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ABSTRACT

We extend the Arrow–Fisher–Hanemann–Henry (AFHH) and
Dixit–Pindyck (DP) option values to a game situation. By reinter-
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conservation because of the prospect of future information, we deal
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Introduction

The value of the prospect of future information is often ignored in the
standard analysis of net present value. Ignoring it, however, tends to bias
decisions. In private investment analysis, future information may allow the
investors to make state-contingent decisions and thereby avoid unnecessary
sunk costs. As Dixit and Pindyck (1994) emphasize, the opportunity cost due
to the forgone opportunity to delay the investment, or the Dixit–Pindyck
(DP) option value, must be included in the cost of immediate investment in
addition to direct investment costs.

The prospect of future information also plays an important role in the
analysis of public projects. Suppose, for example, that a policy maker has to
choose whether to develop or conserve a forest. The forest may (or may not)
contain economically valuable plants, but such plants may be discovered
only in the future (say, by independent scientific research), if they exist
in the forest at all. Then, ignoring the possibility of the future discovery
of plants will bias the current decision toward development. Therefore,
the Arrow–Fisher–Hanemann–Henry (AFHH) option value due to Arrow
and Fisher (1974), Henry (1974), Fisher and Hanemann (1987), and Hane-
mann (1989), also called the quasi-option value, must be incorporated into
the cost-benefit analysis. The AFHH option value is particularly relevant to
those issues in which future information and irreversibility play an impor-
tant role, including climate change and conservation of biodiversity. This
concept has also been extended to a situation where the decision maker faces
hard uncertainty represented by a nonadditive measure over events (Basili,
1998).

The AFHH option value is related to the option value in the private
investment analysis. Lund (1991) compares the AFHH option value with
valuation of financial options as represented by Black and Scholes (1973)
and Merton (1973). The AFHH option value is closely related to but gener-
ally different from the expected value of information (EVI) (Conrad, 1980;
Hanemann, 1989). Fisher (2000) claimed that the AFHH and DP option
values are identical, although Mensink and Requate (2005) subsequently
found this argument incorrect.

In the previous studies of option values mentioned above, presence of a
single decision-maker is assumed. It is indeed sufficient to have only one
decision maker in the model, for example, when there is a social planner who
can stipulate the action of each player in the society. Even if this is not the
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case, when the market is competitive and each player has negligible impacts
on other players, a single decision-maker model would still be appropriate.

However, in many practical situations, the single decision-maker model is
not appropriate. The policy-maker may have to take the competition among
firms or different public entities as given. A firm may compete with only a
few other firms in the same industry and its decision may have non-negligible
impacts on other firms.

This is important, because the AFHH option value is conceptually prob-
lematic in the presence of strategic interactions. To see this, first note that
the AFHH option value in the standard model is defined as the differ-
ence between the payoff from conservation relative to development with the
prospect of future information and the corresponding payoff without the
prospect of future information. Therefore, we need to be able to define
the payoff in each outcome (i.e., conservation or development). However, as
pointed out by Fujii and Ishikawa (2012), this definition is problematic in
the presence of strategic interactions, because not all outcomes can be sup-
ported as an equilibrium. Therefore, the AFHH option value does not have
an obvious definition under strategic interactions.

Furthermore, the EVI for the society critically depends on how the infor-
mation is held and released. Fujii and Ishikawa (2012) have shown that the
prospect of future information could even be harmful to everyone in the
society, a situation that never happens in a single decision-maker model.
Therefore, we cannot appropriately take the prospect of future information
into account without considering the strategic interactions in the society.

In this study, we extend Fujii and Ishikawa (2012) in two ways. First,
we provide an alternative interpretation to the AFHH option value. In this
interpretation, the AFHH option value is taken as the change in a surplus
measure for conservation because of the prospect of future information. This
allows us to overcome the conceptual difficulties pointed out by Fujii and
Ishikawa (2012) and to define the AFHH option value even in the presence
of strategic interactions. However, unlike the case of a single decision-maker
studied by Hanemann (1989), our AFHH option value cannot be interpreted
as the conditional value of information.

