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Optimal City Hierarchy: A Dynamic Programming
Approach to Central Place Theory

Wen-Tai Hsu� Thomas J. Holmesy Frank Morganzx

July 26, 2012

Abstract

Central place theory is a key building block of economic geography and an empir-

ically plausible description of city systems. This paper provides a rationale for central

place theory via a dynamic programming formulation of the social planner’s problem

of city hierarchy. We show that there must be one and only one immediate smaller

city between two neighboring larger-sized cities in any optimal solution. If the fixed

cost of setting up a city is a power function, then the immediate smaller city will be lo-

cated in the middle, confirming the locational pattern suggested by Christaller (1933).

Moreover, the optimal city hierarchy can be decentralized. We also show that the

solution can be approximated by iterating the mapping defined by the dynamic pro-

gramming problem. The main characterization results apply to a general hierarchical

problem with recursive divisions.
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1 Introduction

Central place theory describes how a city hierarchy is formed from a featureless plain
of farmers as consumers. It is a key building block of economic geography (King, 1984)
and dates back at least to Christaller (1933). Many have argued for its empirical plau-
sibility as a description of city hierarchy (Fujita, Krugman, and Venables, 1999; Berliant,
2008; Mori, Nishikimi, and Smith, 2008; Mori and Smith, 2011). Although original cen-
tral place theory is not a rigorous economic theory based on incentives and equilibrium,
many economists have found its insights appealing, and a few attempts have been made
to formalize it, including those by Eaton and Lipsey (1982), Quinzii and Thisse (1990),
Fujita, Krugman, and Mori (1999), Tabuchi and Thisse (2011), and Hsu (2012).1

The basic idea behind this theory is that goods differ in their degree of scale economies
relative to market size. Goods for which this ratio is large, e.g., stock exchanges or sym-
phony orchestras, will be found in only a few places, whereas goods for which the ratio
is small, e.g., gas stations or convenience stores, will be found in many places. Moreover,
large cities tend to have a wide range of goods, whereas small cities provide only goods
with low scale economies. Naturally, small cities are in the market areas of large cities for
those goods that they themselves do not provide. In Christaller’s scheme, the hierarchy
property2 holds if larger cities provide all of the goods that smaller cities also provide and
more.

In this paper, a city system is composed of multiple layers of cities, and cities of the
same layer have the same functions, i.e., they host the same set of industries. The driving
force behind the differentiation of cities is the heterogeneity of scale economies among
goods, which is modeled by heterogeneity in the setup costs of production. In addition
to the hierarchy property, another defining feature of city hierarchy in central place the-
ory, that called the central place property, is that there is only one next-layer city between
neighboring larger cities and it is halfway in between. Christaller (1933) calls this the K =
3 market principle.3 The city hierarchy described by central place theory (hereafter central
place hierarchy) is a city system in which both the hierarchy and central place properties
hold. Figure 1 provides an illustration of such a city hierarchy in a one-dimensional geo-
graphic space.4

1Besides central place theory, another important theory of city hierarchy is Henderson’s (1974) type-
of-cities theory, which emphasizes cities’ roles in industrial specialization. Also see the extension to city
growth by Rossi-Hansberg and Wright (2007).

2This is often called the hierarchy principle in the literature.
3On the plane, if there is always only one next-layer city located at the centroid of the equilateral triangle

area in between three neighboring larger cities, then the ratio of the market areas is 3.
4The vertical axis shows the range of goods produced and goods are indexed by some measure of the
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Figure 1: Central Place Hierarchy on the Line.

This paper takes aim at providing a rationale for central place theory via a social plan-
ner’s problem. An innovative feature of this paper is that the social planner’s problem
is formulated as a dynamic programming problem in a geographic space (instead of in
time). In this paper, we ask what optimal city hierarchy would arise from a uniformly
populated space via the tradeoff between transport costs and the setup costs of produc-
tion (and hence, the setup costs of cities). Lucas and Rossi-Hansberg (2002) pioneer the
application of dynamic programming to a spatial problem.5 Whereas they study city res-
idents’ choice of work and residence locations within a city, we apply the technique to
a spatial problem of city locations. Earlier literature in regional science also addresses
central place theory using a recursive structure, e.g., Beckmann (1958, 1970), but does not
make use of dynamic programming.

Quinzii and Thisse (1990) also ask how a central place hierarchy might emerge from a
socially optimal solution, and while they provide conditions under which the hierarchy
property emerges in the optimal solution, their optimal solution does not feature the cen-
tral place property. In contrast, this paper takes as given the hierarchy property and asks
instead whether the spacing in central place theory is optimal. In addition to Quinzii and
Thisse (1990), the other above-mentioned attempts at modeling central place theory, with
the exception of Hsu (2012), have mostly ignored the locational issue, i.e., focused on the
hierarchy property. Thus, this paper complements the literature by squarely confronting
the locational issue. As we will clarify, the hierarchical location choice problem is more

degree of scale economies, e.g., fixed cost of production, y 2 [0; �y], for some �y > 0. The hierarchy property
implies that each city provides goods in [0; y] for some y. Hence, a layer-i city provides goods in [0; yi]; and
obviously, y1 = �y:

5Broadly speaking, spatial problems, like time problems, are closely associated with recursivity and
often have to make use of some functional approaches. For example, see Mirrlees (1972), who probes the
properties of an optimal population density function in a monocentric city.
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complex than one would have imagined or hoped, even with the assumption of uniform
distribution.

In this model there are a continuum of goods that varies in setup cost of production
and a continuum of locations containing individuals who need to consume all the dif-
ferent goods. This underlying modeling structure is the same as that used in Hsu (2012).
In both papers, the central issue is what structure of cities will emerge in this economy,
but the formulations of the problem are very different. Hsu (2012) focuses on the market
equilibrium outcome. This paper instead solves the social planner’s problem. The social
planner’s problem is more technically challenging than the market equilibrium outcome,
requiring us to approach the problem in a different way. In particular, to verify equilib-
rium in Hsu (2012), it was sufficient to examine local conditions in which marginal firms
had zero profit. Here, we need to tackle the global optimality of the planner’s solution,
and this leads to the development of our dynamic programming approach, an approach
that may have additional applications, as we discuss below. In addition to the difference
in formulations, the two papers focus on different questions. Here, the main focus is on
whether or not the central place property is satified. In Hsu (2012), the central place prop-
erty is a simple result, and his focus is whether equilibrium city size distribution follows
the power law. We further elaborate on the connections between these papers in Section
4.

Our main results are as follows. First, we show that under rather weak conditions on
the structure of setup costs, there will always be one and only one immediate sub-city, i.e.,
the largest among all cities in between two neighboring larger-sized cities. The intuition
for why there is at least one city is straightforward, and we provide it here. We assume
that the setup cost goes to zero as city size goes to zero. Thus, between any pair of cities
it is always worthwhile to place another city, perhaps one that is very small, to save on
the transport costs generated by consumers buying low setup cost goods. The intuition
of why there is only one intermediate sub-city is more complicated, and we defer this to
later.

Second, based on the first result, we formulate a sequence problem and the corre-
sponding dynamic programming problem while providing characterization for both prob-
lems. To find an optimal hierarchy, the social planner’s problem can be formulated as
looking for a sequence of the locations and sizes of immediate sub-cities to minimize the
per capita cost. When the size and location of an immediate sub-city are chosen, the loca-
tion divides the area bounded by the two neighboring larger-sized cities into two areas,
each of which is a new area in which a new sub-city is to be determined. Thus, the se-
quence problem form of the social planner’s problem involves an infinite bifurcation of
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areas. Such recursivity naturally allows a dynamic programming formulation. We show
that the two problems are equivalent (the principle of optimality). More importantly, for
the mapping defined by the dynamic programming problem, we show that there exists
a unique fixed point and it equals the minimized cost function of the sequence problem,
and that the fixed point can be approximated by iterations of the mapping, even though
the mapping is not necessarily a contraction as there is no discount factor. Our numerical
examples show that the iterations converge to the solution at a rather fast rate.

We find that all of these characterization results apply to a general problem of re-
cursive divisions and are hence potentially useful in various hierarchical problems. For
example, there is a large literature on firm hierarchy, e.g., Qian (1994), Garicano (2000),
and Garicano and Rossi-Hansberg (2006), and the techniques developed in this paper can
potentially contribute to this literature. Other possible venues of application include out-
sourcing in trade and the structure of fiscal decentralization. We present the results on
the general problem first and then show how these results apply to the city hierarchy
problem.

Third, we find an interesting case in which we can find the unique fixed point analyt-
ically. We show that when the setup cost function is a power, the central place property
holds, i.e., the optimal location of any immediate sub-city is exactly in the middle between
two neighboring larger-sized cities. This functional form is of particular interest because
Hsu (2012) showed that under this condition, the resulting equilibrium size distribution
of cities follows a power law, a well-known empirical regularity.6

Fourth, we determine when the social planner’s solution coincides with the market
equilibrium outcome in Hsu (2012). In particular, we show that the optimal solution
can be achieved through the equilibrium outcome; that is, the optimal solution can be
decentralized. However, other suboptimal equilibria also exist.

