] + 05
£
 (1)− 1

√
2
¤
+ 00 0 + 

where 0 =
¡
01 

0
2

¢0
, 0 =

¡
01 

0
2

¢0
  = 1  ,  = 1   Φ (·) and  (·) are the standard normal

CDF and PDF, respectively. The regressors 1 in DGPs 2, 5, and 6 are generated according to

1 = 05 + 05
0
1

0
1 + 05

0
2

0
2 +  where 

0
1 

0
2, 

0
1, 

0
2 and  are IID  (0 1), 01,

02, and  are IID  (0 025),  are IID  [−025 025], and they are mutually independent of each
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other. Clearly, the exogenous regressor 1 has a factor structure and is correlated with the common

factors 01 and 02 All the above six DGPs are used to evaluate the finite sample performance of our

estimator and test statistic. In the specification testing for linearity, DGPs 1-2 and 3-6 are used for

level and power studies, respectively. For all DGPs, we discard the first 200 observations along the time

dimension when generating the data.

Note that the idiosyncratic error terms in the above six DGPs are all homoskedastic (conditionally and

unconditionally). To investigate the effect of conditional heteroskedasticity for the estimation and testing,

we consider another set of DGPs, namely, DGPs 1h-6h, which are identical to DGPs 1-6, respectively, in

the mean regression components but different from the latter in error terms. For DGPs 1h, 3h-4h, we

generate the errors as follows  =
√
  = 01+02

2
−1 and  ∼IID (0 1) across both  and 

For DGPs 2h, 5h-6h, the errors are generated according to  =
√
  = 01+ 01

2
−1 +01

2
1

and  ∼IID (0 1) across both  and 

5.2 Estimation: implementation and evaluation

In each DGP, we compute six estimators. We first compute the sieve estimate ̂ () and its bias-corrected

version ̂ (). Then we compute the bias-corrected infeasible estimate ̂ () which is obtained by

treating
©
0
ª
=1

as observables. We also calculate another three estimates by pretending the regression

function takes the commonly assumed linear functional form and term them as the linear QMLE ̂() (),

its bias-corrected version ̂
()
 (), and the infeasible linear estimate ̂

()
 () by treating the factors as

observables, respectively. The infeasible estimates ̂
()
 () and ̂ () provide a reference for efficiency

comparison in DGPs 1-2 (or 1h-2h) and 3-6 (or 3h-6h), respectively. Compared with the sieve estimates

(̂ ()  ̂ ()), the linear estimates (̂
() ()  ̂

()
 ()) signify the bias due to functional form misspec-

ification in DGPs 3-6 or 3h-6h. Although there is no conditional heteroskedasticity across , or serial

correlation or heteroskedasticity across  for some DGPs (e.g., DGPs 1-6), we correct all three bias terms

to obtain ̂ () and ̂
()
 ().

To obtain these estimates, we need to choose the bandwidth  for the bias correction. Throughout

the simulation, we use  =
¥
 17

¦
. The cubic B-spline is adopted as the sieve basis in all DGPs. The

basis  of a B-spline of degree  ≥ 1 (of order  = + 1) is given recursively by

 () =  () −1 () + [1− +1 ()] +1−1 () 

0 () = 1 ( ∈ [  +1)) 

where  () =
−

+− 1 (+ 6= ) and {}+1=0 is a sequence of non-decreasing real numbers (i.e.,

knots). We can approximate any smooth scalar function  () by a linear combination of { ()}+−1=0

for  ∈ [0 +1]. For more details on the recursive construction of B-spline basis, see Racine (2012). In
DGPs 1, 3, 4, 1h, 3h, and 4h where  () is a univariate function, we use the cubic B-spline basis ( = 3)

+4 () =
h

( )
03 ()  

( )
13 ()  · · ·  ( )+33 ()

i0
 (5.1)

where the superscript “( )” denotes its correspondence to {−1}. The knots {}+1=0 are chosen as

the empirical quantiles of {−1  = 1   = 2  } i.e.,  denotes the ( + 1)th sample

quantile of {−1}. So the total number of approximating terms in the sieve basis is given by  = +4

In DGPs 2, 5, 6, 2h, 5h, and 6h, we consider two choices of sieve bases depending on whether we impose

additivity on  ( ) or not. When we impose additivity, i.e.,  ( ) = 1 () + 2 (), the basis can be
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chosen as follows

 ( ) = [+4 ()0  +3 ()0]0 (5.2)

where +3 () = [
()
03 ()  

()
13 ()  · · ·  ()+23 ()]

0 with 
()
3 () being analogously defined as 

( )
3 ().

For convenience, we adopt the same number of knots for different regressors. Note that we leave the last

element 
()
+33 () out of 

+3
 () to avoid perfect multicollinearity as

P+3
=0 

()
3 () = 1. For this case,

the total number of approximating terms is  = 2 + 7 When we do not impose additivity, the basis is

chosen as follows

 ( ) = [+4 ()⊗ +4 ()]0 (5.3)

where ⊗ denotes the tensor product. Then the total number of approximating terms is  = ( + 4)2.

Even for as small values as  = 3 4 and 5 we have  = 49 64, and 81 terms in the sieve estimation,

respectively. In all cases, to evaluate how the estimators are sensitive to the choice of  , we consider

choosing  = b ( )
175c for  = 1 15 and 23

We consider the ( ) pairs with   = 20 40 and 60. To evaluate the finite sample performance

of different estimators, we first calculate the root mean squared error (RMSE) for each replication:

RMSE(̂) =
q

1


P
=1

P
=1 [̂ ()−  ()]

2
 () where  (·) is used to trim out 25% tail ob-

servations along each tail of each dimension of  Then we obtain the average RMSE (ARMSE) by

averaging RMSE(̂) across 2000 replications, where ̂ is a generic estimator of . Other evaluation criteria

like the median of RMSE, the average or median mean absolute deviation are also considered and they

tend to yield qualitatively similar behavior for various estimators considered here. We only report the

results based on the ARMSE to conserve space.

Tables 1-2 report the estimation results for homoskedastic or heteroskedastic errors, respectively, when

we do not impose additivity for the bivariate regressions in DGPs 2, 5, 6, 2h, 5h, and 6h. Table 3 reports

the estimation results for the latter six DGPs when we impose additivity. We summarize some important

findings. First, for all DGPs, the ARMSEs for ̂, ̂ and ̂ decrease as either  or  increases. The

results for homoskedastic and heteroskedastic errors are similar. Second, as expected, when the regression

functions are linear in DGPs 1, 2, 1h, and 2h, the linear estimate is more efficient than sieve estimate; when

the regression functions are nonlinear, the sieve estimates (bias-corrected or not) outperform the linear

estimates in terms ARMSE significantly, and the ARMSEs of the linear estimates tend to be stabilized at

some large constant due to their inconsistency in the case of misspecification of functional form. Third,

the bias correction works well for almost all DGPs and combinations ( ) under investigation. The

reduction of the percentage of ARMSE due to the bias correction is diminishing as  increases, which is

consistent with our asymptotic result that the dominant first bias term is of order  (
√
 ) Fourth,

the infeasible estimates always beat the feasible ones but the differences in ARMSEs for different types

of estimates are shrinking as either  or  increases. Fifth, when additivity is correctly imposed for the

bivariate regressions in DGPs 2, 5, 2h, and 5h, a comparison across the three tables suggests it leads

to more precise estimation and significant reductions of ARMSEs for all estimates under investigation

when compared with the case it is not imposed. When additivity is not correctly imposed for DGPs 6

and 6h, it generally results in large ARMSEs in large samples; exceptions may occur when there are too

many sieve approximation terms that tend to result in large variance. Lastly, the above results are kind

of robust for the three choices of  for both univariate regressions and additive bivariate regressions.

3Alternatively one can follow, e.g., Lee (2013), to use the leave-one-out cross-validation (CV) to choose  adaptively.

Another possibility is to apply the Lasso-type techniques to achieve simultaneous variable selection and estimation. We

leave these as a future research topic.
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Table 1: ARMSE comparison for DGPs 1-6: homoskedastic errors

 = 1  = 15  = 2 Linear

DGP   ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂() ̂
()
 ̂

()


1 20 20 0.0575 0.0559 0.0453 0.0639 0.0625 0.0520 0.0688 0.0675 0.0572 0.0304 0.0277 0.0135

40 0.0384 0.0380 0.0310 0.0408 0.0406 0.0342 0.0475 0.0474 0.0410 0.0206 0.0199 0.0105

60 0.0307 0.0303 0.0248 0.0364 0.0361 0.0309 0.0388 0.0385 0.0337 0.0157 0.0152 0.0085

40 20 0.0401 0.0384 0.0317 0.0439 0.0422 0.0358 0.0511 0.0497 0.0440 0.0240 0.0212 0.0107

40 0.0268 0.0262 0.0216 0.0319 0.0314 0.0272 0.0344 0.0339 0.0296 0.0147 0.0140 0.0072

60 0.0230 0.0227 0.0195 0.0248 0.0245 0.0215 0.0289 0.0287 0.0258 0.0117 0.0113 0.0061

60 20 0.0347 0.0322 0.0268 0.0401 0.0379 0.0331 0.0424 0.0403 0.0356 0.0209 0.0175 0.0085

40 0.0230 0.0226 0.0197 0.0253 0.0249 0.0222 0.0289 0.0285 0.0261 0.0115 0.0105 0.0059

60 0.0181 0.0178 0.0159 0.0195 0.0192 0.0174 0.0224 0.0222 0.0204 0.0088 0.0082 0.0046

2 20 20 0.1107 0.1102 0.0844 0.1312 0.1312 0.1025 0.1480 0.1472 0.1194 0.0297 0.0294 0.0251

40 0.0843 0.0841 0.0566 0.0932 0.0931 0.0675 0.1076 0.1072 0.0913 0.0187 0.0186 0.0158

60 0.0732 0.0731 0.0459 0.0772 0.0772 0.0652 0.0844 0.0842 0.0747 0.0156 0.0156 0.0133

40 20 0.0860 0.0858 0.0594 0.0960 0.0959 0.0709 0.1142 0.1128 0.0947 0.0192 0.0190 0.0170

40 0.0679 0.0679 0.0402 0.0685 0.0685 0.0572 0.0729 0.0726 0.0658 0.0127 0.0125 0.0113

60 0.0583 0.0581 0.0394 0.0630 0.0629 0.0462 0.0659 0.0657 0.0605 0.0100 0.0100 0.0094

60 20 0.0756 0.0755 0.0480 0.0828 0.0824 0.0681 0.0912 0.0904 0.0778 0.0156 0.0154 0.0141

40 0.0592 0.0591 0.0405 0.0643 0.0643 0.0477 0.0676 0.0673 0.0623 0.0110 0.0108 0.0100

60 0.0511 0.0511 0.0322 0.0544 0.0543 0.0381 0.0566 0.0566 0.0500 0.0084 0.0084 0.0077

3 20 20 0.0590 0.0576 0.0468 0.0647 0.0634 0.0523 0.0686 0.0673 0.0563 0.0963 0.0956 0.1017

40 0.0398 0.0395 0.0326 0.0426 0.0424 0.0359 0.0490 0.0488 0.0429 0.0928 0.0929 0.1036

60 0.0308 0.0305 0.0259 0.0371 0.0368 0.0321 0.0392 0.0390 0.0344 0.0923 0.0924 0.1046

40 20 0.0410 0.0397 0.0336 0.0443 0.0431 0.0371 0.0511 0.0501 0.0442 0.0934 0.0933 0.1038

40 0.0276 0.0271 0.0230 0.0317 0.0313 0.0274 0.0339 0.0336 0.0297 0.0905 0.0906 0.1033

60 0.0245 0.0243 0.0214 0.0261 0.0259 0.0231 0.0294 0.0293 0.0264 0.0912 0.0913 0.1045

60 20 0.0346 0.0326 0.0278 0.0405 0.0386 0.0340 0.0423 0.0406 0.0361 0.0902 0.0899 0.1016

40 0.0245 0.0241 0.0217 0.0264 0.0260 0.0236 0.0297 0.0293 0.0272 0.0900 0.0902 0.1035

60 0.0192 0.0190 0.0173 0.0203 0.0201 0.0183 0.0232 0.0230 0.0213 0.0895 0.0897 0.1031

4 20 20 0.0591 0.0576 0.0472 0.0645 0.0632 0.0523 0.0687 0.0674 0.0566 0.0869 0.0861 0.0892

40 0.0404 0.0401 0.0336 0.0424 0.0422 0.0360 0.0486 0.0484 0.0425 0.0831 0.0832 0.0905

80 0.0324 0.0321 0.0278 0.0373 0.0370 0.0323 0.0394 0.0391 0.0345 0.0825 0.0825 0.0912

40 20 0.0417 0.0403 0.0346 0.0445 0.0432 0.0373 0.0509 0.0498 0.0440 0.0838 0.0836 0.0905

40 0.0293 0.0288 0.0253 0.0322 0.0318 0.0280 0.0343 0.0340 0.0300 0.0808 0.0809 0.0901

60 0.0252 0.0250 0.0223 0.0263 0.0262 0.0234 0.0293 0.0291 0.0262 0.0814 0.0815 0.0911

60 20 0.0358 0.0338 0.0294 0.0405 0.0386 0.0340 0.0424 0.0406 0.0361 0.0809 0.0805 0.0888

40 0.0254 0.0250 0.0227 0.0268 0.0264 0.0241 0.0300 0.0296 0.0274 0.0804 0.0805 0.0903

60 0.0203 0.0201 0.0185 0.0209 0.0207 0.0190 0.0232 0.0230 0.0213 0.0798 0.0800 0.0898

5 20 20 0.1176 0.1132 0.0831 0.1403 0.1344 0.0990 0.1623 0.1552 0.1145 0.0893 0.0872 0.0785

40 0.0742 0.0723 0.0537 0.0893 0.0864 0.0655 0.1224 0.1182 0.0899 0.0803 0.0799 0.0768

60 0.0594 0.0586 0.0435 0.0854 0.0834 0.0628 0.0989 0.0965 0.0721 0.0787 0.0784 0.0760

40 20 0.0842 0.0786 0.0576 0.1024 0.0951 0.0688 0.1374 0.1276 0.0929 0.0825 0.0809 0.0762

40 0.0536 0.0520 0.0382 0.0783 0.0753 0.0555 0.0911 0.0877 0.0645 0.0776 0.0773 0.0755

60 0.0504 0.0493 0.0378 0.0629 0.0611 0.0449 0.0831 0.0807 0.0590 0.0780 0.0778 0.0760

60 20 0.0677 0.0638 0.0467 0.0996 0.0928 0.0668 0.1135 0.1059 0.0769 0.0798 0.0791 0.0752

40 0.0521 0.0503 0.0383 0.0655 0.0629 0.0456 0.0862 0.0827 0.0598 0.0774 0.0771 0.0753

60 0.0419 0.0410 0.0313 0.0522 0.0507 0.0372 0.0704 0.0683 0.0491 0.0773 0.0771 0.0755

6 20 20 0.1164 0.1121 0.0832 0.1400 0.1343 0.0988 0.1611 0.1542 0.1144 0.0885 0.0867 0.0792

40 0.0732 0.0713 0.0540 0.0886 0.0859 0.0660 0.1220 0.1180 0.0907 0.0802 0.0798 0.0771

60 0.0585 0.0577 0.0433 0.0850 0.0830 0.0626 0.0981 0.0957 0.0718 0.0781 0.0780 0.0761

40 20 0.0835 0.0781 0.0575 0.1010 0.0940 0.0688 0.1354 0.1260 0.0928 0.0820 0.0804 0.0765

40 0.0524 0.0510 0.0381 0.0777 0.0748 0.0555 0.0904 0.0869 0.0645 0.0776 0.0773 0.0761

60 0.0495 0.0485 0.0377 0.0619 0.0602 0.0447 0.0820 0.0797 0.0586 0.0778 0.0777 0.0765

60 20 0.0664 0.0627 0.0466 0.0983 0.0916 0.0668 0.1121 0.1048 0.0772 0.0790 0.0784 0.0755

