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Abstract: This paper examines two factors that help to explain geographic variation in health outcomes. The first 

factor concerns proximity to medical services. The second factor is state-specific health care policy that may 

impede access to nearby medical services. Four key findings are obtained. First, the effect of local doctors on 

reducing mortality rates of various diseases in a county attenuates with distance. Second, at approximately the same 

distance, in-state doctors contribute more to lowering mortality rates in the primary county than do out-of-state 

doctors. Third, the lesser impact of nearby out-of-state doctors is further reduced when the primary state adopts 

more stringent policies that restrict entry of out-of-state physicians. Fourth, the impact of nearby doctors is found to 

be stronger in more urbanized areas. This is consistent with agglomeration economies being effective in 

contributing, at least in part, to the productivity of treating patients. 

 

Keywords: Agglomeration, Health care, State border 

 

1. Introduction 

Mortality rates for heart disease, cancer, and stroke differ dramatically across locations in the United 

States. As shown in Fig. 1a, Fig. 1b and Fig. 1c, mortality rates associated with these diseases are 

generally the highest in certain eastern rural states, such as West Virginia, Alabama, Mississippi, and the 

lowest in states like Utah, Arizona, and New Mexico. Traditional explanations for geographic variation in 

health outcomes have mainly focused on the impact of health care expenditures and environmental 

factors.
1
 This paper extends the literature by examining the effect of proximity to medical professionals 

on local population health outcomes and the degree to which state physician licensing policies reduce the 

impact of out-of-state physicians. A better understanding of these factors is important for improving 

national health since restricted access to medical services is one of the leading causes for poor health 

outcomes in lightly developed areas.
2
 

 

                                                           
1
 Previous studies examining the impact of health care expenditures find inconsistent evidence. Studies using available cross-

sectional datasets show almost complete absence of a positive relationship between expenditures and the quality of care (Fisher 

et al., 2003a, Fisher et al., 2003b, Baicker and Chandra, 2004 and Fisher et al., 2009). In contrast, instrumental variables and 

panel data evidence suggest that higher spending is associated with significantly lower mortality (McClellae et al., 1994, 

Cutler, 2007, Chandra and Staiger, 2007 and Doyle, 2011). 
2
 See, for example, Casey et al. (2001), and Coughlin et al. (2002). 
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Fig. 1a. State variation in mortality rates (per 100,000 residents) for heart disease. 

 

Fig. 1b. State variation in mortality rates (per 100,000 residents) for cancer. 

 

Fig. 1c. State variation in mortality rates (per 100,000 residents) for stroke. 
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The focus on proximity to medical professionals in explaining local health status is motivated by sharp 

urban–rural differences in patient outcomes.
3
 Using data from the Compressed Mortality File (CMF), 

Table 1a reports mortality rates from heart disease, cancer, and stroke for areas with different degrees of 

urbanization. As shown in the table, mortality rates are significantly lower in large cities relative to small 

cities or remote “non-core” areas. For instance, while the mortality rate for heart disease is as low as 214 

per 100,000 residents for large metropolitan areas, it rises up to 248 per 100,000 residents for “non-core” 

areas. Similar patterns can also be found for cancer and stroke. 

 

Table 1a. Mortality rates (per 100,000 residents) stratified by urbanization level. 

Urbanization level
a
 Heart disease Cancer Stroke 

Large metro
b
 214.1 138.8 46.2 

Medium metro
c
 219.0 147.6 52.6 

Small metro
d
 225.5 152.1 56.0 

Micropolitan
e
 240.4 155.1 56.7 

Noncore
f
 247.6 156.9 57.6 

    
F-test of equal mortality rates  154.0 120.2 134.6 

 

a. National Center for Health Statistics (NCHS) has developed an urban–rural classification scheme for U.S. counties 

and county-equivalents. The classification scheme is based on 2003 Rural–Urban Continuum Codes and 2003 Urban 

Influence Codes released by Economic Research Service (ERS). 

b. Large metro areas contain counties in metro area of at least 1 million residents or more. 

c. Medium metro areas contain counties in metro area of 250,000–999,999 population. 

d. Small metro areas contain counties in metro area of 50,000–249,999 population. 

e. Micropolitan areas contain counties with urban population of 20,000–49,999 (adjacent to metro area). 

f. Noncore areas contain counties with urban population of 20,000–49,999 (not adjacent to metro area) and counties 

with population below 20,000. 

One possible explanation of this phenomenon is that larger metropolitan areas provide residents with 

better access to medical services. This is suggested by Table 1b, which shows that medical services, as 

measured by the number of doctors per capita, are highly concentrated in large cities. For instance, more 

than 100 cardiologists per ten million residents are present in large metropolitan areas, but only 28 are 

present per ten million residents in lightly developed “non-core” areas. This, together with Table 1a, 

further suggests that better access to medical professionals likely contributes to lower mortality rates from 

heart disease, cancer and stroke. 

 

  

                                                           
3
 In the United States, residents in rural areas generally have poorer health than those in more urbanized areas. See, for 

example, Eberhardt and Pamuk, 2004 and Eberhardt and Ingram, 2001, and Ricketts (1999). 
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Table 1b. Number of doctors per 100,000 residents stratified by urbanization level. 

Urbanization level
a
 Doctors Cardiologists Oncologists Neurologists 

Large metro
b
 40.63 1.01 0.68 0.19 

Medium metro
c
 33.93 0.84 0.50 0.18 

Small metro
d
 32.43 0.84 0.53 0.19 

Micropolitan
e
 12.81 0.23 0.14 0.05 

Noncore
f
 20.86 0.28 0.19 0.07 

     

F-test of equal medical capacity 85.86 110.86 84.11 65.39 

 

a. National Center for Health Statistics (NCHS) has developed an urban–rural classification scheme for U.S. counties 

and county-equivalents. The classification scheme is based on 2003 Rural–Urban Continuum Codes and 2003 Urban 

Influence Codes released by Economic Research Service (ERS). 

b. Large metro areas contain counties in metro area of at least 1 million residents or more. 

c. Medium metro areas contain counties in metro area of 250,000–999,999 population. 

d. Small metro areas contain counties in metro area of 50,000–249,999 population. 

e. Micropolitan areas contain counties with urban population of 20,000–49,999 (adjacent to metro area). 

f. Noncore areas contain counties with urban population of 20,000–49,999 (not adjacent to metro area) and counties 

with population below 20,000. 

 

A second factor that may also help to explain lower mortality rates in large cities is that doctors may be 

more productive in urban areas populated with large numbers of medical professionals. This would be 

consistent with literature on agglomeration economies, which has provided evidence that productivity is 

often enhanced when companies operate in agglomerated locations.
4
 The increase in productivity is 

thought to arise from a combination of learning from nearby workers and firms (i.e., knowledge 

spillovers), sharing of valuable intermediate input providers (i.e., input sharing), and/or opportunities to 

draw upon skilled pools of nearby labor (i.e., labor market pooling).
5
 

Both explanations suggest that the impact of doctors on local patient outcomes will diminish with 

distance. High travel costs associated with long distances impede access to nearby medical services. 

Potential spillover effects that may enhance physician productivities in treating patients also tend to 

attenuate with distance, as suggested in the literature.
6
 

The first goal of this paper is to examine the extent to which proximity to medical services affects local 

patient outcomes and how quickly the impact of nearby doctors attenuates with geographic distance. To 

this end, I examine the impact of key features of the local medical industry (e.g., the number of 

physicians) in two concentric rings that extend out to fifty miles from the geographic centroid of a 

                                                           
4
 This idea is introduced in Marshall (1920) and surveyed extensively in later literature (Quigley, 1998, Rosenthal and Strange, 

2004 and Glaeser and Gottlieb, 2009). 
5
 See, for instance, Glaeser and Maré (2001), and Moretti (2004) for evidence of knowledge spillovers, Holmes, 1999 and 

Ellison et al., 2010, and Li (2013) for evidence of input sharing, and Rosenthal and Strange (2001), and Costa and Kahn (2000) 

for evidence of labor market pooling. 
6
 See, Rosenthal and Strange, 2003, Rosenthal and Strange, 2005, Rosenthal and Strange, 2008 and Andersson et al., 2009, and 

Arzaghi and Henderson (2008). 
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primary county.
7
 As will become apparent, the medical environment in the inner ring has a notably 

stronger effect on nearby population health outcomes. 

A second goal of the paper is to identify the possible presence of state border effects that may impede the 

ability of physicians to practice across state lines and thereby reduce the impact of out-of-state physicians 

on nearby patient outcomes. Such effects may arise because of state-specific medical licensing 

regulations and related policies that govern reciprocity of physician licensing across state boundaries.
8
 By 

comparing the influence of doctors just on either side of a state border, I show that the impact of out-of-

state doctors on nearby patient outcomes is smaller than that of in-state doctors. The in-state versus out-

of-state difference is attributable, at least in part, to state physician licensing laws: results indicate that the 

lesser impact of out-of-state doctors is further reduced for states with more stringent licensing policies. 

As an alternative approach, I also experiment with measures of the per capita number of physicians in a 

state and the number of physicians per square mile in a state as indicators of the statewide medical policy 

environment. These measures are motivated by reports that rural states are more proactive in trying to 

attract medical professionals to their locations.
9
 Evidence from this alternative approach is similar to 

when a direct measure of the policy environment is used in the model specification. 

