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Abstract 

The standard LM tests for spatial dependence in linear and panel regressions are derived 

under the normality and homoskedasticity assumptions of the regression disturbances. Hence, they 

may not be robust against non-normality or heteroskedasticity of the disturbances. Following Born 

and Breitung (2011), we introduce general methods to modify the standard LM tests so that they 

become robust against heteroskedasticity and non-normality. The idea behind the robustification 

is to decompose the concentrated score function into a sum of uncorrelated terms so that the outer 

product of gradient (OPG) can be used to estimate its variance. We also provide methods for 

improving the finite sample performance of the proposed tests. These methods are then applied to 

several popular spatial models. Monte Carlo results show that they work well in finite sample. 
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Abstract

The standard LM tests for spatial dependence in linear and panel regressions are

derived under the normality and homoskedasticity assumptions of the regression distur-

bances. Hence, they may not be robust against non-normality or heteroskedasticity of

the disturbances. Following Born and Breitung (2011), we introduce general methods

to modify the standard LM tests so that they become robust against heteroskedasticity

and non-normality. The idea behind the robustification is to decompose the concen-

trated score function into a sum of uncorrelated terms so that the outer product of

gradient (OPG) can be used to estimate its variance. We also provide methods for

improving the finite sample performance of the proposed tests. These methods are then

applied to several popular spatial models. Monte Carlo results show that they work

well in finite sample.

Key Words: Centering; Heteroskedasticity; Non-normality; LM test; Panel
model; Spatial dependence.

JEL Classification: C21, C23, C5

1 Introduction

Many economic processes, for example, housing decisions, technology adoption, unem-
ployment, welfare participation, price decisions, crime rates, trade flows, etc., exhibit spatial
patterns, see Anselin (1988a,b), Glaeser et al. (1996), LeSage (1999), Lin and Lee (2010),
and Kelejian and Prucha (2010), to mention a few. This makes testing for the existence
of spatial dependence a necessary ingredient in many empirical economic applications, see

1We thank the Editor Daniel McMillen and two referees for the helpful comments and suggestions that

improved the paper. Zhenlin Yang gratefully acknowledges the support from a research grant (Grant number:

C244/MSS11E006) from Singapore Management University.



Anselin and Bera (1998) and Baltagi, et al. (2003), to mention a few. Among the popular
tests for spatial dependence, the LM test is simple to compute as it does not require the
estimation of the spatial effects. However, the standard LM tests for spatial dependence
in linear and panel regressions are derived under the assumptions that the regression er-
rors are normal and homoskedastic, and hence may not be robust against these types of
misspecification. Indeed, heteroskedasticity and non-normality are the two most typical
forms of misspecification commonly cited in economic applications. Hence, it is highly de-
sirable to find ways to ‘robustify’ the standard LM tests so as to take advantage of their
computational simplicity.

Anselin (1988b) pioneered research along these lines for spatial models, and provided a
heteroskedasticity and non-normality robust test for spatial error dependence in a linear or
nonlinear regression by following the methods of White (1980) and Davidson and MacKin-
non (1985). Recently, Born and Breitung (2011) proposed simple regression based tests for
spatial dependence in linear regression models, based on an elegant idea: decomposing the
concentrated score function into a sum of uncorrelated components – making use of the fact
that the diagonal elements of the spatial weight matrix are zero – so that the outer product
of gradient (OPG) method can be used to estimate the variance of the score. This method
leads naturally to OPG variants of the LM statistics that are robust against heteroskedas-
ticity and non-normality. However, the finite sample performance of the OPG-based LM
tests can be poor due to heavy spatial dependence, see the Monte Carlo experiments below.

This paper generalizes the idea of Born and Breitung (2011) to a more general class
of LM statistics, as long as their numerator can be written as linear-quadratic forms of
the error vector. Another important issue considered in this paper is the finite sample
performance of the spatial LM tests. Recently, Yang (2010) and Baltagi and Yang (2013)
showed that the standard LM tests for spatial regression models (linear or panel) may suffer
from severe finite sample size distortion when spatial dependence is heavy. Instead, they
proposed standardized LM tests that correct for both the mean and variance of the standard
LM test statistics. While these standardized LM tests are derived under the assumption
that the errors are homoskedastic, the results do show that centering and rescaling play
important roles in improving the finite sample performance of these LM tests, in particular
when an OPG variant of the LM test is used. However, under heteroskedasticity of the
disturbances, it is more challenging to center an LM test as the analytical expression of the
centering factor typically involves the unknown variances of the error terms. We propose
nearly unbiased estimators of this centering quantity, leading to improved OPG-LM tests.

The rest of the paper is organized as follows. Section 2 presents general methods for
constructing an OPG-variant of an LM test so that it becomes asymptotically robust against
both heteroskedasticity and non-normality. Section 3 applies these general methods to some
popular spatial models (linear and panel), to give the standard OPG-LM tests and their
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corresponding finite sample corrected versions. Section 4 presents some Monte Carlo results,
and Section 5 concludes the paper. All proofs are given in Appendix.

2 General Methods

Consider the general model

q(Yn, Xn, W1n . . .Wkn; θ, λ) = εn, (1)

with a dependent variable Yn conditional on a set of independent variables Xn, and spatial
weight matrices W1n . . .Wkn. In this case, θ denotes the parameters of the model considered,
while λ denotes the spatial parameters. εn is an n-vector of model errors, independent but
not (necessarily) identically distributed (inid) with mean zero and variances σ2

i , i = 1, . . . , n.
Popular spatial regression models and spatial panel data models can all be written in this
form. For example, the spatial autoregressive (SAR) model, Yn = λWnYn+Xnβ+εn, can be
written in the form: Bn(λ)Yn −Xnβ = εn where Bn = In −λWn and In is an n×n identity
matrix. The spatial error regression model, Yn = Xnβ + un; with un = λWnun + εn,
can be written as Bn(λ)(Yn − Xnβ) = εn. Combining these two models gives a spatial
autoregressive model with spatial autoregressive error (SARAR) that can be written in
the form B2n(λ2)(B1n(λ1)Yn − Xnβ) = εn where Brn(λr) = In − λrWrn, r = 1, 2. The
panel versions of these models with fixed effects can also be written in the form of (1)
after a transformation to eliminate the fixed effects. Our null hypothesis corresponds to
the nonexistence of spatial effects, leading to null models being typically the classical linear
regression models, or the classical panel data models with fixed effects, so that the test
can be carried out using only the OLS estimates and residuals. See Anselin (1988b) for a
comprehensive coverage of the popular spatial regression models, and Baltagi, et al. (2003)
for the LM tests in the spatial panel data regression models. While our discussion focuses
on spatial models, the methods presented below apply to more general econometric models.

2.1 One-directional test

Consider the case where k = 1, i.e., λ is a scalar. Suppose that the numerator of the
LM test statistic for testing H0 : λ = 0, derived under normality and homoskedasticity, can
be written as a linear-quadratic form in εn:

Qn(εn) = ε′nAnεn + b′nεn, (2)

where An is an n × n non-stochastic matrix that may involve Xn and Wn, and bn is an
n × 1 non-stochastic vector that may involve Xn and some model parameters contained in
θ. This holds if the null model is a linear regression model or a panel data model with fixed
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effects. Clearly, the matrix An is crucial in the application of the OPG method for variance
estimation. For example, for the SAR model described above we have An = MnWn where
Mn = In −Xn(X ′

nXn)−1X ′
n. For the spatial error components (SEC) model introduced by

Kelejian and Robinson (1995) we have An = Mn[WnW ′
n − 1

ntr(WnW ′
n)In]Mn.

Kelejian and Prucha (2001) presented a central limit theorem (CLT) for the above linear-
quadratic (LQ) forms, which we will use to prove most of our theorems. However, simple
methods for estimating the variance of Qn(εn) were not given. Clearly, Q(εn) is not a sum
of uncorrelated components and hence the OPG method cannot be (directly) applied to
estimate the variance of Qn(εn). Inspired by Born and Breitung (2011), we write

An = Au
n + Al

n + Ad
n, (3)

where the three n × n matrices on the right hand side of (3) are, respectively, the upper
triangular, the lower triangular and the diagonal matrices of An. Define ζn = (Au′

n +Al
n)εn.

Let an = diag(An) be the vector formed by the diagonal elements {an,ii} of An. We have,

Qn(εn) = ε′nAnεn + b′nεn

= ε′n(Au
n + Al

n)εn + a′nε2
n + b′nεn

= ε′n(Au′
n + Al

n)εn + a′nε2
n + b′nεn

= ε′nζn + a′nε2
n + b′nεn

=
∑n

i=1 εn,i(ζn,i + an,iiεn,i + bn,i),

where ε2
n = {ε2

n,i}n×1, and εn,i, ζn,i, an,ii and bn,i are, respectively, the elements of εn, ζn, an

and bn. It can easily be seen that the elements εn,i(ζn,i + an,iiεn,i + bn,i) in the above
summation are uncorrelated, and thus Qn(ε) is decomposed into a sum of n uncorrelated
terms. It follows that the variance of Qn(εn) can be estimated by the following OPG form:

n∑
i=1

(εn,i(ζn,i + an,iiεn,i + bn,i))
2 .

With this variance estimator, the CLT for LQ forms of Kelejian and Prucha (2001) is
made feasible provided that E[Qn(εn)] =

∑n
i=1 an,iiσ

2
i is ‘negligible’, i.e., 1√

n

∑n
i=1 an,iiσ

2
i =

o(1). Clearly, this is true if an,ii = o(n−1/2) for all i and σ2
i are finite constants. For all

the three tests considered in Born and Breitung (2011) and the tests for fixed effects panel
models considered in this paper, we have an,ii = O(n−1). In general, as Qn(εn) corresponds
to the concentrated score of λ (at λ = 0) derived under normality and homoskedasticity,
it is typical that 1√

n

∑n
i=1 an,ii = o(1) if homoskedasticity holds. With this, it can be seen

that 1√
n

∑n
i=1 an,iiσ

2
i = o(1) holds as long as {an,ii} and {σ2

i } are weakly correlated (see
Theorem 1 below). The following set of assumptions are needed:

Assumption 1. The errors {εn,i} are independent such that E(εn,i) = 0, V ar(εn,i) =
σ2

i , and sup1≤i≤n E(|εn,i|4+δ) < ∞ for some δ > 0.
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Assumption 2. The elements {an,ij} of An satisfy sup1≤j≤n

∑n
i=1 |an,ij| < ∞ for all

n. The elements {bn,i} of bn satisfy supn n−1|bn,i|2+η < ∞ for some η > 0.

These are essentially the same set of assumptions maintained by Kelejian and Prucha
(2001) for their central limit theorem for a linear quadratic form. The following theorem
provides a feasible OPG variant of this central limit theorem:

Theorem 1. If Assumptions 1 and 2 hold, and if Cov(an, ς2
n) = o(n−1/2), then for

testing H0 : λ = 0, we have the following OPG-variant of the LM test:

LMOPG =
ε′nAnεn + b′nεn√∑n

i=1(εn,iξn,i)2
, (4)

where ξn,i = ζn,i+an,iiεn,i+bn,i, ς2
n = (σ2

1, . . . , σ
2
n), and Cov(an, ς2

n) is the (sample) covariance
between an and ς2

n. Under H0, LMOPG
D−→ N (0, 1).

In empirical applications, εn,i are replaced by the restricted residuals and bn,i by their
restricted estimates (under H0). The above theorem directly extends the results of Born
and Breitung (2011) which require Qn(εn) to be of the form: ε′nWnεn + bnεn. It leads
naturally to OPG variants of the LM tests that are robust to heteroskedasticity and non-
normality for a more general class of LM tests. All popular one-directional LM tests of
spatial dependence can be robustified using Theorem 1 such as the LM test for spatial error
dependence in linear regression; the LM test for spatial lag dependence; the LM test for
spatial error components, etc. The OPG LM statistics derived this way differ from those
suggested by Born and Breitung (2011) in that they take into account the estimation of
the ‘other’ parameters such as the regression coefficients and the scale parameter in the
linear spatial regression model. It should be stressed that the results of Theorem 1 can be
applied to any one-directional LM test to provide an OPG variant that is robust against
misspecification in normality and homoskedasticity, as long as the numerator of the test
can be written in the form of (2).