40 0.0512 0.0496 0.0384 0.0648 0.0623 0.0456 0.0854 0.0820 0.0599 0.0771 0.0769 0.0757

60 0.0402 0.0394 0.0312 0.0510 0.0496 0.0370 0.0691 0.0671 0.0487 0.0770 0.0769 0.0761
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Table 2: ARMSE comparison for DGPs 1h-6h: heteroskedastic errors

 = 1  = 15  = 2 Linear

DGP   ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂() ̂
()
 ̂

()


1h 20 20 0.0724 0.0693 0.0531 0.0765 0.0733 0.0558 0.0802 0.0770 0.0596 0.0527 0.0488 0.0299

40 0.0488 0.0480 0.0381 0.0517 0.0510 0.0406 0.0560 0.0554 0.0449 0.0346 0.0326 0.0216

60 0.0389 0.0385 0.0314 0.0429 0.0426 0.0348 0.0446 0.0443 0.0363 0.0249 0.0235 0.0179

40 20 0.0492 0.0474 0.0384 0.0528 0.0511 0.0415 0.0575 0.0559 0.0462 0.0381 0.0333 0.0219

40 0.0334 0.0329 0.0271 0.0368 0.0365 0.0302 0.0385 0.0381 0.0317 0.0228 0.0211 0.0141

60 0.0290 0.0288 0.0242 0.0304 0.0302 0.0256 0.0327 0.0324 0.0278 0.0211 0.0203 0.0141

60 20 0.0454 0.0420 0.0329 0.0509 0.0477 0.0371 0.0525 0.0494 0.0390 0.0340 0.0288 0.0177

40 0.0299 0.0293 0.0248 0.0314 0.0308 0.0262 0.0332 0.0326 0.0280 0.0199 0.0185 0.0128

60 0.0234 0.0230 0.0194 0.0244 0.0239 0.0204 0.0261 0.0256 0.0220 0.0156 0.0150 0.0101

2h 20 20 0.1447 0.1450 0.1161 0.1685 0.1682 0.1317 0.1806 0.1791 0.1481 0.0483 0.0474 0.0453

40 0.1050 0.1053 0.0777 0.1164 0.1161 0.0890 0.1274 0.1267 0.1124 0.0345 0.0342 0.0327

60 0.0899 0.0898 0.0620 0.0928 0.0926 0.0806 0.1003 0.0997 0.0898 0.0264 0.0262 0.0245

40 20 0.1054 0.1051 0.0794 0.1161 0.1158 0.0911 0.1337 0.1320 0.1151 0.0340 0.0326 0.0310

40 0.0802 0.0802 0.0549 0.0825 0.0824 0.0720 0.0860 0.0856 0.0807 0.0230 0.0228 0.0220

60 0.0695 0.0695 0.0521 0.0755 0.0755 0.0589 0.0764 0.0761 0.0724 0.0194 0.0192 0.0180

60 20 0.0910 0.0910 0.0659 0.0976 0.0971 0.0861 0.1076 0.1062 0.0960 0.0269 0.0267 0.0253

40 0.0688 0.0686 0.0513 0.0736 0.0735 0.0580 0.0761 0.0758 0.0726 0.0195 0.0192 0.0180

60 0.0598 0.0598 0.0433 0.0630 0.0630 0.0489 0.0676 0.0676 0.0605 0.0166 0.0165 0.0159

3h 20 20 0.0813 0.0777 0.0612 0.0850 0.0815 0.0634 0.0873 0.0838 0.0660 0.1139 0.1119 0.1087

40 0.0545 0.0542 0.0461 0.0576 0.0573 0.0479 0.0613 0.0610 0.0509 0.1018 0.1023 0.1080

60 0.0453 0.0449 0.0382 0.0493 0.0490 0.0409 0.0504 0.0502 0.0417 0.1013 0.1015 0.1089

40 20 0.0566 0.0547 0.0455 0.0596 0.0576 0.0476 0.0634 0.0617 0.0511 0.1024 0.1017 0.1077

40 0.0399 0.0396 0.0347 0.0422 0.0418 0.0359 0.0430 0.0426 0.0364 0.0970 0.0975 0.1056

60 0.0356 0.0354 0.0309 0.0365 0.0362 0.0315 0.0368 0.0365 0.0317 0.0976 0.0981 0.1073

60 20 0.0520 0.0494 0.0408 0.0562 0.0534 0.0433 0.0577 0.0550 0.0444 0.0989 0.0981 0.1045

40 0.0350 0.0346 0.0307 0.0360 0.0356 0.0314 0.0375 0.0370 0.0320 0.0954 0.0963 0.1057

60 0.0299 0.0297 0.0267 0.0301 0.0298 0.0266 0.0303 0.0300 0.0263 0.0948 0.0953 0.1041

4h 20 20 0.0788 0.0754 0.0598 0.0815 0.0783 0.0611 0.0837 0.0805 0.0638 0.1023 0.1002 0.0956

40 0.0543 0.0541 0.0466 0.0559 0.0556 0.0464 0.0596 0.0592 0.0489 0.0914 0.0914 0.0940

80 0.0461 0.0458 0.0402 0.0476 0.0473 0.0396 0.0485 0.0483 0.0402 0.0899 0.0899 0.0944

40 20 0.0565 0.0548 0.0468 0.0581 0.0564 0.0470 0.0611 0.0596 0.0496 0.0921 0.0912 0.0936

40 0.0413 0.0410 0.0372 0.0403 0.0400 0.0346 0.0410 0.0407 0.0348 0.0866 0.0867 0.0915

60 0.0349 0.0347 0.0306 0.0352 0.0350 0.0307 0.0357 0.0354 0.0304 0.0866 0.0869 0.0928

60 20 0.0515 0.0490 0.0417 0.0539 0.0512 0.0414 0.0552 0.0524 0.0423 0.0888 0.0877 0.0909

40 0.0347 0.0343 0.0305 0.0350 0.0345 0.0305 0.0356 0.0351 0.0305 0.0851 0.0856 0.0915

60 0.0296 0.0294 0.0265 0.0291 0.0288 0.0257 0.0287 0.0284 0.0248 0.0841 0.0845 0.0899

5h 20 20 0.1213 0.1200 0.0889 0.1444 0.1380 0.1042 0.1627 0.1520 0.1184 0.0937 0.0915 0.0833

40 0.0777 0.0773 0.0623 0.0878 0.0876 0.0716 0.1102 0.1088 0.0924 0.0843 0.0836 0.0804

60 0.0649 0.0641 0.0499 0.0816 0.0802 0.0661 0.0939 0.0919 0.0738 0.0808 0.0806 0.0788

40 20 0.0855 0.0826 0.0615 0.0992 0.0953 0.0726 0.1293 0.1210 0.0942 0.0846 0.0826 0.0786

40 0.0548 0.0542 0.0439 0.0745 0.0728 0.0580 0.0842 0.0822 0.0663 0.0794 0.0789 0.0774

60 0.0512 0.0505 0.0407 0.0591 0.0582 0.0462 0.0773 0.0751 0.0584 0.0776 0.0774 0.0769

60 20 0.0706 0.0674 0.0506 0.1006 0.0931 0.0683 0.1129 0.1042 0.0768 0.0830 0.0815 0.0785

40 0.0514 0.0505 0.0408 0.0609 0.0587 0.0473 0.0783 0.0752 0.0596 0.0775 0.0772 0.0763

60 0.0432 0.0422 0.0338 0.0510 0.0502 0.0384 0.0670 0.0651 0.0487 0.0772 0.0770 0.0766

6h 20 20 0.1229 0.1193 0.0904 0.1423 0.1368 0.1040 0.1598 0.1526 0.1177 0.0931 0.0908 0.0846

40 0.0813 0.0796 0.0603 0.0935 0.0907 0.0711 0.1208 0.1164 0.0915 0.0825 0.0819 0.0798

60 0.0649 0.0643 0.0487 0.0853 0.0833 0.0652 0.0965 0.0941 0.0732 0.0795 0.0793 0.0776

40 20 0.0895 0.0849 0.0635 0.1048 0.0974 0.0732 0.1351 0.1250 0.0947 0.0872 0.0841 0.0796

40 0.0563 0.0552 0.0428 0.0785 0.0755 0.0575 0.0890 0.0854 0.0650 0.0790 0.0785 0.0775

60 0.0530 0.0521 0.0409 0.0618 0.0602 0.0472 0.0789 0.0767 0.0594 0.0784 0.0783 0.0774

60 20 0.0730 0.0692 0.0513 0.1005 0.0933 0.0691 0.1127 0.1048 0.0782 0.0818 0.0803 0.0776

40 0.0553 0.0539 0.0419 0.0650 0.0625 0.0478 0.0825 0.0792 0.0598 0.0781 0.0777 0.0766

60 0.0436 0.0429 0.0345 0.0507 0.0492 0.0392 0.0660 0.0639 0.0494 0.0775 0.0774 0.0767
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Table 3: ARMSE comparison for DGPs 2 , 5, 6, 2h, 5h, and 6h: additivity is imposed

 = 1  = 15  = 2 Linear

DGP   ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂() ̂
()
 ̂

()


2 20 20 0.1105 0.0933 0.0636 0.1034 0.1032 0.0715 0.1024 0.1022 0.0785 0.0297 0.0294 0.0251

40 0.0547 0.0546 0.0426 0.0668 0.0668 0.0473 0.0734 0.0734 0.0561 0.0187 0.0186 0.0158

60 0.0445 0.0444 0.0358 0.0599 0.0599 0.0430 0.0607 0.0606 0.0467 0.0156 0.0156 0.0133

40 20 0.0554 0.0553 0.0463 0.0679 0.0677 0.0514 0.0755 0.0756 0.0614 0.0192 0.0190 0.0170

40 0.0377 0.0377 0.0311 0.0523 0.0523 0.0384 0.0533 0.0533 0.0415 0.0127 0.0125 0.0113

60 0.0417 0.0417 0.0293 0.0434 0.0434 0.0324 0.0437 0.0437 0.0374 0.0100 0.0100 0.0094

60 20 0.0446 0.0445 0.0374 0.0610 0.0610 0.0451 0.0606 0.0606 0.0490 0.0156 0.0154 0.0141

40 0.0427 0.0427 0.0291 0.0434 0.0434 0.0316 0.0432 0.0432 0.0365 0.0110 0.0108 0.0100

60 0.0357 0.0357 0.0243 0.0370 0.0370 0.0263 0.0357 0.0357 0.0298 0.0084 0.0084 0.0077

5 20 20 0.0762 0.0748 0.0627 0.0853 0.0839 0.0706 0.0921 0.0909 0.0770 0.0893 0.0872 0.0785

40 0.0465 0.0460 0.0400 0.0514 0.0509 0.0455 0.0605 0.0601 0.0546 0.0803 0.0799 0.0768

60 0.0390 0.0388 0.0343 0.0469 0.0467 0.0421 0.0506 0.0505 0.0461 0.0787 0.0784 0.0760

40 20 0.0517 0.0499 0.0441 0.0567 0.0551 0.0495 0.0650 0.0634 0.0586 0.0825 0.0809 0.0762

40 0.0314 0.0311 0.0281 0.0382 0.0379 0.0347 0.0413 0.0410 0.0381 0.0776 0.0773 0.0755

60 0.0289 0.0287 0.0267 0.0320 0.0317 0.0299 0.0373 0.0371 0.0354 0.0780 0.0778 0.0760

60 20 0.0401 0.0387 0.0347 0.0481 0.0468 0.0431 0.0518 0.0505 0.0471 0.0798 0.0791 0.0752

40 0.0293 0.0289 0.0267 0.0319 0.0316 0.0295 0.0365 0.0362 0.0347 0.0774 0.0771 0.0753

60 0.0225 0.0223 0.0207 0.0248 0.0246 0.0230 0.0289 0.0288 0.0273 0.0773 0.0771 0.0755

6 20 20 0.0916 0.0900 0.0796 0.0976 0.0961 0.0853 0.1034 0.1019 0.0912 0.0885 0.0867 0.0792

40 0.0675 0.0669 0.0620 0.0708 0.0703 0.0652 0.0792 0.0787 0.0732 0.0802 0.0798 0.0771

60 0.0605 0.0604 0.0574 0.0658 0.0657 0.0625 0.0683 0.0681 0.0650 0.0781 0.0780 0.0761

40 20 0.0716 0.0697 0.0648 0.0745 0.0726 0.0677 0.0825 0.0808 0.0758 0.0820 0.0804 0.0765

40 0.0567 0.0564 0.0548 0.0611 0.0608 0.0591 0.0628 0.0626 0.0610 0.0776 0.0773 0.0761

60 0.0552 0.0551 0.0536 0.0566 0.0565 0.0550 0.0595 0.0594 0.0580 0.0778 0.0777 0.0765

60 20 0.0622 0.0613 0.0583 0.0674 0.0665 0.0636 0.0700 0.0691 0.0662 0.0790 0.0784 0.0755

40 0.0549 0.0548 0.0534 0.0564 0.0562 0.0548 0.0592 0.0591 0.0579 0.0771 0.0769 0.0757

60 0.0519 0.0518 0.0512 0.0528 0.0528 0.0520 0.0548 0.0548 0.0541 0.0770 0.0769 0.0761

2h 20 20 0.1101 0.1101 0.0920 0.1240 0.1239 0.1010 0.1324 0.1325 0.1091 0.0483 0.0474 0.0453

40 0.0715 0.0714 0.0613 0.0820 0.0820 0.0656 0.0915 0.0915 0.0760 0.0345 0.0342 0.0327

60 0.0584 0.0584 0.0503 0.0723 0.0723 0.0584 0.0752 0.0752 0.0625 0.0264 0.0262 0.0245

40 20 0.0748 0.0747 0.0644 0.0866 0.0866 0.0701 0.0952 0.0951 0.0813 0.0340 0.0326 0.0310

40 0.0496 0.0496 0.0436 0.0624 0.0623 0.0513 0.0650 0.0650 0.0552 0.0230 0.0228 0.0220

60 0.0502 0.0501 0.0393 0.0527 0.0525 0.0422 0.0542 0.0541 0.0478 0.0194 0.0192 0.0180

60 20 0.0602 0.0600 0.0534 0.0739 0.0738 0.0618 0.0770 0.0769 0.0662 0.0269 0.0267 0.0253

40 0.0525 0.0525 0.0407 0.0539 0.0538 0.0436 0.0552 0.0551 0.0485 0.0195 0.0192 0.0180

60 0.0435 0.0435 0.0326 0.0441 0.0441 0.0351 0.0459 0.0459 0.0403 0.0166 0.0165 0.0159

5h 20 20 0.0898 0.0875 0.0723 0.0956 0.0937 0.0798 0.1018 0.1001 0.0855 0.0937 0.0915 0.0833

40 0.0567 0.0558 0.0485 0.0614 0.0606 0.0534 0.0700 0.0692 0.0622 0.0843 0.0836 0.0804

60 0.0444 0.0443 0.0386 0.0515 0.0514 0.0456 0.0551 0.0550 0.0492 0.0808 0.0806 0.0788

40 20 0.0606 0.0585 0.0505 0.0649 0.0628 0.0548 0.0731 0.0711 0.0641 0.0846 0.0826 0.0786

40 0.0377 0.0372 0.0339 0.0448 0.0442 0.0411 0.0480 0.0474 0.0444 0.0794 0.0789 0.0774

60 0.0322 0.0319 0.0297 0.0347 0.0345 0.0323 0.0393 0.0391 0.0369 0.0776 0.0774 0.0769

60 20 0.0488 0.0470 0.0418 0.0556 0.0540 0.0490 0.0589 0.0573 0.0526 0.0830 0.0815 0.0785

40 0.0338 0.0333 0.0303 0.0364 0.0359 0.0329 0.0403 0.0399 0.0372 0.0775 0.0772 0.0763

60 0.0274 0.0272 0.0254 0.0294 0.0293 0.0274 0.0332 0.0331 0.0316 0.0772 0.0770 0.0766

6h 20 20 0.1014 0.0997 0.0886 0.1065 0.1046 0.0932 0.1116 0.1099 0.0983 0.0931 0.0908 0.0846

40 0.0739 0.0732 0.0672 0.0773 0.0767 0.0702 0.0843 0.0837 0.0774 0.0825 0.0819 0.0798

60 0.0651 0.0649 0.0612 0.0705 0.0703 0.0660 0.0727 0.0725 0.0684 0.0795 0.0793 0.0776

40 20 0.0788 0.0765 0.0698 0.0821 0.0798 0.0731 0.0903 0.0881 0.0811 0.0872 0.0841 0.0796

40 0.0604 0.0599 0.0578 0.0650 0.0646 0.0619 0.0666 0.0662 0.0639 0.0790 0.0785 0.0775

60 0.0573 0.0572 0.0556 0.0587 0.0587 0.0570 0.0618 0.0617 0.0602 0.0784 0.0783 0.0774

60 20 0.0675 0.0658 0.0615 0.0728 0.0712 0.0669 0.0750 0.0735 0.0692 0.0818 0.0803 0.0776

40 0.0577 0.0574 0.0555 0.0590 0.0587 0.0569 0.0618 0.0616 0.0599 0.0781 0.0777 0.0766

60 0.0539 0.0538 0.0529 0.0548 0.0547 0.0537 0.0570 0.0569 0.0558 0.0775 0.0774 0.0767

Note: Here the additivity of functional form is imposed in the estimation, which is correct for DGPs 2, 5, 2h and 5h,

but incorrect for DGPs 6 and 6h.
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5.3 Testing: implementation and evaluation

To conduct the specification test, we choose the same    and basis functions as in the estimation

stage. We use  () = 1 ( ∈ U) where U is chosen to trim out 25% tail observations along each tail

of each dimension of . For the bivariate regression function  in DGPs 2, 5, 6, 2h, 5h, and 6h, we

only consider the test by imposing additivity of  although  has nonadditive nonlinear component in

DGPs 6 and 6h. For each scenario, we consider 250 replications and adopt 200 bootstrap resamples in

each replication for both the size and power studies.