Findings in this paper contribute to two distinct but important literatures. The first is the health economics 

literature. By examining the influence of state medical licensing policy and proximity to medical services 

on local patient outcomes, I offer a new perspective on geographic variation in health outcomes. Evidence 

of state border effects also points to inefficiencies in the health care system and, in this sense, yields 

important policy implications for state reciprocity agreements. This is particularly important in the 

context of rising health care expenditures.
10

 

This paper also contributes to the literature on the presence of agglomeration economies in the hospital 

service industry. Numerous studies have provided evidence that productivity is often enhanced when 

companies operate in concentrated areas, but only a few of these studies have considered the health care 

industry.
11

 This paper further enriches the literature by showing that the impact of nearby doctors is 

stronger in more urbanized areas. I argue that this evidence is consistent with the idea that concentrations 

of medical services improve doctor’s productivity of treating patients and, in this sense, supports the 

presence of hospital productivity spillovers at agglomerated locations.
12

 

                                                           
7
 As a comparison, the median of county area in the United States is 645.18 square miles, which corresponds to a circle with a 

14.33-mile radius; the seventy-fifth percentile is 973.41 square miles, which corresponds to a circle with a 17.61-mile radius. 
8
 Data source: State Medical Licensure Requirements and Statistics, American Medical Association. Details of this policy are 

discussed in Section 2. 
9
 Texas, for instance, has invested in expanding residency opportunities beyond the number of medical students in Texas with 

the aim of attracting more out-of-state medical graduates to Texas. http://www.kevinmd.com/blog/2010/11/addressing-

physician-shortage-texas.html. 
10

 The rise in health care expenditures over time has been documented in Chernew et al. (2003), and Bodenheimer (2005), for 

instance. 
11

 Baicker and Chandra, 2010 and Cohen and Morrison Paul, 2008, and Li (2013) are among the few that examine productivity 

gains from agglomeration in the health care industry. 
12

 There are two caveats to this argument that should be noted for completeness. The first is that patients with greater health 

problems may seek treatment in large cities where more medical services are provided. This behavior would predict poor 

underlying health of the patient pool in medically concentrated areas. As a result, the estimated impact of nearby doctors in big 

cities could suffer from downward bias. The second caveat concerns doctors’ abilities. The idea is that more talented doctors or 
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The empirical work to follow is based on two datasets at the county level: the Compressed Mortality File 

(CMF) and the Area Resource File (ARF).
13

 Separate regressions are carried out for three types of 

diseases: heart disease, cancer, and stroke. Mortality rates associated with these diseases at the county 

level are obtained from the CMF and are used as proxies for health outcomes. A wide set of medical 

factors are extracted from the ARF and are converted into concentric ring variables and further partial 

concentric rings based on how the rings are intersected by state lines. This specification improves upon 

previous studies by including a richer palette of explanatory variables that capture the distribution of local 

medical services. 

I obtain four key results. First, the impact of nearby medical professionals on local population health 

outcomes attenuates with geographic distance. For example, focusing on doctors residing inside the state, 

doubling the number of doctors within 25 miles reduces the mortality rate for heart disease in a county by 

6.26%. This effect drops to 0.46% for doctors within the 25–50 mile distance band. Similar attenuation 

patterns can also be found for adjacent out-of-state doctors, as well as for other types of diseases 

considered in this paper. Second, in-state doctors contribute more to lowering mortality rates in the 

primary county than do out-of-state doctors. Focusing only on the 25-mile ring, doubling the number of 

nearby in-state doctors reduces the mortality rate for stroke by 8.82%, which is 3.75 higher in percentage 

points than the corresponding out-of-state effect. Third, the smaller impact of out-of-state doctors is 

further reduced if the physician licensing policy adopted by the primary state is more likely to restrict 

entry of out-of-state physicians. The results are robust when the statewide medical policy environment is 

further instrumented by per-capita number of doctors and number of doctors per square mile. Fourth, after 

having stratified the sample by population density, I find that the impact of both in-state doctors and out-

of-state doctors are stronger in more urbanized areas. This evidence also suggests that concentrations of 

medical services may generate spillovers that help to improve the productivity of treating patients. 

The rest of the paper is organized as follows. Section 2 discusses state-specific medical licensing policies 

that restrict out-of-state doctors from practicing in-state. Section 3 presents the empirical framework. 

Section 4 describes data and variables. Section 5 shows the empirical results, highlighting the impact of 

proximity to medical services, the influence of state borders, and the role of state-specific licensing 

policies in the imposition of barriers for out-of-state doctors to practice across state lines. Finally, Section 

6 concludes. 

 

2. State-specific medical licensing policies 

Each state in the United States has its own board of medicine that licenses and regulates the practice of 

state physicians. Over time, various licensing boards have developed distinctive laws and regulations to 

ensure the health, safety and welfare of their citizens. The variation in medical regulations and a lack of 

universal reciprocity between states impose barriers for physicians who are currently holding an active 

license in one jurisdiction to practice in another. In particular, a physician who is intent on providing 

                                                                                                                                                                                                            

doctors with higher abilities may sort into large cities (Di Addario, 2011 and Combes et al., 2008). This implies that lower 

mortality rates in concentrated areas could result from doctors in these areas being more capable of treating patients. This 

sorting behavior leads to the overestimation of the impact of availability of doctors in concentrated areas. The net impact of 

these two sorting incentives is unclear. 
13

 Details regarding these two data files are provided in Section 4. 
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patient care in another state is required to go through a complicated application process in order to obtain 

a fully unrestricted medical license from this state.
14

 

The application process is referred to as the licensure endorsement. It is generally based on 

documentation of successfully completing approved examinations, authentication of required core 

documents, and completion of any additional requirements assessing the applicant’s fitness to practice 

medicine in the new jurisdiction.
15

 The high level of standard requires efforts that are viewed as 

duplicative and time-consuming. For example, applicants may be asked to participate in extensive 

interviews or, in other instances, to retake and pass current licensing exams if it has been more than a 

certain number of years since the applicant passed his or her then-current exam. There can be 

considerable expenses in terms of time and cost associated with preparing interviews or taking exams, 

particularly for specialists who have limited the scope of their practice for a certain period of time. 

There are sizable variations in specific requirements of endorsement policies from one state to another. 

Differences are shown in three main aspects: application fees for licensure endorsement, interview 

requirements and maximum years since passing the board examination.
16

 Taking year 2007 as an example 

and as shown in Table 2, thirty-four states require candidates applying for licensure endorsement to show 

up for a comprehensive interview; eleven states stipulate that a license can only be endorsed within a 

certain number of years after the applicant passed his or her most recent medical board examination. 

Among the eleven states with maximum year constraint, Alabama, Arizona, Louisiana, Minnesota, 

Mississippi, North Carolina, South Carolina, and Texas require doctors to refresh their exam records if it 

has been more than 10 years since they initially took the exam. The other three states (Idaho, Oregon, and 

Maryland) have similar but slightly different requirements regarding when exam records expire for 

endorsement (5, 7, and 15 years, respectively). State variation in interview requirements and maximum 

year constraints has been generally consistent over time. 

I define a state as having “stringent policies” if it restricts the entry of out-of-state physicians by adopting 

either the interview requirement or the maximum year constraint. I differentiate neither the different 

extent of the maximum year constraint nor its influence relative to that of a comprehensive interview.
17

 

The grouping of the licensing requirements is suggested by empirical evidence, and it also helps to pick 

up a stronger signal as I expect that the states that adopt either of these requirements are significantly 

different from the other states that have no requirement at all, in terms of their policy impacts on patient 

outcomes. Out of forty-nine states in the continental United States, thirty-six are classified as those with 

                                                           
14

 State specific medical licensing rules are alleged to protect the public from unprofessional, improper, incompetent, unlawful, 

fraudulent, or deceptive practice of medicine (Federation of State Medical Boards). However, the underlying driving force to 

its existence may also involve domestic doctors lobbying against the entry of out-of-state doctors to gain certain monopoly 

power. This would be consistent with the famous notion of Regulatory Capture developed by George Stigler in the Economic 

Theory of Regulation, which argues that political participants may use the regulatory power of the government to shape laws 

and regulations to advance the commercial or special concerns of an interest group. 
15

 State Medical Licensure Requirements and Statistics, American Medical Association. 
16

 Maximum years since passing board examination refer to the maximum number of years it takes for an out-of-state doctor’s 

exam record to expire for endorsement application to practice in a particular state. 
17

 Physician Licensure: An Update of Trends. American Medical Association. http://www.ama-assn.org/ama/pub/about-

ama/our-people/member-groups-sections/young-physicians-section/advocacy-resources/physician-licensure-an-update-

trends.page. 
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more demanding application procedures for licensure endorsement. States with stringent medical 

licensing policies based on this definition are highlighted in bold in Table 2. 

Table 2. State-specific medical licensing policies in 2007. 

