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Limit Theory for an Explosive Autoregressive Process�

Xiaohu Wang y, Jun Yu z

yChinese University of Hong Kong
zSingapore Management University

November 16, 2013

Abstract

Large sample properties are studied for a �rst-order autoregression (AR(1)) with
a root greater than unity. It is shown that, contrary to the AR coe¢ cient, the least-
squares (LS) estimator of the intercept and its t-statistic are asymptotically normal
without requiring the Gaussian error distribution, and hence an invariance principle
applies. While the invariance principle does not apply to the asymptotic distribution
of the LS estimator of the AR coe¢ cient, we show explicitly how it depends on the
initial condition and the intercept. Also established are the asymptotic independence
between the LS estimators of the intercept and the AR coe¢ cient and the asymptotic
independence between their t-statistics. Asymptotic theory for explosive processes is
compared to that for unit root AR(1) processes and stationary AR(1) processes. The
coe¢ cient based test and the t test have better power for testing the hypothesis of zero
intercept in the explosive process than in the stationary process.

1 Introduction

Consider a �rst-order autoregression (AR(1)) de�ned by

xt = d+ �xt�1 + ut; x0 � Op(1); (1.1)

where futg is a sequence of independent and identically distributed (i.i.d.) random errors
with E(ut) = 0, E (u2t ) = �

2 2 (0;1) (i.e., ut
iid� (0; �2)). The available sample is fxtgTt=1.

�The authors are grateful to Peter C. B. Phillips for helpful comments. Yu would like to acknowledge
the �nancial support from Singapore Ministry of Education Academic Research Fund Tier 2 under the grant
number MOE2011-T2-2-096. Xiaohu Wang, Department of Economics, Chinese University of Hong Kong,
Shatin, N.T., Hong Kong. Email: xiaohu.wang@cuhk.edu.hk. Jun Yu, Sim Kee Boon Institute for Financial
Economics, School of Economics and Lee Kong Chian School of Business, Singapore Management University,
90 Stamford Road, Singapore 178903. Email: yujun@smu.edu.sg.
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Let
P
denote

PT
t=1. If d is known apriori and assumed zero without loss of generality, based

on the available sample, the least-squares (LS) estimator of � is,

b� = Pxtxt�1P
x2t�1

: (1.2)

If the value of d is unknown apriori, the LS estimators of � and d are, respectively,

b� = P�
xt �X

� �
xt�1 �X�

�P�
xt�1 �X�

�2 and bd = X � b�X�, (1.3)

where X =
P
xt=T , X� =

P
xt�1=T .

The limiting distributions of b� and bd and their t-statistics have been developed in the
literature in several special cases of Model (1.1). Broadly speaking, there are three cases,
corresponding to the stationary model (j�j < 1), the unit root model (� = 1), and the
explosive model (j�j > 1) with the prior knowledge that d = 0.
In this paper, we extend the literature by establishing the limiting distributions of b�

and bd and their t-statistics for the explosive AR(1) process with an unknown intercept. We
show that the asymptotic normality and, hence, an invariance principle hold true for bd and
its t-statistic without assuming the Gaussian error distribution. Moreover, we obtain the
limiting distributions of b� and its t-statistic and show how they depends explicitly on the
intercept and the initial condition. Also established are the asymptotic independence betweenbd and b� and the asymptotic independence between their t-statistics. Finally, we compare our
asymptotic theory with those for other models and the comparison leads to several interesting
new observations.
The rest of the paper is organized as follows. Section 2 reviews the literature. The

asymptotic theory is developed in Section 3. Section 4 compares the new limit theory with
that of the stationary models and of the unit root models. Section 5 concludes and discusses
how to generalize our results. All the proofs are contained in Appendix. Throughout this
paper, we use the notations), p!, d= to denote weak convergence, convergence in probability,
equivalence in distribution, respectively.

2 A Literature Review

We brie�y review the literature in three cases, corresponding to the stationary model (j�j <
1), the unit root model (� = 1), and the explosive model (j�j > 1) with the prior knowledge
of zero intercept. Table 1 summarizes the results.
In Case 1 (j�j < 1), if d is assumed to be known apriori and equal to 0, it is known that

p
T (b�� �)) N(0; 1� �2);
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and the conventional t-statistic asymptotically follows a standard normal distribution as

t� =
(b�� �) �Px2t�1

�1=2
p
�̂2

) N(0; 1);

where
�̂2 =

1

T

X
(xt � b�xt�1)2 :

If d has to be estimated together with �, we have

p
T (b�� �)) 1� �2

�2
�
d
= N

�
0; 1� �2

�
and p

T
�bd� d�) w � d (1 + �)

�2
�
d
= N

�
0; �2 +

d2 (1 + �)

1� �

�
,

where
w

d
= N

�
0; �2

�
and �

d
= N

�
0; �4=

�
1� �2

��
are the limits of T�1=2

P
ut and T�1=2

P
xt�1ut � T�1=2

P
utd (1� �t�1) = (1� �), respec-

tively, and are independent random variables.1 The t-statistics are

t� ) N(0; 1); td ) N(0; 1):

The rate of the convergence in Case 1 is always
p
T for both estimators. Note that the

limiting distribution of bd depends on � as well as d.
To review the asymptotic results in Case 2 (� = 1), we �rstly introduce some notations.