The rest of this paper is organized as follows. Section 2 introduces the environment,
defines the social planner’s problem, and derives two key lemmas that simplify the prob-
lem. Section 3 formulates both the sequence and dynamic programming problems and
provides characterization results for both the city hierarchy problem and a more general
problem. It also shows that the central place property holds under the power law distrib-

6Deviations from the power law may be found when smaller cities or towns are included (Eeckhout
2004), but the power law remains a good approximation at least for the right tail (Eeckhout 2004, Rozen-
feld, Rybski, Gabaix, and Makse 2011). The model in this paper is also consistent with such deviations. See
further discussion in Section 3.4. Unlike other theories of urban systems and city size distribution, Hsu’s
explanation of city size distribution is based on what cities do differently and how things occur geographi-
cally, rather than on a random growth process of cities. For explanations along this line, see Simon (1955),
Gabaix (1999), Eeckhout (2004), Duranton (2006, 2007), Rossi-Hansberg and Wright (2007), and Córdoba
(2008).
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ution of setup costs. Section 4 compares the optimal allocation with Hsu’s (2012) equilib-
rium. This section also briefly discusses the problem in two-dimensional space. Section
5 gives our conclusions. Several proofs are relegated to a separate appendix which is
available online on the authors’ websites.

2 Model and Immediate Sub-cities

2.1 Environment

The geographic space is the real line R on which an infinite mass of consumers is uni-
formly distributed with a density of one. There is a continuum of commodities labeled
y 2 [0; z1]; where z1 is exogenously given. Each consumer demands one unit of each
y 2 [0; z1]: To produce any good y, a setup cost �(y) is required. This setup cost includes
the setup/fixed cost of producing y and any potential city-wide (fixed) external cost of
producing y. The marginal cost is a constant 
. To transport any good requires a cost of
t per unit of distance. The goods are ranked in terms of their setup costs, and we assume
that no two goods have the same setup cost. Hence, � is strictly increasing. We also as-
sume that � is continuous with � (0) = 0. In addition, we assume the hierarchy property: at
any location, if a good z � z1 is produced, then all y 2 [0; z] are also produced.

We interpret production locations as cities. Without the hierarchy property, the opti-
mal distance between two production locations can actually be solved good by good, and
industries would not have to co-agglomerate at an optimal solution. Obviously, there are
benefits to industries co-agglomerating, but we make those benefits implicit by assum-
ing the hierarchy property so as to focus on the hierarchical location choice problem. To
provide microfoundations for the hierarchy property per se is a rather challenging and
worthwhile research agenda. For such an effort, see Eaton and Lipsey (1982), Quinzii and
Thisse (1990), Fujita, Krugman, and Mori (1999), Tabuchi and Thisse (2006, 2011), and
Hsu (2012).

We assume a uniform distribution of consumers for tractability. However, one can also
think of them as farmers who would locate themselves uniformly if agricultural produc-
tivity, or other instances of the on-site extraction of natural resources, were uniform and
if the farming technology were Leontief in land and labor. The original development of
central place theory per Christaller was in fact an attempt to explain the “industrial activ-
ities” that serve the farmers (on the farming plains of southern Germany). Nonetheless,
it is important to note that it does not actually matter whether agricultural employment
is large or small; as long as there are immobile consumers spreading across the entire
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geographic space, there exists the need for cities and towns to spread out to serve these
consumers.

2.2 The problem

We label a location that produces all goods up to z as a z-city. Denote the cost of setting
up a z-city as � (z) �

R z
0
� (y) dy. According to the hierarchy property, z also refers to a

city’s size. The social planner’s objective is to decide the locations and sizes of cities to
minimize the per capita cost of production to serve every consumer a unit of each good
in [0; z1].

A z1-city serves the entire possible range of goods. Since all goods must be consumed,
including z1 with the highest setup costs, z1-cities must exist in any social planning solu-
tion. The first question then facing the social planner is how far apart z1-cities should be
spaced on the real line. We denote the distance between two z1-cities as `1 and call all of
the cities in between two neighboring z1-cities a city hierarchy, which for now includes the
possibility of no smaller cities. Without loss of generality, let the area/interval between
a particular pair of neighboring z1-cities be [0; `1], i.e., the two cities are located at 0 and
`1, respectively. Because consumers must be served by the nearest production locations,
no consumers on [0; `1] will be served by the cities outside [0; `1]. Thus, to search for a
solution, the social planner looks for an `1 and a city hierarchy on (0; `1) without infor-
mation on the city hierarchies outside this interval. However, if there is an optimal `1
and an optimal city hierarchy on (0; `1), this optimal city hierarchy can be duplicated on
(k`1; (k + 1) `1) ; k 2 Z with two neighboring intervals sharing a common z1-city at the
border. Hence, it is always optimal to evenly space z1-cities, although uneven spacing
of z1-cities may also be optimal if there are multiple solutions of `1. In sum, the social
planner’s problem involves two stages. In the first stage, the social planner decides `1. In
the second stage, the social planner determines the city hierarchy given `1. The focus of
our analysis is the second stage, which spans Sections 2 and 3. The optimal choice of `1 is
analyzed in Section 3.5.

Given `1; let the discrete set of cities on (0; `1) be denoted as

W �
(
(zi; Lzi ; I) jzi 2 (0; z1]; i = 1; 2; :::I; I 2 N [ f1g ; zi > zi+1;

Lzi is the set of locations of zi-cities

)
:

That is, zi is the i-th largest among all cities on (0; `1). For now, there may be multiple zi
cities, and Lzi and jLzij denote the set of locations and the number of zi-cities on (0; `1),
respectively. The number I is the number of layers of cities, and I can be (countably)
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infinite.
The optimization problem, given `1, is to search for a city hierarchy W that solves

C� (`1; z1) � inf
W

1

`1

"X
zi

jLzij� (zi) + total transport cost

#
; (1)

Three points are worth noting. First, we ignore the per capita variable cost because it is
always 
z1, regardless of the allocation W . Second, “total transport cost” is calculated as
follows. Since each city hierarchy W defines a partition of market areas on (0; `1) for each
good y 2 [0; z1],7 the transport cost for each y is thus the sum of transport costs incurred in
each market area. We obtain the “total transport cost” by integrating over y. The concept
is clear, but the expression is messy and not helpful for the following analysis. Hence, we
do not include this notational burden. Third, we write inf instead of min in (1) because
the existence of a minimizer is not yet proven. An infimum obviously exists because
the objective is bounded between zero and the cost of building no city hierarchy on the
interval of length `1.

2.3 Two key lemmas

The following two lemmas provide key characteristics of an optimal hierarchy that en-
ables us to set up the planner’s problem as a dynamic programming problem.

Lemma 1. It is never optimal to have an interval without any city in it.

Proof. Consider an interval [0; `] such that there are no cities in (0; `) in between two
cities located at 0 and `, respectively. Let z denote the size of the smaller of the two
cities at the end points. Now, consider adding a z0-city in the middle in between with
z0 � z. Then, the savings in transport cost per good is 2

R `=2
0
txdx � 4

R `=4
0
txdx = t`2=8.

Accounting for the increase in setup cost, the net saving from having a z0-city is given
by S (z0; `) �

R z0
0

h
t`2

8
� �(y)

i
dy. Because � is continuous and strictly increasing, and

� (0) = 0, S (z0; `) > 0 for sufficiently small z0 > 0, given `. The result follows from the
fact that there always exists sufficiently small z0 such that adding a z0-city improves the
allocation.

Two direct consequences of Lemma 1 are that the number of layers I is countably
infinite and there are countably infinitely many cities between any two cities. It is also
straightforward that if � (0) > 0, such a proof breaks down for two cities sufficiently close

7Here, although there are no markets, we use the market area of a production location to refer to the
interval in which the consumers are served by the location.
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Figure 2: A suboptimal situation: Two cities of the same size z0 without a larger city in
between them. City k’s location and market area are denoted as wk and mk, respectively,
for k 2 fA;Bg.

to each other, i.e., ` is sufficiently small. Thus, when � (0) > 0, the number of cities in an
optimal city hierarchy is necessarily finite.

Lemma 2. It is never optimal to have two cities of the same size z0 < z1 without a larger city in
between.

Proof. Suppose that in an optimal allocation there are two cities of the same size z0 with-
out a larger city in between them. Without loss of generality, let the two z0-cities be placed
in an interval (0; `) and two cities whose sizes are larger than z0 be placed at the endpoints,
i.e., 0 and `. Call the two z0-cities A and B, and denote their locations as wA and wB, re-
spectively. See Figure 2 for an illustration. When simultaneously increasing z0 at the two
z0-cities infinitesimally, there are savings in transport costs because some consumers are
closer to z0-cities than to the endpoint cities. Let mk, k 2 fA;Bg be the interval in which
consumers find that city k is the nearest place to buy z0, and denote the savings in trans-
port costs due to consumers in mk switching as ~s1k. Note that the optimality of z0 requires
that

P
k ~s

1
k = 2� (z0) because the total savings in transport cost from simultaneously in-

creasing z0 infinitesimally should equal the total setup cost of z0. Now, denote the savings
in transport cost when increasing z0 infinitesimally only at city k as s1k. Observe that s1k
consists of two parts. The first part is the savings experienced by the consumers in mk,
which equal ~s1k. The second part exists because a positive measure of consumers outside
mk and in mk0 , k0 6= k, also find city k closer than either of the endpoint cities. Hence,
s1k > ~s1k, and

P
k s

1
k >

P
k ~s

1
k = 2� (z0). This implies that s1k > � (z0) for at least one k,

which, in turn, implies that the allocation can be improved by increasing z0 at this k. The
result follows.
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The key insight is that there is a point in between two z0-cities at which consumers
find both of the z0-cities closer than either of the endpoint cities, and when z0 increases
at either of the z0-cities separately, the consumers around this point benefit either way.
Hence, the sum of benefits of increasing the range of goods at each city separately is
larger than the benefits of increasing the ranges of goods in both cities simultaneously,
the latter of which should equal the total setup cost of z0, 2� (z0), if having two z0-cities is
optimal. This implies that for at least one city, the benefits of increasing the range at this
city individually is larger than � (z0), and we must strictly prefer to increase the range at
this city. However, this contradicts the assumption that it is optimal to have two z0-cities.