Second, we also extend the discussion on the relationship between
the AFHH and DP option values by Fisher (2000) and Mensink and
Requate (2005) to a game situation. We argue that whether or not the AFHH
option value is more relevant than the DP option value would depend on
the degree of control that the regulator has on the strategic interactions in
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the society. We also show that the DP option value in the single decision-
maker case is identical to the EVI, but this equivalence does not hold in
the presence of strategic interactions. These points reinforce the finding of
Fujii and Ishikawa (2012) that social cost-benefit analyses require a careful
assessment of strategic interactions in the society.

This paper is organized as follows. In section ‘‘Setup,’’ we set up a simple
model of an irreversible decision under strategic interactions first proposed
by Fujii and Ishikawa (2012). This model is a straightforward extension
of the single decision-maker model widely used in the literature. Because
we adopt the same model and notations as Fujii and Ishikawa (2012), we
only provide a brief summary below and omit a detailed discussion on
the motivation of the way the model is formulated. In section ‘‘Case (I):
Social Optimum,’’ we introduce the AFHH and DP option values in the
standard single decision-maker case. Most of the results in this section,
except for Proposition 1, are not new, but they serve as a reference case.
We then extend the AFHH and DP option values to a game situation in
section ‘‘Case (II): Strategic Interactions.’’ The last section provides some
discussion.

Setup

There are two time periods: period 1 (current period) and period 2 (future
period). The future state is uncertain. The state s takes a good state s1

with probability π and a bad state s2 with probability 1 − π. There are
two risk-neutral players α and β, each of both cares only about their own
payoff, and a regulator. In each period t ∈ {1, 2}, each player i ∈ {α, β}
takes an action di

t ∈ {0, 1}, where di
t = 0 represents conservation (or no

immediate investment in the context of the DP option value) and di
t = 1

represents development (or immediate investment). The decision to develop
is irreversible and thus di

1 ≤ di
2. We denote the sequence of actions taken

by player i by di ≡ (di
1, d

i
2). For the simplicity of argument, we assume that

each player always chooses to develop if the player is indifferent between
conservation and development.

We normalize the payoffs so that the player receives a payoff of zero in
each period he chooses conservation. We assume that the total payoff from
development for the two players in present value is a in period 1 and b ·
Ind(s = s1) − c · Ind(s = s2) in period 2 for positive constants a, b, and c,
where Ind(·) is an indicator function that takes one if the argument is true
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and zero otherwise. Therefore, development is beneficial to the society in the
good state and harmful in the bad state. We assume that the total payoff
is shared equally by the two players when they take the same sequence of
actions. When one player chooses a sequence (1, 1) (i.e., development in both
periods) and the opponent chooses a sequence (0, 1) (i.e., conservation in
period 1 and development in period 2), the leader [follower] of development,
who chooses the sequence (1, 1) [(0, 1)], takes a share k [1 − k] of the total
payoff from the development in period 2 for some constant k ∈ (0, 1).

We assume that new information becomes available to the regulator so
that the regulator knows the true state after period 1 but before actions are
taken by players in period 2. We use the hat (̂ ) and the asterisk (∗) notations
to denote the cases with and without the prospect of future information,
respectively. Furthermore, we use the tilde (̃ ) notation to denote the case
where the option to delay the decision to develop is not available, which cor-
responds to the case where the sequence (0, 1) is not allowed. We also assume
that the game structure and probability distribution of the states are com-
mon knowledge and that the regulator tries to maximize the expected total
payoffs in the society (i.e., the sum of the payoffs for players α and β) for
the two periods, which we refer to as the social welfare. The latter assump-
tion can be justified when the regulator can transfer the payoffs between the
players in a lump-sum manner.