We use W (r) to represent a standard Brownian motion where r 2 [0; 1]. The integral sign
R

denotes integration from 0 to 1. For notational convenience, we often simply write W (r) as
W ,

R
W (r) dW (r) as

R
WdWand

R
W 2 (r) dr as

R
W 2.

For the unit root process with the prior knowledge that d = 0, it is known from Phillips
(1987) that

T (b�� 1)) R
WdWR
W 2

;

and that

t� )
R
WdW�R
W 2
�1=2 :

If d is zero but has to be estimated together with �, it is known from Phillips and Perron
(1988) that

T (b�� 1)) R
WdW �W (1)

R
WR

W 2 �
�R
W
�2 ;

p
T bd) �

W (1)
R
W 2 �

R
W
R
WdWR

W 2 �
�R
W
�2 ;

1The independence between w and � is proved in Appendix under a further moment condition of
E ju1j2+� <1 for some � > 0.
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and

t� )
R
WdW �W (1)

R
W�R

W 2 �
�R
W
�2�1=2 ; td ) W (1)

R
W 2 �

R
W
R
WdWnR

W 2
�R
W 2 �

�R
W
�2�o1=2 :

However, when d is not zero and has to be estimated together with �, we have

T 3=2 (b�� 1)) N(0; 12�2=d2);
p
T
�bd� d�) N(0; 4�2);

and
t� ) N(0; 1); td ) N(0; 1):

As it can be seen from the discussion above, the rate of the convergence in Case 2 is
parameter speci�c and also depends on if there is a non-zero constant in the model. The
rate of the convergence can be T or T 3=2 for b� and pT for bd. Even when the true value of
d is zero, whether or not to estimate it leads to a di¤erent limiting distribution of b�. The
deviation of d from zero leads to a change in the limiting distributions of b� and bd, as well as
their t-statistics.
In Case 3 (j�j > 1), if x0 = 0, ut

iid� N(0; �2), d = 0 and is known apriori, White (1958)
showed that2

�T

�2�1 (b�� �)) Cauchy:

When ut
iid� (0; �2) but is not necessarily normally distributed, Anderson (1959) showed

that
�T

a2�1 (b�� �)) y=z;

where y and z are the limits of yT and zT de�ned by

yT =
TX
t=1

��(T�t)ut and zT = �
T�1X
t=1

��tut + �x0: (2.1)

He argued that the limiting distributions of yT and zT , and hence of b�, depend on the
distribution of u�s, so no central limit theorem (CLT) or invariance principle is applicable.
The role played by the initial condition in the limiting distribution could be found in z.
As it can be seen from the discussion above, the rate of the convergence in Case 3 depends

on both T and �. The limiting distributions of the t-statistic of � are reported in Table 1.
A closely related literature, recently developed in econometrics and applied to detect

bubbles in economic and �nancial time series, can be found in Phillips and Magdalinos (2009),
Magdalinos (2012), Phillips, Wu and Yu (2011), Phillips, Shi and Yu (2013a, b, c). In this

2When x0 = c, a nonzero constant, by deriving the limit of the moment generating function of �̂, White
(1958) showed how the initial condition a¤ects the limiting distribution of �̂.
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Table 1: Summary of the limiting distributions of �̂ and d̂ and their t-statistics.

Model LS Estimates t-statistics
xt = �xt�1 + ut

p
T (b�� �)) N(0; 1� �2) t� ) N(0; 1)

j�j < 1; x0 � Op(1)
xt = d+ �xt�1 + ut

p
T (b�� �)) N(0; 1� �2) t� ) N(0; 1)

j�j < 1; x0 � Op(1)
p
T
�bd� d�) N

�
0; �2 + d2(1+�)

1��

�
td ) N(0; 1)

xt = �xt�1 + ut T (b�� 1)) R
WdW=

R
W 2 t� )

R
WdW=

�R
W 2
�1=2

� = 1; x0 � Op(1)
xt = d+ �xt�1 + ut T (b�� 1)) R

WdW�W (1)
R
WR

W 2�[
R
W ]

2 t� )
R
WdW�W (1)

R
W�R

W 2�[
R
W ]

