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Statistics and Its Interface Volume 1 (2008) 289–296

An efficient method for maximum likelihood
estimation of a stochastic volatility model∗

Shirley J. Huang
†

and Jun Yu
‡

In this paper an efficient, simulation-based, maximum
likelihood (ML) method is proposed for estimating Tay-
lor’s stochastic volatility (SV) model. The new method is
based on the second order Taylor approximation to the in-
tegrand. The approximation enables us to transfer the nu-
merical problem in the Laplace approximation and that in
importance sampling into the problem of inverting two high
dimensional symmetric tri-diagonal matrices. A result re-
cently developed in the linear algebra literature shows that
such an inversion has an analytic form, greatly facilitat-
ing the computations of the likelihood function of the SV
model. In addition to provide parameter estimation, the new
method offers an efficient way to filter, smooth, and fore-
cast latent log-volatility. The new method is illustrated and
compared with existing ML methods using simulated data.
Results suggest that the proposed method greatly reduces
the computational cost in estimation without sacrificing the
statistical efficiency, at least for the parameter settings con-
sidered.

AMS 2000 subject classifications: Primary 62G05,
62G09; secondary 62P20.
Keywords and phrases: Maximum Likelihood, Stochas-
tic Volatility Models, Laplace Approximation, Importance
Sampler.

1. INTRODUCTION

In finance, volatility clustering refers to the observation
that large changes tend to be followed by large changes.
A quantitative manifestation of this fact is that, while re-
turns themselves are uncorrelated, absolute returns or their
squares display a positive, significant autocorrelation func-
tion. The best known models for capturing volatility clus-
tering are of ARCH-type, where the conditional variance is
explicitly modeled as a deterministic function of past re-
turns. Such a model facilitates statistical analysis because
the likelihood function is readily available in closed form.

∗We would like to thank the editor and a referee for helpful comments.
†Huang gratefully acknowledges financial support from the Office of
Research at Singapore Management University under Grant No. 07-
C207-SMU-028.
‡Yu gratefully acknowledges financial support from the Ministry of
Education AcRF Tier 2 fund under Grant No. T206B4301-RS.

A popular alternative to the ARCH-type models for cap-
turing volatility clustering is the stochastic volatility (SV)
model (Taylor, 1982), where volatility is latent, following a
separate stochastic process. A salient feature of this model
is that the likelihood function is expressed by a high di-
mensional integral which cannot be solved analytically due
to the presence of a latent process. As a result, the max-
imum likelihood (ML) estimation is not trivial as in the
ARCH models. In recent years, several simulation-based
ML methods has been proposed in the econometrics liter-
ature for estimating the SV model. A partial list of refer-
ences is Danielsson and Richard (1993), Danielsson (1994),
Shephard and Pitt (1997), Durbin and Koopman (1997),
Kim, Shephard and Chib (1998), Sandmann and Koopman
(1998), Liesenfeld and Richard (2003, 2006), Richard and
Zhang (2007), Durham (2006, 2007), and Skaug and Yu
(2007). The idea in these papers is to evaluate the likelihood
function numerically by integrating out the latent volatil-
ity process via importance sampling techniques, followed by
numerical maximization of the approximate likelihood func-
tion.

In particular, the work by Shephard and Pitt (1997),
Durbin and Koopman (1997), Sandmann and Koopman
(1998), seems to have received much attention. In these pa-
pers, the likelihood function is approximated 1) by approx-
imating the distribution of volatilities, conditional on re-
turns, with a multivariate normal distribution (i.e. Laplace
approximations); 2) by making independent draws from the
multivariate normal distributions for Monte Carlo integra-
tions (i.e. importance sampling). Both in the Laplace ap-
proximation stage and in the importance sampling stage,
one has to calculate, numerically and repeatedly, the in-
verses of high dimensional matrices. These numerical in-
versions are the main contributors to the computational
cost for evaluating the likelihood function. Another pop-
ular ML method was proposed by Richard and Zhang
(2007).

