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ABSTRACT

This paper develops the approximate finite-sample bias of the ordinary least squares or quasi max-

imum likelihood estimator of the mean reversion parameter in continuous-time Lévy processes. For

the special case of Gaussian processes, our results reduce to those of Tang and Chen (2009) (when the

long-run mean is unknown) and Yu (2012) (when the long-run mean is known). Simulations show that

in general the approximate bias works well in capturing the true bias of the mean reversion estimator

under difference scenarios. However, when the time span is small and the mean reversion parameter is

approaching its lower bound, we find it more difficult to approximate well the finite-sample bias.
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1 Introduction

There is an extensive literature for using diffusion processes to model the dynamic behaviour of financial

asset prices. For example, Vasicek (1977) used the following Ornstein-Uhlenbeck (OU) process to model

the spot interest rate,

dx(t) = κ(µ− x(t))dt+ σdB(t), (1.1)

whereB(t) is a standard Brownian motion. This is a Gaussian Markov process and possesses a stationary

distribution when κ > 0. In this case, κ captures the rate of convergence towards its long-run mean

µ. Tang and Chen (2009) considered a more general form of Brownian-motion-based continuous-time

model, namely, a diffusion process,

dx(t) = κ(µ− x(t))dt+ σ(x(t); θ)dB(t), (1.2)

where σ(x(t); θ) is the diffusion function of x(t) at time t. If σ(x(t); θ) = σ
√
x(t), the diffusion process

becomes the CIR model (Cox, Ingersoll, and Ross, 1985). A even more general diffusion process is given

by,

dx(t) = µ(x(t); θ)dt+ σ(x(t); θ)dB(t), (1.3)

with a general drift function µ(x(t); θ). An important special case is when µ(x(t); θ) = µx(t) and

σ(x(t); θ) = σx(t). Black and Scholes (1973) used it to model the spot price of a stock.

All these processes are based on the Brownian motion. Under some smoothness conditions on the

drift and the diffusion functions, the sample path generated from x(t) is continuous everywhere. In

recent years, however, strong evidence of infinite activity jumps in financial variables has been reported.

To capture the infinite activity jumps, continuous-time Lévy processes have become increasingly pop-

ular and various Lévy models have been developed in the asset pricing literature, see, among others,

Barndorff-Nielsen (1998), Madan, Carr and Chang (1998), and Carr and Wu (2003).

In practice, one can only obtain the observations at discrete points from a finite time span. Based
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on discrete-time observations, different methods have been used to estimate continuous-time models.

Phillips and Yu (2009) provided an overview of some widely used estimation methods. When the drift

function is linear and slowly mean reverting, it is found that there is serious estimation bias in the mean

reversion parameter κ by almost all the methods. Because this parameter is of important implications

for asset pricing, risk management and forecasting, accurate estimation of it has received considerable

attentions in the literature. For example, Yu (2012) approximated the bias of the maximum likelihood

estimator (MLE) of κ when the long-run mean is known and the start-up value is random for the

Gaussian OU process. Tang and Chen (2009) approximated the bias of MLE of κ when the long-run

mean is unknown for the Gaussian OU process and the CIR model. To reduce the estimation bias of

κ, Phillips and Yu (2005) proposed the jackknife method. While the jackknife increases the variance, a

carefully designed jackknifing procedure can offer substantial reduction of the bias, leading to a decrease

in the root mean square errors (RMSE). To further reduce RMSE, Phillips and Yu (2009) proposed

the indirect inference method, whereas Tang and Chen (2009) proposed a parametric bootstrapping

method. These two methods are simulation-based and hence numerically more demanding.

The difficulty in the estimation of κ is related to the finite-sample bias problem well documented for

the discrete autoregressive model, see, for example, Kendall (1954). However, in contrast to the finite-

sample bias of the estimated autoregressive parameter, which is inversely proportional to the sample

size, the bias in the estimated κ can be severe when the time span is small, regardless of the sample size.