Tables 4-5 report the empirical rejection frequencies of our test at 1%, 5%, and 10% nominal levels

for the case of homoskedastic and heteroskedastic errors, respectively. We summarize some important

findings from these tables. First, when the null hypothesis of linearity holds in DGPs 1, 2, 1h, and 2h,

these tables suggest that the level of our test behaves reasonably well for almost all DGPs, sample sizes,

and all choices of  under investigation despite the fact that slight to moderate size distortions may occur

in the case of heteroskedastic errors terms. Second, the power of our test generally increases very fast as

either  or  increases, and it not very sensitive to the choice of  .

6 An application to the economic growth data

The relationship between the long-run economic growth and investment in physical capital has been

studied extensively and has played a crucial role in the evaluation of different growth theories. A positive

association between the investment as a share of gross domestic product (GDP) and per capita GDP

growth rate is supported by the early endogenous growth models such as the AK model. However, the

exogenous growth theories such as the Solow model assert that an increase in investment can only raise

the level of per capita GDP, but have no effect on the steady-state growth rate. Many empirical studies

show that there is little or no association between the investment and the long-run growth rate; see Jones

(1995) and Easterly and Levine (2001). Recently, Bond, Leblebicioglu, and Schiantarelli (2010) reassess

the relationship between these two by using a panel data of 71 countries covering 41 years (1960-2000).

By estimating a dynamic panel data model with both individual and time fixed effects they find strong

evidence of a positive relationship between the investment as a share of real GDP and the long-run growth

rate of GDP per worker.

Note that most empirical works are carried out under the linear framework and only include additive

fixed effects to control unobservable heterogeneity. In this section, we re-investigate the problem using

the following nonparametric dynamic panel data model with interactive fixed effects

 =  (−1 ∆) + 0 + 

where  ≡ log () − log (−1),  is the real GDP per worker for country  in year ,

 is the logarithm of the investment as a share of real GDP, ∆ ≡  − −1 and the multi-factor
error structure 0 +  is used to control for heterogeneity and capture the unobservable common

shocks. −1 is included in the unknown function  (·) to partially control serial correlation; see some
recent empirical studies on growth such as Chambers and Guo (2009) and Meierrieks and Gries (2012)

that consider dynamic panel data models. Su and Lu (2013) also consider nonparametric dynamic panel

growth regressions but with individual fixed effects only.

The data set is from the Penn World Tables (PTW7.1); see Heston, Summers, and Aten (2009).

We use the almost same set of countries as Bond, Leblebicioglu, and Schiantarelli (2010) but exclude
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Table 4: Rejection frequency for DGPs 1-6

 = 1  = 15  = 2
DGP   1% 5% 10% 1% 5% 10% 1% 5% 10%
1 20 20 0.016 0.064 0.128 0.012 0.068 0.124 0.008 0.040 0.100

40 0.016 0.044 0.108 0.016 0.052 0.108 0.012 0.048 0.116
60 0.004 0.052 0.100 0.016 0.040 0.112 0.012 0.056 0.100

40 20 0.010 0.060 0.096 0.012 0.052 0.088 0.016 0.060 0.104
40 0.012 0.052 0.096 0.012 0.036 0.100 0.012 0.044 0.104
60 0.008 0.056 0.096 0.016 0.044 0.088 0.012 0.048 0.092

60 20 0.010 0.072 0.116 0.010 0.050 0.100 0.010 0.040 0.096
40 0.008 0.036 0.072 0.012 0.036 0.080 0.012 0.040 0.096
60 0.016 0.048 0.108 0.012 0.040 0.104 0.016 0.056 0.112

2 20 20 0.016 0.048 0.080 0.008 0.068 0.100 0.008 0.060 0.096
40 0.016 0.056 0.100 0.008 0.056 0.088 0.012 0.072 0.104
60 0.020 0.056 0.088 0.012 0.052 0.096 0.008 0.044 0.096

40 20 0.032 0.088 0.132 0.032 0.060 0.136 0.012 0.076 0.120
40 0.012 0.084 0.116 0.004 0.064 0.100 0.012 0.048 0.112
60 0.024 0.064 0.096 0.024 0.068 0.116 0.008 0.056 0.104

60 20 0.008 0.048 0.124 0.012 0.048 0.108 0.008 0.052 0.112
40 0.004 0.052 0.104 0.000 0.044 0.104 0.016 0.052 0.092
60 0.020 0.060 0.100 0.016 0.052 0.120 0.020 0.068 0.100

3 20 20 0.248 0.460 0.616 0.184 0.432 0.568 0.176 0.372 0.532
40 0.740 0.888 0.932 0.676 0.848 0.904 0.572 0.764 0.852
60 0.904 0.964 0.984 0.832 0.912 0.960 0.808 0.904 0.944

40 20 0.656 0.820 0.908 0.608 0.784 0.888 0.536 0.752 0.840
40 0.984 1.000 1.000 0.976 0.996 1.000 0.972 0.996 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000

60 20 0.848 0.948 0.984 0.748 0.876 0.940 0.716 0.864 0.916
40 1.000 1.000 1.000 0.996 1.000 1.000 0.996 1.000 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 20 20 0.248 0.488 0.620 0.224 0.436 0.592 0.180 0.408 0.548
40 0.740 0.888 0.944 0.688 0.864 0.912 0.608 0.796 0.872
60 0.908 0.976 0.988 0.848 0.924 0.964 0.824 0.912 0.956

40 20 0.684 0.864 0.928 0.664 0.848 0.912 0.596 0.776 0.872
40 0.992 1.000 1.000 0.984 1.000 1.000 0.976 1.000 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 20 0.920 0.972 0.988 0.852 0.952 0.964 0.848 0.944 0.956
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 20 20 0.440 0.632 0.716 0.396 0.564 0.668 0.352 0.484 0.644
40 0.844 0.924 0.968 0.796 0.908 0.940 0.696 0.872 0.924
60 0.968 0.988 0.992 0.948 0.980 0.988 0.932 0.980 0.992

40 20 0.860 0.928 0.948 0.836 0.900 0.936 0.736 0.860 0.904
40 0.992 1.000 1.000 0.992 0.996 0.996 0.988 0.992 0.996
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 20 0.972 0.992 0.992 0.936 0.984 0.992 0.892 0.952 0.980
40 1.000 1.000 1.000 0.996 1.000 1.000 0.988 0.992 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 20 20 0.246 0.400 0.516 0.208 0.388 0.472 0.196 0.312 0.448
40 0.572 0.740 0.852 0.492 0.692 0.776 0.368 0.576 0.708
60 0.828 0.928 0.972 0.744 0.880 0.920 0.728 0.872 0.900

40 20 0.580 0.752 0.848 0.488 0.712 0.804 0.440 0.628 0.712
40 0.944 0.988 0.992 0.912 0.952 0.976 0.884 0.936 0.972
60 0.996 1.000 1.000 0.996 1.000 1.000 0.988 0.996 1.000

60 20 0.780 0.900 0.952 0.716 0.864 0.912 0.664 0.836 0.884
40 0.988 1.000 1.000 0.984 1.000 1.000 0.980 0.996 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note:  =b( )175c where  = 1 15 and 2
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Table 5: Rejection frequency for DGPs 1h-6h

 = 1  = 15  = 2
DGP   1% 5% 10% 1% 5% 10% 1% 5% 10%
1h 20 20 0.024 0.060 0.112 0.024 0.080 0.136 0.028 0.072 0.124

40 0.020 0.076 0.136 0.020 0.084 0.128 0.024 0.088 0.144
60 0.032 0.076 0.124 0.028 0.056 0.108 0.024 0.056 0.112

40 20 0.032 0.064 0.144 0.036 0.072 0.136 0.028 0.068 0.120
40 0.040 0.080 0.128 0.036 0.076 0.136 0.040 0.080 0.132
60 0.028 0.064 0.128 0.024 0.064 0.128 0.020 0.064 0.108

60 20 0.024 0.072 0.124 0.032 0.068 0.116 0.032 0.064 0.116
40 0.016 0.056 0.096 0.016 0.052 0.100 0.020 0.056 0.096
60 0.012 0.060 0.100 0.012 0.060 0.088 0.008 0.056 0.092

2h 20 20 0.020 0.052 0.120 0.016 0.040 0.120 0.028 0.076 0.128
40 0.024 0.060 0.136 0.016 0.056 0.136 0.032 0.076 0.120
60 0.028 0.068 0.124 0.016 0.064 0.124 0.020 0.068 0.132

40 20 0.020 0.076 0.124 0.016 0.076 0.124 0.004 0.072 0.128
40 0.012 0.064 0.108 0.016 0.056 0.100 0.012 0.044 0.104
60 0.008 0.048 0.096 0.008 0.052 0.096 0.012 0.056 0.100

60 20 0.016 0.056 0.104 0.016 0.060 0.104 0.012 0.052 0.104
40 0.008 0.044 0.096 0.012 0.036 0.092 0.016 0.056 0.104
60 0.016 0.064 0.132 0.012 0.056 0.120 0.016 0.064 0.124

3h 20 20 0.140 0.296 0.448 0.152 0.292 0.436 0.140 0.288 0.396
40 0.372 0.588 0.680 0.352 0.560 0.652 0.336 0.472 0.612
60 0.532 0.684 0.772 0.504 0.652 0.796 0.484 0.664 0.780

40 20 0.348 0.508 0.672 0.348 0.500 0.680 0.308 0.488 0.620
40 0.616 0.816 0.872 0.620 0.828 0.912 0.628 0.812 0.896
60 0.808 0.936 0.956 0.800 0.948 0.960 0.808 0.948 0.964

60 20 0.400 0.556 0.656 0.368 0.568 0.684 0.368 0.556 0.692
40 0.760 0.904 0.932 0.760 0.912 0.928 0.748 0.908 0.964
60 0.996 1.000 1.000 0.992 0.996 1.000 0.996 1.000 1.000

4h 20 20 0.148 0.300 0.424 0.168 0.324 0.436 0.144 0.276 0.400
40 0.380 0.600 0.672 0.404 0.612 0.684 0.360 0.536 0.660
60 0.524 0.676 0.768 0.548 0.724 0.824 0.536 0.740 0.832

40 20 0.364 0.536 0.676 0.392 0.572 0.724 0.348 0.520 0.672
40 0.604 0.820 0.856 0.712 0.852 0.928 0.708 0.852 0.932
60 0.876 0.972 0.988 0.868 0.972 0.984 0.868 0.968 0.988

60 20 0.460 0.676 0.780 0.548 0.736 0.808 0.528 0.696 0.800
40 0.824 0.948 0.980 0.820 0.948 0.976 0.808 0.944 0.976
60 0.988 0.996 1.000 0.984 0.992 1.000 0.980 0.988 0.996

5h 20 20 0.344 0.516 0.616 0.316 0.504 0.616 0.284 0.484 0.592
40 0.744 0.848 0.916 0.660 0.820 0.876 0.604 0.796 0.840
60 0.920 0.964 0.976 0.892 0.940 0.972 0.864 0.940 0.960

40 20 0.756 0.880 0.896 0.716 0.848 0.900 0.620 0.784 0.832
40 0.976 0.996 1.000 0.956 0.988 0.996 0.936 0.984 0.992
60 0.996 1.000 1.000 0.996 0.996 1.000 0.996 0.996 1.000

60 20 0.892 0.944 0.972 0.840 0.924 0.944 0.804 0.896 0.944
40 0.996 1.000 1.000 0.992 0.996 1.000 0.992 0.996 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6h 20 20 0.228 0.384 0.464 0.204 0.336 0.456 0.188 0.296 0.408
40 0.400 0.612 0.708 0.356 0.552 0.712 0.332 0.476 0.588
60 0.692 0.824 0.896 0.584 0.772 0.840 0.596 0.764 0.840

40 20 0.416 0.632 0.756 0.416 0.584 0.688 0.412 0.556 0.664
40 0.848 0.932 0.972 0.800 0.896 0.948 0.772 0.892 0.940
60 0.964 0.984 0.996 0.952 0.976 0.992 0.944 0.980 0.992

60 20 0.580 0.736 0.828 0.556 0.696 0.792 0.520 0.664 0.764
40 0.964 0.984 0.992 0.948 0.976 0.988 0.924 0.976 0.988
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note:  =b( )175c where  = 1 15 and 2

24



Guyana and include other four countries according to the data availability. The number of countries is

74 ( = 74) and the time period is 1960-2010 ( = 51).

We use the cubic B-spline to approximate the unknown function . Note that  has three variables.

Without imposing any structure on , we need to use the tensor product of the sieve bases for each

variable to approximate the unknown function. Then the total number of sieve approximation terms is

 = (+4)3. Even for a small number of knots  = 1 2 or 3 we have  = 125, 216 or 343, respectively.

This is the notorious “curse of dimensionality” in nonparametric regression. For this reason, we only

allow bivariate interactions and a single trivariate interaction term in our sieve estimation. Specifically,

our sieve approximate terms are comprised of +4 (−1) ⊗ +4 ()  
+4
 (−1) ⊗ +3∆ (∆) 

+3∆ (∆) ⊗ +3 (), and −1∆ where we have avoided perfect multicollinearity. In this case,
the total number of sieve approximating terms is ( +4)2 + ( +4)( +3)+ ( +3)2 +1. To choose the

number of factors, we follow Bai and Ng (2002) and adopt the following information criteria:

1 () = 
³
 ̂

´
+̂2

µ
 + 



¶
ln

µ


 + 

¶
,

2 () = 
³
 ̂

´
+̂2

µ
 + 



¶
ln [min ( )] ,

1 () = ln
h

³
 ̂

´i
+

µ
 + 



¶
ln

µ


 + 

¶
,

2 () = ln
h

³
 ̂

´i
+

µ
 + 



¶
ln [min ( )] 

where  ( ̂) = ( )−1
P

=1

P
=1

¡
̂
¢2
, ̂ = −̂ ()−̂

0
 ̂ , ̂

 (·), ̂ and ̂


 are estimates

when  factors are used, and ̂2 is a consistent estimate for ( )−1
P

=1

P
=1(

2
) and is replaced by

 (max ̂
max) in applications. Here max denotes the maximum number of factors under consideration

and has to be specified in advance. In simulations we find that 1 and 2 work fairly well in finite

samples for different choices of knots in cubic B splines, but 1 and 2 tend to choose a larger number

of factors, which may be close to the largest upper bound sometimes. When this occurs, we use the number

of factors recommended by 1 and 2. We follow Bai and Ng (2006b) and set max = 8 throughout.