State Medical 
license 

application 
fee ($) 

Interview 
requirementsa 

Maximum 
years since 

passing 
board 
examb 

State Medical 
license 

application 
fee ($) 

Interview 
requirementsa 

Maximum 
years since 

passing 
board 
examb 

Alabama 175 NO 10 Nebraska 202 NO – 
Arizona 500 YES 10 Nevada 600 YES – 
Arkansas 400 NO – New Hampshire 250 NO – 
California 1295 NO – New Jersey 225 YES – 
Colorado 425 NO – New Mexico 400 YES – 
Connecticut 450 NO – New York 735 NO – 
Delaware 301 YES – North Carolina 350 YES 10 
Washington, DC 305 NO – North Dakota 200 YES – 
Florida 500 YES – Ohio 335 NO – 
Georgia 400 YES – Oklahoma 400 YES – 
Idaho 400 YES 5 Oregon 375 YES 7 
Illinois 300 YES – Pennsylvania 20 NO – 
Indiana 250 YES – Rhode Island 570 YES – 
Iowa 505 YES – South Carolina 600 YES 10 
Kansas 300 YES – South Dakota 200 YES – 
Kentucky 300 NO – Tennessee 235 YES – 
Louisiana 382 YES 10 Texas 885 YES 10 
Maine 450 YES – Utah 200 YES – 
Maryland 822 NO 15 Vermont 600 YES – 
Massachusetts 600 YES – Virginia 302 YES – 
Michigan 150 NO – Washington 425 NO – 
Minnesota 200 YES 10 West Virginia 300 YES – 
Mississippi 600 YES 10 Wisconsin 110 YES – 
Missouri 300 YES – Wyoming 600 YES – 
Montana 325 YES –     

a. Interview requirements refer to the fact that physicians are required to participate in comprehensive interviews in 

order to obtain another fully unrestricted license from the target state board of medicine. 

b. Maximum years since passing the board exam stipulate how long it takes for an out-of-state doctor’s exam record to 

expire for endorsement to practice in the target state. 

 

3. Empirical framework 

This section describes the empirical framework that motivates the analysis to follow. The modeling 

approach is built upon the literature on agglomeration economies, which suggests that concentrations of 

economic activities promote productivity. Numerous studies have provided evidence in the manufacturing 

sector.
18

 Similar spillover effects in the health care industry have been explored in a few recent studies, 

                                                           
18

 To name a few, see Holmes, 1999 and Rosenthal and Strange, 2001, and Ellison et al. (2010). 
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which find significant localization effects.
19

 That is, when the scale of the local health care industry is 

large, patient outcomes improve (Baicker and Chandra, 2010), and local hospitals are more likely to 

outsource intermediate medical services (Li, 2013) and run at a lower cost (Cohen and Morrison Paul, 

2008). 

The existence of agglomeration economies in the hospital service industry further suggests that the impact 

of concentrations of nearby doctors may attenuate rapidly across geographic space. This is suggested by 

studies that explore the geographic scope of agglomeration economies.
20

 The idea is then captured 

graphically in Fig. 2, where the horizontal axis denotes locations and the vertical axis represents the 

magnitude of the impact of doctors located at various distances. The solid line at the center points to the 

location of the primary county’s geographic centroid, and as illustrated by the dashed line, the impact of 

nearby doctors attenuates gradually with geographic distance. Given that state medical licensing policies 

likely restrict the entry of out-of-state doctors to practice in-state, the impact of nearby doctors is then 

expected to drop discretely at state boundaries and continue with its attenuation pattern afterwards. 

 

Fig. 2. Spatial attenuation of the influence of nearby medical professionals and the impact of state borders. 

 

To illustrate the idea of spatial attenuation and the state border effect, I begin by assuming that the 

county-level health production function follows a Cobb–Douglas functional form. That is, 

   equation(3.1) 

                                                           
19

 As established in the literature, agglomeration economies pertain to external economies of scale and are often divided into 

two types. Those that respect industry boundaries are often referred to as localization economies. Those that extend beyond 

industry boundaries and focus, instead, on the scale associated with city size are referred to as urbanization economies. 
20

 As established in the literature, agglomeration economies pertain to external economies of scale and are often divided into 

two types. Those that respect industry boundaries are often referred to as localization economies. Those that extend beyond 

industry boundaries and focus, instead, on the scale associated with city size are referred to as urbanization economies. 
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To capture the geographic attenuation of spillover effects, all the key features of the local medical 

industry (e.g., number of doctors, nurses and hospital beds) are specified as concentric rings that extend 

out to fifty miles around the geographic centroid of the primary county.
21

 To capture the difference in the 

extent of spillovers associated with in-state and out-of-state medical services, each concentric ring 

variable is further divided into the portion belonging to the same state and the portion overlapping the 

neighboring states. This specification helps to capture state border effects, while also allowing for and 

controlling for geographic attenuation. 

The estimation equation is, thus, specified as follows, 

equation (3.2) 

In this expression, the superscript 0–25 indicates that the corresponding variables are defined for the 0–25 

mile inner ring and 25–50 represents variables associated with the 25–50 mile outer ring. The subscript is 

stands for county i in state s, while the subscript i(−s) denotes the portion of the concentric ring formed 

around the centroid of county i but overlapping the neighboring states. X is a vector of county-level 

demographic controls. µ captures the state fixed effect. This specification improves upon previous studies 

by including a richer palette of explanatory variables that capture the distribution of local medical 

services. It also produces a set of estimates that allow for direct comparison of the impact of doctors at 

various locations. 

                                                           
21

 To strike a balance between maintaining sufficient power to reliably estimate the model while also retaining as much 

precision as possible, I specify two distance bands: 0–25 miles and 25–50 miles. This specification is based on the observation 

that 25 miles are close to the maximum commuting distance for medical practitioners who must be able to travel to the hospital 

quickly given long work hours and periodic emergencies. 
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Although tempting, we cannot simply compare the estimates associated with in-state versus out-of-state 

doctors and attribute the lesser impact of out-of-state doctors to state licensing policies that impede the 

entry of out-of-state doctors to practice in-state. This is because, in some instances, patients may not be 

mobile across state lines, especially when their insurance network coincides with state boundaries.
22

 It is 

likely that the impact of out-of-state doctors is smaller because it is more costly for patients to travel 

across the border and access out-of-state doctors. 

The identification of the state border effect also relies on the assumption that the specified concentric 

rings are sufficient to capture the attenuation gradient. In other words, the impact of doctors associated 

with each distance band is assumed to be fairly homogenous. However, if the attenuation of spillover 

effects is more spatially continuous, the difference between �β1 source and β4 should be better interpreted 

as a mix of the attenuation and the state border effect. This is because the in-state 25-mile partial ring 

captures medical inputs that are distributed closer to the centroid of the primary county, while the 

corresponding out-of-state measure tends to capture inputs distributed further away. 

These issues are addressed by further exploring exogenous variation in stringency of state medical 

licensing policies, as discussed in detail in Section 2. Specifically, a dummy variable indicating whether a 

state adopts more stringent licensing policies is interacted with out-of-state doctor measures. If state 

borders impede access to nearby medical services due to state-specific licensing laws, the lesser impact of 

out-of-state doctors will be further reduced for states with more stringent policies, which will then be 

captured by the coefficient of the interaction term. The identification assumption is that the adoption of 

more stringent licensing policies is not correlated with unobserved factors, such as restrictions on patient 

inter-state travel, which may also contribute to the border effect. Based on this assumption, I identify 

whether the state border effect exists and if so, whether it is attributable, at least in part, to state medical 

licensing regulations that restrict the entry of out-of-state doctors to practice in-state. 

 

4. Data and variables 

The empirical analysis is based on two primary data sources. The first is the Compressed Mortality File 

(CMF), from which I obtain county-level mortality rates for the three most life-threatening diseases: heart 

disease, cancer, and stroke.
23

 Mortality rates associated with each type of disease in a county are 

calculated as the number of deaths from the disease between 1999 and 2007 divided by the standard 

population reported in 2000 decennial census.
24

 Heart disease is defined by the ICD-10 codes ranging 

from GR113-055 to GR113-068, cancer is from GR113-020 to GR113-036, and stroke is defined by 

GR113-070.
25

 

                                                           
22

 For example, Medicaid insurance policies are administered by the state government and, therefore, tend to include only state 

licensed physicians within the insurance network. 
23

 The ranking for causes of death can be found at http://www.cdc.gov/nchs/fastats/lcod.htm. 
24

 Compressed Mortality File 1999–2007 can be accessed through CDC WONDER On-line Database: 

http://wonder.cdc.gov/cmf-icd10.htm. The data file is compiled by the Centers for Disease Control and Prevention, National 

Center for Health Statistics. 
25

 The International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10) is a coding of 

diseases, signs and symptoms, abnormal findings, complaints, social circumstances and external causes of injury or diseases, 

as classified by the World Health Organization (WHO). 
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The second data source is the Area Resource File (ARF), which is published by the Health Resources and 

Services Administration (HRSA). This file provides the numbers of doctors, nurses and hospital beds at 

the county level. For measures of doctor capacity, I focus particularly on the numbers of cardiologists, 

oncologists, and neurologists corresponding to heart disease, cancer and stroke considered in this paper. 

This helps to capture the impact of the most relevant medical professionals. These variables, together 

with the numbers of nurses and hospital beds, are further converted into partial concentric ring variables 

using Geographic Information System (GIS) software (MapInfo and MapBasic, in this instance). 

Several steps are taken to form the concentric ring variables. First, circles of radius 25 and 50 miles are 

drawn around the geographic centroid of each county. Second, treating doctors (nurses, or hospital beds) 

within a given county as uniformly distributed throughout the area, the number of doctors (nurses, or 

hospital beds) contained in a given created circle is calculated by constructing a proportional sum of the 

measure associated with each portion of the county intersected by the given circle. Third, doctors (nurses, 

or hospital beds) in adjacent circles are differentiated to obtain the corresponding measure within the 

corresponding concentric ring. Finally, the number of doctors (nurses, or hospital beds) within a given 

concentric ring is further decomposed into the portion that belongs to the primary state and the portion 

overlapping the neighboring states. 