2
�1=2

� = 1; d = 0; x0 � Op(1)
p
T bd) �

W (1)
R
W 2�

R
W
R
WdWR

W 2�[
R
W ]

2 td ) W (1)
R
W 2�

R
W
R
WdWnR

W 2
�R

W 2�[
R
W ]

2
�o1=2

xt = d+ �xt�1 + ut T 3=2 (b�� 1)) N(0; 12�2=d2) t� ) N(0; 1)

� = 1; d 6= 0; x0 � Op(1)
p
T
�bd� d�) N(0; 4�2) td ) N(0; 1)

xt = �xt�1 + ut, x0 = 0 �T

a2�1 (b�� �)) Cauchy t� ) N(0; 1)

j�j > 1; ut
iid� N(0; �2)

xt = �xt�1 + ut, x0 = c T (b�� �)) y=z t� ) y jzj
�
�2�1
�2�2

�1=2
=z

j�j > 1; ut
iid� (0; �2)
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literature, AR models are considered to model explosive dynamic behavior. The common
feature shared by our model and the models considered in this new literature is that the root
is large than unity. The di¤erence is the root is assumed to be a function of T and moderately
larger than unity in the new literature whereas in Model (1.1) we assume the root is larger
than unity but independent of T . Also related to our study are Phillips and Magdalinos
(2008), Nielsen (2010), Engsted and Nielsen (2012) where an explosive cointegrated system
is analyzed.

3 Limit Theory for the Explosive Process with Inter-

cept

We now focus our attention on the following explosive AR(1) process with intercept:

xt = d+ �xt�1 + ut; t = 1; � � � ; T; j�j > 1: (3.1)

Assume x0 = Op (1) which is independent of � (u1; � � � ; uT ), and ut
iid� (0; �2). An equivalent

representation of xt is

xt =
1� �t
1� � d+ �

tx0 +
t�1X
j=0

�jut�j: (3.2)

Obviously, (1� �t) d= (1� �) and �tx0 have the same order of Op (�t) if d 6= 0. It becomes
clear later that

Pt�1
j=0 �

jut�j has the order of Op (�t) too. This is the reason why both the
intercept and the initial condition play an important role in the asymptotic theory for the
explosive process. The model can also be expressed as

xt =
1� �t
1� � d+ x

0
t ; (3.3)

where x0t is an explosive AR(1) process with no intercept.
Denote

wT =
1p
T

TX
t=1

ut. (3.4)

Following the Lindeberg-Feller CLT, the limiting distribution of wT is N (0; �2). Following
Anderson (1959), we de�ne yT and zT as in Equation (2.1). In the following lemma, we give
the limits of wT , yT , and zT , and show that they are independent from each other.

Lemma 3.1 De�ne wT , yT , and zT as in Equation (3.4) and Equation (2.1). Then we
have (a) yT ) y; zT ) z, and y and z are independent; (b) wT ) w

d
= N (0; �2) and w is

independent of (y; z).
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The proof of (a) was given in Anderson (1959) and the proof of (b) is in Appendix. The
intuition for the independence is as following. In zT , the �rst few terms, such as x0, u1,
u2, u3, make non negligible contribution and hence decide the asymptotic distribution of zT .
Similarly, in yT , while the �rst few terms become negligible as T goes to in�nity, the last few
terms, say uT ; uT�1; uT�2, make non negligible contribution and hence decide the asymptotic
distribution of yT . In wT , no single term makes signi�cant contribution and the CLT takes
over. Since ut are independently distributed and x0 is independent of futg, it is not surprising
that the limits of wT , yT , and zT are independent.
To obtain the limiting distribution of the LS estimator of � in the explosive AR(1) model

without intercept, Anderson (1959) proved that3�
��(T�2)

X
x0t�1ut,

�
�2 � 1

�
��2(T�1)

X�
x0t�1

�2�) �
yz; z2

�
. (3.5)

Using this result together with the independence of w; y; z, we obtain the following asymptotic
results.

Theorem 3.2 For Model (3.1) with j�j > 1, we have, as T !1,
(a) ��(T�1)xT ) z + �d= (�� 1);
(b) ��(T�2)

P
xt�1ut ) y [z + �d= (�� 1)];

(c) (�� 1)��(T�1)
P
xt�1 ) z + �d= (�� 1);

(d) (�2 � 1)��2(T�1)
P
x2t�1 ) [z + �d= (�� 1)]2.