Note that neither Lemma 1 or 2 depends on the assumption that consumers are uni-
formly distributed. Now, consider the process of building a city hierarchy in between two
z1-cities. Lemma 1 states that having no cities in between is not optimal. Let z2 denote the
size of the largest cities in between two z1-cities. Then, Lemma 2 implies that there can be
only one z2-city in an optimal solution. From the perspective of the two z1-cities, z2-city
is the immediate sub-city. Similarly, in between a z2-city and a z1-city, there is one and only
one immediate sub-city, and this process goes on recursively. This process following the
two lemmas entails a simplified problem, which we study in Section 3.

Lemma 2 provides a partial rationale for the central place property, as there is “one”
immediate sub-city. If the immediate sub-city is always located in the middle, then the
spacing will conform to the central place property. However, this is not necessarily the
case, as we subsequently explain.

2.4 An immediate sub-city is not necessarily in the middle

As two cities having the same size z0 without a larger city in between, as illustrated in
Figure 2, cannot be optimal, suppose that city B has larger size z00 > z0 and city A remains
at z0. Consider the benefits of moving city B closer to the center. Although this increases
savings in transport costs for goods in (z0; z00] because they are more centered, it also
moves goods [0; z0] toward the center and increases the average transport costs for people
buying at cityB. If there were no hierarchy property, the social planner would split goods
and move good (z0; z00] to the center and keep [0; z0] at A and B. However, the hierarchy
property places a constraint. Hence, what is actually optimal depends on the distribution
of setup costs. In the following, we provide an example in which the immediate sub-city
is not in the middle in the optimal solution.

Let t = z1 = `1 = 1: Consider a discontinuous setup cost requirement function: for
an arbitrarily small e 2 (0; 1) ; � (y) = 1=13 for y 2 [0; e] and � (y) = 1 for y 2 (e; 1]. It is
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readily verified that, in between two z1-cities, the per capita cost is minimized by evenly
placing two immediate sub-cities with z0 = e.8 Note that the above lemmas do not have
to hold here because � is not smooth and � (0) > 0. Now, take a smooth approximation of
� (with � being continuous, strictly increasing, and � (0) = 0). The solution must be close
to the previous solution, but by Lemma 2, there is just one immediate sub-city. Therefore,
the solution must be two sub-cities near 1=3 and 2=3 with the range of production of
one city being slightly larger than the other. In particular, the immediate sub-city is not
half-way in between the two z1-cities. This example illustrates the possibilities of uneven
spacing of cities. The intuition will be clear in our comparison between this example and
the central place property result in Proposition 5.

3 Dynamic Programming and the Central Place Property

3.1 The sequence and dynamic programming problems

3.1.1 The sequence problem

Lemmas 1 and 2 indicate that in between two z1-cities it is optimal to place one and only
one immediate sub-city, which is denoted as a z2-city. The location of the z2-city divides
the interval of length `1 into two parts. Let `2;1 and `2;2 be the distances from the z2-
city to the z1-city on the left and right side, respectively. When the values of z2, `2;1 and
`2;2 are chosen, the recursive nature of the problem becomes apparent because the cost
calculations for the goods in (z2; z1] become irrelevant to decisions regarding the size and
location of the immediate sub-city in each of the two intervals of length `2;1 and `2;2. That
is, the cost minimization problem given z2 and `2;1 and that given z2 and `2;2 take the same
form as the one given z1 and `1.

The two lemmas imply that the city building process, viewed from the top down,
involves endless bifurcations. Figure 3 depicts the result from the first three rounds of
bifurcations. To write the problem in sequence form, we must develop our notation care-
fully. As previously mentioned, given `1 and z1, the first round of bifurcation involves
choosing a z2-city, the location of which divides the interval of length `1 into intervals

8To see this, first note that savings in transport costs per good from having n � 1 cities is bounded
above by the savings when placing these n cities evenly, which equals t`21

4 � n
n+1 and increases in n. The

savings in transport costs of having two evenly-spaced e-cities is then 1=6 per good and is larger than the
setup costs incurred, 2=13. Obviously, it is not desirable to have more than two e-cities. With � (y) being
a constant for all y 2 [0; e], there are no more cities on (0; 1) besides these e-cities. For y 2 (e; 1], since
� (y) = 1 >

t`21
4 >

t`21
4 �

n
n+1 , increasing z0 from e does not reduce the per capita cost.
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Figure 3: Illustration of Sequence Problem

of length `2;1 and `2;2. Then, given z2, `2;1, and `2;2, the second round of bifurcation in-
volves choosing a z3;1-city and a z3;2-city in the intervals of length `2;1 and `2;2, respec-
tively. The interval of `2;1 is further divided into `3;1 and `3;2, and the interval of `2;2 is
further divided into `3;3 and `3;4. In general, the i-th round of bifurcation involves setting
up cities of sizes zi+1;1; zi+1;2; :::; zi+1;Ki

, whereKi = 2
i�1, which divides intervals of length

`i;1; `i;2; :::; `i;Ki
; respectively. Formally, let z1 � fz1g, and for all i 2 N, let `i � f`i;kgKi

k=1

and zi+1 � fzi+1;kgKi

k=1, where `1;1 � `1 and z2;1 � z2. We define

�1 (`1; z1) � � (`1; z1) � f(`2; z2) jz2 2 [0; z1] ; `2;1; `2;2 2 (0; `1) and `2;1 + `2;2 = `1g . (2)

and for i � 2,

�i (`i; zi) �
(

(`i+1; zi+1) jzi+1;2k�1; zi+1;2k 2 [0; zi;k] for all k = 1; 2; :::; Ki�1,
`i+1;2k�1; `i+1;2k 2 (0; `i;k) and `i+1;2k�1 + `i+1;2k = `i;k, for all k = 1; 2; :::; Ki.

)

Then, define

�(`1; z1) � f(`i; zi)1i=1 j (`i+1; zi+1) 2 �i (`i; zi) ; for all i = 1; 2; :::g .

Any (`; z) � (`i; zi)1i=1 2 �(`1; z1) is called a feasible sequence, given (`1; z1).
For an immediate sub-city, z0-city, in between two neighboring larger-sized cities, let

` be the distance between the two neighboring larger-sized cities, and let the z0-city’s
distance to one of the two cities be �`, for � 2 (0; 1). The savings in transport costs for
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each good in [0; z0] is

s1 (`; �) � 2
Z `

2

0

txdx�
 
2

Z �`
2

0

txdx+ 2

Z (1��)`
2

0

txdx

!
=
t`2

2
� (1� �) ; (3)

Then, the optimal magnitude of z0 is determined by

s1 (`; �) =
t`2

2
� (1� �) = � (z0) . (4)

The left-hand side of (4) is the savings in transport costs when increasing z0 marginally,
whereas the right-hand side is the corresponding setup cost. If z0 is low such that � (z0) <
t`2

2
� (1� �), it incurs positive net savings (savings in transport costs net of setup costs)

by increasing z0. Similarly, when � (z0) > t`2

2
� (1� �), one can improve the allocation by

decreasing z0. In sum, Lemmas 1 and 2 and (4) imply that in any optimal city hierarchy
the following constraint holds:8><>:

zi+1;2k�1; zi+1;2k 2 (0; zi;k)
`i+1;2k�1; `i+1;2k 2 (0; `i;k) ; `i+1;2k�1 + `i+1;2k = `i;k
zi+1;k = �

�1 � t
2
`i+1;2k�1`i+1;2k

�
9>=>; . (5)

Equivalently, any optimal city hierarchy is associated with a sequence � = f�i;kg such
that `i+1;2k�1 = �i;k`i;k (hence `i+1;2k = (1� �i;k) `i;k) and (5) holds.

Note that in defining the choice set of (`; z) � (`i; zi)1i=1 by �i and � above, we leave
(4) implicit and take the closure of (0; zi;k). According to Lemmas 1 and 2, we know that
situations in which zi+1;2k�1 or zi+1;2k equals 0 or zi;k are never optimal (except possibly
for i = 1), but we do not lose any generality by including this possibility. When the choice
of zi+1;2k�1, according to (4) and given `i;2k�1, is such that zi+1;2k�1 > zi;k, one can always
relabel i; k to ensure that the constraint zi+1;2k�1; zi+1;2k 2 [0; zi;k] is obeyed.9 Thus, the
choice set defined by � encompasses all possible candidates for an optimal city hierar-
chy. In other words, any sequence (`; z) that satisfies all constraints in (5) is included in
�(`1; z1). If one would like to make the constraint (4) explicit, one could redefine �i by

9We allow zi+1;2k�1 = zi;k (or, zi+1;2k = zi;k) as a choice to keep the choice set of �i;2k�1 (or, �i;2k)
a connected interval. To see this, imagine that we are given `i;2k�1 and zi;k, and we have to choose an
�i;2k�1 and zi+1;2k�1. Suppose we want to choose �i;2k�1 = 1=2, but according to (4), this can give a
zi+1;2k�1 � zi;k if `i;2k�1 is very large. We know that zi+1;2k�1 > zi;k is not optimal, but we can relabel
things in this case. We also know that zi+1;2k�1 = zi;k is not optimal, but if we do not even allow this, then
there is a neighborhood of 1/2 that we cannot choose for �i;2k�1.
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replacing zi+1;2k�1; zi+1;2k 2 [0; zi;k]with

zi+1;2k�1 = min

�
��1

�
t

2
`i+1;4k�1`i+1;4k�2

�
; zi;k

�
, zi+1;2k = min

�
��1

�
t

2
`i+1;4k�3`i+1;4k�4

�
; zi;k

�
.

