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Specification Test for Panel Data Models with Interactive

Fixed Effects∗

Liangjun Su, Sainan Jin,Yonghui Zhang

School of Economics, Singapore Management University,
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Abstract

In this paper, we propose a consistent nonparametric test for linearity in panel data models

with interactive fixed effects. To construct the test statistic, we need to estimate the model under

the null hypothesis of linearity and then obtain the restricted residuals. We show that after being

appropriately centered and standardized, the test statistic is asymptotically normally distributed

both under the null hypothesis and a sequence of Pitman local alternatives. To improve the finite

sample performance, we propose a bootstrap procedure to obtain the bootstrap p-values. A small set

of Monte Carlo simulations illustrates that our test performs well in finite samples. An application

to an economic growth data indicates significant nonlinear relationships between economic growth,

initial income level and capital accumulation.
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1 Introduction

Recently there has been a growing literature on large dimensional panel models with interactive fixed

effects. The term “interactive fixed effects” refers to the scenario where individual and time effects enter

the model multiplicatively. These models can capture heterogeneity more flexibly than the traditional

fixed/random effects models by the adoption of time-varying common factors that affect the cross

sectional units with individual specific factor loadings. It is this flexibility that drives the models to

become one of the most popular and successful tools to handle cross sectional dependence, especially

when both the cross sectional dimension (N) and the time period (T ) are large. For example, Pesaran

(2006) considers estimation and inference in heterogeneous coefficients panel data models with a general

multifactor error structure; Bai (2009) proposes a principal component analysis (PCA) estimator and

establishes its asymptotic normality for homogeneous coefficients panel data models with interactive

fixed effects; Zafaroni (2010) applies generalized least squares (GLS) method to estimate the panel data

models with common shocks; Moon and Weidner (2010a; 2010b) propose Gaussian quasi maximum

likelihood estimation (QMLE) of panel data models with interactive fixed effects; Su and Chen (2012)

considers test for slope homogeneity in panel data models with interactive fixed effects. For other

developments on this models, see Ahn, Lee and Smith (2001, 2007) for GMM approach with fixed T

and large N , Kapetanos and Pesaran (2007) and Greenaway-McGrevy, Han and Sul (2012) for factor-

augmented panel regression, Pesaran and Tosetti (2011) for estimation of panel data models with a

multifactor error structure and spatial error correlation, Su and Jin (2012) and Jin and Su (2012) for

nonparametric estimation and test in panel data models with interactive fixed effects.

Panel data models with interactive fixed effects have been widely used in economics. Examples from

labor economics include Carneiro, Hansen and Heckman (2003) and Cunha, Heckman and Navarro

(2005), both of which employ a factor error structure to study individuals’ education decision. In

macroeconomics, Giannone and Lenza (2005) provide an explanation for the Feldstein-Horioka (1980)

puzzle by using interactive fixed effects models. In finance, the arbitrage pricing theory of Ross (1976) is

built on a factor model for assets returns. Bai and Ng (2006) develop several tests to evaluate the latent

and observed factors in macroeconomics and finance. Ludvigson and Ng (2009) investigate the empirical

risk-return relation by using dynamic factor analysis for large datasets to summarize a large amount

of economic information by few estimated factors. Ludvigson and Ng (2011) use the factor augmented

regression framework to analyze the relationship between bond excess returns and the macroeconomic

factors.

Almost all of the above papers focus on the linear specification of regression relationship in panel

data models with interactive fixed effects. The only exceptions are Su and Jin (2012) and Jin and Su

(2012). The former paper extends the linear model of Pesaran (2006) to a nonparametric model with

interactive fixed effects and propose a sieve estimator for the unknown regression function of interest;

the latter constructs a nonparametric test for poolability in nonparametric regression models with a

multi-factor error structure. Despite the robustness of nonparametric estimates and tests, they are

usually subject to slower convergence rates than their parametric counterparts. On the other hand,

estimation and tests based on parametric (usually linear) models can be misleading if the underlying
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models are misspecified. For this reason, it is worthwhile to propose a test for the correct specification

for the widely used linear panel data models with interactive effects.

In this paper we are interested in testing for linearity in the following panel data model

Yit = m (Xit) + F 00t λ0i + εit, (1.1)

where i = 1, . . . , N, t = 1, . . . , T, Xit is a p×1 vector of observed regressors, m (·) is an unknown smooth
function, F 0t is an R× 1 is a vector of unobserved common factors, λ0i is an R× 1 vector of unobserved
factor loadings, εit’s are idiosyncratic error terms. When m (Xit) ≡ X 0

itβ
0 for some β0 ∈ Rp, (1.1)

becomes the most popular linear panel data model with interactive fixed effects, which is investigated

by Pesaran (2006), Bai (2009) and Moon and Weidner (2010a; 2010b), among others. These authors

consider various estimates for β and/or (λi, Ft) in the model. Asymptotic distributions for all estimators

have been established and bias-correction may be needed.

Although economic theory dictates that some economic variables are important for the causal effects

of the others, rarely does it state exactly how the variables should enter a statistical model. Models

derived from first-principles such as utility or production functions only have linear dynamics under some

narrow functional form restrictions. Linear models are usually adopted for convenience. A correctly

specified linear model may afford precise inference whereas a badly misspecified one may offer seriously

misleading inference. When m (·) is a nonlinear function, the previously reviewed methods generally
cannot provide consistent estimates for the underlying regression function, and the estimated factor space

would be inconsistent too. As a result, tests based on these estimates would be completely misleading.

For example, testing the number of common factors is a very important problem in factor analysis;

testing for additivity versus interactivity in panel data models (see, e.g., Bai (2009)) is another one.