Since zT = �
PT�1

t=1 �
�tut + �x0, not surprisingly, the initial condition �x0 appears in

the limit, z. According to Theorem 3.2, the intercept term d appears in all the asymptotic
distributions. In particular, the intercept and the initial condition a¤ect the asymptotic
distributions in the same manner. This observation is consistent with the one in Equation
(3.2) where the three terms on the right hand side has the same order of magnitude.
The centered LS estimators of d and � and their t-statistics are given by� bd� db�� �

�
=

�
T

P
xt�1P

xt�1
P
x2t�1

��1� P
utP

xt�1ut

�
;

and

td =

�bd� d� �TPx2t�1 � (
P
xt�1)

2�1=2�P
x2t�1 � �̂2

�1=2 ;

t� =
(b�� �) �TPx2t�1 � (

P
xt�1)

2�1=2�
T � �̂2

�1=2 ;

3Anderson�s results were derived under the condition that x0 is a constant. However, his proofs still hold

true when x0 = Op (1) is independent of � (u1; � � � ; uT ).
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where �̂2 = T�1
P�

xt � d̂� �̂xt�1
�2
.

Since
P
xt�1ut and

P
xt�1 have the same rate of convergence, ��T , we have p

T
�bd� d�

�T (b�� �)
!
=

�
1 T�1=2��T

P
xt�1

T�1=2��T
P
xt�1 ��2T

P
x2t�1

��1
�
�
T�1=2

P
ut

��T
P
xt�1ut

�

=

�
1 op (1)

op (1) ��2T
P
x2t�1

��1
�
�
T�1=2

P
ut

��T
P
xt�1ut

�
.

Consequently, we have the following theorem which extends Anderson�s results to the explo-
sive AR(1) model with intercept.

Theorem 3.3 For Model (3.1) with j�j > 1, if Prfz + �d= (�� 1) = 0g = 0, the following
limits apply as T !1 :

(a) p
T
�bd� d� = T�1=2X ut + op (1)) w

d
= N

�
0; �2

�
, (3.6)

(b)
�T

�2 � 1 (b�� �) = ��(T�2)
P
xt�1ut

(�2 � 1)��2(T�1)
P
x2t�1

+ op (1))
y

z + �d= (�� 1) , (3.7)

(c)

�̂2 = T�1
X�

xt � d̂� �̂xt�1
�2 p�! �2, (3.8)

(d)

td =

p
T
�bd� d��
�̂2
	1=2 + op (1))

w

�
d
= N (0; 1) , (3.9)

(e)

t� )
y

z + �d= (�� 1) �
����z + �d

�� 1

�������2 � 1�2�2

�1=2
. (3.10)

Remark 3.4 An invariance principle exists for bd and its t-statistic as Equations (3.6) and
(3.9) hold true even when ut is not normally distributed.

Remark 3.5 In Equation (3.7), if d = 0, the limiting distribution becomes y=z which

is the same as that derived by Anderson (1959) for the model without intercept and the

intercept is not estimated. It implies that when d = 0 the limiting distribution is the

same regardless of whether or not d is estimated. This is not surprisingly as xt = x0t
when d = 0. Hence, ��(T�2)

P
xt�1ut = ��(T�2)

P
x0t�1ut, (�2 � 1)��2(T�1)

P
x2t�1 =

(�2 � 1)��2(T�1)
P�

x0t�1
�2
, suggesting the middle term in Equation (3.7) is the same as the

ratio of the two terms in Equation (3.5). This result is in sharp contrast to the unit root

model reviewed in the last section.
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Remark 3.6 With the same intuition as before, the distributions of both z and y depend on
the distribution of ut. Hence, no invariance principle applies to b� and its t-statistic.
Remark 3.7 The independence of w, y and z suggests

p
T
�bd� d� and �T (b�� �) = (�2 � 1)

are asymptotically independent. Similarly, td and t� are asymptotically independent.

Remark 3.8 As apparent in Theorem 3.3 (a) and (d), neither the initial condition (x0) nor
the intercept (d) can be found in the limiting distributions of

p
T
�bd� d� and td. In sharp

contrast, both the initial condition and the intercept appear in the limiting distributions of
�T

�2�1 (b�� �) and t�. In fact, they play the same role in the limiting distributions. It is worth
noting that what matters in the limiting distributions is not x0 or d, but x0=� and d=�. This

point can be seen more clearly by studying a special case where ut
iid� N(0; �2). In this case,

we get

y = N(0; �2�2=
�
�2 � 1

�
) and z = N(0; �2�2=

�
�2 � 1

�
) + �x0;

which are independently distributed. Let

� :=

�
�2 � 1
�2�2

�1=2
y, and � :=

�
�2 � 1
�2�2

�1=2
z �

�
�2 � 1
�2�2

�1=2
�x0;

be two independent N (0; 1) random variables. Then, Theorem 3.3 (b) becomes

�T

�2 � 1 (b�� �)) �

� +
p
(�2 � 1) =�2 [�x0=� + �d=� (�� 1)]

.