Suppose the social planner has two z-cities with distance ` and nothing in between
them. The total cost in this interval of ` is

A (`; z) � � (z) + zt`
2

4
:

Note that only one setup cost of a z-city is counted in this definition. When a z0-city
divides an interval of ` bounded by two cities producing at least up to z, the total cost for
the range of goods (z0; z] is given by A (`; z)�A (`; z0) = � (z)�� (z0) + (z � z0) t`2=4. We
can view the per capita cost for the goods [0; z1] on `1 as the sum of the per capita cost
of different ranges of goods on different market areas within `1. Namely, the sequence
problem is

C�(`1; z1) � inf
(`;z)2�(`1;z1);
z1>0 given.

1

`1

264 A (`1; z1)� A (`1; z2)
+
P1

i=2

PKi�1
k=1

"
A (`i;2k�1; zi;k)� A (`i;2k�1; zi+1;2k�1)
+A (`i;2k; zi;k)� A (`i;2k; zi+1;2k)

# 375 .

(SP )
Let us examine (SP ) with reference to Figure 3. Suppose in the definition of (SP ), for

any A (`i;2k�1; zi;k) � A (`i;2k�1; zi+1;2k�1) (or, A (`i;2k; zi;k) � A (`i;2k; zi+1;2k)), we count the
setup costs incurred at the city on the left end, but not those at the city on the right-end.
Then one sees that (SP ) includes all of the setup costs incurred on [0; `1), leaving out the
setup costs at `1. Of course, the city at `1 is the left-end city of another interval, and hence
we do not miss any setup cost over the entire space. Solving (SP ) gives the infimum of
the per capita cost on the half-open interval of length `1.

Denote the objective function in (SP ) as f (`; z) = limn!1 fn (`; z), where fn (`; z) is
the objective function with1 replaced by n. Because the partial sum fn (`; z) is bounded
in [0; A (`1; z1) =`1] and nondecreasing in n, it converges for any given (`; z) 2 �(`1; z1).
As the value of the objective is bounded in [0; A (`1; z1) =`1], C� is uniquely defined with
C�(`1; z1) 2 [0; A (`1; z1) =`1] for all (`1; z1).

3.1.2 The dynamic programming problem

Given state variables ` and z, the social planner needs to decide the size and location of
the immediate sub-city, z0-city. Denote the length of the intervals to the left/right of z0-city
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as `l=`r. Then, `l + `r = `. Alternatively, let `l = �` and `r = (1� �) ` for � 2 (0; 1). We
present the following dynamic programming problem.

C(`; z) = inf
`l;`r2(0;`);`l+`r=`;z02[0;z]

1

`
[A (`; z)� A (`; z0) + `lC(`l; z0) + `rC(`r; z0)]

= inf
�2(0;1);z02[0;z]

1

`
[A (`; z)� A (`; z0)] + �C(�`; z0) + (1� �)C((1� �)`; z0).(DP )

The solution to the above problem is a cost function C and policy functions z0 = gz (`; z)
and � = g� (`; z), which entail the next state variables for each side of the division, given
current (`; z): (`l; z0) = (g� (`; z) `; gz (`; z)) and (`r; z0) = ((1� g� (`; z)) `; gz (`; z)). The
problem (DP ) is much more compact than the sequence problem (SP ), as the recursive
nature allows the terms �C(�`; z0) and (1 � �)C((1 � �)`; z0) to subsume the per capita
cost for all goods in [0; z0] on the intervals of length �` and (1� �)`, respectively.

3.1.3 Total rather than per capita cost

It is often useful to look at a transformation of (SP ) and (DP ) by letting D� (`1; z1) =

`1C
� (`1; z1), and D (`; z) = `C (`; z):

D� (`1; z1) = inf
(`;z)2�(`1;z1);
z1>0 given.

A (`1; z1)� A (`1; z2)

+
P1

i=2

PKi�1
k=1

"
A (`i;2k�1; zi;k)� A (`i;2k�1; zi+1;2k�1)
+A (`i;2k; zi;k)� A (`i;2k; zi+1;2k)

#
, (SPD)

and

D (`; z) = inf
�2(0;1);z02[0;z]

A (`; z)� A (`; z0) +D (�`; z0) +D ((1� �) `; z0) . (DPD)

D� is the infimum of total cost, rather than per capita cost, for all of the goods [0; z1]
on the interval of length `1. For any solution C toDP ,D = `C is a solution to (DPD), and
vice versa.

3.2 Characterization theorems in a more general setting

As intuitive as it is, the equivalence between the sequence problem and its corresponding
dynamic programming problem, i.e., the principle of optimality,10 requires a proof. This
is because, for all we know so far, (DP ) or, equivalently, (DPD), may have zero, one, or

10See Lucas and Stokey (1989) for an exposition of the principle of optimality in a time sequence problem.
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many solutions, and some kind of transversality condition is needed for a solution of
(DP ) to be the infimum function in (SP ).

As there is no discount factor in (DP ) as in a typical time sequence problem, it is
not obvious whether the mapping defined by (DP ) is a contraction. Nevertheless, (DP )
can still be characterized in a similar way to what is stated in a contraction mapping
theorem. That is, the mapping defined by the right-hand side of (DP ) is a self-mapping
with C� as the unique fixed point. Moreover, this fixed point can be approximated by
iterating the mapping. These results, along with the principle of optimality, apply to a
more general setting with a recursive division structure. In this subsection, we show these
results in a general setting, while in the next subsection we show how the conditions of
these theorems are satisfied in the city hierarchy problem (SPD) and (DPD). The results
of the original (SP ) and (DP ) then follow.

It is worth noting that these characterization results, especially the convergence the-
orem, are potentially useful in various settings involving recursive division, which often
occurs in a hierarchical structure. For example, it can be used to study a firm hierarchy
in which a CEO would like to determine the best division of labor among different posts
at different layers of the hierarchy, which often invokes a recursive structure.11 Other
possible venues for application include outsourcing in trade and the structure of fiscal
decentralization.

3.2.1 A general setting with q-furcation and without discount factor

Consider a generalized setting in which the law of motion stipulates multi-furcation, or,
q-furcation, where q is a positive integer. The city hierarchy problem is simply one in
which q = 2. We first formulate a general sequence problem. Let X � RN denote the
domain of state variables and � : X ! Xq � RqN be a nonempty correspondence. Let
Ki = q

i�1, i 2 N. For the i-th q-furcation, let index k = 1; 2; :::; qi�1 be grouped into qi�2 sets
of indices such that for j = 1; 2; :::; qi�2,

kj = (j � 1) q + 1; (j � 1) q + 2; :::; jq.

That is, k1 = 1; 2; :::; q, k2 = q + 1; q + 2; :::; 2q, and so on. Denote xi;j �
�
xi;kj

	
kj
2 RqN ,

and xi � fxi;jgq
i�2

j=1 . For i � 2, define

�i (xi) �
n
xi+1 2 Xqi � RqiN jxi+1;k 2 � (xi;k) for k = 1; 2; :::; Ki

o
. (6)

11An interesting firm hierarchy problem is studied by Garicano and Rossi-Hansberg (2006), who show in
their Appendix 1 that the problem becomes recursive when the decision-making process is decentralized.
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In words, �i recursively defines the set of feasible xi+1;k qN -dimensional vectors, given a
xi;k N -dimensional vector. A sequence x = fxig1i=1 is feasible if it satisfies xi+1 2 �i (xi) �
RqiN for all i. Let the set of all feasible sequences starting with x1 2 X be denoted as
�(x1).

Let F be a real-valued function on RN � RqN . The sequence problem is then defined
as

V �(x1) � inf
x2�(x1);
x12X given.

F (x1;x2) +
1X
i=2

KiX
k=1

F (xi;k;xi+1;k) , (SP V )

The superscript V is reserved for the general sequence and dynamic programming prob-
lems. The corresponding dynamic programming problem is

V (x) � inf
y2�(x);
x2X given.

F (x;y) +

qX
k=1

V (yk) . (DP V )

We design the pattern of the notation such that the superscript � indicates it is the opti-
mum value of the sequence problem (C�, D�, and V �), whereas the capital letter without
this superscript (C, D, and V ) indicates the solution to the corresponding dynamic pro-
gramming problem.

This problem also applies to q = 1, and in this case, the sequence and dynamic pro-
gramming problems are simply V �(x1) � inf

P1
i=1 F (xi;xi+1), and V (x) � inf [F (x;y) + V (y)].

3.2.2 Principle of optimality

The following two propositions establish the principle of optimality in the general setting.
As both proofs follow steps similar to those in Lucas and Stokey (1989, pp. 67-76), they
are relegated to the separate appendix. The first concerns the equivalence between V �

and the solution V to (DP V ).

Proposition 1. (i) V �, the infimum function defined in the sequence problem (SP V ), is a solution
to the dynamic programming problem (DP V ). (ii) If a function V is a solution to (DP V ) and if

lim
i!1

KiX
k=1

V (xi;k) = 0, (7)

then V = V �.