For both estimation and testing, we use  =
¥
 175

¦
for bias correction as in the simulations and

consider a sequence of knots in the cubic B-spline:  = 3 4  8

To reduce the risk of structural change, we partition the full sample (1960-2010) into two subsamples

(1960-1985 and 1986-2010). For both the full sample and two subsamples, 1 and 2 recommend 1 v 2
factors both for linear estimation and sieve estimations with different choices of  . So we set  = 2 for

all samples. We first consider the problem of estimation and report the estimation results for the two

subsamples in Figures 1 and 2, respectively. Figure 1 plots the estimation of (· · ·) against each of its
three arguments when the other two are fixed at their sample medians. For example, Figures 1(a)-(c)

report the estimates of (· ̄ ∆̄) together with their bootstrap-based 90% pointwise confidence bands for
 = 3 5 and 7, respectively, where ̄ and ∆̄ are the respective sample medians of ’s and ∆’s in the

first subsample (1960-1985). Figure 2 repeats the above exercises for the second subsample (1986-2010).

We summarize some important findings from these figures. First, as expected, the fitted curves tend to

be smooth for a small value of  and rough for a large value of  . By looking at those plots alone,

whether one can conclude a regressor (e.g., lagged economic growth rate) has significant nonlinear effect

on the economic growth rate simply depends on the choice of  This calls upon a formal test for the

linear functional form. Second, Figures 1(a)-(c) and 2(a)-(c) suggest that lagged economic growth rate
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Table 6: Bootstrap p-values for testing the linear economic growth model

Subsamples\ 3 4 5 6 7 8

1960− 1985
(=26 =74)

00000 00001 00001 00002 00003 00000

1986− 2010
(=25 =74)

00030 00028 00022 00019 00021 00019

1960− 2010
(=51 =74)

00498 00427 00390 00338 00299 00261

is globally positively related to the current economic growth rate when investment share and its growth

are fixed at their sample medians. Third, Figures 1(d)-(f) and 2(d)-(f) suggest that investment share

generally has positive effect on the economic growth rate. Fourth, Figures 1(g)-(i) and 2(g)-(i) indicate

that the effect of the change of investment on the economic growth rate is nonlinear and non-monotone,

and the effect tends to vary across subsamples. This suggests that some sort of structural change may

occur during the full sample period.

Table 6 reports the bootstrap -values for the specification test of linearity for both subsamples and

the full sample based on 10000 bootstrap resamples. The -values are smaller than 0.05 across all  ’s for

both subsamples and the full sample as well. This suggests a strong degree of nonlinearity in the data.

7 Conclusion

In this paper we consider the estimation and testing for large dimensional nonparametric dynamic panel

data models with interactive fixed effects. A sieve-based QMLE is proposed to estimate the nonparametric

function and common components jointly. Following Moon and Weidner (2010, 2012), we derive the

convergence rate for the sieve estimator and establish its asymptotic distribution. The sources of different

asymptotic biases are discussed in detail and a consistent bias-corrected estimator is provided. We also

propose a consistent specification test for the commonly used linear dynamic panel data models based

on the 2 distance between the linear and sieve estimators. We establish the asymptotic distributions of

the test statistic under both the null hypothesis and a sequence of Pitman local alternatives. To improve

the finite sample performance of the test, we also propose a bootstrap procedure to obtain the bootstrap

-values and justify its asymptotic validity. Through Monte Carlo simulations, we investigate the finite

sample performance of our estimator and test statistic. We apply the model to an economic growth data

set and demonstrate that lagged economic growth rate, investment share and its change have significant

nonlinear effect on the economic growth rate.

REFERENCES

Ahn, S.C., Y.H. Lee, & P. Schmidt (2001) GMM estimation of linear panel data models with time-varying
individuals effects. Journal of Econometrics 101, 219—255.

Ahn, S.C., Y.H. Lee, & P. Schmidt (2013) Panel data models with multiple time-varying individual
effects. Journal of Econometrics 174, 1—14.

Ahn, S.C. & H.R. Moon (2001) Large- and large- properties of panel data estimators and the
Hausman test. Mimeo, Arizona State University.

Arellano, M. (2003) Panel Data Econometrics. Oxford: Oxford University Press.

Baglan, D. (2009) Efficient estimation of a partially linear dynamic panel data model with fixed effects:
application to unemployment dynamics in the U.S.. Working paper, Howard University.

26



−0.05 0 0.05

0

0.01

0.02

0.03

0.04

G
D

P
 g

ro
w

th
 r

at
e

Lagged GDP growth rate

(a) J=3

2.5 3 3.5

−0.02

−0.01

0

0.01

0.02

0.03

0.04

G
D

P
 g

ro
w

th
 r

at
e

Investment share

(d) J=3

−0.2 0 0.2

−0.04

−0.02

0

0.02

0.04

Change of investment share

G
D

P
 g

ro
w

th
 r

at
e

(g) J=3

−0.05 0 0.05

0

0.01

0.02

0.03

0.04

G
D

P
 g

ro
w

th
 r

at
e

Lagged GDP growth rate

(b) J=5

2.5 3 3.5

−0.02

−0.01

0

0.01

0.02

0.03

0.04

G
D

P
 g

ro
w

th
 r

at
e

Investment share

(e) J=5

−0.2 0 0.2

−0.04

−0.02

0

0.02

0.04

Change of investment share

G
D

P
 g

ro
w

th
 r

at
e

(h) J=5

−0.05 0 0.05

0

0.01

0.02

0.03

0.04

G
D

P
 g

ro
w

th
 r

at
e

Lagged GDP growth rate

(c) J=7

 

 

2.5 3 3.5

−0.02

−0.01

0

0.01

0.02

0.03

0.04

G
D

P
 g

ro
w

th
 r

at
e

Investment share

(f) J=7

−0.2 0 0.2

−0.04

−0.02

0

0.02

0.04

Change of investment share

G
D

P
 g

ro
w

th
 r

at
e

(i) J=7

Figure 1: Relationship between GDP growth rate and lagged GDP growth rate, investment share, and

change of investment share(1960-1985) (solid line: estimated function, dotted lines: 90% bootstrap con-

fidence band)
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Figure 2: Relationship between GDP growth rate and lagged GDP growth rate, investment share, and

change of investment share(1986-2010) (solid line: estimated function, dotted lines: 90% bootstrap con-

fidence band)
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APPENDIX
Throughout the appendix, let  signify a generic constant whose exact value may vary from case to

case. Let D (·) ≡  (·|D) and VarD (·) ≡Var(·|D). Let (D,) (·) denote expectation with respect to
variables indexed by set  conditional on D. Let  ≡ min
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Below we prove the main results in Sections 3 and 4. The proofs of all technical lemmas and Theorem
4.4 are given in the online Supplementary Material which is available on the first author’s website.

A Proofs of the main results in Section 3

A.1 Convergence rate of ̂ ()

Lemma A.1 Suppose that Assumptions 1-4 hold. Then ||̂ − 0|| =  (
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Proof of Theorem 3.1. Let  ≡ (̂ − 0)||̂ − 0|| and P() ≡
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Clearly, 1 () and 2 () are linear and quadratic in ,  = 1  respectively, and  ()
includes the third and higher order asymptotically negligible terms in the likelihood expansion. Noting

that ()
¡
0 0P1  · · · P

¢
is linear in the last  arguments, we have

1 () = −2( − 0)0((1) + 
(2)
 ) and 2 () = ( − 0)0 ( − 0)
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 are defined in Theorem 3.1. Then

 () = 

¡
0
¢− 2( − 0)0((1) + 

(2)
 ) + ( − 0)0 ( − 0)

+

n°° − 0
°°2 0 + °° − 0

°°3 + °° − 0
°° 30o  (A.2)

Noting that rank(PΦ
0u0u

00+P0u
00uΦ

0+P0u
0Φu00) ≤ 3 and using the trace

inequality tr() ≤rank() kk for any real square matrix , we have 
(2)
 =

1

tr(PΦ

0u0u
00

+P0u
00uΦ

0+P0u
0Φu00)≤ 3


kPk kΦk kuk2 k0k

°°0

°°= kPk√




¡
−2 + −2

¢


It follows that

°°°(2)

°°° = ( X
=1

kPk2


)12
 (

−2 + −2 ) = 

h√
(−2 + −2 )

i
 (A.3)

For 
(1)
 , we have ||−1

(1)
 || = ||−1 ( )−1

P
=1 

0
|| + ||−1 ( )−1

P
=1 

0
|| By Assump-

tion 3(), the first term is  (
−1


12 12). Let −→  ≡ (01 · · ·  0 )0,
−→
 ≡ (01 · · ·   0 )0 and

−→
 ≡

( )−1
−→
 0−1

−→
 . Noting that

−→
 is a projection matrix with 1(

−→
 ) = 1 and by Assumptions 2() and

3()-(),
°°°−1

1


P
=1 

0


°°°2 = 1
22

tr(−→ 

−→
 0−1

−1


−→
−→ ) ≤ [min ( )]

−1 1
22

tr(−→ 

−→
−→ 0)

≤  (1) k−→ k2  ( ) = 

¡
−2

¢
 It follows that°°°−1

(1)


°°° = 

³
−1

p
 +−

´
 (A.4)

Let
 ≡−1

(1)
 +−1

(2)
 and  ≡ ̂ − 0 −   (A.5)

From (A.3) and (A.4) we have

kk ≤
°°°−1

(1)


°°°+ °°°−1
(2)


°°° = 

³√
−2 +−

´
 (A.6)

Since  (̂) ≤ 

¡
0 + 

¢
, we can apply (A.2) to the objects on both sides of the last inequality

to obtain

k k2
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−1 ³
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³
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´
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−1 h


¡
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i
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³
k k2 0 + k k 30 + k k3

´
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³
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´
(A.7)

We now argue that ||̂ − 0|| =  (|| ||) by contradiction. Suppose || || =  (||̂ − 0||). Then
by (A.5) and (A.7), ||̂ − 0||2 =  (k k2) ≤  (||̂ − 0||30) implying that ||̂ − 0|| ≤ 

¡
30
¢


Noting that 30 = 

¡
−3 +−3

¢
=  (|| ||)  this further implies that ||̂−0|| ≤  (|| ||) a

contradiction. It follows that°°°̂ − 0
°°° =  (|| ||) = 

³√
−2 +−

´
(A.8)
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and

 = 

³
k k 120

´
= 

h³√
−2 +−

´³

−12
 +−(2)

´i
(A.9)

because 20|| || =  (1) and || ||0 =  (1) by Assumption 4.
Now we derive the convergence rate of ̂ (). By the  inequality, (A.8) and Assumption 3()Z
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0
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R
X
³
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 ()  ∞.

Similarly, using ̂ () −  () = 0(̂ − 0) + [ () − 0
0] the  inequality and Assumptions

3()-(),
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A.2 Asymptotic normality of ̂ ()

Proof of Theorem 3.2. Recall that  () =  ()0 ̃−1Ω̃̃−1 () and  = ( )12
−12
 ().

Write

 [̂ ()−  ()]

= 
 ()

0 ³
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´
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£
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0
0
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= 
 ()0−1

(1)
 + 
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 + 
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 ()−  ()0 0

¤
≡ Π1 +Π2 +Π3 +Π4 , say.

It suffices to show that: () Π1 + 1 ()
→ (0 1) () Π2 = −−1 2 ()− 3 ()+  (1) 

() Π3 =  (1)  and () Π4 =  (1)  We prove () and () in Propositions A.6 and A.7 below,
respectively. For (), by Cauchy-Schwarz inequality, (A.9) and Assumptions 7 and 8, we have

Π3 ≤
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as () = ()0̃−1Ω̃̃−1() ≥ −21 (̃ )(Ω̃)||()||2 For (), by Assumptions 3()-(), and
8, we have for any  ∈ X , Π4 = ( )12
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×
√
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√
−) =  (1) as inf∈X ||()|| ≥   0 ¥
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Next, we state some lemmas are used in the proofs of Propositions A.6-A.7 below.

Lemma A.2 Let  ≡ 
−12
 () ̃−1 () and  ≡ 0 ̃ Suppose that the assumptions in Theo-

rem 3.2 hold. Then
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0
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Proposition A.6 Let the conditions in Theorem 3.2 hold. Then Π1 +  1 ()
→ (0 1)

Proof. Recall  = 
−12
 () ̃−1 ()  One can readily show that
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P
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0
  − 

−12
 ()  ()

0
(̃−1 −−1 )
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Π12 =  (1) 
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Now, we consider (). Using  = +, we decomposeΠ11 as follows: Π11 =
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P
=1

P
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We are left to show Π111 +  1 ()
→ (0 1). We further decompose Π111 as follows
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P
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We complete the proof by showing that: () Π111
→  (0 1)  () Π111 =  (1), and ()

Π111 =  (1). () follows from Lemma A.4. We are left to show () and () 
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and
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Similarly, we can show that  (3) = 
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Then (1) follows by conditional Markov inequality. Now, note that
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Proof of ()  Noting that D() = 0 for  ≤ , we have
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where the term 
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is obtained by similar arguments as used in the proof of Lemma A.4.

So Π111 =  (1) 

Proposition A.7 Let the conditions in Theorem 3.2 hold. Then Π2 = −−1 2 () − 3 () +

 (1) 

Proof. Let  ≡ 
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 () and  be its th element. Let Π̃2 ≡
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by (A.3), Lemma A.3, and Assumption 5. Let  =  
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We complete the proof by showing that () Π21 = −−1 2 () +  (1)  () Π22 = − 3 ()
+ (1)  and () Π23 =  (1) 
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First, we consider (). Observing that Π21 =
k k√


©
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£
u0u

00P()Φ
¤− tr £uu00P()Φ

¤ª ≡
Π211+Π212 we prove () by showing that: () Π211 =  (1) and () Π212 = −−1 2 ()+
 (1)  We first consider (). Using 0 =  −P0 and u = e+ e we have

|Π211| ≤ ( )−12
°° °° ¯̄tr £e0e00P()Φ

¤¯̄
+ ( )−12

°° °° ¯̄tr £e0e00P()Φ
¤¯̄

+( )
−12 °° °° ¯̄tr £e0e00P()Φ

¤¯̄
+ ( )

−12 °° °° ¯̄tr £e0e00P()Φ
¤¯̄

≡ Π211 +Π211 +Π211 +Π211, say.

By Lemmas E.3() and () in the supplemental appendix and Lemmas A.5()-(),

|Π211| = ( )−12
°° °° ¯̄tr £e0e0P()Φ¤¯̄+ ( )−12

°° °° ¯̄tr £0e00P()Φe¤¯̄
≤  ( )

−12 h¯̄̄
tr
h¡
000

¢−1
00e0P()Φe0

i¯̄̄
+  ( )

−12 ¯̄
tr
£
0e

00P()Φe
¤¯̄i

≤  ( )−12
°°°¡000¢−2°°°°°°¡000¢−1°°°°°0°°°°00e0°°°°00e0P()°°

+ ( )−12 kΦk kek
°°P()°°°°0e00°°

=  ( )
−12



¡
−2

¢


¡
−1

¢


³
 12

´


³√


´


³√


´
+ ( )

−12


³
( )

−12´


³√
−1

´


³√


´
 (1)

= 

³
12−12−1 + −1

´
= 

¡
−1

¢
=  (1) 
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It follows that Π211 =  (1).
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The first term is 
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which is 
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Π23 = − ( )
−12 °° °° tr £u00P()0u

0Φ0
¤

= ( )
−12 °° °°©tr £0u00P()0u

0Φ0
¤− tr £0u0P()0u

0Φ0
¤ª

≡ Π231 +Π232 say.
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This completes the proof of the proposition.