The purpose of this paper is to develop a new simulation-
based ML method whose computational cost is much re-
duced relative to that of the existing ML methods. Our
method is built upon the work of Shephard and Pitt (1997),
Durbin and Koopman (1997), Sandmann and Koopman
(1998), Durham (2006, 2007), and Skaug and Yu (2007). In
particular, the proposed method approximates the integrand
in the likelihood function using the second order Taylor ex-
pansions and hence translates the numerical problem in the
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Laplace approximation into the problem of inverting sym-
metric tri-diagonal matrices. In a recent contribution in the
linear algebra literature, Yamani and Abdekmonen (1997)
showed that the inverse of symmetric tri-diagonal matrices
has an analytic form. The use of the explicit inverse greatly
decreases the computational cost for calculating the like-
lihood function. Furthermore, the new method provides a
computationally efficient way to filter, smooth, and forecast
latent log-volatility.

A drawback of the proposed method is that it may not
be easily generalized to more flexible stochastic volatility
models. For example, a highly important stylized fact in
stock returns is the leverage effect (Black, 1976, Harvey and
Shephard, 1996, Yu, 2005). However, it is well known that
for some financial time series, such as the exchange rate
returns and interest rates, the leverage effect is insignificant
(Meyer and Yu, 2000) and our method should be useful for
these data.

The rest of the paper is organized as follows. Section 2
reviews the ML method based on the Laplace approxima-
tion and the importance sampler and introduces the new
method. Section 3 explains how the proposed method facili-
tates smoothing, predicting and filtering the latent variable.
In Section 4 we examine the relative performance of the pro-
posed method using simulated data. Section 5 concludes.

2. SIMULATION-BASED MAXIMUM
LIKELIHOOD METHOD

2.1 A conventional ML method

In this paper, we focus on the so-called basic SV model
of Taylor (1982) which is defined by

(1)
{

Xt = σeht/2εt, t = 1, . . . , T,
ht+1 = φht + γηt, t = 1, . . . , T − 1

where Xt is the return of an asset, εt
iid∼ N(0, 1), ηt

iid∼
N(0, 1), and h1 ∼ N(μ, γ2/(1 − φ2)). As pointed out in Yu
(2005), a negative value for corr(εt, ηt) produces the leverage
effect. In this paper, however, we assume corr(εt, ηt) = 0.

Let θ = (σ,φ, γ)′ be the parameters of interest, X =
(X1, . . . , XT )′ and h = (h1, . . . , hT )′. The likelihood func-
tion of the basic SV model is given by

(2) �(θ) ≡ p(X; θ) =
∫

p(X,h; θ)dh,

where p(·; θ) represents the density, given θ. In general (2)
is high-dimensional integral which does not have closed
form expression due to the non-linear dependence of X
on h.

To perform ML estimation to the SV model, one must
approximate the high-dimensional integral (2) numerically.
Since a typical financial time series has at least several hun-
dreds observations, using traditional numerical integration

methods, such as quadratures, to approximate the high-
dimensional integral (2) is numerically infeasible. This is the
motivation of the use of Monte Carlo integration methods in
much of the SV literature. One of the best received Monte
Carlo methods is to first match the integrand with a multi-
variate normal distribution and second draw a sequence of
independent variables from the multivariate normal distri-
bution. The technique in Stage 1 is known as the Laplace
approximation while the technique in Stage 2 is known as
the importance sampler. In this paper we call the method
LA-IS.

To fix the idea in details, in Stage 1, we match p(X,h; θ)
and a multivariate normal distribution for h as closely as
possible (up to a constant proportion). More precisely, the
mean and co-variance in the multivariate normal are taken
to be h∗ and −Ω−1, respectively, where

(3) h∗ = arg max
h

ln p(X,h; θ)

and

(4) Ω =
∂2 ln p(X,h∗; θ)

∂h∂h′ .

Then the Laplace approximation to the integrand (2) is

(5) p(X,h; θ) ≈ N(h;h∗,−Ω−1),

where N(·; μ,Σ) represents the density of a (multivariate)
normal distribution with mean of μ and co-variance of Σ.