Case (I): Social Optimum

As with Fujii and Ishikawa (2012), we start with studying the social optimal
choice, i.e., a social planner can stipulate the action of each player. This is de
facto a single decision-maker case. Because the social welfare is determined
only by the timing of development and not by who chooses to develop, we
simply impose dα = dβ in this section. This allows us to avoid unnecessary
complications and treat the action of player α as the action of a representa-
tive player. Given the setup presented in the ‘‘Setup’’ section and assuming
a rational choice in period 2, we can write the value functions, or the social
welfare, as a function of the current action dα

1 , in the following manner1:

V̂ (dα
1 ) = B + (a − C) · Ind(dα

1 = 1); (1)

V ∗(dα
1 ) = max(B − C, 0) · Ind(dα

1 = 0) + (a + B − C) · Ind(dα
1 = 1), (2)

1 See Fujii and Ishikawa (2012) for the derivation of this result.
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where B ≡ πb and C ≡ (1 − π)c denote the expected gross benefit and cost
in period 2, respectively. Thus, the social planner chooses dα

1 to maximize V̂

[V ∗] in the presence [absence] of the prospect of future information. Using
these value functions, the AFHH option value can be found as follows:2

OVAFHH
I ≡ (V̂ (0) − V̂ (1)) − (V ∗(0) − V ∗(1))

= V̂ (0) − V ∗(0) = min(B, C). (3)

The AFHH option value can be interpreted as the correction term that
must be added to the net present value of conservation relative to devel-
opment when the net present value is calculated ignoring the prospect of
future information. The third expression shows that the AFHH option value
is the change in the expected total payoff for the society from the prospect
of future information, given that conservation is chosen in period 1. Thus,
the AFHH option value can be interpreted as the conditional value of infor-
mation (Hanemann, 1989).

It is also possible to give the AFHH option value an alternative interpreta-
tion. We can interpret θ̂I ≡ V̂ (0)−V̂ (1) as a surplus measure of conservation
relative to development when future information is available. This is the
minimum transfer of payoff that must be given to the social planner to
ensure development takes place in period 1. In the current setup, this is the
smallest number that has to be added to a to make the social planner indif-
ferent between conservation and development in period 1. This number is
negative if the social planner prefers development to conservation. We sim-
ilarly define θ∗

I ≡ V ∗(0) − V ∗(1) for the case without the prospect of future
information. Given these definitions, we have OVAFHH

I = θ̂I − θ∗
I . As we

argue in the next section, this alternative interpretation allows us to define
the AFHH option value in a game situation.

Mensink and Requate (2005) argue that the DP option value can be
defined as follows:

OVDP
I ≡ max(V̂ (0), V̂ (1)) − max(B̄0, V

∗(1)), (4)

where B̄0 is the default value, which is the present value of the stream of
payoffs that would emerge if no investment decision is made at all times.

2 We use subscripts I and II to clearly distinguish between Cases (I) and (II). To maintain the
consistency with Fujii and Ishikawa (2012), we also use the subscript S in the next section to
emphasize the social value of the option.
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In our model, this is equal to choosing conservation in both periods, which
implies that B̄0 = 0. In this definition, the social planner is assumed to
commit in period 1 to either conservation or development for both periods
under the net present value decision rule (See also, Mensink and Requate,
2005). Thus, the DP option value can be thought of as the value arising
from the flexibility to delay the decision to develop (or invest).

A concept related to the AFHH and DP option values is the EVI, which
is defined as follows:

EVII ≡ max(V̂ (0), V̂ (1)) − max(V ∗(0), V ∗(1)). (5)

The EVI is the additional expected total payoff from the future information.
If we define ŴI ≡ max(V̂ (0), V̂ (1)) and W ∗

I ≡ max(V ∗(0), V ∗(1)), they can
be interpreted as the social welfare when the social planner behaves ratio-
nally given the availability of future information. Thus, EVII = ŴI − W ∗

I
is the change in the social welfare from future information. Similarly, if we
define W̃ ∗

I ≡ max(B̄0, V
∗(1)), we have OVDP

I = ŴI −W̃ ∗
I . It turns out, how-

ever, that the DP option value is identical to the EVI in the current setup:

Proposition 1 Given the setup in the second section, we have the following :

OVDP
I = EVII = (C − a) · Ind(a ≤ C < a + B) + B · Ind(a + B ≤ C).