But both are generally invalid if they are based on the estimation of a misspecified model. Therefore, to

avoid the serious consequence of misspecification, it is necessary and prudent to test for linearity before

we embark on statistical inference about the coefficients and factor space.

There have been many tests for linearity or more generally the correct specification of parametric

models in the literature. The RESET test of Ramsey (1969) is the common used specification test for

the linear regression model. But it is well known that this test is not consistent because it fails to detect

some unknown nonlinear alternatives. Since Hausman (1978) a large literature on testing for the correct

specification of functional forms has developed; see Bierens (1982, 1990), Wooldridge (1992), Yatchew

(1992), Härdle and Mammen (1993), Hong and White (1995), Fan and Li (1996), Zheng (1996), Bierens

and Ploberger (1997), Li and Wang (1998), Stinchcombe and White (1998), and Hsiao, Li and Racine

(2007), among others. In addition, Hjellvik and Tjøstheim (1995) and Hjellvik, Yao and Tjøstheim

(1998) derive tests for linearity specification in nonparametric regressions and Hansen (1999) reviews

the problem of testing for linearity in the context of self-exciting threshold autoregressive (SETAR)

models. More recently, Lee (2010) and Su and Xu (2012) consider testing for linearity in dynamic panel

data model based on individual-specific generalized spectral derivative and the L2-distance between

parametric and nonparametric estimates, respectively. Nevertheless, to the best of our knowledge, there

is no available test of linearity for large dimensional panel data models with interactive fixed effects.

In this paper, we propose a nonparametric test for linearity in panel data models with interactive fixed
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effects. We first estimate the model under the null hypothesis of linearity and obtain the parametric

residuals that are used to construct our test statistic. The parametric residual contains no useful

information about the regression function when the linear model is correctly specified; it does otherwise.

As a result, the projection of the parametric residual to the regressor space is expected to be zero

under the null and nonzero under the alternative. This motives our residual-based test, like many other

residual-based tests in the literature (e.g., Fan and Li (1996), Zheng (1996), Hsiao, Li and Racine (2007)).

We show that after being appropriately centered and standardized, our test statistic is asymptotically

normally distributed under the null hypothesis and a sequence of Pitman local alternatives. We also

propose a bootstrap procedure to obtain the bootstrap p-values. Clearly, in the case of rejecting the null

hypothesis, the conventional linear panel data models with interactive fixed effects cannot be used, and

one has to consider nonlinear or nonparametric modelling. We apply our test to an economic growth

panel data set from the Penn World Table (PWT 7.1) and find significant nonlinear relationships across

different model specifications and periods. This suggests the empirical relevance of our test and calls

upon nonparametric or nonlinear modeling of panel data models with interactive fixed effects.

In comparison with the existing tests for other models in the literature, the major difficulty in

analyzing our test lies mainly in two aspects. The first one is due to the slow convergence rate of

the estimates of factors and factor loadings. In the papers mentioned above, the parametric residuals

converge to the true random error terms under the null at the usual parametric rate and thus the

parametric estimation error does not play a role in the asymptotic distribution of the test statistic

under either the null or nontrivial Pitman local alternatives. In contrast, for panel data models with

interactive fixed effects, the factors and factor loadings can only be estimated at a slower rate than

the slope coefficients of the observed regressors, and their estimation error plays an important role

and complicates the asymptotic analysis of the local power function significantly. The second major

difficulty is due to the allowance for dynamic structure in the panel data models. The test statistic (see

(2.4) below) itself possess the structure of a two-fold V -statistic where double summations are needed

along both the individual and time dimensions. The asymptotic analysis of such a statistic becomes

extremely involved with the presence of lagged dependent variables when the first-stage parameter

estimation errors enter the asymptotics.

The rest of the paper is organized as follows. In Section 2, we introduce the hypothesis and the test

statistics. The asymptotic distributions of our test are established both under the null hypothesis and

the local alternatives in Section 3. In Section 4 we conduct a small set of Monte Carlo experiments to

evaluate the finite sample performance of our test and apply our test to an economic growth data set.

Section 5 concludes. All proofs are relegated to the Appendixes and additional proofs for the technical

lemmas are provided in the supplement.

NOTATION. Throughout the paper we adopt the following notation. For an m × n real matrix

A, we denote its transpose as A0, its Frobenius norm as kAkF (≡ [tr (AA0)]1/2), its spectral norm as

kAk (≡
p
μ1 (A

0A)), where ≡ means “is defined as” and μ1 (·) denotes the largest eigenvalue of a real
symmetric matrix. More generally, we use μs (·) to denote the sth largest eigenvalue of a real symmetric
matrix by counting multiple eigenvalues multiple times. Let PA ≡ A (A0A)−1A0 and MA ≡ Im − PA

where Im denotes anm×m identity matrix. We use “p.d.” and “p.s.d.” to abbreviate “positive definite”
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and “positive semidefinite”, respectively. For symmetric matrices A and B, we use A > B (A ≥ B) to

indicate that A−B is p.d. (p.s.d.). The operator P→ denotes convergence in probability, D→ convergence

in distribution, and plim probability limit. We use (N,T ) → ∞ to denote the joint convergence of N

and T when both pass to the infinity simultaneously.

2 Basic Framework

In this section, we first formulate the hypotheses and test statistic, and then introduce the estimation

of the panel data model with interactive fixed effects under the null restriction.