While the LMOPG statistic given in Theorem 1 is robust asymptotically against het-
eroskedasticity and non-normality, its finite sample performance may not be satisfactory,
simply because E[Qn(εn)] =

∑n
i=1 an,iiσ

2
i �= 0 unless an,ii are all zero. Furthermore, the

condition Cov(an, ς2
n) = o(n−1/2) may not be satisfied by all LM tests including non-spatial

LM tests. This motivates us to work with

Q0
n(εn) = ε′nA0

nεn + b′nεn, (5)

where A0
n = An − Ad

n. Clearly, E[Q0
n(εn)] = 0. We have the following result:

Corollary 1. If Assumptions 1 and 2 hold, then for testing H0 : λ = 0, we have the
following OPG-variant of the LM test with finite sample corrections:

LM0
OPG =

ε′nA0
nεn + b′nεn√∑n
i=1(εn,iξ

0
n,i)2

, (6)
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where ξ0
n,i = ζn,i + bn,i. Under H0, LM0

OPG
D−→ N (0, 1).

Theorem 1 offers one-step finite sample improvement over the results of Born and Bre-
itung (2011) by taking into account the estimation of the regression coefficients. Corollary
1 offers further improvement by centering the numerator of the test statistic, and it removes
the condition imposed on the mean of Qn(εn). In practical applications, however, Q0

n(εn)
has to be replaced by its feasible version Q0

n(ε̃n). However, E[Q0
n(ε̃n)] may not be zero, and

further corrections may be necessary (see Section 3).

2.2 Multi-directional test

We now consider the case where k ≥ 2, e.g., the spatial dependence appears both
as a spatial lag and as a spatial error in the linear regression model. Suppose that the
numerators of the elements of the score vector which forms the LM test statistic for testing
H0 : λ = 0 can be written in linear-quadratic forms in εn:

Qn(εn) =

⎧⎪⎪⎨
⎪⎪⎩

ε′nA1nεn + b′1nεn

...
ε′nAknεn + b′knεn

where for r = 1, . . . , k, {Arn} are n × n non-stochastic matrices that may involve Xn and
{Wrn}. While {brn} are n× 1 non-stochastic vectors that may involve Xn and some model
parameters contained in θ. Kelejian and Prucha (2010) extend Kelejian and Prucha (2001)
to give a CLT for a vector of linear quadratic forms, upon which our theorem is based.

Decomposing each Arn in the same manner as in (3), i.e.,

Arn = Au
rn + Al

rn + Ad
rn, r = 1 . . . , k

and defining arn = diag(Arn), and ζrn = (Au′
rn + Al

rn)εn, r = 1 . . . , k, we have the following
theorem which requires the extended assumption given below.

Assumption 2′. The elements of Arn satisfy sup1≤j≤n supn
i=1 |arn,ij| < ∞ for all n,

and the elements of brn satisfy supn n−1|brn,i|2+ηr < ∞ for some ηr > 0, r = 1, . . . , k.

Theorem 2. If Assumptions 1 and 2′ hold, and if Cov(arn, ς2
n) = o(n−1/2), r = 1, . . . , k,

then for testing H0 : λ = 0, we have the following OPG-variant of the joint LM test:

LMJ
OPG =

(
n∑

i=1

εn,iΥn,i

)′( n∑
i=1

ε2
n,iΥn,iΥ′

n,i

)−1( n∑
i=1

εn,iΥn,i

)
, (7)

where Υn,i = {ζrn,i+arn,iiεn,i+brn,i, r = 1, . . . , k}′, with limn→∞ 1
n

∑n
i=1 Var(εn,iΥn,i) being

finite and positive definite. Under H0, LMOPG
D−→ χ2

k.
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The results of Theorem 2 extend those of Born and Breitung (2011) by allowing Arn

to be arbitrary matrices rather than Wrn. This means that it can be applied to LM tests
that do not have matrices of zero diagonal elements in the quadratic form. It also allows
the test to be of a general k-dimension rather than 2. Similar to the case of one-directional
tests, the test given in Theorem 2 can be standardized for better finite sample performance.
With this, the condition imposed on the mean of Qn(εn) is also removed.

Corollary 2. If Assumptions 1 and 2′ hold, then for testing H0 : λ = 0, we have the
following OPG-variant of the LM test with finite sample corrections:

LMJ0
OPG =

(
n∑

i=1

εn,iΥ0
n,i

)′( n∑
i=1

ε2
n,iΥ

0
n,iΥ

0′
n,i

)−1( n∑
i=1

εn,iΥ0
n,i

)
, (8)

where Υ0
n,i = {ζrn,i + brn,i, r = 1, . . . , k}′. Under H0, LM0

OPG
D−→ χ2

k.

3 Robust Spatial LM Tests with Finite Sample Corrections

In this section, we apply the results of Section 2 to several popular spatial regression
models. Due to the existence of spatial dependence, the finite sample performance of the
LMOPG tests defined in Theorems 1 and 2 may not be satisfactory. Thus, further finite sample
corrections may be necessary. In sum, Corollaries 1 and 2 point to general directions for
finite sample corrections. For a specific spatial model, however, a finer correction may
be possible. The key idea for improving the finite sample performance of an LM test is
centering, arising from the fact that the expectation of the concentrated score (from which
the LM statistic is derived) is not zero. In Theorem 1 above, for example, E[Qn(εn)] =∑n

i=1 an,iσ
2
i which is not necessarily zero. As a result, the finite sample mean of the LM test

may be far from its nominal value, and the finite sample size of the test severely distorted;
see Baltagi and Yang (2013) for the case of a linear regression with spatial error dependence.
Our idea is to obtain a feasible version of E[Q(εn)], and then subtract this feasible version
from Q(εn). There are two complications in centering. The first is that a feasible version
may not be readily available and some approximation may be necessary, and the second is
that the variance estimator may need to be adjusted after centering.

3.1 Linear regression with SARAR(1,1) dependence

Consider the popular SARAR(1,1) model, i.e., the spatial autoregressive model with
spatial autoregressive errors of the form

Yn = λ1W1nYn + Xnβ + un; un = λ2W2nun + εn. (9)

The two sub-models with λ2 = 0 or λ1 = 0 are called SAR (spatial autoregressive) model and
SED (spatial error dependence) models, respectively. The three null hypotheses considered
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are: Ha
0 : λ1 = 0 for the SAR model; Hb

0 : λ2 = 0 for the SED model; and Hc
0 : λ1 = 0, λ2 = 0

for the SARAR model. The corresponding LM tests (existing and new) are discussed next.
Let ε̃n be the OLS residuals from regressing Yn on Xn, β̃n and σ̃2

n the OLS estimators
of β and σ2, respectively, Trn = tr[(Wrn + W ′

rn)Wrn], r = 1, 2, T3n = tr[(W2n + W ′
2n)W1n],

Mn = In−Xn(X ′
nXn)−1X ′

n, and In is an n×n identity matrix. The LM test of Ha
0 : λ1 = 0,

given in Anselin (1988a,b), takes the form:

LMSAR =
ε̃′nW1nYn

σ̃2
n (D̃n + T1n)

1
2

, (10)

where D̃n = σ̃−2
n (WnXnβ̃n)′MnWnXnβ̃n. The LM test of Hb

0 given in Burridge (1980) is:

LMSED =
ε̃′nW2nε̃n

σ̃2
n T

1
2
2n

. (11)

The joint LM test of Hc
0 given in Anselin (1988a,b) has the form:

LMSARAR =
1
σ̃4

n

(
ε̃′nW1nYn

ε̃′nW2nε̃n

)′(
T1n + D̃n T3n

T3n T2n

)−1(
ε̃′nW1nYn

ε̃′nW2nε̃n

)
. (12)

Born and Breitung (2011) proposed OPG variants of the above LM tests which are robust
against heteroskedasticity and non-normality, making use of the fact that the diagonal
elements of the spatial weight matrices are zero. Let Wu

rn and W l
rn be the upper and

lower triangular matrices of Wrn, r = 1, 2. Define ξ̃1n = (Wu′
1n + W l

1n)ε̃n + MnWnXnβ̃n and
ξ̃2n = (Wu′

2n+W l
2n)ε̃n. The three OPG variants of the LM tests of Born and Breitung (2011)

are as follows:

LMOPG
SAR =

ε̃′nW1nYn

(ε̃2 ′
n ξ̃2

1n)
1
2

, (13)

LMOPG
SED =

ε̃′nW2nε̃n

(ε̃2 ′
n ξ̃2

2n)
1
2

, and (14)

LMOPG
SARAR =

(
ε̃′nW1nYn

ε̃′nW2nε̃n

)′(
ε̃2 ′
n ξ̃2

1n ε̃2 ′
n (ξ̃1n ⊗ ξ̃2n)

ε̃2 ′
n (ξ̃1n ⊗ ξ̃2n) ε̃2 ′

n ξ̃2
2n

)−1(
ε̃′nW1nYn

ε̃′nW2nε̃n

)
,(15)

where ⊗ denotes the Hadamard product, and the square of a vector, e.g., ε̃2
n = ε̃n ⊗ ε̃n.

The OPG variants of the LM tests considered by Born and Breitung (2011) (as well as
the original LM tests) do not take into account the estimation of β, and hence may suffer
from the problems of size distortion due mainly to the lack of centering and rescaling. Note
that the numerators of the tests above are:

ε̃′nW1nYn = ε′nMnW1nεn + ε′nMnηn

ε̃′nW2nε̃n = ε′nMnW2nMnεn.

8



It follows that E(ε̃′nW1nYn) =
∑n

i=1 σ2
i a1n,ii �= 0, and E(ε̃′nW2nε̃n) =

∑n
i=1 σ2

i a2n,ii �= 0,
where {a1n,ii} are the diagonal elements of A1n = MnWn, and {a2n,ii} are the diagonal
elements of A2n = MnWnMn. Replacing W1n by A1n and W2n by A2n in (13)-(15), and
applying Theorems 1 and 2, one immediately obtains a set of OPG variants of the LM
tests which take into account the estimation of β. Applying Corollaries 1 and 2, one obtains
another set of OPG variants of the LM tests which take into account the estimation of β

and also center the tests properly. However, the feasible versions Q0
n(ε̃) of Q0

n(ε) defined in
(5), applied to SAR, SED and SARAR models, may not have zero mean, and hence further
improvements can be made (see the proof of our next theorem for details).

For r = 1, 2, define Hrn = diag(Arn)diag(Mn)−2 and A∗
rn = Arn − MnHrnMn, and

decompose A∗
rn = A∗u

rn + A∗l
rn + A∗d

rn as in (3). Let ξ̃∗1n = (A∗u′
1n + A∗l

1n)ε̃n + A∗d
1nε̃n + Mnη̃n

and ξ̃∗2n = (A∗u′
2n + A∗l

2n)ε̃n + A∗d
2nε̃n. We have the following theorem.

Theorem 3. Assume Assumption 1 holds for εn in Model (9). Assume further that (i)
the diagonal elements of Wrn are zero for r = 1, 2, (ii) all row and column sums of Wrn are
uniformly bounded for all n and r = 1, 2, and (iii) the elements of the n× k matrix Xn are
uniformly bounded for all n, and limn→∞ 1

nX ′
nXn exists and is nonsingular. Then we have

the following OPG variants of the LM tests with finite sample corrections:

SLMOPG
SAR =

ε̃′nW1nYn − ε̃′nH1nε̃′n
(ε̃2 ′

n ξ̃∗21n)
1
2

, (16)

SLMOPG
SED =

ε̃′n(W2n −H2n)ε̃n

(ε̃2 ′
n ξ̃∗22n)

1
2

, and (17)

SLMOPG
SARAR = S ′

n

(
ε̃2 ′
n ξ̃∗21n ε̃2 ′

n (ξ̃∗1n ⊗ ξ̃∗2n)
ε̃2 ′
n (ξ̃∗1n ⊗ ξ̃∗2n) ε̃2 ′

n ξ̃∗22n

)−1

Sn, (18)

where Sn = {ε̃′nW1nYn − ε̃′nH1nε̃′n, ε̃′n(W2n − H2n)ε̃n}′. Under H0, SLMOPG
SAR

D−→ N (0, 1),
SLMOPG

SED
D−→ N (0, 1), and SLMOPG

SARAR
D−→ χ2

2.