In practically relevant cases, this estimation bias can be very large, and thus a thorough understanding

of the bias becomes very important. For example, Phillips and Yu (2005) demonstrated that the bias of

MLE of κ in the CIR model can be over 200% even with 25 years of data used (regardless of the sampling

frequency). They further reported evidence that the estimation bias in the drift term has more serious

implications for asset pricing than the bias caused by discretization and sometimes by misspecification

of the diffusion function. The simulation results of Phillips and Yu (2005) and Tang and Chen (2009)

indicated that the biases of the estimated long-run mean and parameters in the diffusion function are

virtually zero. In the stationary Vasicek model, Tang and Chen (2009) further showed that the bias

of the estimated κ is up to O(T−1), while estimation biases for σ2 and µ are O(n−1) and O(n−2),
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respectively, as T →∞ with h fixed. (Throughout, T , h, and n(= T/h) denote the time span, sampling

frequency, and number of observations/sample size, respectively.)

While the bias in estimating κ has been well studied in continuous-time diffusion processes, to

the best of our knowledge, nothing has been reported on the analytical bias issue in continuous-time

Lévy processes. The objective of this paper is to develop the approximate bias of the quasi maximum

likelihood (QML) estimator of κ under the Lévy measure, and then study the effects of nonnormality

and initial condition on the estimation bias.

The structure of this paper is as follows. Section 2 develops the main results of the paper. In Section

3, we report Monte Carlo evidence to check the quality of our approximation. Section 4 concludes. The

proof of the main results is collected in Appendix.

2 Main Results

A Lévy-driven OU process is

dx(t) = κ(µ− x(t))dt+ σdL(t), x(0) = x0,

where L(t), t ≥ 0, is a Lévy process with L(0) = 0 a.s. In the special case when L(t) is a Brownian

motion, the process is Ornstein-Uhlenbeck (OU) Gaussian process used by Vasicek (1977) to model the

dynamics of short term interest rates.

It is well known that the QML estimator of κ is

κ̂ = − ln(φ̂)

h
, (2.1)

where φ̂ is the least-squares (LS) estimator of the autoregression coefficient φ from the discretized AR(1)

model

xth = α+ φx(t−1)h + εth, (2.2)

in which α = µ(1 − e−κh), φ = e−κh, εth = σ
∫ th
(t−1)h e

−κ(th−s)dL(s), h is the sampling interval, t =
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1, · · · , n such that the observed data are discretely recorded at (0, h, 2h, · · · , nh) in the time interval

[0, T ] and nh = T . By the properties of Lévy process, the sequence of {εth}Tt=1 consists of iid random

variables. We assume that the moments of εth exist, up to order 4, with variance σ2ε, and skewness and

excess kurtosis coefficients γ1 and γ2, respectively.1

We are interested in studying the properties of κ̂ estimated from the discrete sample via φ̂. As can

be expected, the properties of κ̂ depend on how we spell out the initial observation x(0) = x0 : x0 can

be fixed at a constant, possibly zero, or x0 can be a random draw, independent of (ε1, · · · , εn), such

that the time series (x0, x1, · · · , xn) is stationary.

For notational convenience, we drop the subscript h, and throughout, x = (x1, · · · , xn)′, x−1 =

(x0, · · · , xn−1)′, ε = (ε1, · · · , εn)′. For a given φ, f1 is an n × 1 vector with f1,i = φi, f2 = f1/φ,

C1 is a lower-triangular matrix with c1,ij = φi−j , i ≥ j, C2 is a strict lower-triangular matrix with

c2,ij = φi−j−1, i > j. Note that by definition, C2 = φ−1(C1 − I). The dimensions of vectors/matrices

are to be read from the context, and thus we suppress the dimension subscripts in our notation.