2.1 The hypotheses and test statistic

The main objective is to construct a test for linearity in model (1.1). We are interested in the null

hypothesis

H0 : Pr
£
m (Xit) = X 0

itβ
0
¤
= 1 for some β0 ∈ Rp. (2.1)

The alternative hypothesis is the negation of H0:

H1 : Pr [m (Xit) = X 0
itβ] < 1 for all β ∈ Rp. (2.2)

To facilitate the local power analysis, we define a sequence of Pitman local alternatives:

H1 (γNT ) : m (Xit) = X 0
itβ

0 + γNT∆NT (Xit) a.s. for some β
0 ∈ Rp (2.3)

where ∆NT (·) is a uniformly bounded measurable nonlinear functions, γNT → 0 as (N,T ) → ∞, and
the rate is specified in Theorem 3.3 below.

Let eit ≡ Yit −X 0
itβ

0 − F 00t λ0i . Let fi (·) denotes the probability density function (PDF) of Xit. In

view of the fact that eit = εit and E (eit|Xit) = 0 under H0, we have

J ≡ E [eitE (eit|Xit) fi (Xit)] = E
n
[E (eit|Xit)]

2
fi (Xit)

o
= 0

under H0. Nevertheless, under H1 we have eit = εit+m (Xit)−X 0
itβ

0. So E (eit|Xit) = m (Xit)−X 0
itβ

0 is

not equal 0 almost surely (a.s.), implying that E [eitE (eit|Xit) fi (Xit)] > 0 under H1. Below we propose
a consistent test for the correct specification of the linear panel data model based on this observation.

To implement our test, we need to estimate the model under H0 and obtain the restricted residuals
ε̂i = (ε̂i1, ..., ε̂iT )

0 for i = 1, ..., N. Then one can obtain the following sample analogue of J

JNT =
1

(NT )2

NX
i=1

NX
j=1

TX
t=1

TX
s=1

ε̂itε̂jsKh (Xit −Xjs) =
1

(NT )2

NX
i=1

NX
j=1

ε̂0iKij ε̂j (2.4)

where Kh (x) = Π
p
l=1h

−1
l k (xl/hl) , k (·) is a univariate kernel function, h = (h1, ..., hp) is a bandwidth

parameter, and Kij is a T × T matrix whose (t, s) element is given by Kij,ts ≡ Kh (Xit −Xjs) .
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2.2 Estimation under the null

To proceed, let Xit,k denotes the kth element of Xit for k = 1, ..., p. Define

Yi ≡ (Yi1, · · · , YiT )0 , Xi ≡ (X 0
i1, · · · ,X 0

iT )
0
, εi ≡ (εi1, · · · , εiT )0 , ei ≡ (ei1, · · · , eiT )0 ,

F 0 ≡
¡
F 01 , · · · , F 0T

¢0
, λ0 ≡

¡
λ01, ..., λ

0
N

¢0
, Xi,·k ≡ (Xi1,k, ...,XiT,k)

0, Y≡ (Y1, ..., YN )0 ,
Xk ≡ (X1,·k, ...,XN,·k)

0
, ε ≡ (ε1, ..., εN )0, and e ≡ (e1, ..., eN )0.

Clearly, Y, Xk, ε and e all denote N × T matrices.

As mentioned above, we need to estimate the model under the null hypothesis (2.1). Under H0, we
can rewrite the model in vector and matrix notation as

Yi = Xiβ
0 + F 0λ0i + εi (2.5)

and

Y =

pX
k=1

β0kXk + λ0F 00 + ε, (2.6)

where β0 ≡
¡
β01, ..., β

0
p

¢0
.

Following Moon and Weidner (2010a, 2010b), the Gaussian quasi-maximum likelihood estimator

(QMLE) (β̂, λ̂, F̂ ) of (β, λ, F ) can be obtained as follows³
β̂, λ̂, F̂

´
= argmin

(β,λ,F )

LNT (β, λ, F ) (2.7)

where

LNT (β, λ, F ) ≡
1

NT
tr

"Ã
Y −

pX
l=1

βlXk − λF 0
!0Ã

Y −
pX
l=1

βlXk − λF 0
!#

, (2.8)

β ≡
¡
β1, ..., βp

¢0
is a p × 1 vector of parameter coefficients, F ≡ (F1, ..., FT )0 and λ ≡

¡
λ01, ..., λ

0
N

¢0
. In

particular, the main object of interest β can be estimated by

β̂ = argmin
β

LNT (β) (2.9)

where the negative profile quasi log-likelihood function LNT (β) is given by

LNT (β) = min
λ,F

LNT (β, λ, F )

= min
F

1

NT
tr

"Ã
Y −

pX
l=1

βlXk

!
MF

Ã
Y −

pX
l=1

βlXk

!0#

=
1

NT

TX
t=R+1

μt

"Ã
Y −

pX
l=1

βlXk

!0Ã
Y −

pX
l=1

βlXk

!#
. (2.10)

See Moon and Weidner (2010a) for the demonstration of the equivalence of the last three expressions.

As (2.9) and (2.10) suggest, it is convenient to compute the QMLE: one only needs to calculate the

eigenvalues of a T ×T matrix at each step of the numerical optimization over β. For statistical inference,

one also needs to obtain consistent estimates of λ and F under certain identification restrictions.
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Following Bai (2009), we consider the following identification restrictions

F 0F/T = IR and λ0λ = diagonal. (2.11)

Upon obtaining β̂, the QMLE (λ̂, F̂ ) of (λ, F ) are given by the solutions of the following set of nonlinear

restrictions: "
1

NT

NX
i=1

(Yi −Xiβ̂)(Yi −Xiβ̂)
0
#
F̂ = F̂VNT , (2.12)

and

λ̂
0 ≡ (λ̂1, ..., λ̂N ) = T−1

h
F̂ 0(Y1 −X1β̂), ..., F̂

0(YN −XN β̂)
i
, (2.13)

where VNT is a diagonal matrix that consists of the R largest eigenvalues of the bracketed matrix in

(2.12), arranged in decreasing order.