3.2 Linear regression with spatial error components

The linear regression model with spatial error components (SEC) by Kelejian and
Robinson (1995) takes the following form:

Yn = Xnβ + un with un = Wnνn + εn, (19)

where Yn, Xn and Wn are defined as in the SARAR model. νn is an n × 1 vector of errors
that together with Wn incorporates the spatial dependence, and ε is an n × 1 vector of
location specific disturbance terms. The error components νn and εn are assumed to be
independent, with independent and identically distributed (iid) elements of mean zero and
variances σ2

ν and σ2
ε , respectively. In this model, the null hypothesis of no spatial effect can
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be either H0 : σ2
ν = 0, or θ = σ2

ν/σ2
ε = 0. The alternative hypothesis can only be one-sided,

as σ2
ν is non-negative, i.e., Ha : σ2

ν > 0, or θ > 0. Anselin (2001) derived an LM test based
on the assumptions that the errors are normally distributed. This LM test is of the form

LMSEC =
ε̃′n(WnW ′

n − 1
nT1nIn)ε̃n

σ̃2
ε(2T2n − 2

nT 2
1n)

1
2

, (20)

where σ̃2
ε = 1

n ε̃′nε̃n, ε̃n is the vector of OLS residuals, T1n = tr(WnW ′
n) and T2n =

tr(WnW ′
nWnW ′

n). Under H0, the positive part of LMSEC converges to that of N (0, 1).
This test is not robust against non-normality, and a robust version was proposed by Yang
(2010):

SLMSEC =
ε̃′n(WnW ′

n − 1
nS1nIn)ε̃n

σ̃2
ε(κ̃εS2n + S3n)

1
2

, (21)

where S1n = n
n−k tr(WnW ′

nMn), S2n =
∑

i c2
n,ii with {cn,ii} being the diagonal elements of

Cn = Mn(WnW ′
n − 1

nS1nIn)Mn, S3n = 2tr(C2
n), and κ̃ε is the excess sample kurtosis of ũn.

Yang (2010) showed that under H0, (i) the positive part of SLMSEC converges to that of
N (0, 1), and (ii) SLMSEC is asymptotically equivalent to LMSEC when κε = 0.

Neither tests defined in (20) and (21) are robust against heteroskedasticity. The idea
of Born and Breitung (2011) cannot be applied as in general the diagonal elements of
WnW ′

n − 1
nT1nIn are not zero. However, the general method given in Theorem 1 and

Corollary 1 still apply. Similar to the developments in Section 3.1 for linear regressions
with spatial error dependence, we introduce two OPG-variants of the LM test given in (20),
one without and one with finite sample corrections.

Let A◦
n = WnW ′

n− 1
nT1nIn, An = MnA◦

nMn, Hn = diag(An)diag(Mn)−2, and A∗
n = An−

MnHnMn. Decompose A◦
n and A∗

n as in (3): A◦
n = A◦u

n +A◦l
n +A◦d

n and A∗
n = A∗u

n +A∗l
n +A∗d

n .
Define ξ̃◦n = (A◦u′

n + A◦l
n )ε̃n + A◦d

n ε̃n and ξ̃∗n = (A∗u′
n + A∗l

n )ε̃n + A∗d
n ε̃n.

Theorem 4. Assume Assumption 1 holds for εn in Model (19). Assume further that (i)
the diagonal elements of Wn are zero, (ii) the sequence {Wn} are uniformly bounded in both
row and column sums, and (iii) the elements of the n×k matrix Xn are uniformly bounded
for all n, and limn→∞ 1

nX ′
nXn exists and is nonsingular. Then we have the OPG-variant

of the LM test without finite sample corrections (standardizations) as:

LMOPG
SEC =

ε̃′nA◦
nε̃n

(ε̃2 ′
n ξ̃◦2n )

1
2

, (22)

and the OPG-variant of the LM test with finite sample corrections (standardizations) as:

SLMOPG
SEC =

ε̃′n(A◦
n −Hn)ε̃n

(ε̃2 ′
n ξ̃∗2n )

1
2

. (23)

Under H0, the positive part of LMOPG
SEC converges to that of N (0, 1) if

√
nCov(�n, ς2

n) = o(1)
where �n = diag(WnW ′

n); and SLMOPG
SEC converges to that of N (0, 1).
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Note that LMOPG
SEC does not take into account the estimation of β, and does not have

mean and variance corrections. For a row normalized spatial contiguity weight matrix Wn,
we have �n,i = n−1

i where ni is the number of neighbors that spatial unit i has. Thus, as
long as the correlation between {n−1

i } and {σ2
i } is weak so that Cov(�n, ς2

n) = o(n−1/2), the
asymptotic null distribution of LMOPG

SEC will be centered at 0. This weak correlation occurs
when the variations among {n−1

i } is small, or {σ2
i } depends on the regressors’ values {xn,i}

which are generated independently of {n−1
i }, etc. A similar version taking into account the

estimation of β can be obtained by replacing A◦
n by An.

3.3 Spatial panel data models with fixed effects

The SARAR(1,1) model defined in (9) can be extended to the fixed effects panel data
model with SARAR(1,1) dependence, and denoted by panel SARAR(1,1)in this paper:

Ynt = λ1W1nYnt + Xntβ + μn + unt, unt = λ2W2nunt + εnt, t = 1, . . . , T, (24)

where the individual specific effect μn may be correlated with the regressors. Similar to the
linear SARAR(1,1) model, letting λ2 = 0 gives a fixed effects panel SAR model, and letting
λ1 = 0 leads to a fixed effects panel SED model.

Lee and Yu (2010) studied the asymptotic properties of QML estimation of the panel
SARAR(1,1) model with fixed effects. They used orthogonal transformations to wipe out
the fixed effects so that the incidental parameter problem would not occur in case T is fixed.
The resulting model takes the form:

Y ∗
nt = λ1W1nY ∗

nt + X∗
ntβ + u∗

nt, u∗
nt = λ2W2nu∗

nt + ε∗nt, t = 1, . . . , T − 1, (25)

where (Y ∗
n1, Y

∗
n2, · · · , Y ∗

n,T−1) = (Yn1, Yn2, · · · , YnT )FT,T−1, FT,T−1 is a T × (T − 1) matrix
whose columns are the eigenvectors of IT − 1

T ιT ι′T corresponding to the eigenvalues of
one, and ιT is a vector of ones of dimension T . u∗

nt, ε∗nt, and the columns of X∗
nt are

similarly defined. Letting λ2 = 0 or λ1 = 0 in (25) gives the transformed panel SAR or the
transformed panel SED model, respectively.

Debarsy and Ertur (2010) followed up with LM tests for spatial dependence for model
(24) or (25). Similar to the case of a linear SARAR model, we are interested in the following
three tests: Ha

0 : λ1 = 0 in the panel SAR model, Hb
0 : λ2 = 0 in the panel SED model,

and Hc
0 : λ1 = 0, λ2 = 0 in the panel SARAR model; and we develop LM tests that

are robust against both heteroskedasticity and non-normality. First, the three standard
LM tests derived by Debarsy and Ertur (2010) under normality and homoskedasticity are
summarized below.

The LM test for Ha
0 : λ1 = 0 in the fixed effects panel SAR model takes the form:

LMFESAR =
N√

S1 + D̃

ε̃∗′
N

W1Y
∗

N

ε̃∗′
N
ε̃∗

N

, (26)
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where N = n(T −1), ε̃∗
N

denotes the OLS residuals from regressing Y ∗
N

on X∗
N
, with Y ∗

N
being

the stacked {Y ∗
nt} and X∗

N
the stacked {X∗

nt}. S1 = tr[(W1 + W′
1)W1], W1 = IT−1 ⊗ W1n,

D̃ = σ̃−2
N

η̃′
N
Mη̃N, η̃N = W1XNβ̃N, M = IN − X∗

N
(X∗′

N
X∗

N
)−1X∗′

N
, and β̃N and σ̃2

N
are the OLS

estimators of β and σ2, respectively. The LM test for Hb
0 : λ2 = 0 in the fixed effects panel

SED model takes the form:
LMFESED =

N√
S2

ε̃∗′
N

W2ε̃
∗
N

ε̃∗′
N
ε̃∗

N

, (27)

where S2 = tr[(W2 + W
′
2)W2] and W2 = IT−1 ⊗ W2n.2 The joint LM test for Hc

0 : λ1 =
0, λ2 = 0 in the fixed effects panel SARAR model has the following form:

LMFESARAR =
1
σ̃4

N

(
ε̃∗′

N
W1Y

∗
N

ε̃∗′
N

W2ε̃
∗
N

)′(
S1 + D̃ S3

S3 S2

)−1(
ε̃∗′

N
W1Y

∗
N

ε̃∗′
N

W2 ε̃
∗
N

)
, (28)

where S3 = tr[(W2 + W′
2)W1].

It can be shown that all of these tests including the standardized version of LMFESED given in
Baltagi and Yang (2013) are asymptotically robust against non-normality. However, none
of these tests are robust against unknown heteroskedasticity. Note that ε̃∗

N
= Mε∗

N
where

ε∗
N

is the stacked {ε∗nt} and has uncorrelated elements. The tests given in (26)-(28) have
identical structures as those given in (10)-(12). Thus, the method of Born and Breitung
can be applied to give OPG-variants of the three LM tests given in (26)-(28):

LMFMOPG
SAR =

ε̃∗′
N

W1Y
∗

N

(ε̃∗2 ′
N

ξ̃∗21N
)

1
2

, (29)

LMFMOPG
SED =

ε̃∗′
N

W2 ε̃
∗
N

(ε̃∗2 ′
N

ξ̃∗22N
)

1
2

, and (30)

LMFMOPG
SARAR =

(
ε̃∗′

N
W1Y

∗
N

ε̃∗′
N

W2ε̃
∗
N

)′(
ε̃∗2 ′

N
ξ̃∗21N

ε̃∗2 ′
N

(ξ̃∗1N
⊗ ξ̃∗2N

)
ε̃∗2 ′

N
(ξ̃∗1N

⊗ ξ̃∗2N
) ε̃∗2 ′

N
ξ̃2
∗2N

)−1(
ε̃′

N
W1Y

∗
N

ε̃∗′
N

W2 ε̃
∗
N

)
,(31)

where ξ̃1N = (Wl
1 + W

u′
1 )ε̃∗

N
+ Mη̃N and ξ̃2N = (Wl

2 + W
u′
2 )ε̃∗

N
.

The structure of the three LM tests (26)-(28) show that applications of the methods
proposed in this paper (Theorems 1 and 2) would lead to OPG-variants of the LM tests that
could improve their finite sample performance. Now, define A1 = MW1 and A2 = MW2M.
For r = 1, 2, let Hr = diag(Ar)diag(M)−2 and A

◦
r = Ar − MHrM, which is decomposed

as A
◦
r = A

◦u
r + A

◦l
r + A

◦d
r as in (3). Let ξ̃◦1N

= (A◦u′
1N

+ A
◦l
1N

)ε̃∗
N

+ A
◦d
1N

ε̃∗
N

+ Mη̃N, and
ξ̃◦2N

= (A◦u′
2N

+ A◦l
2N

)ε̃∗
N

+ A◦d
2N

ε̃∗
N
. We have the following theorem.

Theorem 5. Assume Assumption 1 holds for εnt in Model (24), t = 1, . . . , T . Assume
further that (i) the diagonal elements of Wrn are zero for r = 1, 2, (ii) the sequences {Wrn}

2To test spatial error dependence in linear or panel regressions, Baltagi and Yang (2013) introduced a

standardized version of LMFESED which performed better in finite samples.
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are uniformly bounded in both row and column sums, and (iii) the elements of the N × k

matrix XN are uniformly bounded for all N, and limN→∞ 1
N
X ′

N
XN exists and is nonsingular.

Then we have the following OPG-variants of the LM tests with finite sample corrections:

SLMFMOPG
SAR =

ε̃∗′
N

W1Y
∗

N
− ε̃∗′

N
H1ε̃

∗
N

(ε̃∗2 ′
N

ξ̃◦21N
)

1
2

, (32)

SLMFMOPG
SED =

ε̃∗′
N
(W2 − H2)ε̃∗N
(ε̃∗2 ′

N
ξ̃◦22N

)
1
2

, and (33)

SLMFMOPG
SARAR = S

′
N

(
ε̃∗2 ′

N
ξ̃2◦
1N

ε̃∗2 ′
N

(ξ̃◦1N
⊗ ξ̃◦2N

)
ε̃∗2 ′

N
(ξ̃◦1N

⊗ ξ̃◦2N
) ε̃∗2 ′

N
ξ̃◦22N

)−1

SN, (34)

where SN = (ε̃∗′
N

W1Y
∗

N
− ε̃∗′

N
H1ε̃

∗
N
, ε̃∗′

N
(W2 − H2)ε̃∗N)′. Under H0, SLMFEOPG

SAR
D−→ N (0, 1),

SLMFEOPG
SED

D−→ N (0, 1), and SLMFEOPG
SARAR

D−→ χ2
2.

4 Monte Carlo Results

In this section, we describe Monte Carlo experiments and results for the finite sample
performance of the LM tests discussed in Section 3. General methods for generating the
spatial weight matrices, the model errors, the regressors values, and the heteroskedasticity
to be used in the Monte Carlo experiments are described first, followed by the results for
each of the three types of models considered earlier.