For a class of
√
n-consistent estimator θ̂ by the condition ψ(θ̂) = 0, Bao (2013) presented the

second-order bias as

B(θ̂) = Σ−1E(H1 ⊗ψ′)vec(Σ−1) +
1

2
Σ−1E (H2) (Σ−1 ⊗Σ−1)vec

[
E
(
ψψ′

)]
, (2.3)

where ψ = ψ(θ), H l = ∇lψ, l = 1, 2, ∇ denotes the derivative with respect to θ, and Σ−1 =

−[E(H1)]
−1. This expression is equivalent to that in Bao and Ullah (2007), but might be easier to work

with. For the scalar case, the bias result can be written as

B(θ̂) =
1

[E(H1)]2
E(H1ψ)− 1

2[E(H1)]3
E(H2)E(ψ2). (2.4)

1This might rule out some Lévy processes. Also, in general, the moments of εth depend on the parameters κ and σ and
sampling frequency h.
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2.1 µ = 0 and Known

When µ = 0 and is known a priori, we can write x = x0f1 + C1ε, x−1 = x0f2 + C2ε, ε = x −

exp(−κh)x−1.
2 The moment condition, up to some scaling constant, for estimating κ is

ψ(κ) =
1

n
x′−1ε, (2.5)

Upon taking derivatives, we have

Hl =
−(−h)lφ

n
x′−1x−1, l = 1, 2, (2.6)

Appendix A derives the approximate bias of κ̂ from (2.4) as follows when x0 is fixed,

B(κ̂) =
1 + 3e−2κh + 4e−2nκh

2Te−2κh
−
(
1− e−2nκh

) (
1 + 7e−2κh

)
2Tne−2κh (1− e−2κh)

−
4e−2nκh

(
1− e−2κh

)
x20

2Tσ2εe
−2κh +

(
1 + 3e−2κh

) (
1− e−2nκh

)
x20

2Tnσ2εe
−2κh

+
2(1 + e−κh)

(
1− e−nκh

) (
e−κh − e−nκh

)
x0γ1

2Tnσεe−2κh
, (2.7)

and when x0 is random,

B(κ̂) =
1

2T
(3 + e2κh)− 2(1− e−2nκh)

Tn(1− e−2κh)
. (2.8)

Remark 1: We can see that the skewness parameter γ1 matters for the bias of κ̂. Its effect, however,

disappears for the special case of x0 = 0, where the bias expression simplifies to

B(κ̂) =
1 + 3e−2κh + 4e−2nκh

2Te−2κh
−
(
1− e−2nκh

) (
1 + 7e−2κh

)
2Tne−2κh (1− e−2κh)

.

Remark 2: (2.8) suggests that the result in Yu (2012) is in fact robust to nonnormality.

2When µ is known but may not be 0, one just needs to define yt = xt − µ and work with yt.
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2.2 µ is Unknown

When µ is unknown and has to be estimated, x = x0f1 + αC1ι + C1ε, x−1 = x0f2 + αC2ι + C2ε,

α = µ (1− exp(−κh)) , ε = x−αι−exp(−κh)x−1. Since the pairs (α, φ), (α, κ), and (µ, κ) have one-to-

one mapping into each other, and we focus on deriving the finite-sample bias of κ̂, the reparametrized

model xt = α + exp (−κh)xt−1 + εt with parameter vector θ = (α, κ) gives exactly the same κ̂ as

estimated from the original xt = µ(1− exp (−κh)) + exp (−κh)xt−1 + εt with parameter vector (µ, κ).