The construction of the proportional sum measure is better presented in Fig. 3. For example, for county 

A, a 25-mile circle around its centroid intersects seven neighboring counties. Assuming doctors (nurses, 

or hospital beds) in each county are uniformly distributed throughout the area, the measure associated 

with the shaded portion of each county can be calculated by simply applying the area weight of the 

portion. In this way, the number of doctors (nurses, or hospital beds) within the circle is calculated as the 

sum of the doctors (nurses, or hospital beds) belonging to each shaded portion of the counties (including 

A itself) that overlap the circle. 

Fig. 3. Number of doctors (nurses, hospital beds) within a given circle calculated using proportional sum method. 

 

To further control for environmental factors that may also influence patient outcomes, I extract a set of 

standard demographic variables from the ARF. These include the percentage of uninsured population, the 

percentage of residents greater than 65 years old, per capita income, the percentage of people in poverty, 

the percentage of Black inhabitants, the percentage of Asian inhabitants, the percentage of Hispanic 

inhabitants, and the percentage of people with lower than high school education. In addition, in all of the 

models that I adopt later, state fixed effects are included to capture unobserved differences across states 

that may also help to explain patient outcomes, such as weather and diet. 
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Table 3 provides summary statistics of the variables that enter the estimation equation. As shown in the 

table, the average mortality rate for heart disease is 0.29%, highest among all three. The average mortality 

rates for cancer and stroke are 0.18% and 0.07%, respectively. These three diseases are listed as the most 

life threatening diseases, according to the statistics published by the Center for Disease Control and 

Prevention. This is also the reason that I focus on these diseases for my analysis. At the same time, means 

and standard deviations are also reported for medical professionals, nurses, and hospital beds in each 

county, as well as in partial concentric rings measured separately for the in-state portion and the out-of-

state portion.
26

 Summary statistics for county-level demographic attributes are provided towards the end 

of the table. 

Table 3. Summary statistics.
a
 

 Mean Std. dev. 

Mortality rate of heart disease (%) 0.29 0.09 

Mortality rate of cancer (%) 0.18 0.04 

Mortality rate of stroke (%) 0.07 0.03 

Cardiologists 7.00 30.06 

Cardiologists_0–25_in-state 21.98 74.35 

Cardiologists_0–25_out-of-state 5.82 43.87 

Cardiologists_25–50_in-state 42.07 76.25 

Cardiologists_25–50_out-of-state 19.41 81.96 

Oncologists 1.40 5.84 

Oncologists_0–25_in-state 5.06 12.24 

Oncologists_0–25_out-of-state 1.81 6.70 

Oncologists_25–50_in-state 9.34 14.10 

Oncologists_25–50_out-of-state 4.27 13.26 

Neurologists 4.55 21.06 

Neurologists_0–25_in-state 14.81 53.19 

Neurologists_0–25_out-of-state 4.25 32.57 

Neurologists_25–50_in-state 27.40 51.57 

Neurologists_25–50_out-of-state 13.03 57.40 

Nurses 418.30 1516.97 

Nurses_0–25_in-state 1209.57 3147.51 

Nurses_0–25_out-of-state 233.93 1815.55 

Nurses_25–50_in-state 2559.82 3602.38 

Nurses_25–50_out-of-state 976.16 3440.44 

Hospital beds 311.06 1014.34 

Hospital beds_0–25_in-state 896.74 2204.19 

Hospital beds_0–25_out-of-state 173.84 1336.77 

Hospital beds_25–50_in-state 1902.94 2442.34 

Hospital beds_25–50_out-of-state 724.89 2447.77 

% Black 8.84 14.57 

% Asian 1.06 1.95 

% Hispanic 6.21 12.05 

% of uninsured 20.68 6.69 

% of >65 years old 15.71 4.17 

Per capita income 30347.01 8127.01 

% in poverty 15.12 6.24 

% of <high school 9.11 5.25 

% of unemployed 4.85 1.69 

a. Sample contains 3108 counties in total. 

 

                                                           
26

 Medical input variables are inflated by one in order to avoid zeros that render invalidity when constructing the key 

regressors in log terms. 
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5. Results 

5.1. How quickly does the impact of doctors attenuate? 

This section discusses the impact of proximity to medical services on local patient outcomes. Table 4a 

shows results when mortality rates are used directly as proxies for patient outcomes (log mortality rates as 

dependent variables). Table 4b reports estimates when patient outcomes are represented as an exponential 

function of the quality indicators (mortality rates as dependent variables). As a further robustness check, I 

also estimate the log–linear specification and report the results in Table 4c. The following discussion will 

focus on Table 4a, but similar results can also be found in Table 4b and Table 4c. 

Table 4a. Attenuation and state border effects.
a
 Dependent variable: Log Mortality Rates of various diseases (%) (t 

statistics are reported in parentheses using robust standard errors). 

 Heart disease Cancer Stroke 
       
 (a) (b) (c) (d) (e) (f) 
Log (specialists per bed)_0–25_in-state −0.0660*** −0.0626*** −0.0533*** −0.0524*** −0.0882*** −0.0892*** 
 (−8.11) (−7.32) (−5.73) (−5.76) (−8.25) (−7.46) 
Log (specialists per bed)_0–25_out-of-state −0.0110 −0.0056 −0.0094 −0.0040 −0.0507*** −0.0396*** 
 (−1.42) (−0.71) (−1.29) (−0.54) (−4.79) (−3.67) 
Log (specialists per bed)_25–50_in-state – −0.0046 – −0.0004 – 0.0065 
 – (−0.47) – (−0.06) – (0.51) 
Log (specialists per bed)_25–50_out-of-state – −0.0029 – −0.0053 – −0.0214*** 
 – (−0.50) – (−1.05) – (−2.65) 
Log (nurses per bed)_0–25_in-state −0.0519*** −0.0402** −0.0155 −0.0157 −0.0167 −0.0042 
 (−3.55) (−2.58) (−1.18) (−1.25) (−0.87) (−0.21) 
Log (nurses per bed)_0–25_out-of-state −0.0337** −0.0245 −0.0065 −0.0057 −0.0227 −0.0150 
 (−2.41) (−1.64) (−0.64) (−0.52) (−1.08) (−0.65) 
Log (nurses per bed)_25–50_in-state – −0.0306 – 0.0006 – −0.0469 
 – (−1.41) – (0.03) – (−1.54) 
Log (nurses per bed)_25–50_out-of-state – −0.0213 – 0.0015 – 0.0083 
 – (−1.34) – (0.11) – (0.37) 
Log (hospital beds)_0–25_in-state −0.0051 −0.0025 −0.0171*** −0.0155*** −0.0168** −0.0178** 
 (−1.05) (−0.46) (−3.62) (−3.13) (−2.39) (−2.31) 
Log (hospital beds)_0–25_out-of-state −0.0051 −0.0061 −0.0064 −0.0042 −0.0441*** −0.0347*** 
 (−0.86) (−1.03) (−0.99) (−0.65) (−5.22) (−4.05) 
Log (hospital beds)_25–50_in-state – −0.0020 – −0.0025 – 0.0053 
 – (−0.36) – (−0.56) – (0.71) 
Log (hospital beds)_25–50_out-of-state – 0.0044 – −0.0012 – −0.0134** 
 – (1.03) – (−0.27) – (−2.08) 
       
State fixed effects 49 49 49 49 49 49 
Observations 3108 3108 3108 3108 3105 3105 
R-squared 0.705 0.707 0.721 0.722 0.518 0.520 
*
p < 0.1.  

**
 p < 0.05. 

***
 p < 0.01. 

a. Specialists stand for cardiologists for heart disease, oncologists for cancer, and neurologists for stroke. 

Other control variables include % Black, % Asian, % Hispanic, % of uninsured, % of >65 years old, per 

capita income, % in poverty, % of <high school, and unemployment rate (%). 
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Table 4b. Attenuation and state border effects (linear–log model).a Dependent variable: Mortality Rates 

of various diseases (%) (t statistics are reported in parentheses using robust standard errors). 

 Heart disease Cancer Stroke 
 (a) (b) (c) (d) (e) (f) 
Log (specialists per bed)_0–25_in-state −0.0174*** −0.0150*** −0.0083*** −0.0077*** −0.0059*** −0.0059*** 
 (−8.57) (−6.92) (−7.31) (−6.60) (−9.27) (−8.02) 
Log (specialists per bed)_0–25_out-of-state −0.0042** −0.0028 −0.0020* −0.0013 −0.0029*** −0.0020*** 
 (−2.15) (−1.39) (−1.88) (−1.13) (−4.63) (−3.15) 
Log (specialists per bed)_25–50_in-state – −0.0061** – −0.0014 – 0.0002 
 – (−2.35) – (−1.28) – (0.25) 
Log (specialists per bed)_25–50_out-of-state – −0.0011 – −0.0010 – −0.0015*** 
 – (−0.70) – (−1.26) – (−2.70) 
Log (nurses per bed)_0–25_in-state −0.0118*** −0.0108*** −0.0023 −0.0029 −0.0009 0.0002 
 (−3.04) (−2.70) (−1.25) (−1.55) (−0.74) (0.13) 
Log (nurses per bed)_0–25_out-of-state −0.0108*** −0.0077* −0.0011 −0.0012 −0.0028* −0.0019 
 (−2.72) (−1.78) (−0.66) (−0.64) (−1.76) (−1.05) 
Log (nurses per bed)_25–50_in-state – 0.0000 – 0.0019 – −0.0039* 
 – (0.00) – (0.76) – (−1.92) 
Log (nurses per bed)_25–50_out-of-state – −0.0071 – 0.0007 – −0.0004 
 – (−1.59) – (0.34) – (−0.27) 
Log (hospital beds)_0–25_in-state −0.0030*** −0.0021 −0.0031*** −0.0027*** −0.0018*** −0.0019*** 
 (−2.68) (−1.63) (−4.70) (−3.81) (−4.32) (−4.14) 
Log (hospital beds)_0–25_out-of-state −0.0022 −0.0023 −0.0015 −0.0011 −0.0024*** −0.0018*** 
 (−1.52) (−1.52) (−1.62) (−1.17) (−5.12) (−3.58) 
Log (hospital beds)_25–50_in-state – −0.0005 – −0.0007 – 0.0006 
 – (−0.34) – (−1.08) – (1.26) 
Log (hospital beds)_25–50_out-of-state – 0.0007 – −0.0005 – −0.0009* 
 – (0.62) – (−0.70) – (−1.93) 
       
State fixed effects 49 49 49 49 49 49 
Observations 3108 3108 3108 3108 3105 3105 
R-squared 0.684 0.687 0.743 0.744 0.478 0.481 
*
p < 0.1.  