It can be seen that both x0=� and d=�, but not x0 and d, determine the limiting distribution ofb�. When x0 = d = 0, we obtain the standard Cauchy limiting distribution. The dependence
on the ratio of x0=� and d=� was also found in the unit root and local-to-unity literature.

See, for example, Phillips (1987) and Perron (1991).

Remark 3.9 While in general the limiting distribution of t� depends on both the initial
value and the intercept as shown in Equation (3.10), the result is remarkably di¤erent when

ut
iid� N(0; �2). In this case, we have

t� )
�

z + �d= (�� 1) jz + �d= (�� 1)j .

Let P+ = Pr fz + �d= (�� 1) > 0g and P� = Pr fz + �d= (�� 1) < 0g. Then, from the

independence of � and z, we obtain the moment generating function for the limit of t�,

P+ � E (exp ft�g) + P� � E (exp f�t�g) = P+ � exp
�
t2=2

	
+ P� � exp

�
t2=2

	
= exp

�
t2=2

	
.

Therefore, t� ) N (0; 1) which does not depend on the initial condition nor the intercept.
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4 Comparison with Other Models

In this section, we will compare the limit theory of the explosive AR(1) process and that
of the stationary AR(1) process and the unit root AR(1) process. Some new interesting
observations are discussed.

4.1 Explosive root versus unit root

The limit theory for the explosive model and that for the unit root model are distinctively
di¤erent. First, for a unit root model, we have

xt = x0 +

t�1X
j=0

ut�j = Op

�p
t
�
, when d = 0;

and

xt = dt+ x0 +
t�1X
j=0

ut�j = Op (t) , when d 6= 0:

Obviously, the presence of a nonzero intercept changes the asymptotic property of xt, and
consequently, leads to a change in the limiting distributions of b� and bd and their t-statistics,
as reported in Table 1. The discontinuity of the limiting distributions of bd and td at d = 0
makes it hard to analyze the local power behavior when they are used to test d = 0. To
analyze the local power, we often use the limit theory for the unit root model with an intercept
dependent on T :

xt = dT + �xt�1 + ut with dT = d=
p
T , � = 1.

In contrast, for the explosive process, the limiting distributions of b� and bd and their t-statistics
become continuous at the point d = 0 as we have shown in the Theorem 3.3. Hence, the
local power can be obtained directly.
Second, for the explosive process, we have shown in Theorem 3.3 that bd � d and b� � �

are asymptotically independent, and that td and t� are also asymptotically independent,
regardless of the value of d. In contrast, when a unit root process is considered, the asymptotic
distributions of bd� d and b��� (as well as td and t�) are always correlated, and the strength
of the correlation varies as the value of d changes.
For the explosive process, the comparison of the limit theory between Anderson (1959)

and Theorem 3.3 reveals that, when the intercept is zero, the limiting distribution of b� is the
same regardless of whether or not the intercept is estimated. On the other hand, for unit
root process, the estimation of the intercept changes the limiting distribution of b�.
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4.2 Explosive root versus stationary root

The di¤erences between the explosive process and the stationary model are more subtle and
have important implications. First, for the stationary AR(1) process, the limiting distribution
of
p
T
�bd� d� is a linear combination of the limiting distribution of T�1=2Put and that of

T�1=2
P
xt�1ut. As a result, the asymptotic variance of

p
T
�bd� d� is �2+d2 (1 + �) = (1� �)

which depends on d. For the explosive AR(1) process, the limiting distribution of
p
T
�bd� d�

is dominated by T�1=2
P
ut, the asymptotic distribution of which, as shown in Equation

(3.6), is N (0; �2) whose variance is independent of d. This distinction sheds insights on the
di¤erences in the �nite sample power behavior of the test of the null hypothesis H0 : d = 0
in the context of the explosive process and the stationary AR(1) process. Under the null,

p
T bd) w

d
= N

�
0; �2

�
,

for both the explosive and the stationary models. Under the alternative hypothesisH1 : d 6= 0,
the �nite sample distribution of

p
T bd can be approximated by

p
T bd d� w +

p
Td

d
= N

�p
Td; �2

�
, if j�j > 1,

and by

p
T bd d� w � d (1 + �)

�2
� +

p
Td

d
= N

�p
Td; �2 +

d2 (1 + �)

1� �

�
, if j�j < 1.