(6)

We omit the formal proof because it is straightforward. Intuitively, the
result can be understood in the following manner. When there is no prospect
of future information, the social planner simply loses the opportunity cost
a, if he chooses to conserve in period 1. Thus, a rational social planner
chooses either (0, 0) or (1, 1); he never chooses (0, 1). Therefore, even though
V ∗(0) �= 0 in general, this occurs only when V ∗(1) = V̂ (1) > V ∗(0) > 0, in
which case we have max(V ∗(0), V ∗(1)) = max(0, V ∗(1)) = V ∗(1) = V̂ (1),
equating OVDP

I with EVII.
Put differently, in the absence of future information, if development is

more attractive than conservation in period 2, development is certainly more
attractive in period 1. Therefore, in the absence of future information, the
flexibility to delay the decision (i.e., the possibility to take a sequence of
action (0, 1)) is not valuable for the social planner. This in turn means that
the welfare that social planner gains from the option to delay comes only
from the expected value of information.
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By comparing Equation (3) with Equation (6), we have the following
proposition:

Proposition 2 OVAFHH
I , OVDP

I , and EVII satisfy the following relation-
ship:

EVII = OVDP
I

= OVAFHH
I · Ind(C > a) + PPV · Ind(a + B > C > a) (≥ 0), (7)

where PPV ≡ V ∗(0) − V ∗(1) = −a + max(0, C − B) is what Mensink
and Requate (2005) call the pure postponement value. Clearly, EVII =
OVDP

I = OVAFHH
I when a + B < C. However, as Hanemann (1989) has

shown, OVAFHH
I �= EVII(= OVDP

I ) in general. In fact, Equation (7) is sim-
ply a restatement of Equation (17) in his paper and the generalization of
the results presented by Mensink and Requate (2005). Thus, Proposition 2
is simply a summary of the results of previous studies. However, the social
optimum case discussed in this section serves as a reference case.

Case (II): Strategic Interactions

In this section, we let the players interact strategically with each other. That
is, each player chooses his action so as to maximize his payoff for the two
periods. Unlike the previous section, the regulator is unable to stipulate the
players’ actions. As with Fujii and Ishikawa (2012), we take the efficient
subgame perfect Nash equilibrium as the relevant solution concept. The
subgame played in period 2 is determined by the action profile (dα

1 , dβ
1 ) in

period 1.
Given the setup in the ‘‘Setup’’ section, each player i ∈ {α, β} has three

possible pure strategies di ∈ {(0, 0), (0, 1), (1, 1)} when future information
is not available. When information is available in period 2, each player
can take a state-contingent action. Therefore, if conservation is chosen in
period 1, the set of strategies for player i in the subgame in period 2 is
{0, Ind(s = s1), Ind(s = s2), 1}. However, because Ind(s = s1) dominates
the other strategies, we only need to consider the following two strategies
di ∈ {(0, Ind(s = s1)), (1, 1)}. The payoff matrices for these cases are given
in Table 1.

With some slight abuse of terminology, we shall use the cell index in
Table 1 to specify a profile of the sequence of actions. For example, b∗)
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â)

(B
/2

,B
/2

)
b̂)

((
1

−
k
)B

,a
+

k
B

−
C

)

(1
,1

)
ĉ)
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refers to the profile (dα, dβ) = ((0, 0), (0, 1)). The equilibrium profile in the
absence of future information is: a∗) if C−B > a; e∗) if a < (1/2−k)(B−C)
and k < 1/2; i∗) if a ≥ C − B ≥ 0 or a ≥ (1 − 2k)(B − C) ≥ 0; and f∗) or
h∗) otherwise. In the presence of future information, the equilibrium is: (â)
if a < (1 + Ind(k ≥ 1/2))(k − 1/2)B + C; d̂) if a ≥ (1 − 2k)B + C; and (b̂)
or (ĉ) otherwise.3