Thus, we define the moment condition, up to some scaling constant, as

ψ(θ) =
1

n

 ι′ε

−hφx′−1ε

 . (2.9)

By taking derivatives, we have

H1 =
1

n

 −n hφι′x−1

hφι′x−1 h2φx′−1ε− h2φ2x′−1x−1

 ,

H2 =
1

n

 0 0 0 −h2φι′x−1

0 −h2φι′x−1 −h2φι′x−1 −h3φx′−1ε+ 3h3φ2x′−1x−1

 . (2.10)

Appendix B derives the approximate bias of κ̂ when x0 is fixed,

B(κ̂) =
5 + 2ehκ + e2hκ + 4e−2(n−1)hκ

2T
+

2[e−2nhκ − e−2(n−1)hκ](x0 − µ)2

Tσ2ε

+

(
1− e−nhκ

)
[2ehκ + 13e2hκ + 4e3hκ + e4hκ + e−(n−4)hκ + 2e−(n−3)hκ+9e−(n−2)hκ]

2 (1− e2hκ)Tn

+

(
1− e−nhκ

)
[ehκ + 5e−(n−1)hκ]

(
x20 + µ2

)
Tnσ2ε

+

(
1− e−nhκ

)
[5 + e2hκ + 5e−(n−2)hκ + 9e−nhκ](x0 − µ)2

2Tnσ2ε

−
2
(
1− e−nhκ

)
[e−hκ − ehκ + e3hκ + 5e−(n−1)hκ]x0µ

Tnσ2ε

−
γ1
(
1− e−nhκ

)
[e−(n−1)hκ + e−(n−2)hκ](x0 − µ)

Tnσε
, (2.11)
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and when x0 is random,

B(κ̂) =
5 + 2ehκ + e2hκ

2T
−

2e−hκ
(
1− e−nhκ

) (
1− e2hκ

)2
µ2

Tnσ2ε

+

(
1− e−nhκ

)
[ehκ + 4e2hκ + e3hκ + 2e−(n−2)hκ]

(1− e2hκ)Tn
. (2.12)

Remark 3: The leading term (of order O(T−1)) in (2.12) is the same as that derived from Tang and

Chen (2009). Moreover, (2.12) suggests that the approximate bias of κ̂ under the case of random x0 is

robust to nonnormality.

Remark 4: Similar as before, the skewness matters for the approximate bias. In contrast, for the

special case when x0 is fixed at 0, its effect does not disappear:

B(κ̂) =
5 + 2ehκ + e2hκ + 4e−2(n−1)hκ

2T
+

2[e−2nhκ − e−2(n−1)hκ]µ2

Tσ2ε

+

(
1− e−nhκ

)
[2ehκ + 13e2hκ + 4e3hκ + e4hκ + e−(n−4)hκ + 2e−(n−3)hκ+9e−(n−2)hκ]

2 (1− e2hκ)Tn

+

(
1− e−nhκ

)
[5 + 2ehκ + e2hκ + 10e−(n−1)hκ + 5e−(n−2)hκ + 9e−nhκ]µ2

2Tnσ2ε

+
γ1
(
1− e−nhκ

)
[e−(n−1)hκ + e−(n−2)hκ]µ

Tnσε
.

Remark 5: When x0 is fixed at µ, however, the effect of skewness disappears on the approximate bias:

B(κ̂) =
5 + 2ehκ + e2hκ + 4e−2(n−1)hκ

2T
−

2
(
1− e−nhκ

)
(e−hκ − 2ehκ + e3hκ)µ

2

Tnσ2ε

+

(
1− e−nhκ

)
[2ehκ + 13e2hκ + 4e3hκ + e4hκ + e−(n−4)hκ + 2e−(n−3)hκ+9e−(n−2)hκ]

2 (1− e2hκ)Tn
.

Remark 6: For the random case, if further µ = 0 (i.e., the true model has no drift term but we still

estimate the discrete AR model with an intercept), the result reduces to

B(κ̂) =
5 + 2ehκ + e2hκ

2T
+

(
1− e−nhκ

)
[ehκ + 4e2hκ + e3hκ + 2e−(n−2)hκ]

(1− e2hκ)Tn
.
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3 Numerical Results

In this section, we conduct Monte Carlo simulations to demonstrate the performance of our bias for-

mulae in finite samples. In practice we observe only the discrete sample {x0, · · · , xn} and we can

always estimate σ2ε and γ1 from the sample residuals. So we simulate discrete AR(1) processes with

some nonnormal εt without specifying which Lévy process will generate the corresponding nonnormal

distribution.