Proof. See the separate appendix.
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We offer a brief account of the proof of Proposition 1. Let un be the partial sum of the
objective in (SP V ), i.e., the objective with n in place of 1. Denote the objective in (SP V )
as u (x) = limn!1 un (x). For all x 2 �(x1), let yk be the k-th part of the sequence starting
from the second round of q-furcation. That is, yk 2 �(yk), where fykgqk=1 2 � (x1). It is
easily verified that for any x 2 �(x1),

u (x) = F (x;y) +

qX
k=1

u (yk) :

That is, for an arbitrary feasible sequence, the objective in (SP V ) can be written in a re-
cursive way, as in (DP V ). The proof for V � solving (DP V ) therefore involves carefully
showing why we can replace uwith V �. In the reverse direction, we show in the separate
appendix that, by induction, any V that satisfies (DP V ) must satisfy

V (x1) � inf
fxign+1i=1

"
F (x;x2) +

nX
i=2

KiX
k=1

F (xi;k;xi+1;k) +

Kn+1X
k=1

V (xn+1;k)

#
:

We thus need (7), i.e., the limit of the residual term is 0, so that V (x1) � u (x) for all
x 2 �(x1). The rest of the proof involves showing V (x1) + � � u (x) for any � > 0 and
some x 2 �(x1), and this residual term also appears.

Part (i) of Proposition 1 says that V � is a solution to (DP V ), and hence there is at least
one solution to (DP V ). Part (ii) says that any solution to (DP V ) that satisfies (7) must be
V �.

The second proposition concerns the equivalence between an optimal sequence in
(SP V ) and a sequence that satisfies the functional equation in (DP V ) recursively.

Proposition 2. (i) If a feasible sequence x� 2 �(x1) attains the infimum in (SP V ), then it
satisfies

V �(x�i;j) = F
�
x�i;j;x

�
i+1;j

�
+
X
kj

V �
�
x�i+1;kj

�
. (8)

(ii) If a feasible sequence x� 2 �(x1) satisfies (8), and if it satisfies (7) with V � in place of V , then
it attains the infimum in (SP V ).

Proof. See the separate appendix.
If a feasible sequence attains the infimum in (SP V ), i.e., a feasible sequence as a mini-

mizer exists so that the infimum is indeed a minimum given by this sequence, then it also
solves (DP V ) recursively with V = V �. The reverse is also true, provided that V � satisfies
(7). We have not yet proven the existence of such a sequence, but this will be addressed
in the next proposition.
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3.2.3 Dynamic programming mapping and the convergence of iterates

For any continuous, real-valued function v onX , let the mapping T be given by the right-
hand side of (DP V ), i.e.,

Tv(x) � inf
y2�(x);
x2X given.

F (x;y) +

qX
k=1

v (yk) . (9)

A fixed point of the mapping is a solution to (DP V ), and vice versa. The first of the
two following propositions connects the mapping T to both (DP V ) and (SP V ), and the
second shows that the sequence of iterates converges to V �, provided that the initial v is
in certain space. Namely, denote the sequence of iterates of the mapping T as T n, then
limn!1 T

nv = V �. Assume that the following hold.

A1. � is compact valued.

A2. For each x1 2 X and each feasible sequence x 2 �(x1), limi!1 xi;k = 0.

A3. F : X �Xq ! R+ is a continuous function with nonnegative values, and F (0) = 0.

Proposition 3. Suppose that A1, A2, and A3 hold. Also suppose that there exists a continuous
and strictly increasing function M : X ! R+ with M (0) = 0 such that if any continuous
real-valued function v satisfies 0 � v (x) � M (x), then 0 � Tv (x) � M (x). Denote the set of
continuous functions v satisfying 0 � v (x) �M (x) as V (X). Then, the following hold.

(i) Tv is continuous. Hence, T is a self-mapping on V (X).

(ii) The minimum is attained; so inf in the definition of T in (9) can be replaced with min.
Moreover, the set of minimizers is an upper hemi-continuous correspondence on X .

(iii) V � is the unique solution to (DP V ) in V (X) and hence the unique fixed point of the mapping
T on V (X).

Proof. That the minimum is obtained follows directly from the facts that both F and v are
continuous and that � (x) is compact for any x 2 X . That Tv is continuous and the set of
minimizers given x 2 X is an upper hemi-continuous correspondence onX follows from
the Theorem of the Maximum (see Lucas and Stokey 1989, p. 62). Since Tv is continuous
and 0 � Tv (x) � M (x) for any continuous v such that 0 � v (x) � M (x), T is a self-
mapping on V (X). Because M (0) = 0 and for all k, limi!1 xi;k = 0, any v 2 V (X)
satisfies (7) with v in place of V . Then, according to Proposition 1, if any v 2 V (X) is a
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solution to (DP V ), in which case we denote this particular v as V , then it equals of V �.
As V � is uniquely defined and a solution to (DP V ), V � is the unique solution to (DP V ) in
V (X), and hence the unique fixed point of T on V (X).

Proposition 4. Suppose all of the conditions in Proposition 3 hold. Then, for any v 2 V (X), the
sequence fT nvg converges to V �.

Proof. The complete proof is relegated to the separate appendix, and we provide a sketch
here. In the separate appendix, we show that fT nvg is Cauchy, and hence fT nvg con-
verges. The intuition behind fT nvg being Cauchy is briefly explained as follows. For an
arbitrary v 2 V (X), Tv is a minimization problem with one F (x;x0). To get T 2v, one
replaces v with Tv, and hence T 2v becomes a problem of 1 + q min operators with q mini-
mization problems embedded in an overall one. When repeating this process to get T nv,
there are numerous terms similar to F (x;x0)with x;x0 properly replaced by the sequence
notation. Even though the problem implied by T nv is not the same as (SP V ), the differ-
ence between them diminishes as n gets large. This is mainly because v appears only at
the very end of the (expanded) T nv problem, and when examining jT n+1v � T nvj, it is
easy to verify that the difference is a matter of two multi-furcations at the end, i.e., for
i = n; n + 1. The fact that any v 2 V (X) satisfies (7) with v in place of V implies that the
difference eventually disappears as n goes to infinity.

Although T nv (x) as a hierarchy of minimization problems is different from the partial
sum version of (SP V ), it is shown in the separate appendix that for all x 2 X ,

T nv (x) � min
x2�(x)

"
un�1 (x) +

KnX
k=1

Tv (xn;k)

#
. (10)

Since Tv 2 V (X) so that (7) holds with Tv in place of V , take n to infinity and we have

lim
n!1

T nv (x) � min
x2�(x)

u (x) = V � (x) .

Now, denote the optimal sequence that solves this T nv (x) problem as f~xign+1i=1 . The ex-
istence of such a sequence is guaranteed by Proposition 3 because each of the minimiza-
tion problems in the expanded problem implied by T nv (x) has a minimizer. Obviously,
~x � f~xig1i=1 2 �(x1). Taking n to infinity and by definition of V �,

lim
n!1

T nv (x) = lim
n!1

(
un�1 (~x) +

KnX
k=1

Tv (~xn;k)

)
= u (~x) � V � (x) . (11)
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The result that limn!1 T
nv (x) = V � (x) follows from (10) and (11).

3.3 Characterization in the city hierarchy problem

To see how the city hierarchy problem is a special case of (SP V ) and (DP V ), let q = 2 and
X = [0; `1]�[0; z1] � R2. Let F (x;y) = A (`; z)�A (`; z0), where x = (`; z) and � is given by
(2) such that y = f(�`; z0) ; ((1� �) `; z0)g, where � 2 (0; 1), and z0 2 [0; z]. For the sequence
notation, x1 = (`1; z1), and for i � 2, xi;j = fxi;2j�1; xi;2jg = f(`i;2j�1; zi;j) ; (`i;2j; zi;j)g, for
j = 1; 2; :::; qi�2. Hence, for i � 2, F (xi;2j�1;xi+1;2j�1) = A (`i;2j�1; zi;j)�A (`i;2j�1; zi+1;2j�1),
and F (xi;2j;xi+1;2j) = A (`i;2j; zi;j) � A (`i;2j; zi+1;2j). One obtains (SPD) and (DPD) by
substituting all of these into (SP V ) and (DP V ).

In this subsection, we explain how the conditions of Propositions 1 to 4 hold. We start
with the principle of optimality, i.e., Propositions 1 and 2.

Corollary 1. For any two positive real numbers `1 and z1, letX = [0; `1]� [0; z1], and let D (X)
denote the set of all real-valued continuous functions d : X ! R+ such that

0 � d (`; z) � A (`; z) . (12)

Then, the following hold.

(i) D� is the unique solution to (DPD) in D (X).

(ii) A feasible sequence (`�; z�) 2 �(`1; z1) attains the infimum in (SPD) if and only if it
satisfies (DPD) recursively, i.e.,

D�(`�i;k; z
�
i;k) = A

�
`�i;k; z

�
i;k

�
� A

�
`�i;k; z

�
i+1;k

�
+D�(`�i+1;2k�1; z

�
i+1;k) +D

�(`�i+1;2k; z
�
i+1;k).

Proof. First note that as `1 and z1 are positive, the constraint � given by (2) is nonempty.
Note that A2 holds as a result of Lemmas 1 and 2. Then, for d 2 D (X) and any feasible
sequence (`; z) 2 �(`; z),

0 �
KnX
k=1

[d (`n+1;2k�1; zn+1;k) + d (`n+1;2k; zn+1;k)] �
KnX
k=1

[A (`n+1;2k�1; zn+1;k) + A (`n+1;2k; zn+1;k)] ,

of which the right-hand side goes to 0 as n goes to infinity because A (0) = 0. Hence, if
any D is a solution to (DPD) and D 2 D (X), then

lim
n!1

KnX
k=1

[D (`n+1;2k�1; zn+1;k) +D (`n+1;2k; zn+1;k)] = 0, (13)
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which is the version of (7) in the city hierarchy problem. Because there are positive sav-
ings from building smaller cities,D�(`1; z1) 2 [0; A (`1; z1)], and hence by part (i) of Propo-
sition 1, D� is a solution to (DPD) in D (X). According to (13) and part (ii) of Proposition
1, any solutionD to (DPD) inD (X) equalsD�. Hence,D� is the unique solution to (DPD)
in D (X). As the conditions needed for Proposition 2 are the same, the second result fol-
lows.