A.3 Bias-corrected estimator

Lemma A.8 Suppose that the assumptions in Theorem 3.3 hold. Then
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£
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Lemma A.9 Suppose that the assumptions in Theorem 3.3 hold. Then
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√
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√
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Proof of Theorem 3.3. We first make the following decomposition:
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Noting that1
→  (0 1) by Theorem 3.2, it suffices to show that ()2 =  (1); ()3 =  (1);
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Note that
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Consequently, |211| ≤ 
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B Proofs of main results for specification test

Let  ≡ 1


P
=1  +

1


P
=1  − 1



P
=1

P
=1  and ̃ ≡ − D (). Let

Ω̃̃̃ ≡ 1


P
=1

P
=1 ̃̃

0


2
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P
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P
=1 ̃̃

0


2
, Ω̃̃̃ ≡ D[Ω̃ ] Ω̃̃̃ ≡

D[Ω̃̃̃ ] H ≡ ̃−1
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(B.1)

The following lemmas are needed in the proofs of the main results in Section 4.

Lemma B.1 Suppose that the assumptions in Theorem 4.1 hold. Then

() k −k =  (( )12);

() k −k =  (
12( )12);
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12( )12).

Lemma B.2 Suppose that the assumptions in Theorem 4.1 hold. Then ̂−0 = ̃−1 1


P
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P
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Lemma B.3 Suppose that the assumptions in Theorem 4.1 hold. Then under H1 ( ) we have ̂−0 =
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0 = ∆ under H1( ).

We can decompose Γ as follows Γ =
1


P
=1

P
=1[

0
̂ −  0

̂]
2 =

1


P
=1

P
=1[

0
(̂

−0)−+∆ ()− 0
(̂−0)]2 = Γ1+Γ2+Γ3+Γ4−2Γ5 −2Γ6+2Γ7+
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We complete the proof by showing that under H1 ( ), () (Γ1 − B ) V
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→  (0 1) ; ()
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() in Proposition B.4 below.
For (), by Lemma B.3
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For (), it is clear that −2Γ4 = 

¡
−2

−2¢ =  (1) and 
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Γ10 = 

¡
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−¢ =
 (1) by Assumption 4 and (B.2). We complete the proof of () by showing that (1) 
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Recall that  = ̃0H̃. Apparently, D[Γ̃52] = 0 and
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So Γ̃52 =  (1) by Chebyshev inequality. For Γ̃52, we have Γ̃52 =
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Similarly, −2Γ8 = 

¡
−1

−¢ =  (1), proving (4) 
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Proposition B.4 Suppose that the assumptions in Theorem 4.1 hold. Then (Γ1 − B ) 
√
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̃1 + ̃2. We complete the proof by showing that: () ̃1
→  (0 1) and () ̃2 =  (1) 

Proof of ()Note that ̃1 ≡ 1

V12


P
1≤6=≤ 0 =

P
1≤≤  where ≡ ( )

≡ 2 ( )
−1 V−12

P
1≤≤  and  ≡ (̃ 0 )0. Noting that ̃1 is a second order degener-

ate  -statistic that is “clean” (D[ ( )] = D[ ( )] = 0 a.s. for any nonrandom ), we

apply Proposition 3.2 in de Jong (1987) to prove the CLT for ̃1 by showing that (1) VarD(̃1) =
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Supplementary Material On
“Nonparametric Dynamic Panel Data Models with Interactive Fixed Effects: Sieve

Estimation and Specification Testing”

Liangjun Su, Yonghui Zhang

School of Economics, Singapore Management University

THIS APPENDIX PROVIDES PROOFS FOR SOME TECHNICAL LEMMAS AND THEOREM 4.4 IN THE

ABOVE PAPER.

C Expansion of the quasi-log-likelihood function

We extend the expansion of the (negative) quasi-log-likelihood function of Moon and Weidner (2010) to

our nonparametric framework. This expansion is the starting point of our asymptotic analysis. Given

the sieve basis { ()   = 1 }, we can linearize model (1.1) as (2.1). Compared with Moon and
Weidner’s (2010) linear model, the number of regressors increases as sample size ( ) tends to infinity

in (2.1) and the new error term includes an extra component, i.e., the sieve approximation error. We can

modify the proof in Moon and Weidner (2010) and still resort to the perturbation theory of operator in

Kato (1980) to establish the first order expansion of approximating quasi-log-likelihood function.
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Proof. () The proof follows the proofs of Theorems 2.1 and 3.1 in Moon and Weidner (2010) closely,

and is composed of two steps.

Step 1. We expand the quasi-log-likelihood function into the summation of an infinite sequence.
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where we can view the last  + 1 terms as perturbations to the leading term 000. Now we rewrite the
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p. 78 in Kato (1980) for more details. Using the expressions in (C.5) for T (1) and T (2) we have

1



X
+1

 [T (1)] =
1



∞X
=1

X
=1

(−1)+1
X

1+···+=
1+···++1=−1

2≥≥1≥0

tr
³
(1)T (1)(2) · · ·()T ()(+1)

´

=
1



∞X
=2

X
1=0

X
2=0

· · ·
X

=0

12 · · · ()
¡
0 0P1  · · · P

¢
(C.9)

by noting that the term with  = 1 is equal to zero, and where

()
¡
0 0P1  · · · P

¢ ≡ 1

!

h
̃()

¡
0 0P1  · · · P

¢
+ all permutations of (1 · · ·  )

i


̃()
¡
0 0P1  · · ·P

¢ ≡ X
=1

(−1)+1
X

1+···+=
1+···++1=−1

2≥≥1≥0

tr
³
(1)T (1)1

(2) · · ·()T ()
(+1)

´


(C.10)

T (1) ≡ 000P0 +P
000 and T (2)12

≡ P1P
0
2
.

To ensure that T (κ) can be expanded at κ = 1 in (C.9), we need the following conditions:
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Step 2. Finite order truncation of the quasi-log-likelihood function. To conduct the asymptotic analy-
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1+···+= 1+···++1=−1

2≥≥1 ≥0

¯̄̄
tr
³
(1)T (1)(2) · · ·()T ()(+1)

´¯̄̄

≤ 2min
¡
0 0

¢ ³
2
√
max

¡
0 0

¢´− k k
X

=d2e

Ã
322max

¡
0 0

¢
2min

¡
0 0

¢ !

≤ 2min
¡
0 0

¢
2

°°°° √


°°°°
Ã
16max

¡
0 0

¢
2min

¡
0 0

¢ !

for  ≥ 3. Recalling that  ≡
°°° 1√




°°° 16max(00)2min(
00)

 we have¯̄̄̄
¯̄0 ()−

1



X
=2

X
1=0

· · ·
X

=0

1 · · · ()
¡
0 0P1  · · · P

¢¯̄̄̄¯̄
=

1



∞X
=+1

X
1=0

· · ·
X

=0

1 · · · ()
¡
0 0P1  · · · P

¢
≤

∞X
=+1





2
min

¡
0 0

¢
2

≤  (+ 1)+1 2min
¡
0 0

¢
2 (1−  )

2 

The infinite summation is convergent given   1, which is implied by 0
¡
0 0

¢
 1. Letting  = 3,

we complete the proof of ().

()-() Following the proof of () and that of Theorems 2.1 and 3.1 in Moon and Weidner (2010),

we can prove ()-() analogously.

D Proofs of the technical lemmas

D.1 Convergence rate

Lemma D.1 Suppose that Assumptions 1-4 hold. Then for any  ∈ R× satisfying rank() =  we

have

() sup
¯̄
1

tr
¡
P()e

¢¯̄
= 

¡
−1

¢
for any  ∈ R with kk = 1;

() sup
¯̄
1

tr
¡
P()e

¢¯̄
= 

¡
−

¢
for any  ∈ R with kk = 1;

() sup
¯̄
1

tr
¡
000u

0¢¯̄ = 

¡
−1 +−

¢
;

() sup
¯̄
1

tr (uu

0)
¯̄
= 

¡
−2 +−2

¢


Proof. () Using  =  −   we have

1



¯̄
tr
£
P()e

0¤¯̄ ≤ ¯̄̄̄
1


tr
£
P()e

0¤¯̄̄̄+ ¯̄̄̄ 1


tr
£
P()e

0¤¯̄̄̄
=

¯̄̄̄
¯0 1

X
=1

X
=1



¯̄̄̄
¯+ 1


rank(P()e

0) kk
°°P()°° kek

≤ kk
°°°°° 1



X
=1

X
=1



°°°°°+

°°P()°°√


kek√


= 

³
12 ( )

12
´
+

¡
−1

¢
= 

¡
−1

¢
4



by Assumptions 1()-(), 2(), and 5, Lemmas E.3()  (), and (), and the fact rank( ) = .

() Using  =  −  , we have¯̄̄̄
1


tr
£
P()e

0


¤¯̄̄̄ ≤ ¯̄̄̄
1


tr
£
P()e

0


¤¯̄̄̄
+

¯̄̄̄
1


tr
£
P()e

0


¤¯̄̄̄

≤ 1



(
0

X
=1

X
=1


0


)12(
X
=1

X
=1

2

)12
+





°°P()°° kk°°e0°°
≤ 1 ( )

12 kk
°°e0°°√


+ 

°°P()°°√


°°e0°°√


= 

³
−

´
by Assumption 2() Lemma E.3(), and the fact that 1



°°e0°°2 = 1


P
=1

P
=1 

2
 ≤

°° ()−  ()0 0
°°2
∞̄

1


P
=1

P
=1

³
1 + kk2

´̄
= 

¡
−2

¢
by Assumptions 3() and 4()

() By Lemmas E.3 () and (), 1


¯̄
tr
¡
000u

0¢¯̄ ≤rank¡000u
0¢ k0k√



k0k√


kek+kek√


=



¡
−1 +−

¢


() By Lemmas E.3 () and (), 1


|tr (uu0)| ≤rank(uu0) kuk
2


kk = 

¡
−2 +−2

¢
=  (1) 

Proof of Lemma A.1. Let P() ≡
P

=1 P and  ≡
¡
0 − 

¢

°°0 − 

°°. We first give a lower
bound for  ( ). Since Y −

P
=1 P = 000 +

P
=1

¡
0 − 

¢
P + u, we have

 ( ) =
1


tr

⎧⎨⎩
"
000 +

X
=1

¡
0 − 

¢
P + u

#


"
000 +

X
=1

¡
0 − 

¢
P + u

#0⎫⎬⎭
= 

¡
0 0

¢
+ ̃ ( )

+
2


tr
©£
000 +

°°0 − 
°°P()¤u

0ª+ 1


tr{u(0 −  )u

0}

≥ 

¡
0 0

¢
+ ̃ ( )−

¡°°0 − 
°°¢

³
− + −1

´
−

³
− + −1

´
where ̃ ( ) ≡ 1


tr
h¡
000 +

°°0 − 
°°P()¢

¡
000 +

°°0 − 
°°P()¢0i. It is obvious that

̃ ( ) ≥ min


̃ ( ) =
°°0 − 

°°2 X
=2+1



³

()


´

≥
°°0 − 

°°2 min
kk=1∈R

X
=2+1



h

()


i
= 

°°0 − 
°°2

by Assumption 2(). It follows that  ( ) ≥ 

¡
0 0

¢
+ 

°°0 − 
°°2− 

¡°°0 − 
°°¢−  (1) 

Since  (̂ ̂) = min  ( ) ≤ 

¡
0 0

¢
 we have


°°°0 − ̂

°°°2 ≤ °°0 − 
°°

³
− + −1

´
+

³
− + −1

´
Then we get ||0 − ̂|| =  (

−2 + 
−12
 ) =  (1)  ¥

Proof of Lemma A.2. Recall  () ≡  ()
0
̃−1Ω̃̃−1 () and  ≡ 

−12
 () ̃−1 (). By

5



Cauchy-Schwarz inequality, we have

|| = 
−12
 ()

¯̄̄
 ()0 ̃−1̃

¯̄̄
≤

n
 ()

0
̃−1 ()

o12 n
̃0̃

−1̃
o12

n
 ()0 ̃−1Ω̃̃−1 ()

o12 ≤
°° ()°°1 ³̃−1´°°°̃°°°

k ()k12min

³
Ω̃
´
1

³
̃−1

´
= 

−12
min

³
Ω̃
´°°°̃°°° 

Recall that ̃ =  − 1


P
=1 D () − 1



P
=1 D () +

1


P
=1

P
=1 D () ≡

 +  Note that  is a  × 1 D-measurable vector, and

kk ≤
°°0°° −1

X
=1

°°0°° kD ()k+ °°0 °° −1
X
=1

°°0 °° kD ()k
+
°°0°°°°0 °° −1 −1



X
=1

X
=1

°°0°°°°0 °° kD ()k
where we use the fact that | | ≤ −1

°°0°°°°0°° and || ≤ −1
°°0 °°°°0 °°  For (), noting that °°°̃°°°4 ≤

(kk+ kk)4 ≤ 23
³
kk4 + kk4

´
and −2min

³
Ω̃
´
=  (1), we have

1



X
=1

X
=1

°°4°°22D ≤
23−2min

³
Ω̃
´



X
=1

X
=1

°°°kk4 + kk4°°°2
2D

≤ 24−2min
³
Ω̃
´( 1



X
=1

X
=1

h
D

³
kk8

´
+ kk8

i)
= 

¡
4
¢


where we use the fact that 1


P
=1

P
=1 kk8 = 

¡
4
¢
. To see this, using [(+ + ) 3]8 ≤¡

8 + 8 + 8
¢
3, we have 1



P
=1

P
=1 kk8 ≤  (4 ) +  (4 ) +  (4 )  where

 (4 ) ≡
37



X
=1

X
=1

⎛⎝°°0°° −1
X
=1

°°0°° kD ()k
⎞⎠8



 (4 ) ≡
37



X
=1

X
=1

Ã°°0 °° −1
X
=1

°°0 °° kD ()k
!8

 and

 (4 ) ≡
37



X
=1

X
=1

⎛⎝°°0°°°°0 °° −1 −1


X
=1

X
=1

°°0°°°°0 °° kD ()k
⎞⎠4



For  (4 ), by Cauchy-Schwarz inequality

 (4 ) ≤ 37−8

(
1



X
=1

°°0°°8
)⎧⎨⎩ 1



X
=1

°°0°°2
⎫⎬⎭
4

1



X
=1

⎧⎨⎩D

⎛⎝ 1



X
=1

kk2
⎞⎠⎫⎬⎭

4

=  (1) (1)

¡
4
¢
= 

¡
4
¢


Similarly, we can show that  (4 ) = 

¡
4
¢
and  (4 ) = 

¡
4
¢
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For (), following the study of () and Jensen inequality, we have

1

2

X
=1

Ã
X
=1

°°2°°22D
!2

≤ −2min
³
Ω̃
´ 1

2

X
=1

Ã
X
=1

°°°°°°°̃°°°2°°°°2
2D

!2

≤
4−2min

³
Ω̃
´

2

X
=1

Ã
X
=1

°°°kk2°°°2
2D

+
X
=1

kk4
!2

≤ 8−2min
³
Ω̃
´ 1


X
=1

⎧⎨⎩D

⎡⎣Ã 1


X
=1

kk4
!2⎤⎦+ 1



X
=1

kk8
⎫⎬⎭

=  (1)

¡
4
¢
= 

¡
4
¢
 ¥

D.2 Asymptotic normality for the sieve estimator

Proof of Lemma A.3. () Let ̄ ≡ − 1


P
=1 − 1



P
=1 +

1


P
=1

P
=1 Then

̃ =  +D [̄]. We have

̃ − ̃ =
1



X
=1

X
=1

h
̃̃

0
 −D

³
̃̃

0


´i
=

1



X
=1

X
=1

©
[

0
 −D (0)] + [( −D ())D (̄)

0] + [D (̄) (0 − D (0))]
ª

≡ ̃1 +̃2 +̃3 , say.