4.1 General settings

Spatial Weight Matrix. The spatial weight matrices used in the Monte Carlo ex-
periments are generated according to Rook Contiguity, Queen Contiguity and Group

Interactions. In the first two cases, the number of neighbors for each spatial unit stays
the same (2-4 for Rook and 3-8 for Queen) and does not change when the sample size n

increases. In the last case, the number of neighbors for each spatial unit increases with the
sample size but at a slower rate, and changes from group to group.

The Wn matrix under Rook contiguity is generated as follows: (i) index the n spatial
units by {1, 2, · · · , n}. Randomly permute these indices and then allocate them into a
lattice of r×m(≥ n) squares. (ii) Let Wn,ij = 1 if the index j is in a square which is on the
immediate left, or right, or above, or below the square which contains the index i, otherwise
Wn,ij = 0; and (iii) divide each element of Wn by its row sum. The Wn matrix under
Queen contiguity is generated in a similar way, but with additional neighbors which share a
common vertex with the unit of interest. To generate the Wn matrix according to the group
interaction scheme: (i) Calculate the number of groups according to g = Round(nδ), and
the approximate average group size m = n/g; (ii) generate the group sizes (n1, n2, · · · , ng)
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according to a discrete uniform distribution from 0.5m to 1.5m; (iii) adjust the group sizes
so that

∑g
i=1 ni = n, and (iv) define Wn = diag{Wi/(ni−1), i = 1, · · · , g}, a matrix formed

by placing the sub-matrices Wi along the diagonal direction, where Wi is an ni × ni matrix
with ones on the off-diagonal positions and zeros on the diagonal positions. Clearly, under
Rook or Queen contiguity, each spatial unit has a bounded number of neighbors, whereas
under group interaction it is divergent with rate n1−δ.

Error Distributions. Various distributions are considered in generating the model er-
rors, including normal, normal mixture, lognormal, chi-square, normal-gamma mixture, etc.
All distributions are standardized to have zero mean and unit variance. The standardized
normal-mixture variates are generated according to

en,i = ((1− vi)Zi + viτZi)/(1− p + p ∗ τ2)0.5,

where vi is a Bernoulli random variable (with probability of success p) and Zi is a standard
normal, independent of vi. The parameter p in this case also represents the proportion of
mixing the two normal populations. In our experiments, we choose p = 0.1, meaning that
90% of the random variates are from standard normal and the remaining 10% are from
another normal population with standard deviation τ . We choose τ = 4 to simulate the
situation where there are gross errors in the data.

Regressors. The DGPs used in the linear spatial regression models contain a constant
and two regressors, and the DGPs used in the spatial panel data models with fixed effects
contains three time-varying regressors. The simplest method for generating the values {xi}
for a regressor Xn is to make random draws from a certain distribution, leading to a scheme
XVal-A: {xi} iid∼ N (0, 1). Alternatively, to allow for the possibility that there might be
systematic differences in Xn values across the different sets of spatial units, e.g., spatial
groups, spatial clusters, etc. In this case, the ith value in the jth ‘group’, or jth column of
the lattice, {xij} of Xn are generated according to scheme XVal-B: {xij} = (2zj + zij)/

√
5,

where {zj, zij, vj, vij} iid∼ N (0, 1), across all i and j. Unlike the XVal-A scheme that gives
iid X values, the XVal-B scheme gives non-iid X values, or different group means in terms
of group interaction, see Lee (2004). Additional regressors are generated similarly and
independently according to either XVal-A or XVal-B or a mix of the two. In case of a panel
data model, a time trend 0.1t is added to each regressor.

Heteroskedasticity. The heteroskedasticity is generated by making it either propor-
tional to the absolute values of a regressor, or to the group size when the group interaction
spatial weight matrix is used. To be exact, the former is generated by setting σi = |Xn1,i|
or 2|Xn1,i|, and the latter by setting σi = twice the group size over the average group size.

In each Monte Carlo experiment, five different sample sizes are considered, i.e., n =
50, 100, 200, 500 and 1000. The number of Monte Carlo replications used is 10,000. The

14



regressors are treated as fixed in the experiments. As size-adjusted powers are almost the
same for comparable tests, only the empirical sizes of the tests are reported.

4.2 Linear regression with SARAR effects

For the SARAR(1,1) model, we use the following data generating process (DGP) in our
Monte Carlo experiments:

Yn = λ1W1nYn + β01n + X1nβ1 + X2nβ2 + un, un = λ2W2nun + εn,

where εni = σieni with {eni} being iid(0, 1). The parameter values are set at β = {5, 1, 1}′.
Table 1 presents partial results for the empirical mean, sd and rejection frequencies for

the three LM tests for spatial lag dependence, i.e., LMSAR, LMOPG
SAR and SLMOPG

SAR for testing
Ha

0 : λ1 = 0 in the SAR model. Table 2 presents partial results for the three LM tests for
spatial error dependence, i.e., LMSDE, LMOPG

SED and SLMOPG
SED for testing Hb

0 : λ2 = 0 in the
SED model. Table 3 gives partial results for the three tests of SARAR(1,1) dependence,
i.e., LMSARAR, LMOPG

SARAR and SLMOPG
SARAR for testing Hc

0 : λ1 = 0, λ2 = 0 in the SARAR model.
The following general observations arise from our results: (i) The null distributions of

the three proposed tests (SLMOPG
SAR, SLMOPG

SED and SLMOPG
SARAR) are very close to their nominal

ones; (ii) The three OPG-variants of the LM tests given in Born and Breitung (2011) can
have severe finite sample distortions in size, mean and variance; and (iii) the three regular
LM tests can have both finite and large sample distortions in their null distributions. It is
interesting to note that even when the disturbances are homoskedastic, the three proposed
tests still dominate the other two sets of tests, especially when the disturbances are non-
normal (some Monte Carlo results are not reported to save space).

To illustrate the point that the existing tests perform poorer under heavier spatial
dependence, we report two sets of results for the SED model, one under Queen contiguity
with r = 10 (light spatial dependence, Table 2a), and one under group interaction with
g = n0.5 (heavy spatial dependence, Table 2b). The results indeed indicate that under
the Queen design, the two OPG-based tests agree well, but under the group design, LMOPG

SED

performs noticeably poorer than SLMOPG
SED. The same is observed for the LM tests of SLD and

LM tests of SARAR. However, as seen from the next subsection, the OPG-based LM tests
without finite sample correction can perform poorly even under light spatial dependence.

4.3 Linear regression with spatial error components

For investigating the finite sample performance of the three tests: The regular LM test
LMSED, its OPG-variant without finite sample corrections LMOPG

SED, and its OPG-variant with
finite sample corrections SLMOPG

SED, we use the following DGP in the Monte Carlo experiments:

Yn = β01n + Xn1β1 + Xn2β2 + un with un = Wnνn + εn,

15



where again εni = σieni with {eni} being iid(0, 1), and β = {5, 1, 1}′.
Table 4 contains partial Monte Carlo results for the three LM tests. The results show

that the proposed test SLMOPG
SEC dominates the regular LM test (LMSEC) and another proposed

test (LMOPG
SEC) without finite sample corrections. While the results do show that LMOPG

SEC

converges to N (0, 1), its convergence rate can be very slow and as a result the finite sample
performance of LMOPG

SEC can be poor, even when the spatial dependence (Queen contiguity)
is quite light. The results (not reported for brevity) under a heavier spatial dependence
(group interaction) show that LMOPG

SEC performs much poorer. In contrast, SLMOPG
SEC still

performs reasonably well. This shows the importance of finite sample corrections. The
results show that LMSEC is not robust against heteroskedasticity. The non-robust feature of
LMSEC (against non-normality) is demonstrated in Yang (2010).

4.4 Fixed effects spatial panel data model with SARAR dependence

For the spatial panel data models with fixed effects, we use the following DGP:

Ynt = λ1W1nYnt + X1nβ1 + X2nβ2 + X3nβ3 + μn + unt,

unt = λ2W2nunt + εnt, t = 1, . . . , T,

where the additional regressor X3n is generated in a similar fashion as the earlier two
except it is generated from a standardized lognormal distribution instead of the standard
normal distribution. The fixed effects are generated by setting μn = 1

T

∑T
t=1 Xnt+Zn where

Zn ∼ N (0, In).
Tables 5-7 report partial Monte Carlo results, corresponding to the three null hypothe-

ses, of the three sets of tests, namely, the regular LM tests (LMFE
SAR, LMFE

SED, LMFE
SARAR),

the OPG-variants without finite sample corrections (LMFEOPG
SAR , LMFEOPG

SED , LMFEOPG
SARAR), and the

OPG-variants with finite sample corrections (SLMFEOPG
SAR , SLMFEOPG

SED , SLMFEOPG
SARAR). The results

show the following: (i) The SLMs dominate the other two sets of tests in terms of null
distributions and their robustness against non-normality and heteroskedasticity; (ii) The
regular LMs are not robust against heteroskedasticity; and (iii) the OPG variants without
finite sample corrections can perform poorly when the sample size is not large even under
homoskedasticity. It is interesting to note that the SLMs dominate the other two sets of
tests even under normality and homoskedasticity.

5 Conclusion and Discussion

We have presented a general methodology to robustify the standard LM tests to allow
for non-normality and unknown heteroskedasticity. General ideas and methods for correct-
ing the robustified LM tests to obtain better finite sample performance are also presented.
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These ideas and methods are demonstrated in details using the three popular spatial mod-
els. In addition, extensive Monte Carlo experiments are performed, where the spatially
autocorrelated regressors as in Pace et al. (2011) are also considered. The results show that
these tests work very well. While many popular spatial LM tests are of the form specified
above, some are not. For example, the LM test for spatial lag dependence allowing for the
presence of spatial error dependence and vice versa. In these cases, the matrices Arn and
the vectors brn, r = 1, . . . , k contain estimated parameter(s). Thus, it is necessary to further
extend the above ideas to deal with these cases.

Appendix: Proofs of the Theorems

To prove the theorems, we need the following central limit theorem (CLT) for the linear-
quadratic form Qn(εn) = ε′nAnεn + b′nεn defined in (2).

Theorem A.1 (Kelejian and Prucha, 2001): Suppose εn, An and bn satisfy Assumptions
1-2. If 1

nτ2
n ≥ c for some c > 0 and large enough n, then

Qn(εn) − μn

τn

D−→ N (0, 1), (A-1)

where μn = E[Qn(εn)] =
∑n

i=1 an,iiσ
2
i , and τ2

n = V ar[Qn(εn)] = 2
∑n

i=1

∑n
j=1 a2

n,ijσ
2
i σ

2
j +∑n

i=1 b2
n,iσ

2
i +
∑n

i=1[a
2
n,iiσ

4
i κi+2bn,ian,iiσ

3
i γi], with γi and κi being, respectively, the skewness

and excess kurtosis of εn,i.

Note that the above result requires that An be symmetric. When An is not symmetric, it
can be replaced by 1

2(An +A′
n). The above result allows the elements of εn to depend upon

n. When {εn,i} are normal, γi = κi = 0 and the last term in τ2
n vanishes. A multivariate

extension of this result is the CLT for a k × 1 vector of linear quadratic forms given in
Kelejian and Prucha (2010, p. 63).

Proof of Theorem 1: It suffices to show that 1
n(
∑n

i=1 ε2
n,iξ

2
n,i − τ2

n)
p−→ 0. Recall

ξn,i = ζn,i + an,iiεn,i + bn,i and ζn,i is the ith element of ζn = (Al
n + Au′

n )εn. We have

1
n

(
n∑

i=1

ε2
n,iξ

2
n,i − τ2

n

)

=
1
n

n∑
i=1

a2
n,ii

(
ε4
n,i − E(ε4

n,i)
)

+
2
n

n∑
i=1

an,iibn,ii

(
ε3
n,i − E(ε3

n,i)
)

+
1
n

n∑
i=1

b2
n,ii

(
ε2
n,i − σ2

i

)

+
1
n

n∑
i=1

(
ε2
n,iζ

2
n,i − σ2

i cn,i

)
+

2
n

n∑
i=1

an,ii ε3
n,iζn,i +

2
n

n∑
i=1

bn,ii ε2
n,iζn,i ≡

6∑
k=1

Hkn,

where cn,i = 4
∑i−1

j=1 a2
n,ijσ

2
j . The result of the theorem follows by showing that Hkn

p→ 0 for
k = 1, . . . , 6, which is done by using the weak law for large numbers (WLLN) for martingale
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difference arrays in Davidson (1994, p. 299). Let Fn,i be the increasing σ-field generated
by {εn,1, . . . εn,i}, and note that ζn,i is Fn,i−1-measurable and εn,i is independent of ζn,i.