The Laplace approximation is exact when p(X,h; θ) is
Gaussian in h. This is of course not the case for the SV
model. Moreover, for the SV model h∗ does not have the an-
alytical expression. To find h∗, Newton’s method has been
proposed in Shephard and Pitt (1997) and in Durham (2006)
which involves recursive calculations of h = h− − Ω−1h−,
based on a certain initial vector of log-volatilities, h0.1 Ob-
viously, one has to invert Ω, either analytically or numeri-
cally.

Based on the Laplace approximation, the likelihood func-
tion can be written as

p(X; θ) =
∫

p(X,h; θ)dh(6)

=
∫

p(X,h; θ)
N(h;h∗,−Ω−1)

N(h;h∗,−Ω−1)dh.

The idea of importance sampling is to draw samples
h(1), . . . ,h(S) from N(·;h∗,−Ω−1) so that we can approxi-
mate p(X; θ) by

(7)
1
S

S∑
s=1

p(X,h(s); θ)
N(h(s);h∗,−Ω−1)

.

1Since the unconditional mean of h is 0, a natural choice of the initial
vector is 0.
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As in Newton’s method, one has to invert Ω, either analyti-
cally or numerically, during the importance sampling. After
the likelihood function is obtained, a numerical optimiza-
tion procedure, such as the quasi Newton method, can be
applied to obtain the ML estimator.2

The convergence of (7) to the likelihood function p(X; θ)
with S → ∞ is ensured by Komogorov’s strong law of large
numbers. The square root rate of convergence is achieved if
and only if the following condition holds

Var
(

p(X,h(s); θ)
N(h(s);h∗,−Ω−1)

)
< ∞.

See Koopman and Shephard (2004) for further discussions
on the conditions and a test for the convergence.

For Taylor’s SV model, the integrand in (2) can be writ-
ten as

p(X,h; θ) = N

(
h1, 0,

γ2

1 − φ2

)(8)

×
T∏

t=2

N
(
ht, φht−1, γ

2
) T∏

t=1

N
(
Xt, 0, σ2eht

)
,

and hence

ln p(X,h; θ) = lnN

(
h1, 0,

γ2

1 − φ2

)
(9)

+
T∑

t=2

ln N
(
ht, φht−1, γ

2
)

+
T∑

t=1

ln N
(
Xt, 0, σ2eht

)
.

It is easy to show that

∂N(x; μ, σ2)/∂x

N(x; μ, σ2)
= −x − μ

σ2
,

∂N(x; μ, σ2)/∂μ

N(x; μ, σ2)
= −μ − x

σ2
,

∂N(x; μ, σ2)/∂σ2

N(x; μ, σ2)
= − 1

σ2

(
1 − (x − μ)2

σ2

)
.

2It is important to emphasize the Common Random Numbers (CRNs)
technique during the numerical optimizations to enforce a smooth sur-
face of the objective function. That is, the S simulated paths are always
obtained from a fixed set of canonical random numbers, in this case,
the standardized normals. Moreover, the numerical standard errors
can be obtained by conducting the simulated ML under different set
of CRNs. As argued in Durham (2006), the numerical standard errors
are important for assessing the stability of the method.

Using these results, we obtain the gradient of the log-
integrand, denoted as G,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ ln p(X,h;θ)
∂h1

∂ ln p(X,h;θ)
∂h2

...
∂ ln p(X,h;θ)

∂hT−1

∂ ln p(X,h;θ)
∂hT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φh2−h1
γ2 − 1

2 + 1
2ε21

φh3−φ2h2+φh1
γ2 − 1

2 + 1
2ε22

...
φhT −φ2hT−1+φhT−2

γ2 − 1
2 + 1

2ε2T−1
hT −φhT−1

γ2 − 1
2 + 1

2ε2T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Furthermore, the Hessian matrix of the log-integrand, de-
noted as Ω, is

(11)

Ω =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1
γ2 − 1

2
ε21

φ
γ2 · · · 0 0

φ
γ2 − 1+φ2

γ2 − 1
2
ε22 · · · 0 0

...
...