Note that the shift of the mean is the same in both cases. However, when j�j < 1, the variance
of the �nite sample distribution increases with jdj whereas when j�j > 1, the variance of the
�nite sample distribution remains unchanged. Therefore, we expect the test to have a better
power for the explosive model than for the stationary model.
A similar observation applies to the t test. Under the null hypothesis H0 : d = 0, for both

the explosive process and the stationary process, we have

~td =
bd �TPx2t�1 � (

P
xt�1)

2�1=2�P
x2t�1 � �̂2

�1=2 ) N (0; 1) :

Under the alternative hypothesis that H1 : d 6= 0, Theorem 3.3 (d) gives us an approximation
of the �nite sample distribution of ~td for the explosive case:

~td = td +

p
Td
�P

x2t�1 � T�1 (
P
xt�1)

2�1=2�P
x2t�1 � �̂2

�1=2
=

p
T
�bd� d��
�̂2
	1=2 +

p
Td�

�̂2
	1=2 + op (1) d� w

�
+

p
Td

�
d
= N

 p
Td

�
; 1

!
.
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For the stationary case, the approximation of the �nite sample distribution of ~td is given by

~td = td +

p
Td
�P

x2t�1 � T�1 (
P
xt�1)

2�1=2�P
x2t�1 � �̂2

�1=2
d� N

 
p
Td

�
1

�2 + d2 (1 + �) = (1� �)

�1=2
; 1

!
:

Note that in both cases, the variance of the approximate �nite sample distribution is the
same but the means are di¤erent. Since �2+ d2 (1 + �) = (1� �) > �2 when j�j < 1, we have

p
Td

�
1

�2 + d2 (1 + �) = (1� �)

�1=2
<

p
Td

�
;

the shift of the mean of ~td from H0 to H1 under the explosive model is greater than that
under the stationary model. Therefore, the t test is expected to have better power for the
explosive process than for the stationary process.
Second, for the explosive process, the results in Theorem 3.3 suggest that, regardless of

the value of d, bd � d and b� � � are asymptotically independent, and td and t� are also
asymptotically independent. On the contrary, for the stationary process, the asymptotic
independence between bd � d and b� � � and that between td and t� can only be guaranteed
by the condition of d = 0.
Third, for the explosive process with intercept, the value of d a¤ects the limiting distri-

butions of
P
xt�1ut and

P
x2t�1, and, hence, the limiting distribution of b�� �, as shown in

Theorem 3.3. The value of d has no impact on the limiting distribution of bd � d because it
is decided by the unique dominating term, T�1=2

P
ut. On the contrary, for the stationary

process with an intercept, the magnitude of d does not change the limiting distribution ofb�� �, but only a¤ect the limiting distribution of bd� d.
5 Discussions and Conclusions

In this paper the asymptotic theory is developed for the explosive AR(1) process with in-
tercept. The results extend the literature in several directions. First, it is proved that an
invariance principle applies to the intercept and its t-statistic while it continues to fail to ap-
ply to the AR coe¢ cient. Second, the asymptotic independence between LS estimators of the
intercept and the AR coe¢ cient and the asymptotic independence between their t-statistics
are established. Third, the comparison conducted in the paper reveals that the coe¢ cient
based test and the t test have better power for testing H0 : d = 0 under the explosive process
than under the stationary process.
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It may be interesting to consider the case where the condition ut = i:i:d:(0; �2) is replaced
by ut = i:ni:d:(0; �2t ). With the assumption of heteroskedasticity, we need a condition such
as E (u2t ) = �2t < M for some M < 1. In this case, the asymptotic results have to be
modi�ed by replacing �2�2= (�2 � 1) with

1X
s=0

��2s�2s+1;

which exists as it is less than �2M= (�2 � 1). It is worth noting that when ut are not
identically distributed, the limit of yT may not exist as uT always plays non negligible ef-
fect. Therefore, extra assumptions that ensure the existence of the limit of yT are required.
Whereas, it is easy to show that zT is still a Cauchy sequence in the L2 space, and hence,
zT ) z remains true.
To obtain the limiting distribution of �̂, the restriction that Prfz+�d= (�� 1) = 0g = 0

is needed. It is possible that this restriction is violated. For example, if d = 0, x0 = 0, and ut
follows a Poisson distribution taking 0 with probability of expf� (1=2)tg, then, the probability
of z = 0 is expf�

P1
t=1 (1=2)

tg = 1=e > 0. As a result, Prfz + �d= (�� 1) = 0g > 0 and
hence the limiting distribution of �̂ is not well de�ned.

APPENDIX

Proof of the independence between w and �. Note that the AR(1) process as in
(1.1) can be equivalently expressed as

xt =
1� �t
1� � d+ �

tx0 +
t�1X
j=0

�jut�j =
1� �t�1
1� � d+ x0t

where x0t = �x
0
t�1 + ut is an AR(1) process with no intercept. As a result,

T�1=2
X

xt�1ut � T�1=2
X

utd
�
1� �t�1

�
= (1� �) = T�1=2

X
x0t�1ut.