We can now introduce the EVI and the AFHH and DP option values for
the society in the current context. As Fujii and Ishikawa (2012) argue, the
EVI in this case is simply the change in the expected total payoff for the
two periods due to the information. Let ŴII and W ∗

II be the equilibrium
social welfare (i.e., the expected total payoff in the equilibrium for the two
players summed over the two periods).4 For example, when C − B > a,
the equilibrium is â) and a∗) with and without information in period 2,
respectively, and thus we have ŴII = B and W ∗

II = 0. Using ŴII and W ∗
II,

we can define and compute the EVI for the current case as follows:

EVIS ≡ ŴII − W ∗
II (8)

=




C − a if a + (k − 1
2)B < C ≤ a + B and k ≥ 1

2 ,

or if max
(
a + (k − 1

2)B, B − 2a
1−2k

)
< C < B + a

and k < 1
2

B if C > B + a

C if C < B − 2a
1−2k and k < 1

2

0 otherwise.

(9)

To apply the DP option value in the current case, we need to consider the
change in the social welfare due to the flexibility to delay the decision. When
the players can choose a state-contingent action, the social welfare is clearly
ŴII. The question is, therefore, what the relevant social welfare is under the
net present value decision rule when the flexibility is ignored. We argue that
the regulator in this case would be able to distribute a development right for
free to the players in period 1. This right can be exercised only in period 1.
Thus, the player has to commit to development or conservation in period 1.
They cannot choose the sequence (0, 1). Therefore, the equilibrium in the

3 When we have multiple asymmetric equilibria, we can choose an arbitrary equilibrium because
the choice does not affect the social welfare (Fujii and Ishikawa 2012).

4 The formal definition of these variables are given in Definition 1 in Fujii and Ishikawa (2012).
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absence of future information is a∗) if C > a + B and i∗) otherwise. We
denote the equilibrium social welfare by W̃ ∗

II(= max(0, a + B − C)). With
these considerations, we can now define the DP option value for the current
case:

Definition 1 The DP option value OVDP
S in a game situation is defined as

follows:
OVDP

S ≡ ŴII − W̃ ∗
II. (10)

Notice that the definition will coincide with OVDP
I , if the regulator is

able to stipulate the action of each player. It is straightforward to show the
following:

Proposition 3 Given the setup in the “Setup” section, we obtain the fol-
lowing from Equations (8) and (10):

EVIS = OVDP
S + a · Ind(a < (1/2 − k)(B − C) and k < 1/2). (11)

Proposition 3 shows that the equivalence between the EVI and DP option
value holds when either a < (1/2 − k)(B − C) or k < 1/2 is violated. When
the conditions in the indicator function hold, EVI is larger than the DP
option value by a, a result that is not expected from Case (I). Under these
conditions, each player chooses the sequence of action (0, 1), if allowed, in
the absence of future information.

However, in the calculation of the DP option value, each player is required
to commit to either conservation or development without the option to delay
the decision to develop, i.e., (0, 1) is not allowed. This constraint, in turn,
improves the efficiency in the absence of future information because it pre-
vents the players from simultaneously choosing (0, 1), which is an inefficient
equilibrium. The second term of Equation (11) reflects this welfare difference
between W ∗

II and W̃ ∗
II.

Another notable point in Proposition 3 is that both EVI and the DP
option value can be negative. Fujii and Ishikawa (2012) have shown that
EVI is negative if and only if k < 1/2, C < a, and 2(a − C)/(1 − 2k) < B <

C + 2a/(1 − 2k). By these conditions and Proposition 3, we can show the
following corollary:

Corollary 1 The DP option value in a game situation is negative if and
only if 0 > C − a > (k − 1/2)B and k < 1/2.
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This corollary shows that the flexibility to delay the decision can harm
the social welfare. This happens because the prospect of information encour-
ages the players to wait until period 2 to develop even when immediate
development (i.e., development in period 1) is socially efficient.