...
...

...

0 0 · · · − 1+φ2

γ2 − 1
2
ε2T−1

φ
γ2

0 0 · · · φ
γ2 − 1

γ2 − 1
2
ε2T

⎞
⎟⎟⎟⎟⎟⎟⎠

where εt = Xt exp(−0.5ht)/σ.
From (10), we see that G contains a system of non-

linear equations in ht and Ω is a symmetric tri-diagonal
matrix. Finding the mode of ln p(X,h; θ) is equivalent to
solving the nonlinear system G(h) = 0. Since there is no
analytical expression for the root to this system, numeri-
cal methods are called for. Shephard and Pitt (1997) sug-
gested using Newton’s method, which recursively calculates
h = h− − Ω−1h−. The recursion starts with a certain ini-
tial vector for log-volatilities. A nature choice is h0 = 0. As
argued in Shephard and Pitt, the algorithm can be slow if
one has to iterate the procedure until full convergence. In-
stead they suggested using a fixed number of iterations to
get h∗.

2.2 The new ML method

The main component of the computation cost in the ML
method reviewed in Section 2.1 is in the iterations of New-
ton’s method and the calculations of Ω−1 in Newton’s it-
erations and importance sampling. To reduce the computa-
tional cost, we propose to approximate the log-integrand (8)
by the second order Taylor expansion:

ML estimation of a stochastic volatility model 291



(12)

ln p(X,h; θ) = − T ln(2π) − T

2
ln(σ2γ2) − 1

2

T∑
t=1

ht

− 1
2σ2

T∑
t=1

X2
t e−ht +

1
2

ln(1 − φ2)

− h2
1

2γ2/(1 − φ2)
−

T∑
t=2

(ht − φht−1)2

2γ2

≈ − T ln(2π) − T

2
ln(σ2γ2) − 1

2

T∑
t=1

ht

+
1
2

ln(1 − φ2) − 1
2σ2

T∑
t=1

X2
t (1 − ht + h2

t /2)

− h2
1

2γ2/(1 − φ2)
−

T∑
t=2

(ht − φht−1)2

2γ2
.

Consequently, we obtain the approximation to the gradi-
ent of the log-integrand, denoted by G̃,

(13)

G̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2

+
X2

1
2σ2 −

(
X2

1
2σ2 + 1

γ2

)
h1 + φ

γ2 h2

− 1
2

+
X2

2
2σ2 + φ

γ2 h1 −
(

X2
2

2σ2 + 1+φ2

γ2

)
h2 + φ

γ2 h3

..

.

− 1
2

+
X2

T−1
2σ2 + φ

γ2 hT−2 −
(

X2
T−1
2σ2 + 1+φ2

γ2

)
hT−1 + φ

γ2 hT

− 1
2

+
X2

T
2σ2 + φ

γ2 hT−1 −
(

X2
T

2σ2 + 1
γ2

)
hT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving G̃ = 0 for h is equivalent to calculating h∗ = A−1B
where

(14)

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

(
X2

1
2σ2 + 1

γ2

)
φ

γ2 · · · 0 0

φ

γ2 −

(
X2

2
2σ2 + 1+φ2

γ2

)
· · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · ·−

(
X2

T−1
2σ2 + 1+φ2

γ2

)
φ

γ2

0 0 · · · φ

γ2 −

(
X2

T
2σ2 + 1

γ2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a symmetric tri-diagonal matrix and

(15) B =

⎛
⎜⎜⎝

1
2 − X2

1
2σ2

...
1
2 − X2

T

2σ2

⎞
⎟⎟⎠ .

Therefore, the problem in Newton’s iterations is trans-
formed into the inverse of a symmetric tri-diagonal matrix,
A. This transformed problem is the same as that in impor-
tance sampling where one has to invert Ω which is also a
symmetric tri-diagonal matrix.