Then, by the Cramér-Wold device (e.g. Kallenberg, 2002, Corollary 5.5), it is su¢ cient to
show that

a � T�1=2
X

ut + b � T�1=2
X

x0t�1ut ) a � w + b � �, for all a; b 2 R;

where w = N (0; �2) and � = N (0; �4= (1� �2)) are independent random variables. If Y
is an N (0; a2�2 + b2�4= (1� �2)) random variable, a � w + b � � d

= Y , so a � T�1=2
P
ut + b �

T�1=2
P
x0t�1ut ) Y , for all a; b 2 R, is su¢ cient to show the asymptotic independence. We

can write

a � T�1=2
X

ut + b � T�1=2
X

x0t�1ut =
X aut + bx

0
t�1utp
T

=
X

YTt;
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where YTt is a martingale di¤erence sequence. Hence, week convergence to a Gaussian random
variable can be derived as a consequence of the CLT for the martingale di¤erence sequence
(e.g. Hall and Heyde, 1980, Corollary 3.1).
The conditional variance is given by

V 2TT =

TX
t=1

E
�
Y 2Tt
��FT (t�1)� = 1

T

TX
t=1

�
a+ bx0t�1

�2
E
�
u2t
�

=
�2

T

�X
a2 +

X�
bx0t�1

�2
+
X

2abx0t�1

�
= �2a2 +

�2b2

T

X�
x0t�1

�2
+ op (1)) a2�2 +

b2�4

1� �2 ,

where the fourth equation and the �nal asymptotic result come from

T�1
X

x0t�1
p�! 0, as T !1,

and

T�1
bTscX
t=1

�
x0t�1

�2 p�! s�2=
�
1� �2

�
for any s 2 [0; 1] ,

respectively, which are standard asymptotic results for stationary process x0t .
To prove the conditional Lindeberg condition, we �rst get, for any " > 0,

TX
t=1

E
�
Y 2Tt1 fjYTtj > "g

��FT (t�1)�
=

1

T

TX
t=1

�
a+ bx0t�1

�2
E

�
u2t1

�����aut + bx0t�1utp
T

���� > "�����FT (t�1)�
� V 2TT � max

1�t�T
E

�
u2t1

�����aut + bx0t�1utp
T

���� > "�����FT (t�1)�
� V 2TT � max

1�t�T
E

�
u2t1

����� autp
T

����+ ����bx0t�1utp
T

���� > "�����FT (t�1)�
� V 2TT � max

1�t�T
E

�
u2t1

�����bx0t�1utp
T

���� > "

2

�����FT (t�1)� when T is large,

where the last inequality is based on the fact that ut=
p
T ! 0 almost everywhere as T !1.

Hence, the conditional Lindeberg condition will be satis�ed if

max
1�t�T

E

 
u2t1

(��x0t�1ut�� > p
T"

2 jbj

)�����FT (t�1)
!

p�! 0 as T !1.
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Applying the Hölder and Chebyshev inequalities, we obtain, for some � > 0

EFT (t�1)

 
u2t1

(��x0t�1ut�� > p
T"

2 jbj

)!

� E
2=(2+�)
FT (t�1)

�
jutj2+�

�
� P �=(2+�)FT (t�1)

(��x0t�1ut�� > p
T"

2 jbj

)

�
�
E jutj2+�

�2=(2+�)
�

0@EFT (t�1)
n��x0t�1ut��2o

T"2=2b2

1A�=(2+�)

=
�
E ju1j2+�

�2=(2+�)
�
 �
x0t�1

�2
T

!�=(2+�)
�
�

�2

"2=2b2

��=(2+�)
, for each t 2 f1; � � � ; Tg .

Assume E ju1j2+� <1, then

max
1�t�T

�
x0t�1

�2
T

p�! 0 as T !1

is su¢ cient for satisfaction of the conditional Lindeberg condition. For m 2 f1; � � � ; Tg,
de�ne the sets

BT;m :=
m\
j=1

8<:! :
������ 1T

bT (j=m)cX
t=1

�
x0t�1 (!)

�2 � j

m

�2

1� �2

������ � 1

m

9=; :
As T�1

PbTsc
t=1

�
x0t�1

�2 � s�2= (1� �2) for each s 2 [0; 1], we have P (BT;m) ! 1 as T ! 1.
Next, note that

max
1�t�T

�
x0t�1

�2
T

� 1

T
sup
s2[0;1]

bT (s+1=m)cX
t=bTsc+1

�
x0t�1

�2
.