To show that Propositions 3 and 4 hold in the city hierarchy problem, we need the
following lemma.

Lemma 3. Let D (X) be given by Corollary 1. Let T : D (X) ! D (X) be given by, for each
d 2 D (X),

Td(`; z) � inf
�2(0;1);z02[0;z]

A (`; z)� A (`; z0) + d(�`; z0) + d((1� �)`; z0). (14)

Then,

(i) 0 � Td (`; z) � A (`; z).

(ii) Given (`; z) 2 X , there exists an � > 0 such that every optimal choice of � 2 [�; 1� �] for
all d. That is, the optimal choice of � cannot be arbitrarily close to 0 or 1.

Proof. That Td � 0 is trivial. Use (12) to write

Td(`; z) � inf
�2(0;1);z02[0;z]

A (`; z)� A (`; z0) + A (�`; z0) + A ((1� �)`; z0)

= inf
�2(0;1);z02[0;z]

A (`; z) + � (z0)� z
0t`2

2
� (1� �) . (15)

By (4),

� (z0)� z
0t`2

2
� (1� �) =

Z z0

0

�
� (y)� t`

2

2
� (1� �)

�
dy < 0.

Hence, Td satisfies (12). The proof of part (ii) is relegated to the separate appendix. The
intuition is that when � is arbitrarily close to either 0 or 1, z0 tends to 0, and the city
hierarchy so built is close to nonexistent. Therefore, such � cannot be optimal because it
must fare worse than � = 1=2, which guarantees positive savings.

The following corollary shows how Propositions 3 and 4 hold in the city hierarchy
problem.

Corollary 2. Let D (X) and T be given by Corollary 1 and Lemma 3. Then,

(i) Td is continuous. Hence, T is a self-mapping on D (X).
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(ii) The minimum is attained; so inf in the definition of T in (14) can be replaced with min.
Moreover, the set of minimizers is an upper hemi-continuous correspondence on X .

(iii) D� is the unique solution to (DPD) in D (X) and hence the unique fixed point of the map-
ping T on D (X).

(iv) For any d 2 D (X), the sequence fT ndg converges to D�.

Proof. The four points (i)-(iv) are the results in Propositions 3 and 4. We must show
that A1, A2, and A3 hold, and that there exists an M that satisfies the condition de-
scribed in Proposition 3. First, A2 holds as a result of Lemmas 1 and 2. Recall that for
i � 2, F (xi;2j�1;xi+1;2j�1) = A (`i;2j�1; zi;j) � A (`i;2j�1; zi+1;2j�1), and F (xi;2j;xi+1;2j) =
A (`i;2j; zi;j) � A (`i;2j; zi+1;2j). Hence, A3 holds. Lemma 3 shows that although the con-
straint � given by (2) is not compact because � 2 (0; 1), the effective constraint set is
compact, and hence A1 holds. It also shows that we can simply set M = A, which is
continuous and strictly increasing with A (0) = 0.

We have written Matlab programs implementing this iterative method of finding a
solution with any � and/or any initial guess. In particular, because we have the analytical
solution when � is a power function (see the next subsection), we compare the numerical
solution with the analytical one in this case. The approximation works well, and the
convergence is achieved quickly.12 These programs are available to interested readers
upon request.

3.4 Central place property

The beauty of Corollary 2 is that it allows the solution to be found numerically for any
arbitrary � that satisfies the basic assumptions. Nevertheless, there is an interesting and
empirically relevant case of � in which we can obtain the solution analytically. It turns
out that the central place property holds in this case.

Suppose that the setup cost is a power function: �(z) = azb, for a > 0 and b > 0. Under
this functional form, � (z) = a

b+1
zb+1. The power function assumption of �, in fact, means

that the distribution of setup costs across goods is also a power function. Let Y denote
the random variable of setup cost for a good. Then, for y 2 [0; � (z1)],

Pr [Y � y] = ��1 (y)

z1
=
1

z1

�y
a

� 1
b

.

12For the power � case, depending on the level of tolerance, Tnc converges in about 10 to 15 iterations,
and, when plotted, the limit function is visually indistinguishable from the true analytical C� given by (21)
except near the boundary of the domain.
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As shown in Hsu’s (2012) equilibrium model of central place hierarchy, this distribution
of setup cost is a prototype of a class of distributions that leads to a power law distribution
of city size.13 This class encompasses several well-known, commonly used distributions.
See Hsu (2012) for more details.

Recall that it is possible that the optimal z2 = z1 if `1 is too large. Note from (4) that
savings s1 (`1; �) is bounded by s1 (`1; 1=2) = t`21=8. Define �̀(z) by the solution of ` in the
following equation.

t`2

8
= � (z) : (16)

Then, for any `1 < �̀(z1), optimal z2 < z1, and thus the two z1-cities with distance `1
are neighboring. For the rest of the analyses in this paper, we impose the condition that
`1 < �̀(z1).

Proposition 5. Suppose that `1 < �̀(z1), where �̀(z) is defined as the solution to (16). Suppose
that the setup cost function � (y) = azb, for positive constants a and b. Then, the central place
property holds.

Proof. For ease of presentation, let a = 1. A general a > 0 does not change the result.
From (4),

z0 =

�
t`2

2
� (1� �)

� 1
b

=

�
t

2
� (1� �)

� 1
b

`
2
b � � (�) ` 2b . (17)

Equation (17) implicitly assumes that z0 < z. Recall that Lemma 2 rules out zi+1;2k�1 = zi;k
or zi+1;2k�1 = zi;k as an optimal solution, and hence (17) is necessarily true for all optimal
choices of zi;k, except possibly for i = 2. However, the constraint `1 < �̀(z1) ensures that
optimal z2 < z1.

Recall from (5) that there is a sequence � = f�i;kg associated with any sequence
(`; z) 2 �(`1; z1). The fact that the optimal solution of z0 is separable in ` and � im-
plies that, except for z1, we can write zi;k = `

2=b
1 hi;k (�) and `i;k = `1gi;k (�), for some

functions hi;k and gi;k. Thus, both A (`i;2k�1; zi;k) � A (`i;2k�1; zi+1;2k�1) and A (`i;2k; zi;k) �
A (`i;2k; zi+1;2k) are multiplicatively separable in `2(b+1)=b1 and some functions of �. Thus,

13As we mention in footnote 6, there are deviations from the power law when smaller cities and towns
are included. For example, Eeckhout (2004) shows that lognormal distribution fits better than the power
law in this case. In fact, it can be verified by following the procedure in Hsu (2012) that when � (0) > 0, the
Zipf’s plot of city size (log of rank vs. log of size) is concave, which would be the case under log-normal
distribution. The larger the value of � (0), the larger the concavity. The reason for such concavity is that
when there are finite layers, the entire hierarchy is less of a fractal structure and deviation from the power
law is observed.
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for some function H , (SP ) can be rewritten as

C�(`1; z1) =
zb+11

(b+ 1) `1
+
z1t`1
4

+ `
b+2
b
1 H (��) .

By Corollarys 1 and 2, an optimal �� exists, and as such,H (��) is well defined. Note that
H (��) < 0, and `(b+2)=b1 jH (��)j is the per capita savings from building the optimal city
hierarchy. Given the equivalence between (SP ) and (DP ), observe that the negative of
per capita savings from having an optimal city hierarchy in an interval of ` is given by

~S (`; z) � C(`; z)� A (`; z)
`

= C(`; z)� zb+1

(b+ 1) `
� zt`
4
= `

b+2
b H (��) : (18)

This says that the ~S function is homogenous of degree (b+ 2) =b in ` and independent of
z. With a little abuse of notation, we write ~S (`) = ~S (`; z). Given (17) and (18), (DP ) can
be rewritten as

~S (`) = min
z02(0;z);�2(0;1)

A (�`; z0) + A ((1� �) `; z0)� A (`; z0)
`

+
h
�
2(b+1)

b + (1� �)
2(b+1)

b

i
~S (`)

(19)
Thus,

~S (`) =
�b
b+ 1

�
t

2

� b+1
b

`
b+2
b max
�2(0;1)

[� (1� �)]
b+1
b

1� � 2(b+1)
b � (1� �)

2(b+1)
b

: (20)

We show in the separate appendix that the unique solution to the maximization problem
in (20) is � = 1=2.

Observe that the optimal sequence �� does not depend on `1. The recursive nature
implies that for all i; k, the optimal sequence in the interval of `i;k, i.e., f�i0;kgi0�i, does not
depend on the magnitude of `i;k. Thus, under this power function distribution of setup
costs, the optimal city hierarchy in any interval of `i;k resembles that of the entire one in `1.
As Hsu (2012) shows that this scale-free property gives the city hierarchy a fractal structure;
specifically, the structure of the smaller part of the hierarchy resembles that of the larger.

With optimal � = 1=2, using (18) and (20), we obtain the cost function

C(`; z) =
zb+1

(b+ 1) `
+
zt`

4
� b

b+ 1

1

2
3(b+1)

b � 2 2b+1b
t
b+1
b `

b+2
b . (21)

One can verify Proposition 5 by applying the guess-and-verify technique to (DP ). That
is, if one plugs the functional form of C given by (21) into the right-hand side of (DP )
and solves the minimization problem, one will find that the unique minimizer is � = 1=2.
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Then, the value of the right-hand side, given (`; z), will be exactly (21), which verifies that
the C given by (21) satisfies the functional equation. Since `C (`; z) < A (`; z), Corollary 1
and the equivalence between (DPD) and (DP ) imply that the C given by (21) is C�.