Inverses of tri-diagonal matrices has been extensively
studied both in the linear algebra literature and in the nu-
merical analysis literature; see Meurant (1992) for an ex-
cellent survey of the literature. Many practical applications
require the inverse of tri-diagonal matrices. For example,
when solving elliptic or parabolic partial differential equa-
tions (pde’s) with finite element methods, one has to con-
sider tri-diagonal matrices for one-dimensional problems. In
general, no explicit formulas exist for elements of the inverse
and numerical iteration methods have to be used. However,
for some special tri-diagonal matrices, there are explicit for-
mulas for elements of the inverse.

In Kershaw (1969) and Hu and O’Connell (1996), the
closed form inverse of a tri-diagonal matrix, (Cij), is given,
where Cij = C if i = j, Cij = 1 if j = i + 1 and zero
otherwise. In Schlegel (1970) a slightly more general matrix
was considered where Cij = Ci if i = j and Ci = CT−i+1.
Obviously, neither results can be applied to the tri-diagonal
matrices, A and Ω, encountered in our problem.

In this paper, we make the use of a recent result developed
in Yamani and Abdelmonem (1997) to obtain the closed-
form expression for elements in A−1 and Ω−1. There are
two advantages of using the analytical result relative to the
numerical iteration methods. First, it reduces computational
cost. Second, the error in analytical inverse is up to the
machine precision, ensuring a smoother likelihood function.

The analytical formulae in Yamani and Abdelmonem
(1997) apply to general symmetric tri-diagonal matrices. Let
Cij = ai if i = j, Cij = bi if j = i + 1 and zero otherwise.
Let p1 = 1, p2 = −a1

b1
, q1 = 0, p2 = − 1

b1
, and

pi+1 = −pi−1 −
ai

bi
pi,

qi+1 = −qi−1 −
ai

bi
qi,

for i = 3, . . . , T . Then

(16) (C−1)ij =
(

qj −
qT+1

pT+1
pj

)
pi,

for i, j = 1, . . . , T .
Since in our matrices, A and Ω, the elements in the off-

diagonal are the same, the recursive formulas in p and q can
be simplified to

(17) pn+1 = −pi−1 −
ai

b
pi,

(18) qn+1 = −qi−1 −
ai

b
qi.

In sum, our procedure on calculating the log-likelihood
involves the following steps

1. Obtain h∗ = A−1B and Ω−1(h∗) using the closed form
expression for the inverse based on (16), (17) and (18);

2. Obtain S independent draws from N(·;h∗,−Ω−1), de-
noted by h(s), s = 1, . . . , S;
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3. Calculate 1
S

∑S
s=1

p(X,h(s);θ)
N(h(s);h∗,−Ω−1)

.

The convergence of the above quantity to the likelihood
function p(X; θ) with S → ∞ is ensured by Komogorov’s
strong law of large numbers, as in the conventional ML
method. The square root rate of convergence is achieved
if and only if the following condition holds

Var
(

p(X,h(s); θ)
N(h(s);h∗,−Ω−1)

)
< ∞.

3. SMOOTHING, PREDICTING AND
FILTERING LOG-VOLATILITY

Following the suggestion of Skaug and Yu (2007), we now
show how to smooth, filter and forecast log-volatility in a
numerically efficient way. Our method can be regarded as
an alternative to the “reprojection” procedure developed by
Gallant and Tauchen (1998) and the particle filter proce-
dures developed by Kitagawa (1996) or Pitt and Shephard
(1999). A major advantage of the proposed algorithms is the
ease of implementation and low computational cost. This is
in the sharp contrast to the filtration methods available in
the literature.

The smoother is obtained as a by-product of the Laplace
approximation, i.e., when we calculate h∗ = A−1B, eval-
uated at the ML estimates. Obviously, h∗ depends on the
entire return series X1, . . . , XT .