For ̃1 , we have

D

∙°°°̃1

°°°2


¸
=

1

2

X
=1

X
=1

X
=1

1

 2

X
1≤6=≤

CovD ( ) +
1

2 2

X
=1

X
=1

X
=1

X
=1

VarD ()

≤ 8

2 2

X
=1

X
=1

X
=1

X
1≤6=≤

kk8+4D kk8+4D kk8+4D kk8+4D 
1+
2+

D (− ) +

µ
2



¶

= 

µ
2



¶
+

µ
2



¶
= 

µ
2



¶


Then
°°°̃1

°°°

=  (

√
 ) =  (1)  Similarly, we can show that ̃ ≡ 

³

√


´
for

 = 2 3 Then () follows.

() Noting that  = ̃+(̄ −D [̄]), we can decompose−̃ =
1


P
=1

P
=1[

0
−

̃̃
0
] as follows

 − ̃ =
1



X
=1

X
=1

 (̄ −D [̄])
0 +

1



X
=1

X
=1

(̄ −D [̄]) 0

+
1



X
=1

X
=1

D [̄] (̄ −D [̄])
0
+

1



X
=1

X
=1

(̄ − D [̄])D [̄]
0

+
1



X
=1

X
=1

(̄ −D [̄]) (̄ −D [̄])
0

≡ 1 +2 +3 +4 +5 , say.
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It is easy to see that
°°° − ̃

°°°

≤P5

=1 kk = 2 k1 k+2 k3k+k5 k .
For 1 , using the expression for ̄ and by Minkowski inequality, we have

k1k ≤
°°°°°° 1

2

X
=1

X
=1

X
=1

 ( −D [])
0

°°°°°°


+

°°°°° 1

 2

X
=1

X
=1

X
=1

 ( −D [])
0
°°°°°


+

°°°°°° 1

2 2

X
=1

X
=1

X
=1

X
=1

 ( −D [])
0

°°°°°°


≡ 11 +12 +13 say.

For 11, we have

11 =

°°°°° 1

2

X
=1

X
=1

 [ −D ()]
0
°°°°°


+

°°°°°° 1

2

X
1≤6=≤

X
=1

 ( −D [])
0

°°°°°°


= 

µ
√
3

¶
+

µ
√


¶
= 

µ
√


¶
by Chebyshev’s inequality. Similarly, we can show that 1 =  (

√
 ) for  = 2 3 Hence

k1k =  (
√
 )

Analogously, we can show that k k =  (
√
 ) for  = 3 5 Thus () follow. ¥

Proof of Lemma A.4. Let Ψ ≡ 1√


P
=1

P
=1 

0
 {( − ̃) −D[( − ̃)]} Let

 ≡  −D (). We first make the following decomposition:

Ψ = − 1√


X
=1

X
=1

0

⎧⎨⎩ 1



X
=1





⎫⎬⎭ 

− 1√


X
=1

X
=1

0

(
1



X
=1

 [

 −D ()]

)

+
1√


X
=1

X
=1

0

⎧⎨⎩ 1



X
=1

X
=1


£
 −D

¡


¢¤⎫⎬⎭
≡ −Ψ1 −Ψ2 +Ψ3, say.

We want to show that: () Ψ1 =  (1), () Ψ2 =  (1), and () Ψ3 =  (1) 

First, we consider (). Note that D(Ψ1) = 0 and

D
¡
Ψ21

¢
=

1

3

X
1=1

X
2=1

X
1=1

X
2=1

X
1=1

X
2=1

1122
0
 D

¡
11

0
22

1122
¢


=
1

3

X
=1

X
=1

X
=1

2
0
 D

¡


0


2


¢


≤ −2
°° °°2


1

2

X
=1

X
=1

X
=1

°°0°°°°0°°°°D ¡02¢°°
≤ −2

°° °°2


1

2

X
=1

X
=1

°°0°°°°0°° X
=1

°°°°22D °°2°°2D =  () 
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It follows that Π1121 =  (
1212) =  (1) by conditional Chebyshev inequality.

Next, we consider (). We decompose Ψ2 as follows

Ψ2 =
1√
 3

X
=1

X
1≤≤≤


0
  +

1√
 3

X
=1

X
1≤≤


0
 [ −D ()]

≡ Ψ21 +Ψ22, say,

where we use the fact D () = D () = 0 for  ≤  in the first term. Following the study of

Ψ1, we can show that Ψ21 = 

¡
12 12

¢
=  (1) by conditional Chebyshev inequality. We

are left to show that Ψ22 =  (1). By construction, D [Ψ22] = 0 By Assumption 5() and

conditional Jensen inequality,

D[Ψ222] = VarD (Ψ22) =
1

 3

X
=1

VarD

⎛⎝ X
1≤≤

D
¡


0
 

¢⎞⎠
≤ 1

 3

X
=1

X
1≤12≤

X
1≤34≤

1234
0
 D(1


2
3

0
4
) ≡ Ψ22 .(D.1)

There are three cases according to the number of distinct time indices in the set  = {1 2 3 4} :
() # = 4 () # = 3 and () # = 2 We use Ψ22, Ψ22 and Ψ22 to denote

the summation when the time indices in (D.1) are restricted to these three cases, respectively. Then

Ψ22 = Ψ22 + Ψ22 + Ψ22. It suffices to prove Ψ22 =  (1) by showing that

Ψ22 =  (1) for  =   

We dispense with the easiest term first. In case ()  we must have 1 = 3 and 2 = 4 By direct

moment calculations, we can readily show that Ψ22 =  ( ).

Now we consider Ψ22 There are three subcases: (1) 1  2  3  4 or 3  4  1  2;

(2) 1  3  2  4 or 3  1  4  2; (3) 1  3  4  2 or 3  1  2  4. Let

Ψ221, Ψ222 and Ψ223 denote the corresponding summation when the time indices are

are restricted to subcases (1) (2)  and (3), respectively, in the definition of Ψ22. We only prove

that Ψ221 =  (1) as the proofs of Ψ222 =  (1) and Ψ223 =  (1) are similar. For

subcase (1), by the symmetry of (1 2)←→ (3 4), we have

Ψ221 =
2

 3

X
=1

X
1≤1234≤

1234
0
 D

¡
21

0
4
3
¢


Let  = +1−, for  = 1 2 3 Let max be the largest increment, i.e., max−max−1 = max=234 ( − −1).
We consider two subsubcases for (1): (11) max = 2 or max = 4; (12) max = 3 Let Ψ2211 and

Ψ2212 denote the corresponding summation when the time indices restricted to subsubcases (11)

and (12), respectively. For subsubcase (11) without loss of generality (wlog) assume max = 2. Let

 ≡ −1 kkD for 0   ≤ 8+4. By the conditional Davydov inequality (see Lemma E.1 in the
supplementary appendix) and Hölder inequality, we have¯̄
D

¡
1

0
 23

0
4

¢¯̄ ≤ 8 k1k8+4D

°°0 23
0
4

°°
(8+4)3D 

1+
2+

D (2 − 1)

≤ 8
°° °°2 k1k8+4D 28+4 k3k8+4D 48+4

1+
2+

D (2 − 1) 
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and ¯̄
D

¡
1

0
 23

0
4

¢¯̄ °°01°°°°02°°°°03°°°°04°°

≤ 8
°° °°2 ³°°01°° k1k8+4D´ ¡°°02°°28+4¢ ³°°03°° k3k8+4D´ ¡°°04°°48+4¢ 1+

2+

D (2 − 1)

≤ 2
°° °°2 (11 + 12 + 13 + 14)

1+
2+

D (2 − 1) 

where 1 =
°°0 °°4 kk48+4D and 1 =

°°0 °°4 (8+4)4. It follows that
Ψ2211 ≤ 2−2

 3

X
=1

X
1≤1234≤
max=2 or max=4

¯̄
D

¡
1

0
 23

0
4

¢¯̄ °°01°°°°02°°°°03°°°°04°°

≤ 4−2 

 3

X
=1

X
1≤1234≤max=2

(11 + 12 + 13 + 14)
1+
2+

D (2 − 1)

≤ 

 3

(
X
=1

X
=1

(1 + 1)

)(
X

=1

2
(1+)(2+)
D ()

)

≤ 

 3

√


(
X
=1

°°0 °°4
)12⎧⎨⎩

"
X
=1

X
=1

kk88+4D
#12

+

"
X
=1

X
=1

(8+4)
8

#12⎫⎬⎭
=



 3

√


³√

´


³√


´
= 

µ


 2

¶


For subsubcase (12), we have

Ψ2212 ≤ 1

 3

X
=1

X
1≤1234≤ , 21≥3

°°01°°°°02°°°°03°°°°04°° ¯̄D ¡10 23
0
4

¢¯̄

+
1

 3

X
=1

X
1≤1234≤ , 231

°°01°°°°02°°°°03°°°°04°° ¯̄D ¡10 23
0
4

¢¯̄

≡ Ψ2212 (1) +Ψ2212 (2) , say.

By the conditional Davydov inequality, Hölder and Jensen inequalities, we have¯̄
D

¡
1

0
 23

0
4

¢¯̄ ≤ 8 k1k8+4D

°°0 23
0
4

°°
(8+4)3D 

1+
2+

D (2 − 1)

≤ 8
°° °°2 k1k8+4D 28+4 k3k8+4D 48+4

1+
2+

D (2 − 1)

and
¯̄
D

¡
1

0
 23

0
4

¢¯̄ °°01°°°°02°°°°03°°°°04°° ≤ 2 °° °°2 (11 + 12 + 13 + 14)

×
1+
2+

D (2 − 1)  It is easy to verify that
P

=1

P
=1(1 + 1) =  ( ). It follows that

Ψ2212 (1) ≤ 

 3

X
=1

X
1≤1234≤ , 21≥3

(11 + 12 + 13 + 14)
1+
2+

D (2 − 1)

=


 3

X
=1

(
−3X
1=1

11

−3−1X
2=2

2−1X
1=1


1+
2+

D (1) 1 +
−2X
2=2

12

−3−2X
2=2

2−1X
1=1


1+
2+

D (1) 1

+
−1X
3=3

13

3−1X
2=2

2−1X
1=1


1+
2+

D (1) 1 +
X

4=4

14

4−2X
2=2

2−1X
1=1


1+
2+

D (1) 1

⎫⎬⎭
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≤
(


−1X
=1

³
1− 



´


1+
2+

D ()

)


 3

X
=1

X
=1

(1 + 1)

=  ( )


 3
 ( ) =  ( ) =  (1) 

Similarly, we can show thatΨ2212 (2) =  ( ) =  (1). ConsequentlyΨ2212 =  ( ).

Thus Ψ221 =  (1)  As remarked early on, one analogously show that Ψ22 =  (1) for

 = 2 3 Consequently, we have Ψ22 =  (1) 

Now we study Ψ22. We consider two subcases: (1) 1 = 3 or 2 = 4 and (2) 1 = 4 or 2 = 3.

Let Ψ221 and Ψ222 denote the corresponding summation when the time indices are restricted

to subcases (1) and (2), respectively. For subcase (1), wlog we assume 1 = 3. By the conditional

Davydov inequality,

¯̄
D

¡
21

0
 2

0
4

¢¯̄ ≤ ½8

°°210 2

°°
(8+4)3D

°°04 °°8+4D 
1+
2+

D (4 − 2) if 4  2

8
°°210 4

°°
(8+4)3D

°°02 °°8+4D 
1+
2+

D (2 − 4) if 2  4



If 4  2, by Hölder and Jensen inequalities, each term inside the summation is bounded by¯̄
D

¡
21

0
 2

0
4

¢¯̄ °°01°°2 °°03°°°°04°°

≤ 8
°°210 2

°°
(8+4)3D

°°04 °°8+4D 
1+
2+

D (4 − 2)
°°01°°2 °°02°°°°04°°

≤ 8
°° °°2 k1k28+4D 28+4


48+4

1+
2+

D (4 − 2)
°°01°°2 °°02°°°°04°°

≤ 2
°° °°2 (211 + 12 + 14)

1+
2+

D (4 − 2) 

Similarly, if 2  4 each term inside the summation is bounded by 2
°° °°2 (211 + 12 + 14)

×
1+
2+

D (2 − 4)  It follows that

|Ψ221| ≤ 2

 3

X
=1

⎧⎨⎩ X
1≤124≤

+
X

1≤142≤

⎫⎬⎭ ¯̄12340 D
¡
21

0
4
3
¢

¯̄

≤ 4
°° °°2
 3

X
=1

X
1≤124≤

(211 + 12 + 14)
1+
2+

D (4 − 2)

≤ 

 3

(
X
=1

X
1=1

11

)⎧⎨⎩ X
1≤24≤


1+
2+

D (4 − 2)

⎫⎬⎭
+


 3

(
X
=1

X
=1

(1 + 1)

)(
X

=1


1+
2+

D ()

)
=  ( ) + ( ) =  ( ) 

Similarly, we can show that Ψ222 =  ( ). Thus Ψ22 =  ( )  In sum, we have

shown that Ψ22 =  ( )  implying that Ψ22 =  (1) by Chebyshev inequality.

Using similar arguments as used in the study of Ψ22, we can show that Ψ23 =  (1). ¥

Proof of Lemma A.5. By straightforward moment calculations and Chebyshev inequality, one can

prove ()-() ; see also Moon and Weidner (2010, S.4 p.14).
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() Noting that the ( )th element of 00e0P() is given by
P

=1

P
=1 

0


0, we have

D
h°°00e0P()°°2 i = D

⎡⎣ X
=1

X
=1

Ã
X
=1

X
=1

0
0

!2⎤⎦
=

X
=1

X
=1

X
=1

X
=1

X
=1

X
=1

0
0
D [

00]

=
X
=1

X
=1

X
1≤≤

¡
0
¢2
D

h
(0)

2
2

i
+

X
=1

X
=1

X
1≤6=≤

0
0
D

h
(0)

2


i

+
X
=1

X
1≤6=≤

X
=1

X
=1

X
=1

0
0
D [

00]

≡ 1 + 2 + 3 , say.

Note that 1 ≤ kk2
P

=1

P
1≤≤

°°0 °°2D hkk2 2i = 

¡
 2

¢
by Markov inequality. For

2 and 3 , following the proof of Proposition A.6 and by the conditional Davydov and Jensen

inequalities we have

|2 | ≤
X
=1

X
=1

X
1≤6=≤

¯̄
0
¯̄ ¯̄
0
¯̄ ¯̄̄
D

h
(0)

2


i¯̄̄

≤ 16 kk2
X
=1

X
1≤≤

°°0 °°°°0 °° kk8+4D 28+4 kk8+4D 
1+
2+

D ( − )

= 

¡
 2

¢


and

|3 | ≤
X
=1

X
1≤≤

X
1≤≤

¯̄
0
¯̄ ¯̄
0
¯̄
|D (0)| |D (0)|

≤ kk2
X
=2

(
812

X
=1

−1X
=1

°°0 °° kk8+4D 8+4
3+2
4+2

D (− )

)2
= 

¡
2

¢


It follows that ||00e0P()|| = 

¡
()12

¢


() By () 
°°0e0P()°° | ≤ °°°0 ¡000¢−1°°°



°°00e0P()°° = 

¡
−12

¢


¡
()12

¢
=

 (
√
 )

() Noting that ( )th element of 00eP0() is given by
P

=1

P
=1 

0


0, we have

D

∙°°°00eP0()°°°2


¸
= D

⎡⎣ X
=1

X
=1

Ã
X
=1

X
=1

0
0

!2⎤⎦
=

X
=1

X
1≤6=≤

X
=1

¡
0
¢2
D

£
2
¤
D (0)

2
+

X
=1

X
=1

X
=1

¡
0
¢2
D

h
2 (

0)
2
i

=
X

1≤6=≤

X
=1

°°0°°2D £2¤D (0)2 + X
=1

X
=1

°°0°°2D h2 (0)2i
= 

¡
2

¢
+ () = 

¡
2

¢
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It follows that
°°°00eP0()°°°


=  (

√
)

() By (),
°°°0eP0()°°°


≤
°°°0 ¡000¢−1°°°



°°00e0P()°° = 

¡
−12

¢


¡
()12

¢
=

 (
√
).