**
 p < 0.05. 

***
 p < 0.01. 

a. Specialists stand for cardiologists for heart disease, oncologists for cancer, and neurologists for stroke. 

Other control variables include % Black, % Asian, % Hispanic, % of uninsured, % of >65 years old, per 

capita income, % in poverty, % of <high school, and unemployment rate (%). 

 

In Table 4a, estimates are reported separately for heart disease, cancer, and stroke. For each type of 

disease, I first run OLS regressions with only 25-mile ring controls. I then add 25–50 mile rings to 

capture possible attenuation effects. The estimated coefficient associated with the closer distance band is 

both higher in magnitude and more significant. Focusing only on the in-state portion and taking heart 

disease as an example, the estimated elasticity of cardiologists within 25 miles is 0.0626 (the absolute 

value of the estimated coefficient in 1st row, column (b)). This effect is much stronger than cardiologists 

present in the 25–50 mile concentric ring (0.0046 in 3rd row, column (b)). For other types of diseases, the 

estimated elasticities of the 25-mile ring measures are generally of higher magnitude than those 

corresponding to the 25–50 mile concentric rings. Similar patterns can also be found for other medical 

inputs.
27

 

                                                           
27

 The impact of out-of-state hospital beds on mortality rates from stroke is stronger than the corresponding in-state effect. This 

may or may not have something to do with the fact that people suffering from stroke require urgent treatment. 
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Table 4c. Attenuation and state border effects (log–linear model).
a
 Dependent variable: Log Mortality Rates of 

various diseases (%) (t statistics are reported in parentheses using robust standard errors). 

 Heart disease Cancer Stroke 
 (a) (b) (c) (d) (e) (f) 
Specialists per bed_0–25_in-state −1.6288*** −1.5189*** −3.4461*** −3.5769*** −2.4649*** −2.6840*** 
 (−2.89) (−2.64) (−3.29) (−3.22) (−3.11) (−3.03) 
Specialists per bed_0–25_out-of-state −0.0250*** −0.0049 −0.0105* −0.0019 −0.0073 0.0012 
 (−2.99) (−0.51) (−1.72) (−0.29) (−0.61) (0.09) 
Specialists per bed_25–50_in-state – −0.1959 – −2.0184 – −1.6412* 
 – (−0.29) – (−1.15) – (−1.80) 
Specialists per bed_25–50_out-of-state – −0.0371*** – −0.0171** – −0.0298** 
 – (−3.54) – (−2.10) – (−2.07) 
Nurses per bed_0–25_in-state −0.0866*** −0.0733*** −0.0276** −0.0263** −0.0489** −0.0351 
 (−5.46) (−4.29) (−2.21) (−2.05) (−2.40) (−1.60) 
Nurses per bed_0–25_out-of-state −0.0422*** −0.0376*** −0.0091 −0.0099 −0.0485*** −0.0381* 
 (−3.39) (−2.78) (−0.97) (−1.00) (−2.63) (−1.96) 
Nurses per bed_25–50_in-state – −0.0444** – −0.0114 – −0.0560** 
 – (−2.14) – (−0.75) – (−2.00) 
Nurses per bed_25–50_out-of-state – −0.0058 – 0.0070 – −0.0048 
 – (−0.43) – (0.70) – (−0.27) 
Hospital beds_0–25_in-state −5.09e−06** −5.62e−06** −3.16e−06* −2.18e−06 −1.68e−05*** −1.39e−05*** 
 (−2.21) (−2.38) (−2.01) (−1.34) (−6.32) (−5.20) 
Hospital beds_0–25_out-of-state 1.47e−06 1.30e−06 1.33e−06 7.61e−07 −8.23e−08 −1.77e−06 
 (0.65) (0.58) (0.81) (0.50) (0.03) (−0.62) 
Hospital beds_25–50_in-state – −1.70e−06 – −2.65e−06 – −4.85e−06* 
 – (−0.74) – (−1.83) – (−1.69) 
Hospital beds_25–50_out-of-state – −1.16e−06 – −1.90e−06 – −9.03e−06*** 
 – (−0.58) – (−1.42) – (−3.57) 
       
State fixed effects 49 49 49 49 49 49 
Observations 3108 3108 3108 3108 3105 3105 
R-squared 0.696 0.698 0.714 0.715 0.506 0.510 
*
p < 0.1.  

**
 p < 0.05. 

***
 p < 0.01. 

a. Specialists stand for cardiologists for heart disease, oncologists for cancer, and neurologists for stroke. 

Other control variables include % Black, % Asian, % Hispanic, % of uninsured, % of >65 years old, per 

capita income, % in poverty, % of <high school, and unemployment rate (%). 

 

Generally speaking, evidence reported in Table 4a, Table 4b and Table 4c is consistent with spatial 

attenuation of the influence of medical services on nearby patient outcomes. Medical professionals within 

25 miles have a notably higher effect on the primary county’s health status, whereas the effects of doctors 

and nurses beyond this range are not significant in terms of reducing the primary county’s mortality rates 

for heart disease, cancer, and stroke. 

 

5.2. Is there a state border effect? 

In addition to spatial attenuation, estimates reported in Table 4a, Table 4b and Table 4c also help to 

explain whether state borders impede access to nearby medical services. As shown in these tables, the in-

state doctor effect is generally of higher magnitude and more significant than the corresponding out-of-
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state doctor effect. This is especially so when focusing on the 25-mile distance band. For instance, in 

Table 4a, the estimated elasticities associated with in-state and out-of-state cardiologists within 25 miles 

are 0.0660 and 0.0110, respectively (1st and 2nd rows, column (a)). The magnitude of the estimated 

coefficient for the in-state portion is 0.0550 higher than that of the out-of-state portion. This pattern is 

generally consistent for all three types of diseases and is robust to how the health outcome is measured, 

although in some instances the out-of-state elasticities tend to be imprecisely estimated.
28

 

Although the evidence for in-state versus out-of-state difference is generally consistent and robust, one 

should still be cautious with interpretation of the state border effect. As discussed earlier, to argue that the 

lesser impact of out-of-state doctors is due to the influence of state borders or state-specific licensing 

laws, I implicitly assume that the attenuation gradient is properly controlled for and potential patient 

immobility across state lines will not contribute to the border effect. If, however, the attenuation pattern 

tends to be more spatially continuous and patients tend to be restricted to access in-state doctors alone due 

to the writing of their insurance policy, the in-state versus out-of-state difference should be better treated 

as a mix of both the attenuation effect and patient immobility across state lines. 

In order to identify the state border effect in a more convincing way, I exploit exogenous variation in 

stringency of state-specific medical licensing policies to examine whether the lesser impact of out-of-state 

doctors is further reduced for states with more stringent policies. This is accomplished by interacting a 

dummy variable for states adopting stricter licensing policies with controls for out-of-state doctors within 

25 miles.
29

 As shown in column (a), column (b), and column (c) of Table 5, the estimated coefficients 

associated with the interaction terms for three types of diseases are generally positive and significant.
30

 

This suggests that patient outcomes in states with stricter licensing policies are less likely to be affected 

by the presence of nearby out-of-state doctors. The estimates reported here also help to generate a sense 

of how strong these policies are in deterring out-of-state doctors in treating in-state patients. Specifically, 

taking heart disease as an example, doubling the number of in-state cardiologists within 25 miles reduces 

mortality rates from heart disease by 6.56%. The corresponding impact of out-of-state cardiologists drops 

to 2.46%. Moreover, for states with more stringent licensing policies, doubling the number of out-of-state 

cardiologists only helps to reduce heart disease mortality rates of the primary county by 0.98% (−2.46 + 

1.48). These findings provide further evidence for the existence of state border effect and how state 

licensing policies contribute to this effect. 

 

  

                                                           
28

 The evidence for neurologists within 25–50 miles distance band seems counter-intuitive. For now, I do not have a good 

explanation of it. 
29

 Only 25-mile rings are included in this specification since the effects of various medical inputs beyond this range are 

generally insignificant. 
30

 Results from alternative specifications are reported in Table A3 and Table A4. Estimates are robust to various model 

specifications. 
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Table 5. The effect of state-specific medical licensing policies.
a
 Dependent variable: Log Mortality Rate 

of various diseases (%) (t statistics are reported in parentheses using robust standard errors). 