To obtain the prediction of future values of the log-
volatility, we extend the h vector with as many time pe-
riods as needed. If we want a K-step prediction we take
h = (h1, . . . , hT , hT+1, . . . , hT+K)′. Without loss of general-
ity, assume K = 1 and hence h = (h1, . . . , hT , hT+1)′. With
the new h Equation (9) can be written as

ln p(X,h; θ) = lnN

(
h1, 0,

γ2

1 − φ2

)
(19)

+
T+1∑
t=2

ln N
(
ht, φht−1, γ

2
)

+
T∑

t=1

ln N
(
Xt, 0, σ2eht

)
,

and A, B have the form of

(20)

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(

X2
1

2σ2 + 1
γ2

)
φ
γ2 · · · 0 0

φ
γ2 −

(
X2

2
2σ2 + 1+φ2

γ2

)
· · · 0 0

...
...

...
...

...

0 0 · · · −
(

X2
T

2σ2 + 1+φ2

γ2

)
φ
γ2

0 0 · · · φ
γ2 − 1

γ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is a symmetric tri-diagonal matrix and

(21) B =

⎛
⎜⎜⎜⎜⎝

1
2 − X2

1
2σ2

...
1
2 − X2

T

2σ2

0

⎞
⎟⎟⎟⎟⎠ .

Since A maintain the symmetric tri-diagonal structure, the
inverse can be obtained in the same manner as before. The
last element in h∗, calculated by A−1B and evaluated at the
ML estimates, is the one-step-ahead forecast of log-volatility.

The same idea is applied to obtain the filtered latent vari-
able (i.e. the estimate of ht conditional on X1, . . . , Xt). For
example, to obtain the filter ht, conditional on X1, . . . , Xt,
we define h = (h1, . . . , ht)′ and X = (X1, . . . , Xt)′. With
the new h and X, Equation (9) can be written as

ln p(X,h; θ) = lnN

(
h1, 0,

γ2

1 − φ2

)
(22)

+
t∑

i=2

lnN
(
hi, φhi−1, γ

2
)

+
t∑

i=1

lnN
(
Xi, 0, σ2ehi

)
,

and A, B have the form of

(23)

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

(
X2

1
2σ2 + 1

γ2

)
φ

γ2 · · · 0 0

φ

γ2 −

(
X2

2
2σ2 + 1+φ2

γ2

)
· · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · ·−

(
X2
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2σ2 + 1+φ2

γ2

)
φ

γ2

0 0 · · · φ

γ2 −

(
X2

t
2σ2 + 1

γ2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is a symmetric tri-diagonal matrix and

(24) B =

⎛
⎜⎜⎝

1
2 − X2

1
2σ2

...
1
2 − X2

t

2σ2

⎞
⎟⎟⎠ .

Once again, A maintains the symmetric tri-diagonal struc-
ture and the inverse is obtained as before. The last element
in h∗, calculated by A−1B and evaluated at the ML esti-
mates, is the filtered log-volatility.

4. PERFORMANCE OF THE PROPOSED
METHOD

4.1 Another existing ML method

Richard and Zhang (2007) developed an alternative but
related ML method. It is based on importance sampling and
termed as Efficient Importance Sampling (EIS) procedure.
Relative to the ML method reviewed in Section 2.1, EIS
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Table 1. Comparison of the two existing ML methods with the proposed ML for estimating Taylor’s SV model with T = 2000.
LA-IS is the ML method of Shephard and Pitt (1997), Durbin and Koopman (1997). EIS is the ML method of Richard and

Zhang (2007)

IS-ML EIS Proposed ML

σ φ γ σ φ γ σ φ γ

True Value 1 0.9 0.1 1 0.9 0.1 1 0.9 0.1

Mean .9999 .8779 .1030 .9952 .8779 .1041 .9994 .8777 .1046

Std Err .0196 .0823 .0486 .0211 .856 .0478 .0196 .0824 .0494

RMSE .0196 .0852 .0487 .0216 .856 .0480 .0196 .0854 .0496

CPU 222,715s 134,655s 28,467s

Table 2. Comparison of the two existing ML methods with the proposed ML for estimating Taylor’s SV model with T = 1000.
LA-IS is the ML method of Shephard and Pitt (1997), Durbin and Koopman (1997). EIS is the ML method of Richard and