To show that H1n = 1
n

∑n
i=1 a2

n,ii(ε
4
n,i − Eε4

n,i)
p→ 0, note that under Assumption 1 the

{ε4
n,i−Eε4

n,i} are independent with mean zero and that E|ε4
n,i−Eε4

n,i|1+δ ≤ Kε < ∞ for δ > 0.
Thus, the {ε4

n,i−Eε4
n,i} are uniformly integrable. Furthermore, under Assumption 2, we have

lim supn→∞
1
n

∑n
i=1 a2

n,ii ≤ K2
a < ∞, and lim supn→∞

1
n2

∑n
i=1 a4

n,ii ≤ lim supn→∞
1
nK4

a = 0.
It follows from the WLLN for martingale difference arrays in Davidson (1994, p. 299)
that H1n

p→ 0. Similar arguments lead to H2n = 2
n

∑n
i=1 an,iibn,ii(ε3

n,i − Eε3
n,i)

p→ 0, and
H3n = 1

n

∑n
i=1 b2

n,ii(ε
2
n,i − σ2

i )
p→ 0.

To prove H4n = 1
n

∑n
i=1(ε

2
n,iζ

2
n,i − σ2

i cn,i)
p→ 0, write H4n = Ha

4n + Hb
4n, where Ha

4n =
1
n

∑n
i=1(ε

2
n,i−σ2

i )ζ
2
n,i, and Hb

4n = 1
n

∑n
i=1 σ2

i (ζ
2
n,i−cn,i). For Ha

4n, we note that (ε2
n,i−σ2

i )ζ
2
n,i

is Fn,i-measurable and that E(ε2
n,i − σ2

i )ζ
2
n,i|Fn,i−1) = 0. It follows that {ε2

n,i − σ2
i )ζ

2
n,i, 1 ≤

i ≤ n} forms a martingale difference array. Thus, under Assumption 1 the WLLN for
martingale difference arrays applies which leads to Ha

4n
p→ 0.

For Hb
4n, it is easy to see that ζn,i = 2

∑i−1
j=1 an,ijεn,j, Eζ2

n,i = 4
∑i−1

j=1 a2
n,ijσ

2
j = cn,i, and

Hb
4n = 1

n

∑n
i=1 σ2

i (ζ
2
n,i − cn,i)

= 4
n

∑n
i=1 σ2

i

∑i−1
j=1 a2

n,ij(ε
2
n,j − σ2

j ) + 8
n

∑n
i=1 σ2

i

∑i−1
j=1

∑j−1
k=1 an,ijan,ikεn,jεn,k

=
∑n−1

i=1 φn,i(ε2
n,i − σ2

i ) + 1
n

∑n−1
i=1 εn,iVn,i,

where φn,i = 4
n

∑n
j=i+1 σ2

j a
2
n,ji, Vn,i =

∑i−1
j=1 ϕn,ijεn,j , and ϕn,ij = 8

∑n
k=i+1 σ2

kan,kian,kj.
Thus, Hb

n4 is written as two sums of martingale difference arrays. It is easy to verify the
conditions of the WLLN for martingale difference arrays. It follows that Hb

4n
p→ 0. Similarly,

H5n = 2
n

∑n
i=1 an,ii ε3

n,iζn,i
p→ 0, and H6n = 2

n

∑n
i=1 bn,ii ε2

n,iζn,i
p→ 0. �

Proof of Corollary 1: Follow the same arguments as those for proving Theorem 1.

Proof of Theorem 2: Without loss of generality, we prove the theorem for the
case of k = 2. With the result of Theorem 1 and the multivariate CLT for a vector
of linear quadratic forms of Kelejian and Prucha (2010, p. 63), it suffices to show that
1
n [
∑n

i=1 ε2
n,iξ1n,iξ2n,i − Cov(Q1n, Q2n)]

p−→ 0, where ξrn,i = ζrn,i + arn,iiεn,i + brn,i, ζrn,i is
the ith element of ζrn = (Al

rn +Au′
rn)εn, and Qrn = ε′n,iArnεn,i + b′rnεn,i = ε′n,iξrn,i, r = 1, 2.

It is easy to verify that ε′n,iξrn,i and ε′n,jξsn,j are uncorrelated, for i �= j and r, s = 1, 2. It
follows that

Cov(Q1n, Q2n) =
∑n

i=1 Cov(ε′n,iξ1n,i, ε′n,iξ2n,i)

= 4
∑n

i=1

∑i−1
j=1 a1n,ija2n,ijσ

2
i σ2

j +
∑n

i=1 a1n,iia2n,ii(Eε4
n,i − σ4

i )

+
∑n

i=1(a1n,iib2n,i + a2n,iib1n,i)Eε3
n,i +

∑n
i=1 b1n,ib2n,iσ

2
i .
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The above result allows us to write 1
n [
∑n

i=1 ε2
n,iξ1n,iξ2n,i − Cov(Q1n, Q2n)] as sums of mar-

tingale difference arrays, and the rest is similar to the proof of Theorem 1. �

Proof of Corollary 2: Follow the same arguments as those for proving Theorem 2.

Proof of Theorem 3: The main part of the proof parallels that of the proof of
Theorems 1 and 2. We focus on the finite sample corrections. Consider the quadratic
form ε′nAnεn and note that μn = E(ε′nAnεn) =

∑n
i=1 an,iiσ

2
i . A natural estimator for μn

is μ̂n =
∑n

i=1 an,iiε̃
2
n,i = ε̃′nAd

nε̃n, where ε̃′n is the vector of OLS residuals. Clearly, μ̂n is a
biased estimator as E(μ̂n) = E(ε̃′nAd

nε̃n) = E(ε′nMnAd
nMnεn) =

∑n
i=1 bn,iiσ

2
i �= 0. In this

case, bn,ii are the diagonal elements of MnAd
nMn, which are of the form

bn,ii = m2
n,iian,ii +

n∑
j=1( 	=i)

m2
n,ijan,jj ,

where mn,ij are the elements of the projection matrix Mn defined above (10). This im-
mediately suggests a new estimator μ̂∗

n =
∑n

i=1 an,iim
−2
n,iiε̃

2
n,i that is nearly unbiased. In

fact, the quantities leading to the bias,
∑n

j=1( 	=i)(mn,ij/mm,ii)2an,jj, becomes negligible by
the properties of the projection matrix Mn. Clearly, these arguments and methods can
be applied to give finite sample corrections to all tests where the null model is either the
classical linear regression model, or the panel data model with fixed effects.

Proof of Theorem 4: Similar to the proof of Theorem 3.

Proof of Theorem 5: Similar to the proof of Theorem 3.
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Table 1. Mean, sd, and Rejection Frequencies: LM Tests for Spatial Lag Dependence
Heteroskedasticity = |X1| Heteroskedasticity = 2|X1|

n mean sd 10% 5% 1% mean sd 10% 5% 1%
Normal Errors

50 -0.3159 0.8135 .0545 .0202 .0006 -0.6587 0.9206 .1236 .0439 .0071
-0.3927 0.9761 .1160 .0545 .0060 -0.7272 0.9269 .1618 .0744 .0070
0.0286 1.0266 .1090 .0506 .0075 -0.0419 1.0634 .1224 .0600 .0111

100 -0.3739 1.0574 .1476 .0753 .0152 -0.9043 1.0325 .2697 .1412 .0152
-0.3897 1.0168 .1344 .0686 .0121 -0.7769 0.8635 .1563 .0722 .0089
-0.0382 1.0393 .1133 .0531 .0091 -0.0838 1.0448 .1167 .0573 .0108

200 -0.3524 1.0486 .1355 .0706 .0143 -0.5287 1.0522 .1660 .0823 .0164
-0.4003 0.9854 .1221 .0613 .0104 -0.5682 0.9670 .1484 .0753 .0127
-0.0708 1.0118 .1064 .0523 .0094 -0.0946 1.0184 .1083 .0526 .0073

500 -0.2483 0.9595 .0991 .0454 .0082 -0.3044 1.0002 .1113 .0548 .0103
-0.2755 0.9823 .1091 .0526 .0107 -0.3391 0.9802 .1117 .0562 .0094
-0.0224 1.0020 .1033 .0505 .0098 -0.0488 0.9970 .0956 .0472 .0082

1000 -0.1594 1.0135 .1067 .0539 .0115 -0.3239 1.2137 .1910 .1127 .0332
-0.1792 0.9900 .1009 .0491 .0095 -0.3479 0.9893 .1186 .0595 .0116
-0.0346 0.9966 .0981 .0472 .0093 -0.0892 1.0028 .1023 .0523 .0091
Normal Mixture

50 -0.2939 0.8118 .0542 .0188 .0012 -0.6282 0.8593 .1053 .0368 .0037
-0.3471 0.9675 .1040 .0440 .0049 -0.6896 0.9015 .1437 .0609 .0051
0.0472 1.0134 .0985 .0432 .0056 0.0146 1.0438 .1125 .0532 .0089

100 -0.3589 1.0369 .1377 .0722 .0128 -0.8301 1.0115 .2383 .1206 .0144
-0.3572 0.9977 .1163 .0537 .0083 -0.7169 0.8810 .1413 .0649 .0080
-0.0297 1.0249 .1036 .0463 .0055 -0.0397 1.0326 .1060 .0529 .0091

200 -0.3458 1.0239 .1270 .0601 .0122 -0.5202 1.0135 .1484 .0730 .0138
-0.3719 0.9829 .1106 .0558 .0087 -0.5449 0.9577 .1357 .0606 .0086
-0.0492 1.0196 .1031 .0481 .0083 -0.0660 1.0235 .1028 .0494 .0086

500 -0.2473 0.9662 .1032 .0477 .0069 -0.2926 1.0022 .1144 .0569 .0109
-0.2719 0.9922 .1137 .0534 .0091 -0.3192 0.9892 .1155 .0546 .0097
-0.0215 1.0123 .1085 .0507 .0071 -0.0323 1.0071 .1025 .0505 .0079

1000 -0.1441 1.0299 .1159 .0581 .0133 -0.3142 1.2148 .1824 .1140 .0355
-0.1620 1.0037 .1070 .0528 .0097 -0.3298 0.9952 .1169 .0596 .0107
-0.0192 1.0096 .1016 .0517 .0106 -0.0725 1.0102 .1067 .0529 .0085
Lognormal Errors

50 -0.2218 0.8217 .0494 .0162 .0010 -0.6056 0.9030 .1167 .0471 .0068
-0.1984 0.9878 .0885 .0373 .0037 -0.6596 0.9333 .1417 .0618 .0070
0.1722 1.0186 .1064 .0484 .0063 0.0157 1.0346 .1039 .0451 .0080

100 -0.3635 1.0022 .1273 .0640 .0126 -0.5443 1.3511 .2984 .1692 .0390
-0.3529 0.9793 .1057 .0486 .0062 -0.4425 1.1426 .1805 .1010 .0228
-0.0395 1.0262 .1034 .0450 .0067 0.1488 1.1496 .1535 .0911 .0291

200 -0.3661 0.9702 .1092 .0534 .0096 -0.4247 1.0034 .1245 .0598 .0096
-0.4303 0.9807 .1212 .0595 .0097 -0.4489 0.9766 .1201 .0566 .0100
-0.1111 1.0098 .1030 .0461 .0072 0.0290 1.0346 .1080 .0557 .0102

500 -0.2450 0.9531 .0958 .0455 .0089 -0.2905 0.9819 .1054 .0513 .0098
-0.2661 0.9902 .1078 .0500 .0087 -0.3369 0.9906 .1107 .0551 .0098
-0.0172 1.0143 .1036 .0483 .0086 -0.0527 1.0030 .0977 .0458 .0078

1000 -0.1362 1.0178 .1112 .0593 .0127 -0.2998 1.1520 .1615 .0888 .0251
-0.1525 0.9978 .1038 .0497 .0078 -0.3380 0.9804 .1067 .0526 .0110
-0.0131 1.0031 .1041 .0497 .0071 -0.0777 1.0002 .0962 .0440 .0082

Note: Three rows under each n: LMSAR, LMOPG
SAR and SLMOPG

SAR; Group, g = n0.5 ; XVal-B.
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Table 2a. Mean, sd, and Rejection Frequency: LM Tests for Spatial Error Dependence
Heteroskedasticity = |X1| Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
Normal Errors

50 -0.2843 0.8682 .0694 .0270 .0031 -0.2653 0.9354 .0870 .0368 .0059
-0.3196 0.9637 .1016 .0404 .0035 -0.3348 0.9950 .1189 .0536 .0079
0.0012 1.0343 .1090 .0478 .0053 -0.0395 1.0313 .1116 .0512 .0065