 Licensing policy dummy Doctors per capita dummy Doctors per square mile dummy 
 Heart 

disease 
Cancer Stroke Heart 

disease 
Cancer Stroke Heart 

disease 
Cancer Stroke 

 (a) (b) (c) (d) (e) (f) (g) (h) (i) 
Log (specialists per 
bed)_0–25_in-state 

−0.0656*** −0.0533*** −0.0881*** −0.0660*** −0.0532*** −0.0882*** −0.0666*** −0.0543*** −0.0899*** 

 (−8.06) (−5.73) (−8.24) (−8.11) (−5.73) (−8.25) (−8.17) (−5.81) (−8.41) 
Log (specialists per 
bed)_0–25_out-of-
state 

−0.0246*** −0.0150* −0.0567*** −0.0125 −0.0107 −0.0525*** −0.0135* −0.0109 −0.0565*** 

 (−2.73) (−1.84) (−4.92) (−1.59) (−1.47) (−4.89) (−1.70) (−1.49) (−5.29) 
Log (specialists per 
bed)_0–25_out-of-
state × stringent 
reciprocity rules 

0.0148*** 0.0058* 0.0068 – – – – – – 

 (2.89) (1.79) (1.07) – – – – – – 
Log (specialists per 
bed)_0–25_out-of-
state × (doctors per 
capita > median) 

– – – 0.0060 0.0084*** 0.0091* – – – 

 – – – (1.46) (3.49) (1.73) – – – 
Log (specialists per 
bed)_0–25_out-of-
state × (doctors per 
square mile > 
median) 

– – – – – – 0.0090** 0.0106*** 0.0187*** 

 – – – – – – (2.08) (4.06) (3.24) 
Log (nurses per 
bed)_0–25_in-state 

−0.0517*** −0.0154 −0.0165 −0.0516*** −0.0151 −0.0162 −0.0529*** −0.0171 −0.0189 

 (−3.54) (−1.17) (−0.86) (−3.53) (−1.15) (−0.85) (−3.62) (−1.30) (−0.99) 
Log (nurses per 
bed)_0–25_out-of-
state 

−0.0346** −0.0071 −0.0234 −0.0323** −0.0040 −0.0208 −0.0312** −0.0024 −0.0165 

 (−2.49) (−0.69) (−1.10) (−2.30) (−0.39) (−0.98) (−2.23) (−0.23) (−0.78) 
Log (hospital 
beds)_0–25_in-state 

−0.0052 −0.0172*** −0.0169** −0.0051 −0.0169*** −0.0167** −0.0052 −0.0176*** −0.0173** 

 (−1.07) (−3.64) (−2.40) (−1.04) (−3.60) (−2.38) (−1.08) (−3.73) (−2.47) 
Log (hospital 
beds)_0–25_out-of-
state 

−0.0066 −0.0073 −0.0447*** −0.0042 −0.0041 −0.0423*** −0.0030 −0.0019 −0.0397*** 

 (−1.12) (−1.13) (−5.30) (−0.70) (−0.64) (−5.03) (−0.50) (−0.30) (−4.62) 
          
State fixed effects 49 49 49 49 49 49 49 49 49 
Observations 3108 3108 3105 3108 3108 3105 3108 3108 3105 
R-squared 0.705 0.722 0.518 0.705 0.722 0.519 0.705 0.722 0.520 
*
p < 0.1.  

**
 p < 0.05. 

***
 p < 0.01. 

a. Specialists stand for cardiologists for heart disease, oncologists for cancer, and neurologists for stroke. 

Other control variables include % Black, % Asian, % Hispanic, % of uninsured, % of >65 years old, per 

capita income, % in poverty, % of <high school, and unemployment rate (%). 

 

5.3. Robustness checks 

As additional robustness checks, I also experiment with two other ways of instrumenting the stringency of 

the state medical policy environment. The first is to use state-wide per capita number of doctors, and the 

second is to use the number of doctors per square mile. These instruments are motivated by broad 

recognition that there are fewer doctors in rural areas and that rural areas tend to be more proactive in 



The influence of state policy and proximity to medical services on health outcomes 

 

19 

 

trying to attract physicians. In this sense, it is the rural nature of the state, as possibly captured by per 

capita number of doctors and the number of doctors per square mile, that drives related policies that 

govern reciprocity of physician licensing across state lines. 

Table 6 and Table 7 show state rankings by per capita number of doctors and the number of doctors per 

square mile. States with doctor capacity above the median are classified as being more likely to restrict 

entry of out-of-state physicians, whereas the rest are assumed to be less likely to do so. A similar dummy 

variable for policy stringency is created based on the above description and is interacted with the out-of-

state measure of medical professionals. Corresponding results are reported from column (d) to column (i) 

in Table 5. It is shown that the estimated coefficient for the interaction term also tends to be positive and 

significant. This evidence suggests that the impact of out-of-state doctors on nearby patient outcomes is 

higher for rural states that are more proactive in attracting out-of-state physicians. This pattern is 

observed for all three types of diseases considered in this paper. These findings provide further evidence 

for the existence of state border effects that are likely attributable to state policies. 

Table 6. Rank of states by number of doctors per capita (per 100,000 residents). 

Rank State Doctors per capita Rank State Doctors per capita 

1 Washington, DC 81 26 Delaware 28 

2 Massachusetts 51 27 Nebraska 27 

3 New York 44 28 North Dakota 27 

4 Maryland 43 29 New Mexico 27 

5 Vermont 43 30 Missouri 27 

6 Connecticut 41 31 Montana 26 

7 Rhode Island 41 32 Kentucky 25 

8 New Jersey 35 33 West Virginia 25 

9 Pennsylvania 34 34 South Carolina 25 

10 Minnesota 32 35 Kansas 25 

11 Maine 32 36 Indiana 24 

12 New Hampshire 31 37 South Dakota 24 

13 Oregon 31 38 Arizona 24 

14 Illinois 31 39 Alabama 24 

15 Washington 30 40 Georgia 23 

16 California 30 41 Utah 23 

17 Virginia 30 42 Texas 23 

18 Ohio 30 43 Arkansas 22 

19 Florida 29 44 Iowa 21 

20 Louisiana 29 45 Wyoming 21 

21 Colorado 29 46 Nevada 21 

22 Wisconsin 29 47 Mississippi 20 

23 Tennessee 29 48 Oklahoma 19 

24 North Carolina 28 49 Idaho 19 

25 Michigan 28    

   

Another robustness check pertains to alternative distance bands that capture the distribution of local 

medical services. Previous specifications adopt 25 miles as the cutoff distance based on the observation 

that 25 miles roughly correspond to the maximum commuting distance for doctors. To examine how 

sensitive the results are to various radiuses, I also experiment with using 20 miles and 30 miles as the 
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cutoff distance in constructing concentric ring measures. I find robust results in both cases. Estimates are 

reported in Table 8. 

 

Table 7. Rank of states by number of doctors per square mile (SM). 

Rank State Doctors per SM Rank State Doctors per SM 

1 Washington, DC 69.7688 26 Louisiana 0.2413 

2 New Jersey 3.4629 27 Missouri 0.2241 

3 Massachusetts 3.1080 28 Alabama 0.2091 

4 Rhode Island 2.7993 29 Texas 0.2037 

5 Connecticut 2.6195 30 Minnesota 0.1933 

6 Maryland 1.9689 31 West Virginia 0.1901 

7 New York 1.5432 32 Colorado 0.1338 

8 Delaware 0.9641 33 Arizona 0.1329 

9 Pennsylvania 0.9232 34 Arkansas 0.1190 

10 Florida 0.8105 35 Oregon 0.1189 

11 Ohio 0.7547 36 Maine 0.1188 

12 Illinois 0.6792 37 Mississippi 0.1181 

13 California 0.6729 38 Iowa 0.1140 

14 Virginia 0.5342 39 Oklahoma 0.0998 

15 North Carolina 0.4697 40 Kansas 0.0848 

16 New Hampshire 0.4413 41 Utah 0.0720 

17 Tennessee 0.4191 42 Nebraska 0.0626 

18 Indiana 0.4174 43 Nevada 0.0488 

19 Georgia 0.3735 44 New Mexico 0.0432 

20 South Carolina 0.3497 45 Idaho 0.0343 

21 Michigan 0.2892 46 South Dakota 0.0247 

22 Vermont 0.2781 47 North Dakota 0.0242 

23 Washington 0.2751 48 Montana 0.0169 

24 Kentucky 0.2672 49 Wyoming 0.0115 

25 Wisconsin 0.2466    

   

As shown in Table 8, the evidence of state border effects remains strong. For each type of disease, the 

estimated coefficients associated with in-state doctor measures are generally of higher magnitude and 

more significant than that of the out-of-state doctor measures within the same distance band. Moreover, 

the coefficient associated with the interaction term tends to be positive and significantly identified, which 

is consistent with findings obtained using 25-mile distance bands adopted earlier. The evidence from 

these alternative distance band setups, therefore, suggests that the main findings in this paper are fairly 

robust to how the concentric ring measures are specified. 