After obtaining (β̂, λ̂, F̂ ), we can estimate εi by ε̂i ≡ Yi −Xiβ̂ − F̂ λ̂i under the null. It is easy to

verify that

ε̂i =MF̂ εi −MF̂Xi(β̂ − β0) +MF̂F
0λ0i +MF̂

¡
mi −Xiβ

0
¢

(2.14)

where mi ≡ (m(Xi1) ,m (Xi2), · · · ,m (XiT ))
0. ε̂i is then used in constructing the test statistic JNT

defined in (2.4).

3 Asymptotic Distribution

In this section we first study the asymptotic behavior of β̂ under H1 (γNT ) and then the asymptotic

distribution of our test statistic under H1 (γNT ). We also propose a bootstrap method to obtain the

bootstrap p-values for our test.

3.1 Asymptotic behavior of β̂ under H1 (γNT )

To study the asymptotic behavior of β̂ under H1 (γNT ) , we make the following assumptions.

Assumption A.1. (i) N−1λ00λ0 P→ Σλ > 0 for some R×R matrix Σλ.

(ii) T−1F 00F 0 P→ ΣF > 0 for some R×R matrix ΣF .

(iii) kεk = max
³√

N,
√
T
´
.

(iv) kXkk = OP

³√
NT

´
for k = 1, ..., p.

Assumption A.2 (i) (NT )
−1/2tr(Xkε

0) = OP (1) for k = 1, ..., p.

(ii) Let X(α) =
Pp

k=1 αkXk such that kαk = 1 where α = (α1, ..., αp)0 . There exists a finite constant
C > 0 such that

min
{α∈Rp:kαk=1}

TX
t=2R+1

μt

³
X0
(α)X(α)

´
≥ C wpa1.

Assumption A.3 (i)As (N,T )→∞, γNT → 0 and δ−2NT /γNT = O (1) , where δNT ≡ min
³√

N,
√
T
´
.

(ii) Let ∆i ≡ (∆NT (Xi1) , ...,∆NT (XiT ))
0 and ∆ ≡ (∆1, ...,∆N )

0. k∆k = OP

³√
NT

´
.
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Assumptions A.1-A.2 are also made in Moon and Weidner (2010a). It is easy to say that A.1(i) , (ii)

and (iv) can be easily satisfied and A.1(iii) can be met for various error processes. Assumption A.2(i)

requires weak exogeneity of the regressors Xk and A.2(ii) imposes the usual non-collinearity condition

on Xk. Note that A.2(ii) rules out time-invariant regressors or cross-sectionally invariant regressors, but

it can be modified as in Moon Weidner (2010b) to allow for both with more complicated notation and

special treatment. Assumption A.3 specifies conditions on γNT and ∆ relative to the sample sizes N

and T. A.3(i) will be automatically satisfied for the local alternative studied below.

Let C(1)NT and C
(2)
NT denote p× 1 vectors whose kth elements are respectively given by

C
(1)
NT,k =

1

NTγNT

tr (Mλ0XkMF 0e0) , and (3.1)

C
(2)
NT,k = − 1

NTγNT

tr (eMF 0e0Mλ0XkΦ
0
1 + e

0Mλ0e
0MF 0XkΦ1 + e

0Mλ0XkMF 0e0Φ1) , (3.2)

where Φ1 ≡ λ0
¡
λ00λ0

¢−1 ¡
F 00F 0

¢−1
F 00. Let DNT denote a p × p matrix whose (k1, k2)th element is

given by

DNT,k1k2 =
1

NT
tr
¡
Mλ0XkMF 0X0

k2

¢
. (3.3)

Following Moon and Weidner (2010b) we refer to C(1)NT +C
(2)
NT and DNT as the approximated score and

Hessian matrix for the profile quasi-likelihood function. The following theorem states the asymptotic

expansion of β̂ under H1 (γNT ) .

Theorem 3.1 Suppose Assumptions A.1-A.3 hold. Then under H1 (γNT )

β̂ − β0 = γNTD
−1
NT

³
C
(1)
NT + C

(2)
NT

´
+OP {

£
γ2NT

¡
δ−1NT + γNT

¢
+ γNT δ

−3
NT

¤1/2}.
Remark 1. The above result is comparable with that in Corollary 3.2 of Moon and Weidner (2010a).

In view of the fact that DNT = D+ oP (1) , C
(1)
NT = OP (1) and C

(2)
NT = OP

¡
δ−2NT /γNT

¢
= OP (1) where

D = p lim(N,T )→∞DNT (see the remark in Appendix A), we have β̂ − β0 = OP (γNT ). That is, the local

deviations from the null model control the convergence rate of β̂ to β0. Note that we do not require N

and T diverge to ∞ at the same speed, nor do we require that one diverge to ∞ faster than the other.

Let αik ≡ λ00i
¡
λ00λ0/N

¢−1
λ0k and X̃i ≡ MF 0Xi − 1

N

PN
j=1 αijMF 0Xj . It is easy to see that an

alternative expression for DNT is given by

DNT ≡ DNT

¡
F 0
¢
=

1

NT

NX
i=1

X 0
iMF 0Xi −

1

T

Ã
1

N2

NX
i=1

NX
k=1

X 0
iMF 0Xkαik

!
=

1

NT

NX
i=1

X̃ 0
iX̃i,

which is used by Bai (2009). But he also requires that DNT (F ) be asymptotically non-singular for all

F such that F 0F/T = IR.