() Noting that  ≡ −10 [D
¡
 − 



¢0
]00 is a 1× vector and D-measurable, we have

D

⎧⎨⎩ 1


√


X
=1

X
=1

X
=1


0
 [ −D ()]

⎫⎬⎭
2

≤ 2D

⎧⎨⎩ 2


√


X
=1

X
1≤6=≤


0


⎫⎬⎭
2

+ 2D

(
1


√


X
=1

X
=1


0


£
2 −D

¡
2
¢¤)2

=
4

2

X
=1

X
1≤6=≤

kk2
°°0°°2D ¡2¢D ¡2¢

+
2

2

X
=1

X
=1

kk2
°°0°°2 £D ¡4¢−D

¡
2
¢
D

¡
2
¢¤

=  () + () =  () by Assumption 6.

Then () follows by Chebyshev inequality.

() Note that 1


P
=1D

µ°°°P
=1 

0


¡
 − 

¢
0

0
°°°2¶ is bounded by

2



X
=1

D

°°°°° 1√


X
=1

0 
0


0

°°°°°
2

+
2



X
=1

D

°°°°°° 1√


X
=1

X
=1


0
 

0


0

°°°°°°
2



The first term is bounded by

1



X
=1

X
=1

X
=1

°°0 °°°°0 °° ¯̄D £0 
0





¤¯̄ °°0°°
≤ 8

°°0

°°2 °°0°° 1



X
=1

X
=1

X
=1

°°0 °°°°0 °°8+48+4 3+2
4+2

D (|− |) =  ()

by the conditional Davydov inequality. Similarly, we can show that the second term is also  (). Thus

() follows by Markov inequality.

() Using similar arguments as used in the proof of ()  one can prove () by Markov inequality.

() Note that D{ 1√


P
=1

P
=1

P
=1

00
 [ −D ()]}2 is bounded by

2D

(
1√


X
=1

X
=1


00


£
2 −D

¡
2
¢¤)2

+ 2D

⎧⎨⎩ 1√


X
=1

X
1≤6=≤


00
 

⎫⎬⎭
2

=
2

 2

X
=1

X
=1

X
=1


00
 

00
 D

£
2

2
 −D

¡
2
¢
D

¡
2
¢¤
+

4

 2

X
=1

X
1≤6=≤

kk2 kk2D
¡
2

2


¢
=  () + () =  ()

by Assumption 9. Then () follows by Chebyshev inequality.
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() Note that

D

⎧⎪⎨⎪⎩ 1



X
=1

°°°°°°
X
=1

0

³
 − 




´
00 

0

°°°°°°
2
⎫⎪⎬⎪⎭

≤ 2



X
=1

D

⎧⎪⎨⎪⎩
°°°°°°

X
=1

0 
00
 

0

°°°°°°
2
⎫⎪⎬⎪⎭+ 2



X
=1

D

⎧⎪⎨⎪⎩
°°°°°° 1

X
=1

X
=1


0
 

00
 

0

°°°°°°
2
⎫⎪⎬⎪⎭

=
2



X
=1

X
=1

D
¡
0 

¢2
0 +

2



X
=1

1

 2

X
=1

X
=1

0
2


0
 D

¡


0


¢


+
2

°° °°2


X
=1

1

 2

X
=1

X
1≤6=≤

0

8+4


8+4

3+2
4+2

D (| − |)

=  () + () + () =  () 

where 0 ≡ 00 
0000 . Then () follows by Chebyshev inequality.

() The proof is similar to that of () and thus omitted. ¥

D.3 Bias correction

Let ê () ≡ Y −P
=1 P − ̂ () ̂ ()

0
 Following Moon and Weidner (2010, 2012), we first derive

the asymptotic expansions for the projectors 
̂
() and 

̂
(), and the residual matrix ê(), and then

establish some lemmas that are used to prove Lemmas A.8 and A.9.

Lemma D.2 Under Assumptions 1-4, we have the following expansions

() 
̂
() =0 +

(1)

̂u
+

(2)

̂u
+
P

=1

¡
0 − 

¢


(1)

̂
+

(rem)

̂
() 

() 
̂
() =0 +

(1)

̂ u
+

(2)

̂ u
+
P

=1

¡
0 − 

¢


(1)

̂ 
+

(rem)

̂
() 

() ê () =0u0 + ê
(1)
 +

P
=1

¡
0 − 

¢
ê
(1)
 + ê(rem) () 

where ê
(1)
 =0P0  ê

(1)
 = −0u0u

0Φ0 −Φ0u00u0 −0uΦu0  the expansion coeffi-

cients of 
̂
() are given by


(1)

̂u
= −0uΦ−Φ0u00 ,


(1)

̂
= −0PΦ−Φ0P00 


(2)

̂u
= 0uΦuΦ+Φ

0u0Φ0u00 −0u0u
0Φ2 −Φ2u0u

00 −0uΦ1u
00 +Φ

0u00uΦ

and, analogously, the expansion coefficients of 
̂
() are given by


(1)

̂ u
= −0uΦ

0 −Φu00 


(1)

̂ 
= −0P

0
Φ

0 −ΦP0 


(2)

̂ u
= 0u

0Φ0u0Φ0 +ΦuΦu0 −0u
00uΦ1 − Φ1u00u0 −0u

0Φ2u0 +Φu0u
0Φ0

For the remainder terms, we have

|| (rem)

̂
() || =  [(

−1
 +−)

°°0 − 
°°+ °°0 − 

°°2 + (−3 +−3)]

|| (rem)

̂
() || =  [(

−1
 +−)

°°0 − 
°°+ °°0 − 

°°2 + (−3 +−3)]

||ê(rem) () || = {
√
 [

°° − 0
°°2 + (−1 +−)

°° − 0
°°+ (−3 +−3)]}
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and rank
¡
ê() ()

¢ ≤ 7.
Proof. Since the symmetry of  ↔   ↔  , u ↔ u0, and P ↔ P0, the proofs for ̂

() and


̂
() are similar. So we only consider the proofs of 

̂
() and ê () 

Expansion of 
̂
(). By Proposition C.1 () and the fact u = 0P0, we have


̂
() = 0 +

(1)


¡
0 0u

¢
+

(1)


Ã
0 0

X
=1

P

!
+

(2)


¡
0 0uu

¢
+

(


(2)


Ã
0 0

X
=1

P

X
=1

P

!
+

¡
3

¢)

= 0 +
(1)

̂ u
+

X
=1

¡
0 − 

¢


(1)

̂ 
+

(2)

̂ u
+

()

̂
()

Following the proof in Proposition C.1, we can show that


(rem)

̂
() = 

h³
−1 +−

´°°0 − 
°°+ °°0 − 

°°2 + ³−3 +−3
´i



Expansion of ê (). By the definition of ê () and using the expansions of 
̂
and 

̂
, we have

ê () = Y −
X
=1

P − ̂ () ̂ ()0 =
̂

"
Y −

X
=1

P

#


̂

= 
̂

"
u−

X
=1

¡
 − 0

¢
P + 000

#


̂

= 0u0 −
°° − 0

°°0P()0 −0u0uΦ
0 −0uΦ

0u00 −Φ0u00u0 + ê
() () .

Noting that
°°° (1)

̂ u

°°° = 

¡
−1 +−

¢
,
°°° (1)

̂u

°°° = 

¡
−1 +−

¢

°°° (2)

̂ u

°°° = 

¡
−2 +−2

¢
,°°° (2)

̂u

°°° = 

¡
−2 +−2

¢
,
°°°P

=1

¡
 − 0

¢


(1)

̂ 

°°° = 

¡°° − 0
°°¢  and °°°P

=1

¡
 − 0

¢


(1)

̂

°°°
= 

¡°° − 0
°°¢  we have°°°ê() ()°°° = 

³√


h°° − 0
°°2 + ³−1 +−

´°° − 0
°°+ ³−3 +−3

´i´


Let 0 = u−P
=1

¡
 − 0

¢
P, 1 = 0 −000 , 2 = 000 − ̂ ()

0
̂ ()  and 3 = −ê(1) ,

where ̂ () = 
̂
()0 and ̂ () = 

̂
() 0. Note that ê() () = 1 + 2 + 3 rank(1) ≤ 2,

rank(2) ≤ 2 and rank(3) ≤ 3. It follows that rank(ê() ()) ≤ 7
Lemma D.3 Under Assumptions 1-4, we have

() ||
̂
− 0 || = ||̂

−0 || =  (
−1
 +−)

() ||
̂
− 0 || = ||̂

−0 || =  (
−1
 +−)

Proof. Noting that kuk 
√
 = 

¡
−1 +−

¢
,
°°P()°° √ =  (1)  and

°°°0 − ̂
°°° =



¡
12−2 +−

¢
, we have by D.3()°°°̂ − 0

°°° ≤
°°° (1)

̂ u

°°°+ °°° (2)

̂ u

°°°+ °°°°°
X
=1

³
0 − ̂

´


(1)

̂ 

°°°°°+ °°° ()

̂
()
°°°

= 

³
−1 +−

´
+

³
−2 +−2

´
+

³°°°0 − ̂
°°°´

+

h³
−1 +−

´°°0 − 
°°+ °°0 − 

°°2 + ³−3 +−3
´i

= 

³
−1 +−

´
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Similarly, we can show that
°°

̂
− 

̂
0

°° = 

¡
−1 +−

¢
.

Lemma D.4 Under Assumptions 1-4, there exists an × matrix  =  such that

() ||̂ − 0||
√
 =  (

−1
 +−);

() ||̂− 0 ( 0)−1 ||
√
 =  (

−1
 +−);

()
√
 ||Φ̂−Φ|| =  (

−1
 +−)

Proof. () Noting that ||
̂
− 0 || =  (1), we have rank(̂0) = , i.e., rank(

̂
0) = 

as ( ) → ∞. Write ̂ = 
̂
0 with some non-singular  ×  matrix  =  . It is easy to

see that  = (̂ 0
̂
0 )−1(̂ 0̂ ) = (̂ 00 )−1 and ||−1|| ≤ −1||̂ 00|| =  (1). Note that

̂ = 0 + (
̂
− 0)

0 and  = (000 )−100̂ − (000 )−100(
̂
− 0)

0 It follows

that |||| ≤  (1)+ |||| (
−1
 +

−), which implies that |||| =  (1). Noting that ̂ = 
̂
0,

we have
°°°̂ − 0

°°° = °°°(̂ − 0)
0
°°° ≤ 

°°°̂ − 0
°°°°°0°° kk =  [

√

¡
−1 +−

¢
]

() Noting that ̂̂ 0̂ =
³
Y −P

=1 ̂P

´
̂  we have

̂− 0 ( 0)−1 =

"
000 +

X
=1

³
0 − ̂

´
P + u

#
̂
³
̂ 0̂
´−1
− 0 ( 0)−1

= 000
³

̂
− 0

´
0
³
00

̂
0
´−1

( 0)−1 + 0000
∙³

00
̂
0
´−1
− ¡000¢−1¸ ( 0)−1

+

"
X
=1

³
0 − ̂

´
P + u

#

̂
0
³
00

̂
0
´−1

( 0)−1

≡ Λ1 + Λ2 + Λ3  say.

First, Λ1 ≤ 2


°°0°°°°0°°2 || ( 0)−1 ||||
̂
− 0||||(00̂0 )−1|| =  [

√
(−1 +−)] Noting

that°°°°³00̂0´−1 − ¡000¢−1°°°° ≤
°°°00 ³̂ − 0

´
0

°°°°°°¡000 ¢−1°°°°°°°³00̂0´−1°°°°
=

°°°̂ − 0
°°°°°0°°2  °°°¡000¢−1°°°°°°°³00̂0´−1°°°°

= 

³
−1 +−

´


we have Λ2 ≤
°°0°°°°000°° [(00

̂
0 )−1 − ¡000 ¢−1]|| ( 0)−1 || =

√


¡
−1 +−

¢


Now, kΛ3 k ≤ 1

(||0 − ̂||

°°P()°° + kuk)||̂ ||°°0°° ||(00̂0 )−1||°°−1°° =  [
√
(||0 − ̂|| +

−1 +
−)] =  [

√

¡
−1 +−

¢
] Consequently,

°°°̂− 0 ( 0)−1
°°° = 

h√

¡
−1 +−

¢i


() Noting that ||̂0̂ −−1000( 0)−1 || = ||−1(̂0 −−100)(̂+ 0( 0)−1)|| ≤ −1||̂−
−10||||̂||

√
 + ||0||

√

°°( 0)−1

°° =  (
−1
 +−) we have°°°°³̂0̂´−1 − ¡−1000( 0)−1
¢−1°°°°

≤
°°°̂0̂°°°°°°̂0̂ −−1000( 0)−1

°°°°°−1000( 0)−1
°° = 

³
−1 +−

´


Similarly, ||(̂ 0̂ )−1 − ¡ 0000
¢−1 || = 

¡
−1 +−

¢
 Combining these results, we have√

 ||Φ̂−Φ||= ||(̂
√
)(̂

0
̂)−1(̂ 0̂ )−1̂ 0

√
−(0

√
) ( 0)−1 [−1000 ( 0)−1  ]−1

¡
 0000

¢−1
 000

√
 || = 

¡
−1 +−

¢
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Lemma D.5 Suppose that the conditions in Theorem 3.3 hold. Then we have

() ( )−1
P

=1

P
=1 

2
(̂̂

0
 − ̃̃

0
) = 

¡
1− +−1

¢
;

() ( )
−1P

=1

P
=1(

2
 − ̂2)̂̂

0
 =  (−1 + ( )

14
−2 + ( )

14
1−)

Proof. () Note that 1


P
=1

P
=1 

2
(̂̂

0
 − ̃̃

0
) =

1


P
=1

P
=1

h
2(̂̂

0
 − 

0
)
i

+ 1


P
=1

P
=1

h
2(

0
 − ̃̃

0
)
i
≡ 11 +12, say. Let 1 = ̂ −  and 2 = 2. Then

11 =
1



X
=1

X
=1

2

³
̂̂

0
 − 

0


´
=

1



X
=1

X
=1

½∙³
̂ − 

´
0

2
 + 

2


³
̂ − 

´0¸
+ 2

³
̂ − 

´³
̂ − 

´0¾

=
1



X
=1

X
=1

¡
1

0
2 +2

0
1

¢
+

1



X
=1

X
=1

21
0
1 = 

()
11 +

()
11 , say.

Define  ×  matrices B1 and B2 with their ( )th elements given by the th elements of 1

and 2, respectively. Then we have 
()
1112

= 1

tr
³
B11B

0
22

+B21B
0
12

´
. Note that B1 =¡


̂
−0

¢
P0+ 

̂
P

³


̂
−0

´
and kB1k = 

¡
− + −1

¢ kPk. For B2, we have

kB2k2 ≤ kB2k2 =
X
=1

X
=1

4
2
 ≤

(
X
=1

X
=1

8

)12(
X
=1

X
=1

4

)12
=  ( )

h

(4)


i2

where 
(4)
 =

³
1


P
=1

P
=1 

4


´14
 It follows that kB2k =  [( )12]

(4)
 


()
1112

≤ 6


[kB11k kB22k+ kB21k kB12k]

= 

³
− + −1

´h

(4)
2
kP1k+ 

(4)
1
kP2k

i
 ( )12 

and°°°()11 °°°2


=
X

1=1

X
2=1

h

()
1112

i2
= 

³
−2 + −2

´ X
1=1

X
2=1

( )
−1 h


(4)
2
kP1k+ 

(4)
1
kP2k

i2
≤ 

³
−2 + −2

´
2

X
=1

h

(4)


i2 X
=1

( )
−1 kPk2

≤ 

³
−2 + −2

´√


(
X
=1

h

(4)


i4)12 X
=1

kPk2  ( )

= 

h
2

³
−2 + −2

´i


where we use
P

=1[
(4)
 ]4 = 1



P
=1

P
=1

P
=1 

4
 =  () by Assumption 6.
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For 
()
11 , its (1 2)th element is given by


()
1112

=
1


tr
³
B
()
11
B
()
12

´
=

1


tr
h³


̂
P
()
1


̂
−0P

()
1
0

´³


̂
P
()
2


̂
−0P

()
2
0

´i
≤ ( )−1

h°°°¡0 − 
̂

¢
P
()
1


̂

°°°

+
°°°̂

P
()
1

³
0 − 

̂

´°°°


i
×
h°°°¡0 − 

̂

¢
P
()
2


̂

°°°

+
°°°P

()
2

³
0 − 

̂

´°°°


i
≤ ( )−1

µ°°0 − 
̂

°°2 + °°°0 − 
̂

°°°2¶°°°P()1

°°°


°°°P()2 °°°
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Lemma D.6 Suppose that the conditions in Theorem 3.3 hold. Then we have kê− ek =  (
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Write ê = 0e − 0e0 + e
() where ê() = ê
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°°°ê()°°°

= 

³√


³
−2 + −2

´´
+

³√


³
12−2 +−

´´
+

³√
−

´
+

³√


h³
−2

√
 +−

´³
12−2 +−

´i´
= 

h√


³
− +12−2

´i


For the second term in (D.7), we have

−1
°°°[e00e− ê0ê]truncD
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By Cauchy-Schwarz inequality, we have
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Lemma D.8 Suppose that the conditions in Theorem 3.3 hold. Then we have −1|| (ê0ê)truncD || =


¡
−2

¢


Proof. By Lemmas E.3(), (), and D.6, we have

−1
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´
≤ −1

³
kek2 + kê− ek2
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Now we prove the main lemmas used in the proof of consistency of bias-corrected estimator.
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Now, we decompose ̂1 − 
(2)
1 as follows:
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=
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≡ 1 +2, say.