For given s 2 [0; 1] choose j 2 f1; � � � ;mg so that s 2 [(j � 1) =m; j=m]. Then, for each
s 2 [0; 1], ! 2 BT;m implies

1

T

bT (s+1=m)cX
t=bTsc+1

�
x0t�1

�2 � 1

T

bT (j+1)=mcX
t=bT (j�1)=mc+1

�
x0t�1

�2
=

0@ 1
T

bT (j+1)=mcX
t=1

�
x0t�1

�2 � j + 1
m

�2

1� �2

1A
�

0@ 1
T

t=bT (j�1)=mcX
t=1

�
x0t�1

�2 � j � 1
m

�2

1� �2

1A+ 2�2

m (1� �2)

� 2

m
+

2�2

m (1� �2) =
2

m

�
1 +

�2

1� �2

�
:
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Thus, for any m 2 N ,

lim
T!1

P

(
max
1�t�T

�
x0t�1

�2
T

� 2

m

�
1 +

�2

1� �2

�)
� lim

T!1
P (BT;m) = 1.

Therefore, the conditional Lindeberg condition is satis�ed, and the independence between w
and � follows.

Proof of Lemma 3.1. (b): The fact of wT ) w
d
= N (0; �2) simply follows the

Lindeberg-Feller CLT. To prove the independence between w and z, let

z�T = �x0 + �

bpTcX
s=1

��sus, ~zT = �

T�1X
s=bpTc+1

��sus;

and

w�T =
1p
T

T�1X
s=bpTc+1

us, ~wT =
1p
T

bpTcX
s=1

us,

where
jp
T
k
is the largest integer not greater than

p
T . Then z�T and w

�
T are independently

distributed because they involve disjoint sets of u�s. As T goes to in�nity, we have

E (zT � z�T )
2 = E (~zT )

2 =

0B@�2 T�1X
s=bpTc+1

��2s

1CA�2

=
��2(b

p
Tc�1)

�
1� ��2(T�b

p
Tc�1)

�
�2 � 1 �2 ! 0;

and

E (wT � w�T )
2 = E ( ~wT )

2 =

jp
T
k

T
�2 ! 0:

Then, zT � z�T and wT � w�T converge with probability 1 to 0, therefore, the asymptotic
independence between zT and wT follows. The independence between w and y can be proved
in a similar way.

Proof of Theorem 3.2. (a): Starting from Equation (3.3), we have

��(T�1)xT = ��(T�1)
�
1� �T
1� � d+ x

0
T

�
= ��(T�1)

�
1� �T
1� � d+ �x

0
T�1 + uT

�
=

�d

�� 1 + �
�(T�2)x0T�1 + op (1)

=
�d

�� 1 + zT + op (1)) z +
�d

�� 1 ,
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where the fourth equality comes from the de�nition of zT in (2.1), and the �nal limit is a
result of Lemma 3.1.
(b): Again, starting from Equation (3.3), it can be obtained that

��(T�2)
X

xt�1ut = ��(T�2)
X

x0t�1ut + �
�(T�2)

X (1� �t�1) d
1� � ut

= ��(T�2)
X

x0t�1ut �
�d

1� �
X

��(T�t)ut +
d

1� ��
�(T�2)

X
ut

= ��(T�2)
X

x0t�1ut +
�d

�� 1yT + op (1)

) yz +
�d

�� 1y = y
�
z +

�d

�� 1

�
;

where the third equality comes from the de�nition of yT in (2.1), and the combination of the
results in Lemma 3.1 and Equation (3.5) leads to the �nal limit.
(c): From Model (3.1) it is easy to get xt � xt�1 = d+ (�� 1)xt�1 + ut. Then,

(�� 1)
X

xt�1 = xT � x0 � Td�
X

ut.

Hence, based on the limiting distribution derived in (a), we have

(�� 1)��(T�1)
X

xt�1 = ��(T�1) (xT � x0)� ��(T�1)Td� ��(T�1)
X

ut

= ��(T�1)xT + op (1)) z +
�d

�� 1 .

(d): Squaring both sides of Model (3.1), we get

x2t = �
2x2t�1 + 2�dxt�1 + 2�xt�1ut + d

2 + u2t + 2dut.

Therefore, x2t � x2t�1 = (�2 � 1)x2t�1 + 2�dxt�1 + 2�xt�1ut + d2 + u2t + 2dut, which leads to�
�2 � 1

�X
x2t�1 = x

2
T � x20 � 2�d

X
xt�1 � 2�

X
xt�1ut � Td2 �

X
u2t � 2d

X
ut.

Based on the results reported in (a), (b), (c) and the assumption that x0 = Op (1), it is
straightforward to get

�
�2 � 1

�
��2(T�1)

X
x2t�1 = �

�2(T�1)x2T + op (1))
�
z +

�d

�� 1

�2
.

Proof of Theorem 3.3. The results come immediately from the Lemma 3.1 and
Theorem 3.2, hence the proofs are omitted.
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