100 -0.1167 0.9274 .0759 .0351 .0051 -0.1921 0.9672 .0934 .0454 .0071
-0.1623 1.0025 .1016 .0433 .0038 -0.2421 1.0024 .1116 .0542 .0092
-0.0233 1.0157 .1025 .0422 .0038 -0.0460 1.0183 .1076 .0534 .0080

200 -0.1535 0.9674 .0923 .0449 .0073 -0.1171 0.9812 .0979 .0462 .0081
-0.1885 0.9930 .1043 .0462 .0063 -0.1499 0.9972 .1017 .0515 .0097
-0.0207 1.0043 .1000 .0461 .0063 -0.0129 1.0061 .1035 .0498 .0094

500 -0.0619 0.9731 .0891 .0439 .0073 -0.0935 0.9781 .0945 .0461 .0097
-0.0849 1.0110 .1045 .0511 .0088 -0.1138 0.9877 .0980 .0490 .0104
-0.0099 1.0168 .1045 .0520 .0094 -0.0313 0.9910 .0962 .0503 .0101

1000 -0.0588 1.0017 .0990 .0496 .0102 -0.0645 0.9969 .1002 .0498 .0091
-0.0740 0.9991 .0976 .0522 .0097 -0.0804 1.0012 .1017 .0507 .0096
-0.0121 1.0021 .0984 .0522 .0094 -0.0204 1.0027 .1006 .0502 .0093
Normal Mixture

50 -0.2962 0.8410 .0620 .0232 .0020 -0.2676 0.8698 .0660 .0275 .0040
-0.3355 0.9887 .1105 .0443 .0029 -0.3365 0.9792 .1090 .0450 .0048
0.0033 1.0286 .1037 .0423 .0030 -0.0258 1.0133 .0997 .0428 .0050

100 -0.1421 0.8892 .0700 .0306 .0052 -0.1861 0.9339 .0824 .0379 .0049
-0.1832 1.0051 .0984 .0385 .0043 -0.2325 1.0019 .1027 .0483 .0063
-0.0353 1.0121 .0966 .0369 .0031 -0.0277 1.0209 .1033 .0468 .0051

200 -0.1492 0.9259 .0772 .0372 .0077 -0.1200 0.9579 .0865 .0410 .0085
-0.1841 0.9844 .0964 .0396 .0052 -0.1497 0.9920 .1006 .0403 .0056
-0.0051 0.9957 .0938 .0389 .0050 -0.0084 1.0010 .0976 .0405 .0056

500 -0.0780 0.9387 .0804 .0399 .0079 -0.0791 0.9888 .0972 .0484 .0109
-0.0986 1.0026 .0995 .0460 .0087 -0.1037 0.9999 .1002 .0492 .0092
-0.0185 1.0064 .0984 .0455 .0085 -0.0196 1.0032 .1013 .0503 .0084

1000 -0.0777 0.9956 .0963 .0459 .0109 -0.0579 1.0033 .1005 .0519 .0090
-0.0908 1.0019 .0986 .0440 .0074 -0.0743 1.0111 .1054 .0522 .0082
-0.0265 1.0048 .0992 .0426 .0067 -0.0138 1.0128 .1035 .0514 .0084
Lognormal Errors

50 -0.2773 0.8259 .0525 .0199 .0033 -0.2576 0.8496 .0560 .0229 .0049
-0.3805 0.9843 .1114 .0436 .0036 -0.4010 0.9699 .1071 .0439 .0063
-0.0405 0.9972 .0875 .0335 .0027 -0.0859 0.9956 .0903 .0341 .0037

100 -0.1466 0.8576 .0550 .0262 .0058 -0.1811 0.8949 .0609 .0278 .0073
-0.2866 0.9991 .1045 .0445 .0049 -0.3341 1.0001 .1136 .0520 .0067
-0.1299 1.0031 .0898 .0339 .0037 -0.1183 1.0065 .0996 .0422 .0038

200 -0.1571 0.8934 .0668 .0299 .0066 -0.1331 0.9259 .0718 .0359 .0091
-0.3002 0.9979 .1057 .0519 .0083 -0.2883 1.0032 .1128 .0563 .0101
-0.1137 0.9980 .0926 .0423 .0056 -0.1394 1.0022 .1013 .0460 .0070

500 -0.0570 0.9321 .0722 .0378 .0103 -0.0969 0.9656 .0843 .0421 .0094
-0.2245 1.0222 .1122 .0566 .0109 -0.2424 1.0260 .1161 .0602 .0128
-0.1382 1.0210 .1044 .0514 .0085 -0.1532 1.0233 .1084 .0558 .0112

1000 -0.0662 0.9645 .0803 .0400 .0116 -0.0582 0.9853 .0888 .0441 .0104
-0.2196 1.0193 .1104 .0571 .0108 -0.1856 1.0320 .1163 .0593 .0126
-0.1497 1.0158 .1037 .0529 .0093 -0.1219 1.0289 .1111 .0557 .0117

Note: Three rows under each n: LMSED, LMOPG
SED and SLMOPG

SED; Queen, r = 10; XVal-B.
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Table 2b. Mean, sd, and Rejection Frequency: LM Tests for Spatial Error Dependence
Heteroskedasticity = |X1| Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
Normal Errors

50 -0.6348 0.8522 .0690 .0175 .0054 -0.6884 0.8265 .0919 .0140 .0026
-0.8025 0.9268 .1840 .0851 .0105 -0.9054 0.9857 .2536 .1409 .0239
-0.1347 1.0888 .1301 .0576 .0057 -0.1456 1.0930 .1423 .0725 .0111

100 -0.6374 0.7301 .0296 .0053 .0014 -0.5490 0.8634 .0880 .0226 .0029
-0.8386 0.9019 .1951 .0989 .0156 -0.7230 0.9995 .1973 .1088 .0254
-0.1436 1.0931 .1383 .0703 .0120 -0.1380 1.0565 .1234 .0618 .0118

200 -0.6993 1.0170 .1723 .0584 .0099 -0.4741 0.8978 .0909 .0286 .0029
-0.7688 0.9368 .1798 .0939 .0170 -0.6187 1.0045 .1676 .0938 .0223
-0.2137 1.0201 .1127 .0559 .0098 -0.1468 1.0378 .1131 .0579 .0115

500 -0.4728 1.0855 .1595 .0758 .0154 -0.3338 0.9500 .0949 .0409 .0064
-0.5436 0.9846 .1466 .0772 .0156 -0.4425 1.0143 .1401 .0771 .0183
-0.1317 1.0184 .1116 .0578 .0096 -0.0748 1.0308 .1120 .0607 .0116

1000 -0.5406 1.2492 .2324 .1321 .0342 -0.3079 0.9693 .1024 .0456 .0065
-0.5689 0.9907 .1544 .0813 .0170 -0.3993 1.0208 .1369 .0739 .0171
-0.1694 1.0300 .1148 .0616 .0106 -0.0855 1.0295 .1111 .0587 .0130
Normal Mixture

50 -0.6520 0.7139 .0480 .0154 .0028 -0.6899 0.6950 .0600 .0161 .0013
-0.8268 0.8365 .1496 .0637 .0065 -0.8741 0.8453 .1679 .0800 .0099
-0.0626 1.0191 .0952 .0431 .0061 -0.0395 1.0107 .0950 .0427 .0056

100 -0.6177 0.6613 .0246 .0068 .0013 -0.5512 0.7724 .0585 .0231 .0056
-0.8159 0.8469 .1501 .0738 .0105 -0.7349 0.9191 .1555 .0730 .0115
-0.0464 1.0542 .1107 .0572 .0107 -0.0639 1.0266 .0985 .0454 .0067

200 -0.6497 0.8456 .1034 .0377 .0086 -0.4462 0.8411 .0733 .0289 .0037
-0.7297 0.8823 .1429 .0673 .0102 -0.5859 0.9673 .1369 .0654 .0118
-0.1053 0.9861 .0874 .0377 .0041 -0.0505 1.0178 .0997 .0421 .0057

500 -0.4680 0.9789 .1236 .0579 .0120 -0.3474 0.9095 .0851 .0356 .0053
-0.5279 0.9570 .1191 .0536 .0083 -0.4536 0.9920 .1318 .0610 .0106
-0.0708 1.0172 .0983 .0419 .0053 -0.0603 1.0182 .1031 .0455 .0066

1000 -0.5213 1.1371 .1903 .1052 .0254 -0.3109 0.9407 .0930 .0380 .0049
-0.5281 0.9723 .1290 .0603 .0092 -0.3988 1.0007 .1253 .0648 .0113
-0.0900 1.0412 .1096 .0500 .0082 -0.0726 1.0176 .1043 .0494 .0069
Lognormal Errors

50 -0.6082 0.8130 .0602 .0195 .0046 -0.6884 0.7423 .0616 .0118 .0022
-0.7622 0.8997 .1561 .0761 .0115 -0.9131 0.9026 .2075 .1087 .0208
-0.0516 1.0641 .1181 .0525 .0063 -0.1093 1.0494 .1166 .0597 .0090

100 -0.5992 0.7250 .0248 .0081 .0028 -0.5404 0.8073 .0627 .0180 .0028
-0.8143 0.9095 .1769 .0927 .0187 -0.7660 0.9591 .1833 .0992 .0221
-0.1062 1.0648 .1232 .0623 .0108 -0.1374 1.0448 .1146 .0572 .0100

200 -0.6139 0.9651 .1361 .0512 .0104 -0.4523 0.8500 .0687 .0208 .0048
-0.7155 0.9591 .1688 .0942 .0221 -0.6477 0.9735 .1639 .0866 .0204
-0.1231 1.0477 .1177 .0605 .0118 -0.1420 1.0109 .1025 .0497 .0090

500 -0.4555 1.0267 .1354 .0613 .0124 -0.3329 0.9074 .0772 .0310 .0056
-0.5570 0.9971 .1466 .0794 .0206 -0.4911 0.9906 .1391 .0734 .0167
-0.1281 1.0472 .1178 .0559 .0124 -0.1070 1.0063 .1005 .0451 .0094

1000 -0.5002 1.1937 .2066 .1102 .0264 -0.3023 0.9240 .0807 .0334 .0054
-0.5415 1.0080 .1494 .0822 .0179 -0.4375 0.9957 .1304 .0713 .0151
-0.1229 1.0618 .1180 .0614 .0161 -0.1106 0.9994 .0982 .0492 .0092

Note: Three rows under each n: LMSED, LMOPG
SED and SLMOPG

SED; Group, g = n0.5 ; XVal-B.
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Table 3. Mean, sd, and Rejection Frequency: Joint LM Tests for SARAR Dependence
Heteroskedasticity = |X1| Heteroskedasticity = 2|X1|

n mean sd 10% 5% 1% mean sd 10% 5% 1%
Normal Errors

50 2.2886 1.4830 .0613 .0180 .0018 2.4416 2.1771 .1081 .0472 .0138
2.6891 1.8687 .1494 .0592 .0051 2.4771 1.8823 .1364 .0517 .0052
2.2328 1.9698 .1201 .0539 .0080 2.2385 1.8381 .1149 .0455 .0037

100 2.3192 2.1102 .1014 .0503 .0116 2.2836 1.8988 .0903 .0378 .0091
2.5021 2.0250 .1450 .0686 .0081 2.5870 2.0651 .1557 .0724 .0091
2.1200 1.8979 .1038 .0478 .0063 2.1832 1.9700 .1117 .0498 .0081

200 2.5567 2.0947 .1286 .0505 .0103 2.8150 2.9793 .1686 .0766 .0185
2.4096 2.0472 .1366 .0683 .0099 2.5063 2.1511 .1528 .0763 .0123
2.2554 2.1731 .1246 .0653 .0140 2.1532 2.0063 .1121 .0540 .0087

500 2.7570 2.8166 .1743 .0934 .0244 2.6424 2.7786 .1593 .0820 .0211
2.3415 2.1658 .1389 .0697 .0130 2.2700 2.1095 .1305 .0636 .0113
2.1228 2.0155 .1130 .0557 .0088 2.1090 2.0027 .1098 .0539 .0089

1000 2.3977 2.3921 .1318 .0676 .0181 2.5871 2.5542 .1605 .0831 .0209
2.2587 2.1948 .1284 .0687 .0137 2.2352 2.1468 .1264 .0657 .0126
2.0670 2.0385 .1059 .0556 .0107 2.0765 2.0116 .1094 .0520 .0102
Normal Mixture

50 2.1706 1.4789 .0546 .0164 .0018 2.1743 1.8616 .0895 .0394 .0074
2.5894 1.7446 .1265 .0465 .0032 2.3768 1.7502 .1132 .0437 .0023
2.1809 1.8714 .1055 .0479 .0073 2.1529 1.7201 .0939 .0347 .0020