For 2, let  ≡  and  ≡  −D (). Then D (2) = 0 and

D
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2 2
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We consider two cases for the time indices {1 1 2 2} inside the last summation: () 1  2 or 2  1;

() all the remaining cases. Let 21 and 21 denote D[k2k2] when the summation is restricted
to the time indices in these two cases, respectively. Then D[k2k2] = 21+21. For case ()

the two intervals (1 1) and (2 2) are separated from each other. Wlog we assume that 1  2. Then

by the conditional Davydov and Jensen inequalities, we have¯̄
D

¡
011


222

¢¯̄ ≤ 8
°°11°°4+2D °°222°°4+2D 
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where ̃1 ≡
°°0 °°4 48+4. Then similarly to the proof of Lemma A.4, we can show that

|D21| ≤ 2
8−2 

2 2

X
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X
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For case (), it is easy to see that max (1 2) − min (1 2) ≤ 3  Each term in the summation is

bounded by 1
2 2

¯̄
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¯̄ ¯̄
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¯̄
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D (11)Var
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D (22), and the number of such terms is of order
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. Consequently,
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2
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3
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by Chebyshev inequality.

For1, we have1 =
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× (̂ − )] ≡ 11+12+13, say. For 11, we have by Cauchy-Schwarz inequality and Lemma
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Similarly, by Cauchy-Schwarz inequality and Lemmas D.6 and D.3() , we have
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Consequently, k1k =  (

√
−1 ) and ||̂1 − 

(2)
1 || ≤ k1k + k2k =  (

√
−1 ) This

completes the proof of () 

() Recall that 2 = −1tr[D (ee0)0PΦ] and ̂2 = −1tr
h
(êê0)truncD

̂
PΦ̂

i
 Then by

Lemmas D.2, D.3, D.7, and A.9, we have¯̄̄
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êê0
¢−D

¡
e0e

0¢¤truncD 0PΦ
o

+
1


tr
nh

D (ee0)−D
¡
e0e

0¢truncDi0PΦ
o

≤ 


kPk

h°°
̂

°°°°°Φ̂−Φ°°°+ °°̂ − 0
°° kΦki °°°¡êê0¢truncD°°°
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where we also use the fact that
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() The proof is analogous to that of () by using Lemmas D.3, D.4, A.8, and A.9. ¥

D.4 Specification test

To establish the asymptotic distribution of our test statistic, we need to study the behavior of the

linear estimator ̂() () under H1 ( ). Recall Υ is a  × 1 vector whose th element is given by
Υ ≡ 1


tr
¡
0X0∆

0¢ and  is defined in (4.4). Let 
(1)
  and 

(2)
 be ×1 vectors whose

th elements are respectively given by


(1)
 ≡ 1


tr
¡
0X0ε

0¢  (D.9)


(2)
 ≡ − 1
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¡
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0ε0ε
00 +X0ε

00εΦ
0 +X0ε

0Φε0
¢

(D.10)

≡ 
(2)
 + 

(2)
 + 

(2)
 say, (D.11)
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where ε is an × matrix whose ( )th element is  = +∆ (). Let ̂ be Moon and Weidner’s

(2010, 2012) estimate for 0 without bias-correction. Following Su, Jin, and Zhang (2013), we can show

that under H1 ( ) with  = (14
√
 )

̂ − 0 = −1
−1
Υ +−1

³

(1)
 + 

(2)


´
+ ̃ 

where ̃ =  [
¡
 + −2

¢
(
12
 + 

−12
 )] =  (( )−12) Further, we can modify the proof of

Theorem 3.2 to show that

√


³
̂ − 0 − −1

−1
Υ

´
−() →  (0 0)

where () ≡ −−1( 
()
1 + −1 

()
2 +  

()
3 ), 

()
1 , 

()
2 , and 

()
3 are all  × 1 vectors and their th

elements are defined in (B.1),  = D [ ]  and 0 is positive definite.

Our asymptotic analysis indicates it is not necessary to use the bias-corrected linear estimator for  In

order for this term related to () to be asymptotically negligible under both H0 and H1 ( ), we need

() = 
¡
14

¢
 Under Assumption 12, we have () = {max

¡
  

−1


¢} = 
¡
14

¢
 But if we

make bias correction, () can be corrected up to order  (1) and then the finite sample performance

of our test can be improved. After obtaining ̂, we obtain the estimators ̂(), ̂() and ê
() under the

same identification restrictions as Bai (2009), and then use them to obtain estimates of the three bias

terms, i.e., ̂
()
1 , ̂

()
2 , and ̂

()
3  which are analogously defined as ̂1, ̂2, and ̂3 but with the sieve estimates

of
¡
0 0 e

¢
being replaced by Moon and Weidner’s (2010) linear estimates. Let ̂ be a ×  matrix

whose (1 2)th element is given by ̂12 ≡ 1

tr(

̂
()X1̂()

X0
2
) Define the bias-corrected

estimator ̂ ≡ ̂ + ̂−1 (
−1̂()1 +−1̂()2 + −1̂()3 )

Proof of Lemma B.1. The proof is similar to that of Lemma A.8. ¥

Proof of Lemma B.2. Recall that ̂ = ̂ + ̂−1 (
−1̂1 + −1̂2 + −1̂3) by (3.13). By (A.5)

and (3.3)-(3.5), ̂ − 0 =−1
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For B12, we have

B12 = −1

1



X
=1

X
=1

n³
 − ̃

´
 −D

h³
 − ̃

´


io
+

(
−1

1



X
=1

X
=1

D () +
1


̂−1 ̂1

)
≡ B12 + B12 say.

Following the proof of Lemma A.4, we can readily show that B12 = 

³q



−1

´
=  ( )  By

Lemmas A.8, A.9, and (D.9), we have

B12 =
1



³
̂−1 −−1

´
1 +

1


̂−1

³
̂1 − 1

´
+−1

1

2 2

X
=1

X
1≤≤

D ()

=
1




³
32

³
−1 +−

´´
+
1




Ã√


X
=


3+2
4+2

D () +

√
−1

!
+

Ã√




!
=  ( )

under Assumption 12. Consequently, B12 =  ( ) and () follows.
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Denote 2 as a  × 1 vector whose th element is 2, for  = 1  5. Following the study

of Π21 in Proposition A.7 we have kB2k ≤
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Proof of Lemma B.3. Let ε ≡ e + ∆ and ̃0 ≡ kεk 
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Using Proposition C.1 and following the proof of Theorem 3.1, we can show that
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where ̃ =  [(k̃k2 ̃0+ k̃ k ̃30+ k̃ k3)12] =  (k̃ k ̃120 ); see Su, Jin, and Zhang (2013)

for details. Following the proof of Lemma B.2, with some minor modifications5 we can easily show that
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5There are two main differences. The first one is
̂ − 0

 = 
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under H1 ( )  compared witĥ − 0

 = 
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√
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in sieve QMLE framework; the second one is the dimension  of unknown parameter

̂ is fixed.
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It is easy to show that 
(2)
 = 

¡
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¢
by Lemma B.1() and the fact that 
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Following the proof of () in Proposition A.7, we can show that
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It follows 
(2)
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 =  ( )  The details are omitted for

saving space. ¥

Proof of Theorem 4.4. Let  ∗ denote the probability measure induced by the wild bootstrap condi-
tional on the original sample W ≡ {( ) :  = 1    = 1  } Let ∗ and Var∗ denote the
expectation and variance with respect to  ∗. Let ∗ (·) and ∗ (·) denote the probability order under
 ∗; e.g.,  = ∗ (1) if for any   0 

∗ (k k  ) =  (1). We will use the fact that  =  (1)

implies that  = ∗ (1) 

Observing that  ∗ = ̂
0
 + ̂

()0
 ̂

()
 + ∗ the null hypothesis is maintained in the bootstrap world.

GivenW  
∗
 are independent across  and  and independent of  ̂

()

 and ̂
()
 for all    and 

because the latter objects are fixed in the fixed-design bootstrap world. Let F∗ be the -field generated
by {∗  ∗1}=1. For each , {∗F∗ } is an m.d.s. such that ∗
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∗|F∗−1

¢
= ̂
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  () = 0 and

∗[(∗)
2 |F∗−1] = [̂() ]2

¡
2
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2 These observations greatly simplify the proofs in the bootstrap

world. In particular, we can show that: () ̂
∗
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∗
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∗
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3 are the bootstrap analogues of 
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2  
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3 , respectively.

Let Γ∗  B∗  V∗  B̂∗  and V̂∗ be the bootstrap analogues of Γ  B  V  B̂  and

V̂  respectively. Noting that  are IID  (0 1), we have B∗ ≡tr(̃−1̃
−1Ω̃∗) and V∗ ≡

2tr(̃−1̃
−1Ω̃∗̃−1̃
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∗
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p
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q
V̂∗ .

Similar to  , we define 
∗
 ≡ (V∗ )

14

√
 Let Γ∗ denote the bootstrap analogue of Γ for

 ∈ ∗ ≡ {1 2 4 5 6 8}  Note that Γ∗ = 0 for  ∈ {3 7 9 10} because the null is explicitly imposed
in the bootstrap world. As in the proof of Theorem 4.1, we have

∗ ≡ (Γ∗ − B∗ ) 
p
V∗

= (Γ∗1 − B∗ ) 
p
V∗ + ∗ (Γ

∗
2 + Γ

∗
4 − 2Γ∗5 − 2Γ∗6 + 2Γ

∗
8) 

We prove the theorem by showing that: () ̃∗ ≡ (Γ∗1 − B∗ ) 
p
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∗→  (0 1)  () ∗Γ
∗
 =

∗ (1) for  ∈ {2 4 5 6 8}, () B̂∗ = B∗ + ∗
¡
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¢
 and () V̂∗ = V∗ + ∗ () 

We only outline the proof of () as we can follow the proofs of Theorems 4.1 and 4.2 to show ()-().

Analogously to the proof of Proposition B.4, we can show that ̃∗ =
P
1≤≤  ∗ + ∗ (1), where

 ∗ ≡  ∗ (
∗
  
∗
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V∗


P
1≤≤ ∗
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 )
0 and ∗ is the bootstrap analogue

of . Noting that ̃
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 is a second order degenerate  -statistic that is “clean” (∗[ ∗ (

∗
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∗[ ∗ ( 
∗
 )] = 0 a.s. for any nonrandom ), we can still apply Proposition 3.2 in de Jong (1987) to

prove the CLT for ̃∗ by showing that (1) Var
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For (1), using the IID property of {}  we can readily show that
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where we follow the proof of Theorem 4.2 and show the term 

¡
−1

¢
in the last line. For (2) recall that

12 is the (1 2)th element of ̄, and  =
P

1=1

P
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First, note that the term inside the last summation takes value 0 if either # {1 3 5 7}  2 or

# {2 4 6 8}  2 So it suffices to consider three cases according to the number of distinct time indices
in the set  = {1  8} : () # = 4, () # = 3 and () # ≤ 2. We use ∗, ∗ and ∗ to denote
the corresponding summations when the time indices are restricted to cases ()  () and ()  respectively.

Then ∗ = ∗ + ∗ + ∗. For 
∗
, we must have # {1 3 5 7} = 2 and # {2 4 6 8} = 2

Without loss of generality, assume that 1 = 3  5 = 7 and 2 = 4  6 = 8. By the IID property of
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Similarly, we can show that ∗ = ∗
¡
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= ∗ (1) for  =   It follows that ∗ = ∗ (1)  For

(3), we write ∗ ≡
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For ∗11, we have
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Then ∗11 = ∗ (1) With the same method we can show that 
∗
12 = ∗ (1). Thus 

∗
1 = ∗ (1).

Similarly, we can show that ∗2 = ∗ (1) and ∗3 = ∗ (1). It follows that 
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E Some technical lemmas

Let {  ≥ 1} be a D-strong mixing process with mixing coefficient D (·). We will use the following
lemmas frequently.

Lemma E.1 (Conditional Davydov Inequality) Suppose that 1 and 2 are random variables which

are measurable with respect to  (1  ) and 
¡
+   

¢
, respectively, and that both k1kD and

k2kD are bounded in probability, where    1 and −1+−1  1. Then |D (12)−D (1)D (2)| ≤
8 k1kD k2kD 

1−−1−−1
D () 

Lemma E.2 Suppose max1≤≤  || ∞. Then max1≤≤ || = 
¡
 1

¢
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Proof. Let  ≡  1. We have
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µ
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¶
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X
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 [1 (||   )] ≤
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∙ ||
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¸

= 
−


X
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 [|| 1 (||   )] ≤ max
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 [|| 1 (||   )]→ 0

It follows that max1≤≤ || = 
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Lemma E.3 Let  be an × matrix,  and  be ×  matrices, and  be an ×  matrix. Then

() kk ≤ kk ≤ kk
p
rank ();

() kk ≤ kk kk ;
() kk ≤ kk kk ≤ kk kk ;
() max {kk1  kkmax} ≤ kk ≤

√
 kk  where kk1 ≡ max

P
=1 | | and kk∞ ≡ max

P
=1 | |;

() tr() ≤ kk kk ;
()  () ≤ () kk ;
() kk ≤  () for any p.s.d. diagonal matrix ;

() kk ≤ max1≤≤ || for any diagonal matrix ;
() kk = kvec()k ;
() 1 (

0) = 1 (
0) ;

() rank() ≤ min{rank() rank()};
() rank( + ) ≤ rank()+rank().

Proof. For the proofs of ()-() see Theorem S.3.1 in Moon and Weidner (2010). For the proofs of

()-() see Bernstein (2005) or Seber (2007).

REFERENCES

Bai, J. (2009) Panel data model with interactive fixed effects. Econometrica 77, 1229—1279.

Bernstein, D.S. (2005) Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear
Systems Theory. Princeton University Press, Princeton.

Kato, T. (1980) Perturbation Theory for Linear Operators. Springer-Verlag.

Moon, H.R. & M. Weidner (2010) Dynamic linear panel data regression models with interactive fixed
effects. Working paper, University of Southern California.

Moon, H.R. & M. Weidner (2012) Linear regression for panel with unknown number of factors as
interactive fixed effects. Working paper, University of Southern California.

Seber, G. (2007) A Matrix Handbook for Statisticians. John Wiley & Sons, New Jersey.

Su, L., S. Jin, & Y. Zhang (2013) Specification test for panel data models with interactive fixed effects.
Working paper, Singapore Management University.

34


	Nonparametric Dynamic Panel Data Models with Interactive Fixed Effects: Sieve Estimation and Specification Testing
	Citation

	dynamic_np_interactive20130505.dvi