Now, let us turn to the AFHH option value in the current case. Fujii and
Ishikawa (2012) have shown that the AFHH option value has a conceptual
difficulty in the presence of strategic interactions because the value function
is not meaningful when a particular outcome (i.e., development or conser-
vation) is not supported as an equilibrium. To circumvent this problem, we
adopt the alternative interpretation of the AFHH option value and extend
it to a game situation by considering surplus measures θ̂ and θ∗ of conser-
vation for the cases with and without the prospect of future information,
respectively.

We first consider the surplus measure θ̂II, which can be defined as the
difference in the individual payoffs between conservation and development
when the opponent is choosing conservation. When the information about
the state becomes available in period 2, this can be done by taking the
difference of the payoff for player α [player β] between cells â) and ĉ) [cells
â) and b̂)].

θ̂II =
B

2
− (a + kB − C) =

(
1
2

− k

)
B + C − a. (12)

When the information is not available, we can compute θ∗
II in the following

manner. Using the backward induction, the reduced payoff matrix consists
of e∗), f∗), h∗), and i∗) when B > C, and a∗), c∗), g∗), and i∗) when B ≤ C.
Therefore, we have:

θ∗
II = ((1/2 − k)(B − C) − a)·Ind(B > C)−(a + B − C) Ind(B ≤ C). (13)

Using Equations (12) and (13), we can define the AFHH option value for
the current case as follows:

Definition 2 The AFHH option value OVAFHH
S in a game situation is

defined as follows:
OVAFHH

S ≡ θ̂II − θ∗
II.

This definition is based on the reinterpretation of the AFHH option value
presented in section ‘‘Case (I): Social Optimum,’’ i.e., the change in the
surplus from conservation because of the future information.
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Proposition 4 Given the setup in the “Setup” section and Definition 2,
the following relationship between OVAFHH

I and OVAFHH
S follows from Equa-

tions (3), (12), and (13):

OVAFHH
S =

(
3
2

− k

)
min(B, C) =

(
3
2

− k

)
OVAFHH

I . (14)

By comparing Equation (14) with Equations (9) and (11), it is clear that
the AFHH option value is different from the DP option value and the EVI,
which should not be surprising given Proposition 2. There are five additional
points to note here. First, our definition of OVAFHH

S is a direct extension
of OVAFHH

I . If the regulator can stipulate the actions of the two players,
OVAFHH

S coincides with OVAFHH
I .

Second, Equation (14) clearly shows that the change in the surplus mea-
sure of conservation depends on k. This is because information influences the
way players interact with each other. It also shows that OVAFHH

S = OVAFHH
I

if and only if k = 1/2. This is because the strategy taken by the opponent
does not change the incentive structure when k = 1/2. For example, in the
absence of the prospect of future information, each player chooses to develop
in this case if and only if a+B−C ≥ 0 regardless of the opponent’s strategy.

Third, the point made by Fujii and Ishikawa (2012) is still valid, even
though we have successfully extended the definition of AFHH option value.
That is, since some outcomes are not supported as an equilibrium, it is not
possible to interpret OVAFHH

S as the conditional value of information, unlike
the single decision-maker case studied by Hanemann (1989).

Fourth, Equation (14) shows that the AFHH option value is positive
even in the presence of strategic interactions. The AFHH option value in
the current case is the change of payoff needed to induce development in
light of the prospect of future information. Since the prospect of future
information makes conservation more attractive in period 1, the results are
intuitive.

Fifth, Equation (14) also shows that the parameter k affects the option
value. Because the follower develops only when the state is good (s = s1)
in the presence of information in period 2, the temptation to conserve in
period 1 is higher when the follower’s share 1−k of the benefits from devel-
opment in period 2 is higher. As a result, the AFHH option value in a game
situation tends to be higher when k is lower.
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Discussion

In this study, we have extended the AFHH and DP option values to a game
situation. One novelty of this study is that, by reinterpreting the AFHH
option value as the change in the surplus of conservation because of future
information, we have overcome the conceptual difficulty of the AFHH option
value pointed by Fujii and Ishikawa (2012). While the AFHH and DP option
values and the EVI discussed above are related to each other, the appropriate
choice of these measures in a practical application of cost-benefit analysis
would depend on the policy instruments that are available to the regulator.
For example, if the regulator simply passes information to the players with
no additional policy instruments, the EVI would be the measure that the
regulator would ultimately be interested in. The regulator can choose to pass
on the information if and only if EVI is positive.