3.2 Asymptotic distribution of the test statistic

Let q0 and q1 be as specified in Assumption A.5 below. Let q2 ∈ (1, 4/3) and q̃2 ≡ q1q2/ (q1 + q2) . Let

q̃3 > 0 be such that 1− 1
q̃3
= 1

q1
+ 1

q̃2
. Let h! ≡ Πpk=1hk and |h| ≡

Pp
k=1 hk. Let kAkq ≡ {E kAk

q}1/q for
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any random scalar or vector A. To study the asymptotic distribution of the test statistic, we add the

following assumptions.

Assumption A.4 (i) For each i = 1, ..., N,
©¡
Xit, εit, F

0
t

¢
: t = 1, 2...

ª
is strictly stationary and

α-mixing with mixing coefficients {αi (·)}. α (·) ≡ max1≤i≤N αi (·) satisfies
P∞

s=1 α (s)
1/q̃3 ≤ Cα < ∞

and
P∞

τ=1 α (τ)
η̃/(1+η̃) ≤ Cα <∞ for some η̃ ∈ (0, 1/3) . In addition, there exists τ ∈ (1, Th!) such that

Th!/τ À T η for some η > 0 and (NT )(1+p/q0) (h!)−1 τ−1α (τ)→ 0 as (N,T )→∞.

(ii) εi, i = 1, ..., N, are mutually independent of each other.

(iii) εit is independent of λ
0
j , and F 0s for all i, t, j, s.

(iv) For each i = 1, ..., N, E (εit|Ft−1) = 0 almost surely where Ft−1 ≡ σ({Xit,Xi,t−1, εi,t−1,Xi,t−2,
εi,t−2, ...}Ni=1).
(v) For each i = 1, ..., N, Xit has the PDF fi (·) with support Xi such thatmax1≤i≤N supx∈Xi fi (x) ≤

Cf <∞.

(vi) For each i = 1, ..., N, let fi,t (x) denote the marginal PDF of Xit given D ≡
¡
F 0, λ0

¢
, and

fi,ts (x, x̄) the joint PDF of Xit and Xis given D. fi,t (·) and fi,ts (·, ·) are continuous in their arguments
and uniformly bounded.

Assumption A.5 (i) max1≤i≤N kXitkq0 ≤ CX <∞ for some q0 ≥ 4.
(ii)max1≤i≤N kεitkq1 ≤ Cε < ∞ for some q1 > 4. max1≤i≤N max1≤s,r≤t≤T E

¡
μi,tsr

¢
≤ Cε <

∞ where μi,tsr ≡ E
£
ε2itεisεir|Xit,Xis,Xir

¤
.

(iii) max1≤i≤N
°°λ0i°°4 ≤ Cλ <∞ and max1≤t≤T

°°F 0t °°4 ≤ CF <∞.

Assumption A.6 (i) The kernel function k(·) : R → R is a symmetric, continuous and bounded
PDF. Let K̄ ≡ supu [k (u)]

p
.

(ii) For some Ck < ∞ and L < ∞, either k (u) = 0 for |u| > L and for all u and ū ∈ R,
|k (u)− k (ū)| ≤ Ck |u− ū| , or k (u) is differentiable, supu |(∂/∂u)k (u) | ≤ Ck, k (u) | ≤ Ck |u|−q0 and
|(∂/∂u)k (u) | ≤ Ck |u|−ν for |u| > L and for some ν > 1.

Assumption A.7 (i) As (N,T )→∞, |h|→ 0, NTδ−4NT (h!)
1/2 → 0, and N (h!)

1/2 →∞.

(ii) As (N,T )→∞, NT−1 (h!) [(h!)2(1−q2)/q2 + (h!)−2η̃/(1+η̃)]2 → 0 and N2T−2 (h!)(4−3q2)/q2 → 0.

A.4(i) specifies conditions on the process
©¡
Xit, εit, F

0
t

¢
: t = 1, 2...

ª
. Note that we do not require

εit to be independent along the time dimension. If the process is strong mixing with geometric or

exponential mixing rate, the conditions on α (·) can easily be met by specifying τ = bCτ log T c for some
sufficiently large Cτ . Like Hahn and Kuersteiner (2011), we assume the stationarity condition mainly

for notational simplicity. The proofs of our main results in this section go through by resorting to some

inequalities for generic strong mixing processes which may not be stationary (see, e.g., Sun and Chiang,

1997). The independence of εit across i in A.4(ii) is also assumed in Moon and Weidner (2010a, 2010b).

A.4(iii) is automatically satisfied in many of the early papers including Pesaran (2006), Bai (2009),

Moon and Weidner (2010a, 2010b), and Bai and Li (2012). In particular, Moon and Weidner (2010a,

2010b) and Bai and Li (2012) assume that both the factors and factor loadings are fixed constants and

treat them as parameters to be estimated. Note that unlike Bai (2009), A.4(iii) does not require that

the idiosyncractic error terms εit be independent of the idiosyncractic regressors Xit. A.4(iv) requires

9



that the error terms εit be a martingale difference sequence (m.d.s.) with respect to the filter Ft−1,
which allows lagged dependent variables in Xit and conditional heteroskedasticity, skewness or kurtosis

in εit. If one assumes that Xit is strictly exogenous, then the proofs for the following theorems can

be greatly simplified. A.4(v) and (vi) can be relaxed to allow for discrete regressors in Xit, in which

case one may or may not smooth the discrete regressors in the test. Note that we have suppressed the

dependence of fi,ts on D. In some sense, we can treat both factors and factor loadings as fixed constants.
A.5 specifies some moment conditions on εit, λ

0
i , F

0
t and Xit. A.6 specifies conditions on the

kernel function k (·) which, in conjunction with A.4(i) and A.5(iii) are mainly used to demonstrate
that max1≤i,j≤N T−1 kKijk = OP (1) in Lemma D.1 in Appendix D. A.7 specifies conditions on the

bandwidth in relation to the sample sizes (N,T ) . Note that NTδ−4NT (h!)
1/2 → 0 is equivalent to¡

NT−1 +N−1T
¢
(h!)