The final set of robustness checks stratifies the sample by population density. Specifically, I estimate the 

model separately for the top 900 counties that are most densely populated as well as for the rest of the 

counties that are in low-density areas. This is based on the idea that agglomeration economies tend to be 

more pronounced when there are more doctors available in highly concentrated areas. The results 

reported in Table 9 confirm this expectation. Specifically, focusing on the mortality rates from cancer for 

instance, the estimated elasticity associated with nearby in-state oncologists in more densely populated 
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areas is 0.1123 (first row, column (b)), whereas the corresponding elasticity associated with oncologists 

in less densely populated areas reduces to 0.0170 (first row, column (e)). Similar patterns can also be 

found for heart disease and stroke. This evidence further suggests that there may exist spillovers from 

spatial concentration of medical services that enhance the productivity of treating patients. 

 

Table 8. The effect of state-specific medical policies.
a
 Dependent variable: Log Mortality Rate of various 

diseases (%) (t statistics are reported in parentheses using robust standard errors). 

 Use 20 miles as cutoff instead of 25 miles Use 30 miles as cutoff instead of 25 miles 
 Heart 

disease 
Cancer Stroke Heart disease Cancer Stroke 

 (a) (b) (c) (d) (e) (f) 
Log (specialists per bed)_0-
cutoff_in-state 

−0.0681*** −0.0549*** −0.0991*** −0.0611*** −0.0508*** −0.0831*** 

 (−8.65) (−5.92) (−9.45) (−7.32) (−5.51) (−7.68) 
Log (specialists per bed)_0-
cutoff_out-of-state 

−0.0181* −0.0069 −0.0398*** −0.0270*** −0.0177** −0.0563*** 

 (−1.83) (−0.73) (−3.00) (−3.32) (−2.45) (−5.42) 
Log (specialists per bed)_0-
cutoff_out-of-state × 

      

Stringent reciprocity rules 0.0170*** 0.0046 −0.0013 0.0165*** 0.0059** 0.0023 
 (3.22) (1.43) (−0.19) (3.51) (2.01) (0.40) 
Log (nurses per bed)_0-
cutoff_in-state 

−0.0491*** −0.0194* −0.0114 −0.0552*** −0.0113 −0.0159 

 (−3.81) (−1.79) (−0.68) (−3.36) (−0.74) (−0.74) 
Log (nurses per bed)_0-
cutoff_out-of-state 

−0.0409*** −0.0112 −0.0328 −0.0282** −0.0007 −0.0017 

 (−2.95) (−1.14) (−1.46) (−2.01) (−0.06) (−0.08) 
Log (hospital beds)_0-cutoff 
_in-state 

−0.0089* −0.0211*** −0.0262*** −0.0007 −0.0124*** −0.0106 

 (−1.82) (−4.03) (−3.63) (−0.14) (−2.74) (−1.48) 
Log (hospital beds)_0-
cutoff_out-of-state 

0.0002 −0.0011 −0.0379*** −0.0073 −0.0095* −0.0460*** 

 (0.03) (−0.14) (−3.73) (−1.43) (−1.67) (−6.20) 
       
State fixed effects 49 49 49 49 49 49 
Observations 3108 3108 3105 3108 3108 3105 
R-squared 0.707 0.723 0.521 0.703 0.721 0.516 
*
p < 0.1.  

**
 p < 0.05. 

***
 p < 0.01. 

a. Specialists stand for cardiologists for heart disease, oncologists for cancer, and neurologists for stroke. 

Other control variables include % Black, % Asian, % Hispanic, % of uninsured, % of >65 years old, per 

capita income, % in poverty, % of <high school, and unemployment rate (%). 
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Table 9. The effect of state-specific medical policies.
a
 Dependent variable: Log Mortality Rate of various 

diseases (%) (t statistics are reported in parentheses using robust standard errors). 

 High population density areas Low population density areas 
 Heart disease Cancer Stroke Heart disease Cancer Stroke 
 (a) (b) (c) (d) (e) (f) 
Log (specialists per bed)_0–25_in-state −0.0655*** −0.1123*** −0.0991** −0.0487*** −0.0170*** −0.0420*** 
 (−2.76) (−3.02) (−2.52) (−5.34) (−2.63) (−3.46) 
Log (specialists per bed)_0–25_out-of-
state 

−0.0585 −0.0650 −0.0335 −0.0175** −0.0017 −0.0336*** 

 (−1.50) (−1.00) (−0.42) (−2.02) (−0.22) (−2.94) 
Log (specialists per bed)_0–25_out-of-
state × stringent reciprocity rules 

0.0236 0.0288** 0.0018 0.0131*** 0.0020 0.0023 

 (1.59) (2.02) (0.09) (2.75) (0.82) (0.39) 
Log (nurses per bed)_0–25_in-state −0.0587** −0.0043 −0.0098 −0.0499*** −0.0346*** −0.0602** 
 (−2.57) (−0.19) (−0.32) (−2.65) (−2.70) (−2.45) 
Log (nurses per bed)_0–25_out-of-state −0.0199 0.0001 0.0132 −0.0263* −0.0058 −0.0254 
 (−0.64) (0.00) (0.26) (−1.78) (−0.63) (−1.22) 
Log (hospital beds)_0–25_in-state −0.0010 −0.0603** −0.0124 −0.0085 −0.0099** −0.0264*** 
 (−0.06) (−2.23) (−0.39) (−1.52) (−2.09) (−3.59) 
Log (hospital beds)_0–25_out-of-state −0.0218 −0.0332 −0.0016 −0.0041 0.0013 −0.0325*** 
 (−0.69) (−0.52) (−0.02) (−0.70) (0.20) (−3.85) 
       
State fixed effects 49 49 49 49 49 49 
Observations 900 900 900 2208 2208 2205 
R-squared 0.705 0.722 0.518 0.705 0.722 0.519 
*
p < 0.1.  

**
 p < 0.05. 

***
 p < 0.01. 

a. Specialists stand for cardiologists for heart disease, oncologists for cancer, and neurologists for stroke. 

Other control variables include % Black, % Asian, % Hispanic, % of uninsured, % of >65 years old, per 

capita income, % in poverty, % of <high school, and unemployment rate (%). 

 

6. Conclusion 

This paper provides evidence that spatial concentration of medical services improves local population 

health outcomes and the influence tends to attenuate with geographic distance. Estimates suggest that a 

10% increase in the number of doctors that are present within 25 miles of the primary county reduces 

mortality rates from heart disease, cancer, and stroke by 0.660%, 0.533%, and 0.882%, respectively. The 

effect of doctors further away tends to be statistically insignificant and smaller in magnitude. The impact 

of nearby doctors is found to be stronger in areas where medical services are more concentrated. 

The second result is that state-specific licensing policies that restrict out-of-state doctors from practicing 

across state boundaries impede patient access to nearby out-of-state physicians and, thereby, reduce the 

health outcome of residents living in border areas. The smaller impact of out-of-state doctors is further 

reduced when the primary state adopts more stringent physician licensing policies. Two other ways of 

capturing the border effect, by drawing on state variation in per capita number of doctors and number of 

doctors per square mile, yield consistent results. The latter is based on the argument that rural states that 

face shortages of medical professionals tend to design policies in a way that is more attractive to out-of-

state doctors. 
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Appendix 
Table A1: The Effect of State-Specific Medical Policies (Linear-Log Model) a 

Dependent Variable: Mortality Rate of Various Diseases (%) (t statistics are reported in parentheses using robust standard errors) 

 
Licensing Policy Dummy Doctors per Capita Dummy Doctors per Square Mile Dummy 

 
Heart Disease Cancer Stroke Heart Disease Cancer Stroke Heart Disease Cancer Stroke 

 
(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Log (# of specialists per bed)_0-25_in-state -0.0173*** -0.0083*** -0.0059*** -0.0174*** -0.0083*** -0.0059*** -0.0176*** -0.0085*** -0.0060*** 

 (-8.52) (-7.31) (-9.26) (-8.57) (-7.31) (-9.26) (-8.61) (-7.41) (-9.38) 

Log (# of specialists per bed)_0-25_out-of-state -0.0083*** -0.0028** -0.0034*** -0.0046** -0.0022** -0.0030*** -0.0048** -0.0022** -0.0032*** 

 (-3.47) (-2.41) (-4.95) (-2.28) (-2.07) (-4.70) (-2.35) (-2.05) (-4.94) 

Log (# of specialists per bed)_0-25_out-of-state 

× Stringent Reciprocity Rules 0.0045*** 0.0009* 0.0007 - - - - - - 

 (2.93) (1.74) (1.48) - - - - - - 

Log (# of specialists per bed)_0-25_out-of-state 

× (Doctors per capita > median) - - - 0.0015 0.0012*** 0.0005 - - - 

 - - - (1.25) (3.09) (1.31) - - - 

Log (# of specialists per bed)_0-25_out-of-state 

× (Doctors per square mile > median) - - - - - - 0.0020 0.0014*** 0.0011** 

 - - - - - - (1.57) (3.28) (2.58) 

Log (# of nurses per bed)_0-25_in-state -0.0118*** -0.0023 -0.0009 -0.0117*** -0.0023 -0.0009 -0.0120*** -0.0026 -0.0011 

 (-3.03) (-1.25) (-0.72) (-3.01) (-1.22) (-0.72) (-3.09) (-1.36) (-0.84) 

Log (# of nurses per bed)_0-25_out-of-state -0.0110*** -0.0012 -0.0029* -0.0104*** -0.0008 -0.0027* -0.0102*** -0.0006 -0.0025 

 (-2.80) (-0.71) (-1.79) (-2.63) (-0.45) (-1.69) (-2.58) (-0.36) (-1.54) 