The AFHH option value is relevant if the cost-benefit analyst wants to
measure the value of conservation. Unlike the single decision-maker case,
this measurement may be complicated in a game situation because the reg-
ulator can directly implement neither conservation nor development. Our
approach is to use a minimum hypothetical transfer to induce development
to measure the surplus of conservation. We chose the parameter a for this
transfer because this parameter directly changes the net present value of
development. However, under some circumstances, the regulator may be able
to make, for example, state-contingent transfers. In such a case, the AFHH
option value may be altered.

The DP option value is most relevant in a situation where the regulator can
make the players commit to either conservation or development in period 1.
This can be done, for example, by distributing free development rights in
period 1, which can be exercised only immediately. Such a situation may
arise in practice because the regulator may be short-lived, in the sense that
the opportunity to develop is lost for ever when the person in charge in the
regulating body changes.

This study has highlighted the fact that the AFHH and DP option values
and the EVI all depend on the way players interact with each other, a
point that has largely been neglected in the literature. Therefore, social cost-
benefit analyses under strategic interactions require a careful assessment of
the information and policy instruments that may be available to the regu-
lator in the future.



Arrow–Fisher–Hanemann–Henry and Dixit–Pindyck Option Values 183

References

Arrow, K. J., and A. C. Fisher. 1974. “Environmental Preservation, Uncertainty, and
Irreversibility.” Quarterly Journal of Economics 88: 312–319.

Basili, M. 1998. “Quasi-option Value and Hard Uncertainty.” Environment and Develop-
ment Economics 3: 417–423.

Black, F., and M. Scholes. 1973. “The Pricing of Options and Corporate Liabilities.”
Journal of Political Economy 81: 637–659.

Conrad, J. M. 1980. “Quasi-option Value and the Expected Value of Information.” Quar-
terly Journal of Economics 95: 813–820.

Dixit, A. K. and R. S. Pindyck. 1994. Investment Under Uncertainty. (Princeton University
Press).

Fisher, A. C. and W. M. Hanemann. 1987. “Quasi-option Value: Some Misconceptions
Dispelled.” Journal of Environmental Economics and Management 14: 183–190.

Fisher, A. C. 2000. “Investment Under Uncertainty and Option Value in Environmental
Economics.” Resource and Energy Economics 22: 197–204.

Fujii, T. and R. Ishikawa. 2012. “Quasi-option Value under Strategic Interactions.”
Resource and Energy Economics 34: 36–54.

Hanemann, W. M. 1989. “Information and the Concept of Option Value.” Journal of
Environmental Economics and Management 16: 23–37.

Henry, C. 1974. “Investment Decisions Under Uncertainty: The Irreversibility Effect.”
American Economic Review 64: 1006–1012.

Lund, D. 1991. “Financial and Non-financial Option Valuation.” In Stochastic Models and
Option Values, eds. D. Lund and B. Oksendal, North-Holland, pp. 143–163.

Mensink, P. and T. Requate. 2005. “The Dixit–Pindyck and Arrow–Fisher–Hanemann–
Henry Option Values are Not Equivalent: A Note on Fisher (2000).” Resource and
Energy Economics 27: 83–88.

Merton, R. C. 1973. “Theory of Rational Option Pricing.” Bell Journal of Economics and
Management Science 4(1): 141–183.


	Arrow-Fisher-Hanemann-Henry and Dixit-Pindyck Option Values Under Strategic Interactions
	Citation

	sbe-v3n3-fm.dvi