We simulate εt = σεεt, where εt follows a standardized noncentral t distribution with noncentrality

parameter 1 and degrees of freedom 10. (This gives γ1 = 0.3999). We set σ2ε = 0.1, µ = 0, 0.1,

x0 = µ or x0 ∼N(µ, σ2/(2κ)), h = 1/12, 1/52, 1/252 (corresponding to monthly, weekly, and daily data,

respectively). Figures 1–4 plot the true and feasible biases of κ̂ with T = 10, 50 when κ goes from

0.1 to 4. The true bias is the averaged actual bias of κ̂ and the feasible bias is the averaged B(κ̂)

with all the unknown parameters replaced with their sample consistent estimates, both from 100,000

replications. We observe first that our bias formulae (2.7), (2.8), (2.11), and (2.12) generally do a

good job in capturing the true bias of κ̂ under various scenarios. κ̂ always over estimates and in some

cases the degree of overestimation can be severe. The feasible bias captures most of the overestimation.

Second, we notice that when κ is small, our bias formulae provide less satisfying results compared with

when κ is big. Recall that our second-order bias results are developed under the assumption that κ > 0.

We have truncated o((Tn)−1) terms involving exp(−nκh) in (2.7), (2.8), (2.11), and (2.12). When κ

is close to zero, however, these terms can become quite significant in finite samples and thus make our

bias formulae less satisfying. Third, the bias results are more sensitive to the data span T than the

data frequency h. This can be seen clearly from (2.7), (2.8), (2.11), and (2.12), where the leading terms

are O(T−1) and the remaining terms are O((Tn)−1). Increasing data frequency alone does little help in

reducing the finite-sample bias of κ̂, but expanding the data span can lead to significant lower bias of

κ̂. Fourth, when the drift term is not zero, κ̂ tends to be more biased compared with the case when µ is

known. Also, when x0 is fixed, κ̂ tends to be more biased compared with the case when x0 is random.

Given that our bias formulae (2.7), (2.8), (2.11), and (2.12) are less satisfying when κ is small and

that the true bias decreases with data span T , but not sensitive to the sampling frequency h, in Figures
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Figure 1: True and Feasible Biases of κ̂, T = 10, x0 Fixed

Monthly, x0=μ=0.0
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Figure 2: True and Feasible Biases of κ̂, T = 10, x0 Random

Monthly, μ=0.0
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Figure 3: True and Feasible Biases of κ̂, T = 50, x0 Fixed

Monthly, x0=μ=0.0
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Figure 4: True and Feasible Biases of κ̂, T = 50, x0 Random

Monthly, μ=0.0
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5–6 we display the biases of κ̂ when T goes from 10 to 100, with h = 1/12 and small values of κ (0.10,

0.20, 0.50). We see that for the case of random x0, the feasible bias results are relatively better to

capture the true biases compared with the case of fixed x0. As the data span increases, the gap between

the true and feasible biases does not necessarily get smaller initially. But eventually when the data

span is relatively big (around T = 100), there is really no much difference between the true and feasible

biases.

Figure 5: True and Feasible Biases of κ̂, h = 1/12, x0 Fixed

κ=0.10, x0=μ=0.0
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Figure 6: True and Feasible Biases of κ̂, h = 1/12, x0 Random

κ=0.10, μ=0.0
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4 Conclusions

Lévy processes have found increasing applications in economics and finance. It has been documented,

however, that the typical quasi maximum likelihood estimation procedure tends to over estimate the

mean reversion parameter in continuous-time Lévy processes. Based on the technique of Bao (2013), we

have derived several analytical formulae to approximate the finite-sample bias of the estimated mean

reversion parameter under different cases: known or unknown long-run mean, fixed or random initial

condition. Our simulation results indicate in general good performance of the approximate bias formulae

in capturing the true bias behaviours of the mean reversion estimator. When the time span is small and

the mean reversion parameter is close to its lower bound, we find that it is more difficult to approximate

well the true finite-sample bias.