Log (# of hospital beds)_0-25_in-state -0.0030*** -0.0031*** -0.0018*** -0.0030*** -0.0031*** -0.0018*** -0.0030*** -0.0032*** -0.0018*** 

 (-2.71) (-4.72) (-4.34) (-2.68) (-4.67) (-4.31) (-2.71) (-4.80) (-4.39) 

Log (# of hospital beds)_0-25_out-of-state -0.0026* -0.0017* -0.0025*** -0.0020 -0.0012 -0.0023*** -0.0017 -0.0009 -0.0022*** 

 (-1.85) (-1.78) (-5.27) (-1.37) (-1.28) (-4.89) (-1.18) (-1.01) (-4.50) 

State Fixed Effects 49 49 49 49 49 49 49 49 49 
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Observations 3,108 3,108 3,105 3,108 3,108 3,105 3,108 3,108 3,105 

R-squared 0.685 0.743 0.478 0.684 0.744 0.478 0.684 0.744 0.479 

a
 Specialists refer to cardiologists for heart disease, oncologists for cancer, and neurologists for stroke.  *** p<0.01, ** p<0.05, * p<0.1 

 

Table A2: The Effect of State-Specific Medical Policies (Log-Linear Model) a 

Dependent Variable: Log Mortality Rate of Various Diseases (%) (t statistics are reported in parentheses using robust standard errors) 

 

 Licensing Policy Dummy Doctors per Capita Dummy Doctors per Square Mile Dummy 

 Heart Disease Cancer Stroke Heart Disease Cancer Stroke Heart Disease Cancer Stroke 

 (a) (b) (c) (d) (e) (f) (g) (h) (i) 

Specialists per bed_0-25_in-state -1.6207*** -3.3737*** -2.4554*** -1.6272*** -3.4623*** -2.4810*** -1.6489*** -3.5300*** -2.5447*** 

 (-2.88) (-3.19) (-3.09) (-2.89) (-3.30) (-3.12) (-2.87) (-3.38) (-3.16) 

Specialists per bed_0-25_out-of-state -0.0619*** -0.0332** -0.0175 -0.0353*** -0.0211*** -0.0228 -0.0443*** -0.0285*** -0.0421** 

 (-3.55) (-2.26) (-0.76) (-3.35) (-2.67) (-1.44) (-3.60) (-3.01) (-2.41) 

Specialists per bed_0-25_out-of-state × 

Stringent Reciprocity Rules 0.0484** 0.0297* 0.0134 - - - - - - 

 (2.51) (1.88) (0.52) - - - - - - 

Specialists per bed_0-25_out-of-state × 

(Doctors per capita > median) - - - 0.0257 0.0262** 0.0387* - - - 

 - - - (1.59) (2.23) (1.78) - - - 

Specialists per bed_0-25_out-of-state × 

(Doctors per square mile > median) - - - - - - 0.0384** 0.0355*** 0.0692*** 

 - - - - - - (2.35) (3.03) (3.03) 

Nurses per bed_0-25_in-state -0.0864*** -0.0277** -0.0490** -0.0863*** -0.0271** -0.0482** -0.0883*** -0.0291** -0.0421** 

 (-5.42) (-2.21) (-2.40) (-5.46) (-2.18) (-2.37) (-5.57) (-2.34) (-2.41) 

Nurses per bed_0-25_out-of-state -0.0439*** -0.0100 -0.0490*** -0.0397*** -0.0064 -0.0446** -0.0378*** -0.0049 0.0692*** 

 (-3.51) (-1.06) (-2.65) (-3.17) (-0.68) (-2.42) (-3.03) (-0.53) (3.03) 

Hospital beds_0-25_in-state -4.56e-06** -3.49e-06** -1.70e-05*** -5.28e-06** -2.96e-06* -1.65e-05*** -5.29e-06** -2.98e-06* -1.64e-05*** 

 (-2.00) (-2.21) (-6.38) (-2.28) (-1.87) (-6.20) (-2.27) (-1.88) (-6.13) 
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Hospital beds_0-25_out-of-state 1.55e-06 1.38e-06 -6.22e-08 1.72e-06 1.59e-06 3.00e-07 2.05e-06 1.88e-06 9.61e-07 

 (0.69) (0.85) (-0.02) (0.77) (1.00) (0.10) (0.92) (1.19) (0.32) 

State Fixed Effects 49 49 49 49 49 49 49 49 49 

Observations 3,108 3,108 3,105 3,108 3,108 3,105 3,108 3,108 3,105 

R-squared 0.698 0.715 0.506 0.698 0.715 0.506 0.698 0.715 0.507 

a
 Specialists refer to cardiologists for heart disease, oncologists for cancer, and neurologists for stroke.  *** p<0.01, ** p<0.05, * p<0.1 

 

Table A3: The Effect of State-Specific Medical Policies a 

Dependent Variable: Log Mortality Rate of Various Diseases (%) (t statistics are reported in parentheses using robust standard errors) 

 

 Metro Areas Non-Metro Areas 

 Heart Disease Cancer Stroke Heart Disease Cancer Stroke 

 (a) (b) (c) (d) (e) (f) 

Log (specialists per bed)_0-25_in-state -0.0681*** -0.0472*** -0.0687*** -0.0485*** -0.0284*** -0.0578*** 

 (-5.20) (-2.61) (-3.86) (-3.94) (-3.44) (-3.45) 

Log (specialists per bed)_0-25_out-of-state -0.0478*** -0.0260 -0.0983*** -0.0144 -0.0075 -0.0249* 

 (-2.61) (-1.02) (-3.41) (-1.45) (-0.93) (-1.95) 

Log (specialists per bed)_0-25_out-of-state ×  

Stringent Reciprocity Rules 0.0246*** 0.0137** 0.0139 0.0085 0.0007 -0.0072 

 (2.99) (2.00) (1.23) (1.47) (0.25) (-1.03) 

Log (nurses per bed)_0-25_in-state -0.0382** -0.0134 0.0065 -0.0438* -0.0171 -0.0544 

 (-2.06) (-0.70) (0.27) (-1.73) (-1.11) (-1.60) 

Log (nurses per bed)_0-25_out-of-state -0.0221 -0.0234 0.0205 -0.0427** 0.0062 -0.0598** 

 (-1.12) (-1.49) (0.62) (-2.20) (0.49) (-2.33) 

Log (hospital beds)_0-25_in-state -0.0020 -0.0034 0.0106 -0.0028 -0.0087* -0.0052 
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 (-0.22) (-0.29) (0.77) (-0.47) (-1.72) (-0.62) 

Log (hospital beds)_0-25_out-of-state -0.0201 -0.0131 -0.0749*** -0.0023 -0.0035 -0.0275*** 

 (-1.45) (-0.56) (-2.96) (-0.38) (-0.54) (-3.03) 

State Fixed Effects 49 49 49 49 49 49 

Observations 1,776 1,776 1,776 1,332 1,332 1,329 

R-squared 0.703 0.723 0.501 0.702 0.722 0.503 

a
 Specialists stand for cardiologists for heart disease, oncologists for cancer, and neurologists for stroke. Other control variables include % Black, % Asian, % Hispanic, % of uninsured, % of > 65years old, per capita income, 

% in poverty, % of < high school, and unemployment rate (%). *** p<0.01, ** p<0.05, * p<0.1 
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Table A4: The Effect of State-Specific Medical Policies a 

Dependent Variable: Log Mortality Rate of Various Diseases (%) 

(t statistics are reported in parentheses using robust standard errors) 

 

 Heart Disease Cancer Stroke 

 (a) (b) (c) 

Log (specialists per bed)_0-25_in-state -0.0654*** -0.0534*** -0.0885*** 

 (-8.04) (-5.75) (-8.26) 

Log (specialists per bed)_0-25_out-of-state -0.0238*** -0.0138* -0.0518*** 

 (-2.70) (-1.73) (-4.54) 

Log(# of doctors per bed)_0-25_out × 

Maximum Year Constraint 0.0324*** 0.0031 -0.0144 

 (3.56) (0.54) (-1.07) 

Log(# of doctors per bed)_0-25_out ×  

Interview Requirement 0.0171*** 0.0065** 0.0064 

 (3.33) (2.07) (0.97) 

Log(# of doctors per bed)_0-25_out × Both 

Requirements 0.0081 0.0025 -0.0069 

 (1.31) (0.66) (-0.88) 

Log (nurses per bed)_0-25_in-state -0.0526*** -0.0158 -0.0178 

 (-3.59) (-1.20) (-0.93) 

Log (nurses per bed)_0-25_out-of-state -0.0361*** -0.0071 -0.0224 

 (-2.60) (-0.70) (-1.06) 

Log (hospital beds)_0-25_in-state -0.0050 -0.0172*** -0.0171** 

 (-1.04) (-3.65) (-2.43) 

Log (hospital beds)_0-25_out-of-state -0.0058 -0.0067 -0.0438*** 

 (-0.99) (-1.03) (-5.18) 

State Fixed Effects 49 49 49 

Observations 3,108 3,108 3,105 

R-squared 0.706 0.722 0.519 

a
 Specialists stand for cardiologists for heart disease, oncologists for cancer, and neurologists for stroke. Other control variables include % Black, % 

Asian, % Hispanic, % of uninsured, % of > 65years old, per capita income, % in poverty, % of < high school, and unemployment rate (%). *** p<0.01, 

** p<0.05, * p<0.1 
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