Zhang (2007)

IS-ML EIS Proposed ML

σ φ γ σ φ γ σ φ γ

True Value 1 0.9 0.1 1 0.9 0.1 1 0.9 0.1

Mean 1.007 .8442 .0936 1.006 .8449 .0939 1.008 .8451 .0949

Std Err .0539 .1900 .0653 .0530 .1890 .0654 .0548 .1950 .0691

RMSE .0544 .1980 .0656 .0530 .1969 .0657 .0554 .2026 .0693

CPU 143,690s 86,881s 18,367s

minimizes the Monte Carlo sampling variance of the ap-
proximation to the integrand by factorizing the importance
density. To fix the idea, assume g(h|X) is the importance
density which can be constructed as

(25)

g(h|X) =
T∏

t=1

g(ht|ht−1,X) =
T∏

t=1

{
Cte

ctht+dth
2
t p(ht|ht−1)

}
,

where ct, Ct and dt depend on X and ht−1 with {Ct} be a
normalization sequence so that g is a normal distribution.
The sequences {ct} and {dt} should be chosen to match
p(X,h; θ) and g(h|X) which, as we shown in the last sec-
tion, requires a high-dimensional non-linear regression. The
caveat of EIS is to match each component in g(h|X) (i.e.
Cte

ctht+dth
2
t p(ht|ht−1)), to the corresponding element in the

integrand p(X;h) (i.e. p(Xt|ht)p(ht|ht−1)) in a backward
manner, with t = T, T − 1, . . . , 1. It is easy to show that Ct

depends only on ht−1 but not on ht. As a result, the recur-
sive matching problem is equivalent to running the following
linear regression backward:

(26)
ln p(Xt|h(s)

t )− ln Ct+1 = a+ cth
(s)
t +dt(h

(s)
t )2, s = 1, . . . , S,

where h
(1)
t , . . . , h

(S)
t are drawn from the importance density

and h
(i)
t and h

(i)
t are treated as the explanatory variables in

the regression model with CT+1 = 1.
The method to approximate the likelihood involves the

following procedures:

1. Draw initial h(s) from Equation (1) with s = 1, . . . , S.
2. Estimate ct and dt from (26) and do it backward with

CT+1 = 1.
3. Draw h(s) from importance density g(h|X) based on ct

and dt.
4. Repeat Steps 2-3 until convergence. Denote the result-

ing sampler by h(s).
5. Approximate the likelihood by

1
S

S∑
s=1

⎧⎨
⎩

T∏
t=1

p(Xt|h(s)
t )

Ct exp
(
cth

(s)
t + dt(h

(s)
t )2

)
⎫⎬
⎭ .

4.2 Performance of the proposed method

To check the performance of the proposed ML method
relative to the LA-IS method reviewed in Section (2.1) and
the EIS method reviewed in Section (4.1), we fit the Taylor’s
SV model to simulated return series using the three ML
methods. In total we design four experiments. In the first
experiment we simulate 2,000 observations simulated from
Model (1) with σ = 1, φ = 0.9, and γ = 0.1. In the second
experiment we simulate 1,000 observations simulated from
Model (1) with σ = 1, φ = 0.9, and γ = 0.1. In the third
experiment we simulate 2,000 observations simulated from
Model (1) with σ = 1, φ = 0.95, and γ = 0.05. In the last
experiment we simulate 1,000 observations simulated from
Model (1) with σ = 1, φ = 0.95, and γ = 0.05.