1/2 → 0, which restricts the relative speed at which N and T diverge to ∞ in

relation with h!.

Let ΠNT be a p× 1 vector whose kth element is given by1

ΠNT,k = (NT )
−1 tr (Mλ0XkMF 0∆0) . (3.4)

Then under Assumption A.3,

β̂ − β0 = γNTD
−1
NTΠNT +OP

¡
δ−2NT

¢
. (3.5)

Let

B1NT ≡ (h!)
1/2

NT

NX
i=1

ε0iMF 0KiiMF 0εi, (3.6)

B2NT ≡ 1

(NT )2

X
1≤i,j≤N

³
MF 0∆i − X̃iD

−1
NTΠNT

´0
Kij(MF 0∆j − X̃jD

−1
NTΠNT ), (3.7)

VNT ≡ 2h!

(NT )2

X
1≤i6=j≤N

TX
t=1

TX
s=1

ED
¡
K2ij,tsε2itε2js

¢
, (3.8)

As will be clear, B1NT and VNT stand for the asymptotic bias and variance of our test statistic, re-

spectively; B2NT contributes to its asymptotic local power. The following theorem states the asymptotic

distribution of the test statistic JNT under H1 (γNT ) .

Theorem 3.2 Suppose Assumption A.1-A.7 hold. Then under H1 (γNT ) with γNT ≡ (NT )−1/2 (h!)−1/4 ,

NT (h!)1/2 JNT −B1NT
D→ N (B2, V0)

where B2 = plim(N,T )→∞B2NT and V0 =plim(N,T )→∞VNT .

Remark 2. The proof of the above theorem is tedious and is relegated to Appendix B. The idea

is simple but the details are quite involved. We can show that NT (h!)1/2 JNT − B1NT − B2NT =

ANT + oP (1) under H1 (γNT ), where

ANT ≡
X

1≤i<j≤N
WNT (ui, uj)

1Using the notation X̃i, one can also write ΠNT =
1
NT

N
i=1 X̃

0
i∆i.
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WNT (ui, uj) ≡ 2 (h!)
1/2P

1≤t,s≤T εitKij,tsεjs and ui ≡ (X 0
i, εi)

0. Noting that ANT is a degenerate

second order U -statistic, we apply de Jong’s (1987) central limit theorem (CLT) for independent but

non-identical observations to show that ANT
D→ N (0, V0) under Assumptions A.1-A.7.

In view of the fact B2NT = 0 under H0, an immediate consequence of Theorem 3.2 is

NT (h!)1/2 JNT −B1NT
D→ N (0, V0) under H0.

To implement the test, we need to estimate the asymptotic bias B1NT and asymptotic variance VNT

consistently under H0. We propose to estimate B1NT and VNT respectively by

B̂1NT ≡
(h!)

1/2

NT

NX
i=1

ε̂0iKiiε̂i and V̂NT ≡
2h!

(NT )2

X
1≤t,s≤T

X
1≤i6=j≤N

K2ij,tsε̂2itε̂2js.

Then we define a feasible test statistic

Γ̂NT ≡
³
NT (h!)

1/2
JNT − B̂1NT

´
/

q
V̂NT .

The following theorem establishes the asymptotic distribution of Γ̂NT under H1 (γNT ) .

Theorem 3.3 Suppose Assumptions A.1-A.7 hold. Then under H1 (γNT ), Γ̂NT
D→ N

¡
B2/
√
V0, 1

¢
.

Remark 3. The above theorem implies that the test has nontrivial asymptotic power against local

alternatives that diverge from the null at the rate γNT = (NT )
−1/2

(h!)
−1/4

. The local power function

is given by

Pr
³
Γ̂NT > z|H1 (γNT )

´
→ 1− Φ

³
z −B2/

p
V0

´
as (N,T )→∞,

where Φ (·) is the standard normal cumulative distribution function (CDF). We obtain this distributional
result despite the fact that the unobserved factors F 0t and factor loadings λ

0
i can only be estimated at

a slower rates (N−1/2 for the former and T−1/2 for the latter, subject to certain matrix rotation). Even
though the slow convergence rates of these factors and factor loadings estimates do not have adverse

asymptotic effects on the estimation of the bias term B1NT , the variance term VNT , and the asymptotic

distribution of Γ̂NT , they may play an important role in finite samples. For this reason, we will also

propose a bootstrap procedure to obtain the bootstrap p-values for our test.

Again, under H0, B2 = 0, and Γ̂NT is asymptotically distributed N (0, 1). This is stated in the

following corollary.

Corollary 3.4 Suppose the conditions in Theorem 3.3 hold. Then under H0, Γ̂NT
D→ N (0, 1) .

In principle, one can compare Γ̂NT with the one-sided critical value zα, the upper αth percentile

from the standard normal distribution, and reject the null hypothesis when Γ̂NT > zα at α significance

level.