Appendix A

Given (2.5) and (2.6), we take expectations and use the results from Ullah (2004, P. 187):

E(Hl) =
−(−h)lφ

n
[x20f

′
2f2 + σ2εtr(C

′
2C2)], l = 1, 2,

E(ψ2) =
1

n2
{x20σ2εf ′2f2 + E[(ε′C2ε)

2]},

E(H1ψ) =
hφ

n2
[x0σ

3
εγ1f

′
2diag(C ′2C2) + 2x20σ

2
εf
′
2C2f2 + E(ε′C2εε

′C
′
2C2ε)].

When x0 is random and the process is strictly stationary, x0 should be replaced with E(x0) = 0 and x0

be replaced with σ2ε/(1− φ2) in the above expectations.

With the special structures of f2 and C2, the expressions for f ′2f2, f
′
2C2f2, f

′
2diag(C ′2C2),

tr(C ′2C2), E[(ε′C2ε)
2], and E(ε′C2εε

′C ′2C2ε)] can be derived as follow:

f ′2f2 =
1− φ2n

1− φ2
,

f ′2C2f2 =
φ− φ2n+1 − nφ2n−1(1− φ2)(

1− φ2
)2 ,
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f ′2diag(C ′2C2) =
(1− φn)

(
1− φn−1

)
(1− φ)(1− φ2)

,

tr(C ′2C2) =
n(1− φ2)− (1− φ2n)(

1− φ2
)2 ,

E[(ε′C2ε)
2] =

σ4ε[n(1− φ2)− (1− φ2n)](
1− φ2

)2 ,

E(ε′C2εε
′C
′
2C2ε)] =

2σ4ε[n
(
1− φ2

) (
φ2 + φ2n

)
− 2φ2(1− φ2n)]

φ
(
1− φ2

)3 .

Upon substitution and replacing φ with e−κh, the bias results (2.7) and (2.8) follow.

Appendix B

Let a1 = n−1E(ι′x−1), a2 = n−1E(x′−1x−1), a3 = n−2E(ι′x−1ι
′ε), a4 = n−2E(ι′x−1x

′
−1ε), a5 =

n−2E(x′−1x−1ι
′ε), a6 = n−2E(x′−1x−1x

′
−1ε), a7 = n−2E(ι′εx′−1ε), a8 = n−2E(x′−1εx

′
−1ε). Then we

can write

E(H1) =

 −1 hφa1

hφa1 −h2φ2a2

 , Σ−1 =
1

h2φ2a2 − h2φ2a21

 h2φ2a2 hφa1

hφa1 1

 ,

E (H2) =

 0 0 0 −h2φa1

0 −h2φa1 −h2φa1 3h3φ2a2

 , E
(
ψψ′

)
=

 n−1σ2 −hφa7

−hφa7 h2φ2a8

 ,

E(H1 ⊗ψ′) =

 0 0 hφa3 −h2φ2a4

hφa3 −h2φ2a4 h2φa7 − h2φ2a5 −h3φ2a8 + h3φ3a6

 .

From (2.3), the second-order bias of κ̂ simplifies to

B(κ̂) =
a21σ

2

2nhφ2
(
a21 − a2

)2 +
a8 − 2a1a7 + 2(a21a3 + a2a3 − 2a1a4 − a1a5 + a6)φ

2hφ2
(
a21 − a2

)2 .
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By substituting x−1 = x0f2 + αC2ι+C2ε and use the results from Ullah (2004, P. 187), we have

a1 =
1

n

(
x0ι
′f2 + αι′C2ι

)
,

a2 =
1

n
[x20f

′
2f2 + α2ι′C ′2C2ι+ 2αx0f

′
2C2ι+ σ2εtr(C

′
2C2)],

a3 =
σ2ε
n2
ι′C2ι,

a4 =
σ2ε
n2

(x0ι
′C2f2 + αι′C2C2ι),

a5 =
1

n2
[σ3εγ1ι

′diag(C ′2C2) + 2x0σ
2
εf
′
2C2ι+ 2ασ2ει

′C ′2C2ι],

a6 =
1

n2
[σ3εγ1x0f

′
2diag(C ′2C2) + σ3εγ1αι

′C ′2diag(C ′2C2) + E(ε′C2εε
′C ′2C2ε)