The tractability under the power function � allows us to see the intuition behind
� = 1=2. Observe that there are two conflicting forces in choosing �. If one simply builds
a z0-city without further building cities smaller than z0, then the optimal choice is � = 1=2.
This is obvious upon observing (3) and noting that the savings in transport costs reaches
its maximum when � = 1=2. However, Lemma 1 also says that we must build smaller
cities in each of the two intervals split by the z0-city. To maximize the total savings in
the two intervals from building these smaller cities, it is optimal to split the intervals un-
evenly, i.e., to choose an � relatively close to 0 or 1. This is characterized in equation (19) in
the term

h
�
2(b+1)

b + (1� �)
2(b+1)

b

i
~S (`). Obviously, the bracket term reaches its maximum

at 0 or 1. This means that the benefit of having one large interval so that more savings
can be attained outweighs the loss of having a smaller one. The two conflicting forces are
nicely summarized in (20), the first in the numerator and the second in the denominator.
Note that the two conflicting forces operate on different levels of y 2 [0; z0], and that how �

changes across y is critical. The first force, by having � closer to 1=2, increases z0 and saves
on these higher levels of goods, whereas the second force is concerned with savings on
goods relatively close to 0. Imagine two � functions which take the same value at z with
one � diminishing faster than the other when y moves down from z. For the � function
that � (y) diminishes quickly when y goes down, like the power function, the first force
dominates the second because there are more savings from the higher level goods as the
setup costs for these goods are lower than the case in which � (y) diminishes slowly. This
intuition is consistent with the example in Section 2.4 where � 6= 1=2. In that example, the
smooth approximation of a non-smooth � means that � does not diminish very quickly
for y 2 [0; e] until it gets very close to 0. In other words, if � diminishes at a fast enough
rate, the first force dominates and � = 1=2 becomes the optimal outcome.

3.5 Optimal distance between largest cities

In this subsection, we characterize the optimal distance between largest cities conditional
on the central place property. We use the superscript � to denote an optimal solution.
The optimal distance between two neighboring z1-cities is the social planner’s first stage
problem:

`�1 = arg min
`12(0;�̀(z1))

C�(`1; z1). (22)
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When `1 increases to �̀(z1), z�2 = z1, and the distance between two neighboring z1-cities
drops to �̀(z1) =2. Hence, to look for the optimal distance between two neighboring z1-
cities, we need only focus on `1 2

�
0; �̀(z1)

�
. The next proposition guarantees the existence

of `�1 and provides a sharper lower bound for `�1, which is useful for the welfare analysis
conducted in Section 4.

Proposition 6. Suppose that the central place property holds in an optimal solution. Then, there
exists an `�1 2

�
0; �̀(z1)

�
that solves (22). That is, an optimal distance between two neighboring

z1-cities exists. Moreover, `�1 2 [�̀(z1) =2; �̀(z1)).

Proof. See the separate appendix.
The intuition is that (22) can be viewed as a minimization of a continuous function

C� on a compact set
�
�; �̀(z1)

�
for some small � > 0. It is intuitive that for any given z1,

lim`1!0C
�(`1; z1) =1 because the per capita setup cost explodes when `1 ! 0, and hence

(0; �) for some � are excluded as possible minimizers. To search for optimal `1, we can
include �̀(z1) as candidate because if it attains the minimum, then we set `�1 = �̀(z1)=2. To
see why `�1 � �̀(z1) =2, suppose that `�1 < �̀(z1)=2, i.e., the optimal distance between the
two largest cities is less than half the distance that entails z�2 = z1. Then, at `1 = 2`�1, it is
optimal to set z�2 = z1 so that the effective distance between two neighboring z1-cities is
exactly `�1, which by definition minimizes the per capita costC�. However, this contradicts
the fact that the optimal z�2 at `1 must be less than z1 since `1 = 2`�1 < �̀(z1).

In general, `�1 need not be unique, although the uniqueness of `�1 in the case of a power
function � can be verified by studying the shape of C given in (21). For any optimal
solution `�1, it is optimal to let all z1-cities be evenly spaced with a distance of `�1, although
z1-cities do not have to be evenly spaced when there are multiple solutions to (22). Figure
4 shows how C(`1; z1) depends on `1 < �̀(z1)when � is a power function.

Next, we utilize an envelope argument to illustrate the economics behind the determi-
nation of `�1. Of course, the underlying economics do not depend on the differentiability
of C� in `1, but it is convenient to proceed assuming such differentiability.14 Observe that
from (DP ),

@C(`; z)

@`
=
t (z � z0�)

4
� � (z)� � (z

0�)

`2
,

where z0� is the optimal size of the immediate sub-city, given (`; z). The optimal choice of

14The differentiability of C� in z1 is guaranteed if `1 < �̀(z1) so that optimal z2 < z1. However, the
differentiability of C� in `1 is not obvious. For example, Lucas and Stokey (1989) prove the differentiability
of a value function by the concavity of the function. Here, such an argument does not work since C� is
not necessarily convex (we are looking at a minimization problem, whereas a maximization problem is
examined in Lucas and Stokey). As Figure 4 shows, C� in `1 is neither convex nor concave.
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Figure 4: How cost C depends on the distance `1 between largest cities.

`1 satisfies the necessary condition: @C(`1; z1)=@`1 = 0. Hence,

t (z1 � z�2) `�1
4

=
� (z1)� � (z�2)

`�1
.

The above equation means that the choice of `�1 is such that the per capita transport cost
for the goods (z�2 ; z1] equals the per capita setup costs for this range of goods. As the per
capita transport/setup cost increases/decreases in `1 with z�2 fixed at an optimal level,
the scale economies of having a larger `1 to share the setup costs, at `�1, should be exactly
offset by the additional transport costs.

4 Welfare Analysis and Extension to the Plane

The environment in Hsu’s (2012) model is essentially the same as that in this paper. Thus,
we can compare the equilibrium allocation in his model with our optimal solution. In
this section, we first introduce Hsu’s equilibrium setting and the main result. Then, we
determine whether an optimal solution can be decentralized, and, if there is a discrepancy
between an equilibrium and the optimal allocation, what the pattern of deviation is in
terms of entry. Note that as there are infinitely many production sites for each good in
both models, we measure entry for each good as the number of production sites per unit
distance. Hence, the smaller the distance between production sites, the larger the entry.
In this section, we also briefly discuss how Lemmas 1 and 2 apply to a two dimensional
space.
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4.1 Hierarchy equilibrium in Hsu (2012)

The environment in Hsu (2012) is the same as that in Section 2.1, except that the hierarchy
property is not imposed. As an equilibrium model, Hsu (2012) must specify the interac-
tions of agents through which an equilibrium arises. The related details are as follows.

4.1.1 Firm entry and one-good equilibrium

For each good there is an infinite pool of potential firms. The firms and farmers play the
following two-stage game (Lederer and Hurter, 1986).

1. Entry and location stage
The potential firms simultaneously decide whether to enter. Upon entering, each
entrant chooses a location and pays the setup cost for the good it produces. Assume
the tie-breaking rule: if a potential firm sees a zero-profit opportunity, then it enters.

2. Price competition stage
The firms deliver goods to the farmers. Given its own and other firms’ locations,
each firm sets a delivered price schedule over the real line. For each good, each lo-
cation on the real line is a market in which the firms engage in Bertrand competition.
Each farmer decides the specific firm from which to buy each good.

Consider the subgame perfect Nash equilibrium (SPNE) of any particular good z.
Consider two neighboring firms at a distance of `:Denote the firm on the left-hand side as
A and that on the right-hand side as B. The marginal costs of delivering the good to a con-
sumer who is x distance from A are thusMCA = 
+ tx andMCB = 
+ t(`�x). Bertrand
competition at each x results in the firm with the lower marginal cost grabbing the market
and charging the price of its opponent’s marginal cost. Without loss of generality, let A
be located at 0: Thus, the equilibrium prices on [0; `] can be written as

p(x) =

(

 + t(`� x) x 2 [0; `

2
],


 + tx x 2 [ `
2
; `].

The gross profit for firm A from the market area on its right-hand side and that for
B from that on its left-hand side are both t`2=4. Consider any entrant’s strategy in the
first stage. Let this entrant be named C. If C were to enter into the interval between A
and B, then it is straightforward that C’s profit-maximizing location will be exactly in the
middle of the two, given A and B’s locations. Any deviation from the middle will strictly
decrease C’s profit, and C will enter if and only if this maximal profit is nonnegative.
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Therefore, firms must be an equal distance apart, and the gross profit of any firm with
a market area of ` is t`2=2. Now, for any z, define `(z) as the solution to the zero-profit
condition t [`(z)]2 =2 = � (z). Thus, `(z) =

p
2� (z) =t. The foregoing derivation of an

SPNE for an arbitrary good implies that there is a continuum of equilibria in which one
firm is located at every point in fx + n`g1n=�1; where ` 2 [`(z); 2`(z)) and x 2 [0; `(z)).
The continuum of equilibria exists because any distance ` in the interval [`(z); 2`(z)) is an
equilibrium distance; ` � `(z) implies that all firms earn a nonnegative profit (no exit),
whereas `=2 < `(z) implies that any new entrant between any two existing firms must
earn a negative profit (no entry).