100 2.1496 1.9206 .0894 .0430 .0089 2.1344 1.7725 .0838 .0347 .0056
2.3976 1.8953 .1244 .0555 .0058 2.4772 1.9166 .1339 .0583 .0059
2.1028 1.7966 .0969 .0392 .0049 2.1594 1.8613 .1032 .0430 .0061

200 2.3802 1.9236 .1119 .0439 .0080 2.5839 2.3989 .1525 .0737 .0153
2.3394 1.9379 .1228 .0562 .0071 2.4137 1.9868 .1349 .0622 .0082
2.2335 2.1201 .1207 .0601 .0117 2.1232 1.8890 .1025 .0454 .0064

500 2.6161 2.6828 .1591 .0845 .0209 2.5565 2.4927 .1556 .0791 .0189
2.2481 1.9890 .1179 .0550 .0080 2.2760 2.0051 .1237 .0566 .0097
2.0777 1.9016 .0989 .0467 .0073 2.1270 1.9423 .1064 .0498 .0075

1000 2.3695 2.3712 .1342 .0676 .0158 2.5007 2.5717 .1535 .0831 .0200
2.2267 2.0895 .1216 .0611 .0101 2.1974 2.0589 .1197 .0590 .0098
2.0651 1.9807 .1061 .0500 .0085 2.0582 1.9657 .1044 .0483 .0083
Lognormal Errors

50 2.1689 1.5147 .0527 .0169 .0017 2.0630 1.8949 .0755 .0330 .0085
2.5160 1.7353 .1234 .0444 .0027 2.3862 1.8016 .1196 .0478 .0028
2.0377 1.7615 .0890 .0343 .0049 2.1161 1.7444 .0926 .0392 .0037

100 2.1353 2.2535 .0821 .0434 .0143 2.1039 1.9902 .0768 .0338 .0086
2.4211 1.9868 .1300 .0642 .0088 2.5107 2.0459 .1426 .0703 .0103
2.1930 1.9544 .1164 .0524 .0083 2.2294 2.0110 .1099 .0545 .0110

200 2.5451 2.5838 .1261 .0561 .0168 2.4693 2.3420 .1321 .0578 .0129
2.5126 2.1653 .1462 .0792 .0143 2.4749 2.1352 .1432 .0683 .0142
2.3739 2.3203 .1383 .0754 .0200 2.2189 2.0168 .1157 .0518 .0102

500 2.5566 2.7368 .1442 .0771 .0241 2.3771 2.5619 .1310 .0631 .0172
2.3736 2.1520 .1340 .0685 .0134 2.3298 2.1134 .1322 .0649 .0122
2.1850 2.0532 .1157 .0558 .0105 2.1413 1.9842 .1070 .0533 .0087

1000 2.2785 2.6453 .1146 .0591 .0167 2.4533 2.8658 .1379 .0706 .0211
2.2545 2.1161 .1254 .0647 .0133 2.3116 2.1562 .1295 .0688 .0133
2.0782 1.9999 .1052 .0534 .0098 2.1387 2.0244 .1103 .0541 .0091

Each n: LMSARAR, LMOPG
SARAR and SLMOPG

SARAR ; W1n=Queen, r = 5; W2n=Group, g = n0.5; XVal-B.
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Table 4. Mean, sd, and Rejection Frequency: LM Tests for Spatial Error Components
Heteroskedasticity = |X1| Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
Normal Errors

50 -0.2856 0.8409 .0430 .0226 .0132 -0.3637 0.8740 .0470 .0266 .0159
-0.4012 0.9313 .0392 .0150 .0056 -0.5228 0.9820 .0374 .0164 .0068
-0.0604 1.0052 .1005 .0458 .0193 -0.1018 1.0368 .0965 .0485 .0245

100 -0.1061 0.9223 .0743 .0399 .0233 -0.2825 0.9230 .0574 .0319 .0192
-0.1920 0.9787 .0650 .0283 .0129 -0.3918 0.9834 .0487 .0213 .0088
-0.0764 1.0251 .0955 .0465 .0217 -0.0758 1.0146 .0947 .0456 .0217

200 -0.2907 0.9635 .0605 .0323 .0187 -0.1953 0.9585 .0710 .0356 .0203
-0.3458 0.9756 .0507 .0240 .0099 -0.2743 0.9924 .0565 .0262 .0113
-0.0631 1.0128 .0968 .0475 .0232 -0.0773 1.0058 .0883 .0427 .0194

500 -0.1102 0.9846 .0852 .0461 .0263 -0.1260 0.9814 .0809 .0418 .0223
-0.1634 0.9758 .0674 .0323 .0146 -0.1749 0.9928 .0681 .0312 .0156
-0.0391 1.0016 .0957 .0479 .0232 -0.0543 1.0030 .0910 .0431 .0211

1000 0.0020 1.0335 .1131 .0616 .0352 -0.0701 0.9918 .0906 .0461 .0243
-0.0306 0.9895 .0941 .0462 .0219 -0.1042 0.9929 .0806 .0380 .0181
-0.0164 1.0113 .1019 .0509 .0259 -0.0217 1.0030 .0961 .0490 .0241
Normal Mixture

50 -0.2822 0.8868 .0572 .0336 .0195 -0.3656 0.8907 .0490 .0265 .0142
-0.3996 0.9414 .0456 .0166 .0055 -0.4996 0.9656 .0384 .0143 .0060
-0.0333 1.0039 .1081 .0493 .0185 -0.0848 1.0255 .1004 .0453 .0195

100 -0.0987 0.9657 .0811 .0451 .0274 -0.2829 0.9730 .0672 .0386 .0217
-0.1727 0.9681 .0664 .0274 .0106 -0.3840 0.9848 .0498 .0197 .0073
-0.0420 1.0033 .1022 .0451 .0192 -0.0619 1.0100 .0965 .0459 .0215

200 -0.2802 1.0704 .0756 .0465 .0303 -0.1931 1.0274 .0822 .0482 .0288
-0.3347 0.9689 .0532 .0213 .0087 -0.2648 1.0038 .0654 .0282 .0125
-0.0330 1.0050 .0996 .0474 .0212 -0.0616 1.0152 .0954 .0475 .0223

500 -0.1289 1.1099 .1081 .0605 .0349 -0.1275 1.0424 .0900 .0492 .0290
-0.1735 0.9937 .0706 .0298 .0122 -0.1682 0.9926 .0718 .0322 .0150
-0.0313 1.0045 .1001 .0466 .0230 -0.0411 0.9973 .0981 .0467 .0216

1000 -0.0340 1.1345 .1222 .0717 .0435 -0.0835 1.0500 .0994 .0537 .0312
-0.0641 0.9791 .0848 .0380 .0170 -0.1148 0.9938 .0815 .0371 .0175
-0.0407 0.9941 .0938 .0448 .0221 -0.0296 0.9983 .0973 .0465 .0237
Chi-Square, df = 4

50 -0.2899 0.8641 .0501 .0277 .0169 -0.3590 0.8760 .0497 .0260 .0147
-0.4150 0.9359 .0432 .0174 .0067 -0.5233 0.9739 .0362 .0136 .0051
-0.0606 1.0080 .1007 .0479 .0218 -0.0996 1.0204 .0934 .0456 .0202

100 -0.1020 0.9352 .0812 .0442 .0247 -0.2947 0.9419 .0614 .0342 .0194
-0.1969 0.9739 .0673 .0278 .0116 -0.4164 0.9894 .0448 .0187 .0064
-0.0900 1.0184 .0929 .0441 .0192 -0.0976 1.0139 .0904 .0422 .0205

200 -0.2945 0.9877 .0638 .0376 .0201 -0.1929 0.9817 .0762 .0406 .0225
-0.3585 0.9671 .0475 .0196 .0086 -0.2822 1.0004 .0577 .0233 .0095
-0.0804 1.0096 .0902 .0415 .0195 -0.0823 1.0118 .0903 .0416 .0183

500 -0.1184 1.0265 .0899 .0491 .0293 -0.1189 1.0041 .0872 .0443 .0261
-0.1831 0.9806 .0635 .0268 .0116 -0.1772 0.9951 .0703 .0309 .0160
-0.0604 1.0021 .0901 .0426 .0195 -0.0556 1.0013 .0878 .0439 .0202

1000 -0.0298 1.0769 .1145 .0642 .0373 -0.0884 1.0161 .0937 .0486 .0273
-0.0757 0.9963 .0873 .0386 .0180 -0.1322 0.9999 .0766 .0364 .0158
-0.0609 1.0096 .0946 .0442 .0221 -0.0495 1.0030 .0933 .0442 .0208

Note: Three rows under each n: LMSEC, LMOPG
SEC and SLMOPG

SEC; Wn=Queen, r = 5, XVal-A.
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Table 5. Monte Carlo results: LM Tests for Fixed Effects Panel SAR Model, T = 3
Heteroskedasticity ∝ group size Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
Normal Errors

50 -0.3253 0.8610 .0607 .0209 .0032 -0.1970 0.9908 .1017 .0498 .0098
-0.4452 0.9846 .1298 .0646 .0100 -0.2340 1.0235 .1186 .0591 .0112
-0.0699 1.0249 .1096 .0534 .0075 -0.0453 1.0327 .1134 .0557 .0099

100 -0.2568 0.9231 .0817 .0372 .0056 -0.1633 0.9840 .0989 .0485 .0075
-0.3465 0.9965 .1202 .0629 .0127 -0.1995 0.9999 .1102 .0547 .0107
-0.0558 1.0059 .1038 .0536 .0098 -0.0311 1.0091 .1045 .0518 .0096

200 -0.2194 0.9466 .0851 .0364 .0063 -0.1599 0.9943 .1021 .0507 .0097
-0.2834 1.0015 .1109 .0580 .0121 -0.1765 1.0046 .1052 .0547 .0113
-0.0416 1.0123 .1027 .0504 .0105 -0.0180 1.0100 .1039 .0512 .0101

500 -0.1587 0.9665 .0904 .0434 .0081 -0.0901 0.9856 .0963 .0461 .0089
-0.2023 1.0026 .1060 .0543 .0120 -0.0979 0.9891 .0987 .0467 .0091
-0.0442 1.0086 .1025 .0515 .0107 0.0015 0.9913 .0966 .0458 .0089

1000 -0.1141 0.9576 .0869 .0426 .0088 -0.0705 0.9959 .0998 .0505 .0085
-0.1472 1.0008 .1047 .0548 .0126 -0.0782 1.0006 .1030 .0512 .0092
-0.0290 1.0043 .1023 .0525 .0124 -0.0120 1.0015 .1018 .0515 .0083
Normal Mixture

50 -0.3299 0.8416 .0577 .0190 .0024 -0.1623 0.9962 .1036 .0509 .0095
-0.4366 0.9748 .1225 .0570 .0091 -0.1902 1.0287 .1179 .0588 .0089
-0.0614 1.0211 .1062 .0497 .0062 -0.0066 1.0389 .1158 .0547 .0078

100 -0.2562 0.9227 .0785 .0350 .0067 -0.1706 0.9784 .0942 .0441 .0080
-0.3378 1.0000 .1202 .0597 .0111 -0.2062 0.9999 .1062 .0524 .0083
-0.0449 1.0136 .1040 .0507 .0092 -0.0380 1.0086 .1015 .0486 .0078

200 -0.2249 0.9235 .0770 .0349 .0063 -0.1542 0.9793 .0976 .0492 .0094
-0.2839 0.9804 .1058 .0521 .0108 -0.1694 0.9928 .1047 .0518 .0102
-0.0428 0.9920 .0950 .0484 .0103 -0.0112 0.9980 .0973 .0475 .0090

500 -0.1411 0.9710 .0948 .0452 .0079 -0.1102 1.0016 .1014 .0527 .0101
-0.1835 1.0080 .1100 .0561 .0111 -0.1186 1.0039 .1037 .0521 .0106
-0.0250 1.0146 .1047 .0546 .0097 -0.0192 1.0061 .1023 .0517 .0103

1000 -0.1230 0.9531 .0873 .0419 .0066 -0.0688 1.0029 .1009 .0529 .0095
-0.1550 0.9993 .1011 .0542 .0108 -0.0764 1.0049 .1016 .0517 .0097
-0.0366 1.0028 .0994 .0505 .0089 -0.0102 1.0061 .1019 .0515 .0104
Lognormal errors

50 -0.3234 0.8164 .0554 .0186 .0030 -0.1856 0.9603 .0929 .0442 .0066
-0.4302 0.9518 .1121 .0516 .0053 -0.2086 1.0116 .1107 .0503 .0069
-0.0469 1.0001 .0988 .0447 .0057 -0.0293 1.0256 .1064 .0490 .0072