Remark 4. Theorem 3.1 says nothing about the asymptotic property of the QMLE β̂ under the

global alternative H1. In this case, we can define the pseudo-true parameter β∗ as the probability limit
of β̂. Then

∆̄ (Xit) ≡ m (Xit)− β∗0Xit
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does not equal 0 almost surely. Let ∆̄ be analogously defined as ∆ but with the local deviation ∆ (Xit)

replaced by the global one ∆̄ (Xit) . In this case, we can show that under the additional assumption°°∆̄°° = oP ((NT )1/2),

β̂ − β∗ = D−1NT Π̄NT + oP (1)

where Π̄NT is a p × 1 vector whose kth element is given by Π̄NT,k = (NT )−1tr
¡
Mλ0XkMF 0∆̄0¢ . In

addition, following the proof of Theorem 3.2, we can show that

JNT =
1

(NT )
2

X
1≤i,j≤N

³
MF 0∆̄i − X̃iD

−1
NT Π̄NT

´0
Kij

³
MF 0∆̄j − X̃jD

−1
NT Π̄NT

´
+ oP (1)

= B̄2NT + oP (1) ,

which has a positive probability limit. This, together with the fact that B̂1NT = OP

¡
(h!)−1/2

¢
and

V̂NT has a well behaved probability limit under H1, implies that our test statistic Γ̂NT diverges at the

usual nonparametric rate NT (h!)1/2 under H1. That is

Pr
³
Γ̂NT > bNT | H1

´
→ 1 as (N,T )→∞

for any nonstochastic sequence bNT = o
¡
NT (h!)1/2

¢
. So our test achieves consistency against any fixed

global alternatives.

3.3 A Bootstrap version of the tests

Despite the fact that Corollary 3.4 provides the asymptotic normal null distribution for our test sta-

tistic, we cannot rely on the asymptotic normal critical values to make inference for two reasons. One

is inherited from many kernel-based nonparametric tests, and the other is associated with the slow

convergence rates of the factors and factors loadings estimates as mentioned above. It is well known

that the asymptotic normal distribution may not serve as a good approximation for many kernel-based

tests and tests based on normal critical values can be sensitive to the choice of bandwidths and suffer

from substantial finite sample size distortions. The slow convergence of the estimates of factors and

factor loading may further lead to some finite sample size distortions. Therefore it is worthwhile to

propose a bootstrap procedure to improve the finite sample performance of our test. Below we propose

fixed-regressor wild bootstrap method in the spirit of Hansen (2000). The procedure goes as follows:

1. Obtain the restricted residuals ε̂it = Yit−Xitβ̂− F̂ 0t λ̂i where β̂, F̂t and λ̂i are estimates under the
null hypothesis of linearity. Calculate the test statistic Γ̂NT based on {ε̂it,Xit} .

2. For i = 1, ..., N and t = 1, 2, . . . , T, obtain the bootstrap error ε∗it = ε̂itηit where ηit are i.i.d.

N (0, 1) across i and t. Generate the bootstrap analogue Y ∗it of Yit by holding (Xit, F̂t, λ̂i) as

fixed:2 Y ∗it = β̂
0
Xit + λ̂

0
iF̂t + ε∗it for i = 1, 2, . . . , N and t = 1, 2, . . . , T.

3. Given the bootstrap resample {Y ∗it , Xit}, obtain the QMLEs β̂
∗
, F̂ ∗t and λ̂

∗
i . Obtain the residuals

ε̂∗it = Y ∗it −Xitβ̂
∗ − F̂ ∗0t λ̂

∗
i and calculate bootstrap test statistic Γ̂

∗
NT based on {ε̂

∗
it,Xit} .

2This is the case even if Xit contains lagged dependent variables, say, Yi,t−1 and Yi,t−2.
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4. Repeat Steps 2-4 for B times and index the bootstrap statistics as
n
Γ̂∗NT,b

oB
b=1
. The bootstrap

p-value is calculated as p∗ ≡ B−1
PB

b=1 1(Γ̂
∗
NT,b ≥ Γ̂NT ), where 1(·) is the usual indicator function.

It is straightforward to implement the above bootstrap procedure. Note that we impose the null

hypothesis of linearity in Step 2. Following Su and Chen (2012), we can readily establish the asymptotic

validity of the above bootstrap procedure. To save space, we only state the result here.

Theorem 3.5 Suppose the conditions in Theorem 3.3 hold. Then Γ̂∗NT
D→ N (0, 1) conditionally on the

observed sample WNT ≡ {(X1, Y1) , ..., (XN , YN )} .

The above result holds no matter whether the original sample satisfies the null, local alternative or

global alternative hypothesis. On the one hand, if H0 holds for the original sample, Γ̂NT also converges

in distribution to N (0, 1) so that a test based on the bootstrap p-value will have the right asymptotic

level. On the other hand, if H1 holds for the original sample, as we argue in Remark 4, Γ̂NT diverges at

rate NT (h!)1/2 whereas Γ̂∗NT is asymptotically N (0, 1) , which implies the consistency of the bootstrap-

based test.

4 Simulations and Applications

In this section, we first conduct a small set of Monte Carlo simulations to evaluate the finite sample

performance of our test, and then apply our test to the economic growth data.