4.1.2 Hierarchy equilibrium and central place property

An equilibrium is a collection of firm locations, delivered price schedules, and farmers’
consumption choices such that the allocation for each good is an SPNE. A hierarchy equi-
librium is an equilibrium in which, at any production location, the set of goods produced
takes the form [0; z] for some z 2 (0; z1]. In a hierarchy equilibrium, there exists a decreas-
ing sequence z1 > z2 > ::: > zi > ::: such that any production location is zi-city for some
zi. Obviously, a hierarchy equilibrium satisfies the central place property if the market
area of the firms producing (zi+1; zi] is half that of the firms producing (zi; zi�1].

Proposition 1 in Hsu (2012) states that some equilibria have the hierarchy property
and that all such hierarchy equilibria satisfy the central place property. Hence, every
hierarchy equilibrium is a central place hierarchy characterized as follows. Fix an x 2 R
and set the grid for (zi+1; zi] as fx+ n`ig1n=�1, where `1 2 [` (z1) ; 2` (z1)); `i = `1=2i�1, and
the cutoff zi is given by the zero-profit condition

� (zi) =
t`2i
2

for all i � 2. (23)

Without loss of generality, let x = 0: Then, the location configuration so constructed,
which obviously satisfies both the hierarchy and the central place property, is precisely
that given in Figure 1, except that only four layers are depicted in the figure.

The characterization above indicates that there is a continuum of central place hier-
archy equilibria, each of which is characterized by an `1 2 [` (z1) ; 2` (z1)). Note that,
depending on �, an optimal hierarchy may or may not have the central place property,
as shown by Proposition 5 and the example in Section 2.4. In contrast, if an overall equi-
librium is a hierarchy, it will have the central place property, and such equilibria exist for
any �.
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4.2 Decentralization?

In this and the next subsection, we compare hierarchy equilibria, i.e, those equilibria that
are hierarchies (and hence have the central place property by Proposition 1 of Hsu 2012),
with optimal hierarchies that satisfy the central place property. As the superscript � de-
notes an optimal allocation, we use the superscript e to denote the allocation in a hierarchy
equilibrium. For `�1 2

�
0; �̀(z1)

�
, z�2 < z1. Since � = 1=2, `�i;k is the same across k, and we

denote `�i � `�i;k for all i � 2. Obviously, `�i = `�1=2i�1. Using (4) recursively, for i � 2,

� (z�i ) =
t
�
`�i�1

�2
8

=
t (`�i )

2

2
. (24)

By comparing (23) and (24), we see that the fz�i g and fzei g sequences would be identical
if and only if `�1 = `e1.15 Hence, the optimal allocation can be decentralized if and only
if `�1 2 [` (z1) ; 2` (z1)); that is, the optimal distance between two neighboring z1-cities is
within the continuum of the distance between two neighboring z1-cities in a hierarchy
equilibrium.

Corollary 3. Suppose that the central place property holds in an optimal solution. Then, `�1 2
[` (z1) ; 2` (z1)). That is, the optimal solution can be decentralized.

Proof. Observe that by combining (16), (22), and (23), we have

t (`�1)
2

8
<
t�̀(z1)

2

8
= � (z1) =

t` (z1)
2

2
,

which implies that �̀(z1) = 2` (z1). The results follow from Proposition 6.

4.3 Entry comparison

As there is a continuum of hierarchy equilibria, some may be suboptimal. For example,
with a power function �, it can be verified that `�1 is unique (see Figure 4), and thus there
must be suboptimal hierarchy equilibria. Here, we compare the entry for goods between
a hierarchy-equilibrium allocation and an optimal one. In a spatial competition model,

15To see the intuition for why the two sequences are identical, recall that the gross profit of a firm with
market area ` is t`2=2. The gross profit of an entrant that enters at the middle of a market area of ` is thus
t`2=8, which is exactly the savings in transport costs created by the entrant locating in the middle. Thus, the
zero-profit condition (23) is the same as (24). Note that under Bertrand competition, gross profits are created
from the difference between two competing firms’ delivery costs. If an entrant were not to enter, then all
the potential gross profits of an entrant would be part of the transport costs incurred by some incumbents.
In other words, the benefits to consumers brought by an entrant, i.e., the savings in transport costs, equal
the entrant’s own benefits.

30



Figure 5: An equilibrium allocation can alternately have greater or smaller entry than the
optimal allocation. Depicted is the case of `e1 > `�1.

Salop (1979), using a one-good model, shows that there is always greater equilibrium
entry than what is optimal. We show that whenever `e1 6= `�1, the directions of deviation
for different goods are different, in contrast with Salop’s result. More specifically, the
directions of deviation alternate across sets of goods. That is, the whole range of goods
can be partitioned into sets such that the first set has an equilibrium entry that is less
(more) than that in the optimal solution, the second set has one that is more (less), the
third set less (more), and so on. Figure 5 illustrates such a case where `e1 > `�1. The words
“more/less" in the figure mean that the equilibrium entry is more/less than the optimal
one.

Proposition 7. With the central place property, the following hold.

1. If `e1 = `�1, then entry for each good is identical in both the equilibrium and the optimal
solution.

2. If `e1 > `�1, then

(a) z�i+1 < zei+1 � z�i for all i � 1: The [0; z1] continuum can be partitioned into sets of the
form (zei+1; z

�
i ] and (z�i+1; zei+1], for all i 2 N.

(b) For all y 2 (z�i+1; zei+1], equilibrium entry is weakly more than the optimal one.

(c) For all y 2 (zei+1; z�i ], equilibrium entry is less than the optimal one.

3. If `e1 < `�1; then the result in (b) holds with the superscripts of * and e exchanged.

Proof. See the separate appendix.
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Figure 6: Central Place Hierarchy on the Plane (Christaller, 1933).

4.4 Extension to the plane

Suppose that the geographic space is the infinite plane, instead of the real line. One dif-
ficulty with two-dimensional space is that for a polygon formed by a set of neighboring
cities at the vertices, the market area of smaller cities inside the polygon may actually
extend outside the polygon, and some cities outside the polygon can have their market
areas inside it. It is thus unclear how the sequence and dynamic programming prob-
lems should be formulated. Even when they are formulated, it is conceivably difficult
to generalize Corollary 2 because while there is just a one-parameter family of intervals
in one-dimensional space, there is an intractible infinitude of two-dimensional regions.
Nevertheless, it is interesting to observe that Lemmas 1 and 2 still hold on the plane.16

Lemma 1’ It is never optimal to have an area without any city in it. That is, cities are
dense.

Proof. Suppose the contrary is true. That is, suppose that there is a polygon formed
by cities that produce at least up to z 2 (0; z1] at the vertices, and that there is no city
inside the polygon. Consider having a z0-city inside the polygon with z0 2 (0; z]. Given
the location of the z0-city, the savings in transport costs for each good are fixed at some
number s > 0, and the total savings for all goods [0; z0] equals sz0. Then, for each z0 such
that � (z0) � s, the setup cost of the z0-city is � (z0) � sz0. Because � is strictly increasing
and continuous with � (0) = 0, such z0 must exist, and hence there must be positive net
savings. Thus, a polygon without any smaller cities in it is never optimal.

16It is also interesting to note that if the plane is divided according to Christaller (1933) as in Figure 6, then
with optimal z�i given by � (z�i ) equaling the savings in transport costs for the good z�i , it is a straightforward
exercise to follow Hsu (2012) to verify that the city size distribution follows the power law. In fact, the power
law result also holds for regular square and triangular regions.
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Lemma 2’ It is never optimal to have two cities of the same size z0 with a point closer to
both of them than to any other city with z � z0, where z � z1.

Proof. Observe that Lemma 2 holds precisely because the savings in transport costs of
increasing z0 at two z0-cities simultaneously are less than the sum of the savings of in-
creasing z0 at each z0-city separately. This is because there is some point (consumer) in
the interval that benefits from increasing z0 at either city because it is closer to both of the
z0-cities than it is to any of the cities producing at least z � z0. The same logic applies to
two-dimensional space here.

5 Conclusions

This paper presents an analysis of optimal city hierarchy. The model formalizes central
place theory via an efficiency rationale. It takes the hierarchy property as given and pro-
vides the conditions under which the central place property is optimal. In this sense, this
paper complements Quinzii and Thisse (1990), who model the hierarchy property. It re-
mains to be seen whether the optimality of both properties can be obtained in one concise
model.

As mentioned, as long as there are immobile consumers, regardless of their fraction in
the economy, spreading across the entire geographic space, there exists the need for cities
and towns to spread out to serve these consumers. From this perspective, central place
theory is still very relevant to the modern-day economy, even though it may be true that
as the economy becomes more industrialized, the location patterns may become more
biased compared with the “ideal” central place pattern. The uniform distribution of con-
sumers is, of course, a rough approximation of real spatial distribution. Nevertheless, it
is useful to clarify in theory what happens under the uniform distribution to take advan-
tage of its tractability. One take-home message is that even under uniform distribution,
the optimal locational pattern does not necessarily conform to the central place pattern.
As Propositions 3 and 4 can in principle be applied in the more general environments of
spatial problems, simulations of what would happen under a more realistic distribution
may be a desirable direction for future research.

We conclude by summarizing two methodological messages. First, there are benefits
to using dynamic programming to study spatial problems, as demonstrated by Lucas and
Rossi-Hansberg (2002) on internal city structure and this paper on city hierarchy. Second,
the techniques developed in this paper may also be useful for various hierarchical prob-
lems (not limited spatial problems), as Propositions 1 to 4 are all applicable in a general
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setting with recursive divisions.
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