100 -0.2630 0.8978 .0716 .0324 .0055 -0.1404 0.9737 .0925 .0442 .0077
-0.3345 0.9764 .1069 .0519 .0081 -0.1694 0.9988 .1022 .0488 .0079
-0.0424 0.9938 .0966 .0432 .0068 -0.0039 1.0052 .0978 .0462 .0077

200 -0.2446 0.9243 .0814 .0375 .0063 -0.1699 0.9667 .0930 .0432 .0075
-0.3003 0.9917 .1081 .0561 .0100 -0.1768 0.9834 .0964 .0466 .0068
-0.0606 1.0058 .1000 .0480 .0088 -0.0216 0.9914 .0952 .0445 .0073

500 -0.1225 0.9450 .0836 .0393 .0069 -0.0776 0.9941 .0972 .0475 .0092
-0.1650 0.9853 .0982 .0457 .0083 -0.0721 0.9968 .0993 .0474 .0082
-0.0066 0.9921 .0968 .0465 .0075 0.0268 1.0020 .1003 .0464 .0079

1000 -0.0902 0.9596 .0868 .0398 .0080 -0.0622 0.9901 .0955 .0487 .0091
-0.1186 1.0044 .1015 .0520 .0103 -0.0650 0.9938 .0974 .0468 .0079
-0.0003 1.0079 .1011 .0496 .0105 0.0008 0.9955 .0986 .0482 .0080

Note: Three rows under each n: LMFE
SAR, LMFEOPG

SAR and SLMFEOPG
SAR ; W1n = Group, g = n0.5; XVal-B.
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Table 6. Monte Carlo results: LM Tests for Fixed Effects Panel SED Model, T = 3
Heteroskedasticity ∝ group size Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
Normal Errors

50 -0.3231 0.8613 .0524 .0173 .0043 -0.4076 0.9258 .0926 .0345 .0041
-0.4803 1.0012 .1406 .0717 .0136 -0.5256 1.0103 .1499 .0816 .0170
-0.1354 1.0579 .1224 .0632 .0126 -0.0887 1.0539 .1225 .0597 .0110

100 -0.2876 0.9175 .0773 .0295 .0048 -0.3306 0.9483 .0937 .0380 .0046
-0.4094 1.0044 .1318 .0705 .0132 -0.4327 1.0129 .1378 .0732 .0146
-0.1034 1.0239 .1120 .0580 .0100 -0.0874 1.0379 .1154 .0572 .0102

200 -0.2709 0.9169 .0739 .0285 .0052 -0.2827 0.9548 .0927 .0390 .0066
-0.3835 0.9935 .1229 .0629 .0137 -0.3716 1.0051 .1273 .0676 .0147
-0.0987 1.0152 .1073 .0548 .0100 -0.0668 1.0194 .1073 .0542 .0106

500 -0.2300 0.9333 .0790 .0334 .0063 -0.2451 0.9818 .1022 .0471 .0089
-0.3352 1.0073 .1213 .0606 .0142 -0.3171 1.0163 .1229 .0654 .0156
-0.0984 1.0155 .1067 .0542 .0105 -0.0773 1.0243 .1101 .0559 .0126

1000 -0.2367 0.9328 .0823 .0349 .0062 -0.1864 0.9716 .0978 .0447 .0077
-0.3250 1.0003 .1168 .0608 .0145 -0.2437 0.9941 .1092 .0585 .0114
-0.0891 1.0078 .1024 .0524 .0119 -0.0627 0.9999 .1015 .0517 .0096
Normal Mixture

50 -0.3185 0.8280 .0442 .0146 .0034 -0.4324 0.8930 .0913 .0321 .0024
-0.4623 0.9745 .1248 .0608 .0086 -0.5414 0.9841 .1448 .0752 .0143
-0.1098 1.0331 .1134 .0558 .0076 -0.0952 1.0373 .1141 .0547 .0088

100 -0.2767 0.9077 .0705 .0261 .0053 -0.3434 0.9299 .0878 .0369 .0060
-0.3910 0.9956 .1272 .0624 .0113 -0.4399 0.9979 .1316 .0685 .0137
-0.0790 1.0188 .1051 .0523 .0082 -0.0888 1.0267 .1081 .0548 .0105

200 -0.2822 0.9041 .0740 .0265 .0047 -0.2984 0.9253 .0813 .0345 .0054
-0.3898 0.9922 .1211 .0613 .0129 -0.3816 0.9788 .1189 .0596 .0103
-0.1015 1.0180 .1092 .0540 .0099 -0.0733 0.9943 .0975 .0457 .0090

500 -0.2451 0.9134 .0743 .0275 .0049 -0.2293 0.9686 .0942 .0431 .0064
-0.3471 0.9970 .1170 .0597 .0133 -0.2980 1.0024 .1161 .0580 .0112
-0.1091 1.0068 .1033 .0503 .0097 -0.0574 1.0110 .1052 .0492 .0094

1000 -0.2318 0.9306 .0814 .0319 .0057 -0.1797 0.9751 .0953 .0434 .0083
-0.3199 1.0017 .1189 .0615 .0140 -0.2360 0.9952 .1100 .0551 .0100
-0.0838 1.0094 .1050 .0528 .0109 -0.0546 1.0010 .1029 .0493 .0096
Lognormal Errors

50 -0.3231 0.8057 .0382 .0131 .0039 -0.3989 0.8701 .0706 .0242 .0032
-0.4800 0.9669 .1253 .0583 .0073 -0.5309 0.9812 .1410 .0666 .0105
-0.1099 1.0207 .1058 .0474 .0071 -0.0607 1.0242 .1035 .0470 .0066

100 -0.2792 0.8806 .0607 .0245 .0055 -0.3250 0.9069 .0763 .0333 .0068
-0.4103 0.9920 .1252 .0614 .0091 -0.4399 0.9887 .1281 .0590 .0115
-0.0788 1.0141 .1031 .0490 .0070 -0.0709 1.0129 .1017 .0462 .0070

200 -0.2910 0.8975 .0653 .0259 .0063 -0.2939 0.9230 .0801 .0339 .0068
-0.4155 0.9985 .1305 .0641 .0113 -0.3968 0.9944 .1215 .0618 .0126
-0.1160 1.0176 .1072 .0501 .0082 -0.0785 1.0078 .1024 .0470 .0083

500 -0.2188 0.9046 .0684 .0286 .0052 -0.2354 0.9472 .0879 .0370 .0060
-0.3245 0.9938 .1153 .0571 .0119 -0.3145 0.9945 .1128 .0565 .0109
-0.0810 1.0048 .1030 .0512 .0089 -0.0627 1.0004 .0990 .0462 .0081

1000 -0.2181 0.9361 .0806 .0316 .0055 -0.2000 0.9766 .0960 .0457 .0076
-0.3127 1.0109 .1184 .0585 .0129 -0.2668 1.0107 .1173 .0595 .0119
-0.0739 1.0188 .1072 .0524 .0100 -0.0642 1.0158 .1071 .0534 .0098

Note: Three rows under each n: LMFE
SED, LMFEOPG

SED and SLMFEOPG
SED ; W2n = Group, g = n0.5; XVal-B.
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Table 7. Monte Carlo results: LM Tests for Fixed Effects Panel SARAR Model, T = 3
Heteroskedasticity ∝ group size Heteroskedasticity = 1

n mean sd 10% 5% 1% mean sd 10% 5% 1%
Normal Errors

50 1.8475 1.7698 .0702 .0306 .0061 1.9882 1.8950 .0880 .0431 .0084
2.2877 2.0462 .1310 .0620 .0100 2.2342 2.0594 .1236 .0624 .0104
2.1617 1.9856 .1175 .0539 .0077 2.1093 1.9760 .1092 .0523 .0084

100 1.8967 1.8868 .0731 .0348 .0086 1.9887 1.8975 .0850 .0397 .0082
2.2495 2.1328 .1310 .0661 .0124 2.2646 2.1610 .1286 .0654 .0136
2.0986 2.0037 .1101 .0528 .0095 2.1072 2.0321 .1107 .0560 .0106

200 1.8844 1.8150 .0794 .0345 .0062 1.9774 1.9044 .0896 .0435 .0084
2.2110 2.1588 .1236 .0628 .0130 2.1567 2.0882 .1170 .0620 .0117
2.0704 2.0488 .1099 .0534 .0111 2.0467 1.9972 .1059 .0526 .0097

500 1.9370 1.9192 .0848 .0390 .0087 2.0093 2.0198 .0982 .0463 .0094
2.1424 2.1107 .1222 .0613 .0114 2.1147 2.1101 .1144 .0576 .0126
2.0377 2.0138 .1027 .0512 .0105 2.0492 2.0549 .1046 .0538 .0118

1000 1.9527 1.9511 .0907 .0444 .0090 1.9837 1.9384 .0952 .0434 .0086
2.0930 2.0803 .1141 .0591 .0112 2.0706 2.0503 .1041 .0529 .0115
2.0383 2.0335 .1065 .0532 .0107 2.0098 1.9949 .0999 .0491 .0108
Normal Mixture

50 1.7835 1.7222 .0626 .0268 .0059 1.9417 1.9156 .0851 .0398 .0094
2.2488 1.9511 .1190 .0563 .0068 2.2105 1.9364 .1172 .0554 .0066
2.1386 1.9122 .1071 .0511 .0067 2.0945 1.8742 .1034 .0475 .0052

100 1.8511 1.7889 .0697 .0341 .0069 1.9745 1.8478 .0859 .0374 .0071
2.2567 2.0837 .1243 .0618 .0112 2.2528 2.0556 .1230 .0592 .0109
2.0949 1.9784 .1095 .0486 .0089 2.0979 1.9381 .1061 .0492 .0074

200 1.8491 1.8272 .0767 .0348 .0070 1.9458 1.8929 .0867 .0386 .0082
2.1792 2.1047 .1181 .0621 .0128 2.1271 2.0206 .1137 .0542 .0085
2.0437 1.9938 .1048 .0530 .0086 2.0275 1.9425 .1012 .0458 .0081

500 1.8883 1.8336 .0791 .0362 .0073 1.9872 1.9464 .0945 .0453 .0083
2.1018 2.0185 .1092 .0561 .0101 2.0992 2.0569 .1114 .0565 .0104
2.0081 1.9430 .0998 .0492 .0076 2.0345 2.0052 .1029 .0532 .0090

1000 1.9304 1.9345 .0864 .0417 .0091 2.0028 2.0047 .0985 .0512 .0101
2.0690 2.0586 .1039 .0540 .0125 2.0891 2.1085 .1114 .0575 .0122
2.0211 2.0064 .1008 .0491 .0105 2.0373 2.0604 .1070 .0549 .0103
Lognormal Errors

50 1.6484 1.6401 .0499 .0246 .0054 1.8401 1.9910 .0724 .0346 .0089
2.2424 1.9181 .1149 .0534 .0060 2.2157 1.8932 .1122 .0486 .0065
2.0917 1.8562 .0996 .0447 .0053 2.0671 1.8043 .0956 .0398 .0052

100 1.7922 1.8153 .0688 .0321 .0074 1.8906 1.8987 .0797 .0385 .0081
2.2755 2.0395 .1235 .0591 .0105 2.2403 2.0305 .1188 .0579 .0099
2.0908 1.9104 .1002 .0467 .0076 2.0575 1.8992 .0988 .0484 .0076

200 1.7899 1.7512 .0690 .0307 .0061 1.9355 1.9223 .0874 .0407 .0092
2.1999 2.0088 .1174 .0571 .0094 2.1670 1.9633 .1133 .0531 .0075
2.0485 1.9124 .1017 .0489 .0069 2.0503 1.8708 .1017 .0446 .0048

500 1.8536 1.9127 .0785 .0357 .0092 1.9202 1.8952 .0838 .0384 .0082
2.1259 2.0422 .1127 .0553 .0108 2.0790 1.9645 .1002 .0508 .0084
2.0156 1.9389 .0998 .0473 .0086 2.0117 1.9100 .0939 .0462 .0080

1000 1.9047 1.9584 .0856 .0436 .0089 1.9925 2.0059 .0999 .0480 .0093
2.0683 1.9870 .1072 .0489 .0096 2.1012 2.0611 .1115 .0559 .0118
2.0159 1.9403 .1010 .0465 .0079 2.0424 2.0051 .1036 .0512 .0096

Note: LMFE
SARAR, LMFEOPG

SARAR and SLMFEOPG
SARAR ; W1n=Queen, r = 5; W2n=Group, g = n0.5; XVal-B.
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