In all three methods, we select S = 64 and use the
same common random numbers. For the conventional ML
method, we iterate Newton’s method for six times. For the
EIS method, we iterate the recursive regression also for six
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Table 3. Comparison of the two existing ML methods with the proposed ML for estimating Taylor’s SV model with T = 2000.
LA-IS is the ML method of Shephard and Pitt (1997), Durbin and Koopman (1997). EIS is the ML method of Richard and

Zhang (2007)

IS-ML EIS Proposed ML

σ φ γ σ φ γ σ φ γ

True Value 1 0.95 0.05 1 0.95 0.05 1 0.95 0.05

Mean 1.002 .9340 .0507 1.001 .9341 .0505 .9994 .9330 .0496

Std Err .0196 .0567 .0235 .0196 .0568 .0234 .0201 .0575 .0242

RMSE .0197 .0589 .0235 .0196 .0590 .0234 .0201 .0600 .0242

CPU 616,815s 373,863s 78,968s

Table 4. Comparison of the two existing ML methods with the proposed ML for estimating Taylor’s SV model with T = 1000.
LA-IS is the ML method of Shephard and Pitt (1997), Durbin and Koopman (1997). EIS is the ML method of Richard and

Zhang (2007)

IS-ML EIS Proposed ML

σ φ γ σ φ γ σ φ γ

True Value 1 0.95 0.05 1 0.95 0.05 1 0.95 0.05

Mean 1.001 .9128 .049 1.001 .9127 .049 .9990 .9106 .049

Std Err .052 .1310 .0252 .052 .1311 .0250 .055 .1333 .0254

RMSE .052 .1362 .02522 .052 .1363 .0250 .055 .1390 .0254

CPU 277,918s 198,021s 35,529s

Figure 1. Smoothed log-volatilities obtained from the LA-IS
method (solid line) and from the proposed method (dotted

line) based on Taylor’s SV model using simulated data.

times. The experiment is repeated 1,000 times to obtain the
mean, the standard error and the root mean square error
(RMSE) for each estimate.

Tables 1–4 report the mean, the standard error and the
RMSE of the three parameters across 1,000 replications in
all four experiments, respectively. We also report the CPU
time of 1,000 replications for the three ML methods, using
Matlab7.5 in a Pentium IV 3.2 GHz PC running on WIN-

DOWS XP. First, all three methods work well on estimating
σ. The estimates have little bias and small standard errors.
Also, all three methods work well on estimating γ. However,
all methods estimate φ with noticeable biases. The estima-
tion bias is of Hurwicz type (Hurwicz, 1950) and has been
documented in Phillips and Yu (2008) in the context of SV
models. Second, the three sets of estimates are very close
to each other, suggesting little approximation error in the
proposed ML method. This result reinforces what has been
documented in the literature about the relative performance
of the existing ML method. For example, it was found in Lee
and Koopman (2004) that LA-IS and EIS estimators do not
differ much. Third, the proposed ML method is much faster
to compute, reducing the computational cost by nearly 90%
and 80%, respectively, over the two existing ML methods.
This reduction in computational cost is important when sim-
ulation is needed in applications. For example, it would be
much more efficient numerically to obtain the binding func-
tion of φ̂ in indirect inference (Phillips and Yu, 2008) based
on the proposed ML method.

As an alternative way to check the relative performance of
the proposed method, we obtain smoothed time series values
of h using the LA-IS method and the proposed method, both
based on an arbitrarily chosen simulated sequence. Figure 1
plots the two series. It can be seen the two series are almost
identical to each other, suggesting that the proposed method
works well for smoothing.

5. CONCLUSION

This paper introduces a new ML method to estimate the
Taylor’s SV model. Evaluation of the likelihood function
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of this model involves high-dimensional numerical integra-
tions. Conventional ML methods combine the importance
sampling technique with the Laplace approximation. To lo-
cate the mode of the integrand, the conventional ML method
relies on Newton’s iterations. In the proposed ML method,
we first approximate the integrand by the second order Tay-
lor series and show that such an expansion avoids the need
of Newton’s iterations. Using the recently developed explicit
expressions for the inverse of symmetric tri-diagonal matri-
ces, we show that the calculation of the log-likelihood func-
tion is greatly simplified. We also discuss how to apply the
new method to smooth, filter and forecast log-volatilities.
Simulation studies show that our method substantially re-
duces the computational cost without sacrificing the statis-
tical efficiency, at least for the parameter setting considered.
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