+2x20σ
2
εf
′
2C2f2 + 2x0ασ

2
εf
′
2C2C2ι+ 2x0ασ

2
ει
′C ′2C2f2 + 2α2σ2ει

′C ′2C2C2ι],

a7 =
σ2ε
n2

(x0ι
′f2 + αι′C2ι),

a8 =
1

n2
{x20σ2εf ′2f2 + α2σ2ει

′C ′2C2ι+ E[(ε′C2ε)
2] + 2x0ασ

2
εf
′
2C2ι}.

When x0 is random and the process is strictly stationary, x0 should be replaced with E(x0) = α/(1−φ)

and x20 with E(x20) = σ2ε/(1− φ2) + α2/(1− φ)2 in the expressions for ai’s.

Note that f ′2f2, f
′
2C2f2, f

′
2diag(C ′2C2), tr(C ′2C2), E[(ε′C2ε)

2], and E(ε′C2εε
′C ′2C2ε)] are al-

ready derived in Appendix A. In addition, ι′f2, ι
′C2ι, f

′
2C2ι, ι

′C2f2, ι
′diag(C ′2C2), ι

′C ′2diag(C ′2C2),

ι′C ′2C2f2, ι
′C ′2C2ι, ι

′C2C2ι, f
′
2C2C2ι, ι

′C ′2C2C2ι are needed in evaluating ai, i = 1, · · · , 8. Upon

some algebra, we can verify

ι′f2 =
1− φn

1− φ
,

ι′C2ι =
n(1− φ)− (1− φn)

(1− φ)2
,

f ′2C2ι =
(1− φn) (φ− φn)

(1 + φ)(1− φ2)
,

ι′C2f2 =
1− n(1− φ)φn−1 − φn

(1− φ)2
,

ι′diag(C ′2C2) =
n(1− φ2)− (1− φ2n)(

1− φ2
)2 ,
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ι′C ′2diag(C ′2C2) =
n
(
1− φ2

)
− 2− φ− φ2n−1 + φn−1(1 + φ)2

(1− φ)(1− φ2)2
,

ι′C ′2C2f2 =
1 + φ+ φ2 + nφ2n−1

(
1− φ2

)
+ φ2n+1 − [n(1− φ) + φ]φn−1(1 + φ)2

(1− φ)
(
1− φ2

)2 ,

ι′C ′2C2ι =
n
(
1− φ2

)
− (1− φn) (1 + 2φ− φn)

(1− φ)2(1− φ2)
,

ι′C2C2ι =
n(1− φ) + n(1− φ)φn−1 + 2φn − 2

(1− φ)3
,

f ′2C2C2ι =
φn(1 + φ)2(1− 2φ) + φ1+2n

[
n(1− φ2) + φ+ 2φ2

]
− (1− 2φ2)

(1− φ)(1− φ2)2φ2
,

ι′C ′2C2C2ι =
(1− φn) [φn(1 + 2φ)− φ(4 + 3φ)− 2]

(1− φ)2
(
1− φ2

)2
+
n
(
1− φ2

) [
(1 + φn−1)(1 + φ)− φ2n−1

]
(1− φ)2

(
1− φ2

)2 .

One can see that a1 and a2 are O(1), while ai, i = 3, · · · , 8 are O(n−1). By substituting the ai’s, ignoring

terms of smaller orders, and replacing φ with e−κh, the bias results (2.11) and (2.12) follow.
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