4.1 Monte Carlo Simulation Study

4.1.1 Data generating processes

We consider the following six data generating processes (DGPs)

DGP 1: Yit = ρ0Yi,t−1 + λ00i F 0t + εit,

DGP 2: Yit = β01Xit,1 + β02Xit,2 + λ00i F 0t + εit,

DGP 3: Yit = ρ0Yi,t−1 + β01Xit,1 + β02Xit,2 + λ00i F 0t + εit,

DGP 4: Yit = δΦ (Yi,t−1)Yi,t−1 + λ00i F 0t + εit,

DGP 5: Yit = β01Xit,1 + β02Xit,2 + 2δXit,1Φ (Xit,2) + λ00i F 0t + εit,

DGP 6: Yit = δ/2Φ (Yi,t−2)Yi,t−2 + β01Xit,1 + β02Xit,2 + δXit,1Φ (Xit,2) + λ00i F 0t + εit,

where i = 1, 2, . . . ,N, t = 1, 2, . . . , T, (ρ0, β01, β
0
2) = (0.6, 1, 3), δ = 0.25, and Φ (·) is the standard normal

CDF. Here λ00i = (λ
0
i1, λ

0
i2)

0, F 0t = (F 0t1, F
0
t2)

0, and the regressors are generated according to

Xit,1 = μ1 + c1λ
00
i F

0
t + ηit,1,

Xit,2 = μ2 + c2λ
00
i F

0
t + ηit,2,

where the variables λ0ij , F
0
tj , and ηit,j , j = 1, 2, are all independently and identically distributed (i.i.d.)

N(0, 1) and mutually independent of each other. Clearly, the regressors Xit,1 and Xit,2 are correlated

with λ0i and F 0t . We set μ1 = c1 = 0.25 and μ2 = c2 = 0.5. Note that DGPs 1-3 are used for the level
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study and DGPs 4-6 for the power study. For the dynamic models (DGPs 1, 3, 4 and 6), we discard

the first 100 observations along the time dimension when generating the data.

Note that the idiosyncratic error terms in the above six DGPs are all homoskedastic both condition-

ally and unconditionally. To allow for conditional heteroskedasticity, which may be relevant in empirical

applications, we consider another set of DGPs, namely DGPs 1h-6h which are identical to DGPs 1-6,

respectively in the mean regression components but different from the latter in the generation of the

idiosyncratic error terms. For DGPs1h and 4h, the errors are generated from the process

εit = σit�it,

σit =
¡
0.1 + 0.2Y 2

i,t−1
¢1/2

,

�it ∼ i.i.d. N(0, 1).

For DGPs 2h-3h and 5h-6h, the errors are generated from the process

εit = σit�it,

σit = [0.1 + 0.1(X2
it,1 +X2

it,2)]
1/2,

�it ∼ i.i.d. N(0, 1).

4.1.2 Implementation

To calculate the test statistic, we need to choose both the kernel function and bandwidth parameter

h = (h1, ..., hp) where p = 1 in DGPs 1 4, 1h and 4h, = 2 in DGPs 2, 5, 2h and 5h, and = 3

in DGPs 3, 6, 3h and 6h. Let Xit denote the collection of the observable regressors in the above

DGPs. For example, Xit = (Yi,t−1,Xit,1,Xit,2)
0 in DGPs 3, 6, 3h and 6h. Throughout, we use the

Gaussian kernel k (u) = (2π)
−1/2

exp
¡
−u2/2

¢
, and choose the bandwidth by the “rule of thumb”:

hl = c0sl (NT )
−1/(4+p)

, where sl stands for the sample standard deviation for the lth element in Xit.

We set c0 = 0.5, 1, and 2 to examine the sensitivity of our test to the choice of bandwidth. We leave

the development of a data-driven rule for the selection of an “optimal” bandwidth for future research.3

For the (N,T ) pair, we consider N,T = 20, 40, and 60. For each scenario, we use 250 replications

and 200 bootstrap resamples in each replication.

To implement the testing procedure, we need to obtain the estimators under the null hypothesis

of linearity. We first obtain the initial estimators of (β, λ, F ) using Bai’s (2009) principal component

approach, and then calculate the bias corrected QMLE estimator (β̂, λ̂, F̂ ) following Moon and Weidner

(2010a) (see section 3.3 in particular). We then calculate the bootstrap test statistic Γ̂∗NT based on the

bias corrected QMLE estimators.

4.1.3 Test results

Table 1 reports the empirical rejection frequencies of our test at 1%, 5% and 10% nominal levels when the

null hypothesis holds true in DGPs 1-3 for different bandwidth choices, assuming that the idiosyncratic
3Alternatively, we conjecture that one can follow Horowitz and Spokoiny (2001) and Chen and Gao (2007) and prove

the rate-optimality of our test with panel data. If this is the case, then in practice one can choose the bandwidth as in

these papers.
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Table 1: Finite sample rejection frequency for DGPs 1-3 (level study, homoskedastic case)

DGP N T c = 0.5 c = 1 c = 2
1% 5% 10% 1% 5% 10% 1% 5% 10%

1 20 20 0.008 0.052 0.124 0.004 0.056 0.116 0.008 0.064 0.132
20 40 0.024 0.088 0.124 0.020 0.076 0.136 0.012 0.076 0.140
20 60 0.000 0.036 0.092 0.004 0.036 0.116 0.008 0.064 0.132
40 20 0.020 0.080 0.132 0.012 0.060 0.116 0.004 0.068 0.124
40 40 0.032 0.088 0.144 0.028 0.084 0.148 0.016 0.064 0.116
40 60 0.000 0.040 0.100 0.004 0.032 0.112 0.012 0.052 0.092
60 20 0.008 0.040 0.096 0.004 0.048 0.092 0.000 0.044 0.096
60 40 0.024 0.076 0.116 0.028 0.088 0.116 0.024 0.060 0.092
60 60 0.000 0.064 0.096 0.012 0.036 0.096 0.004 0.044 0.100

2 20 20 0.016 0.052 0.112 0.020 0.060 0.108 0.036 0.084 0.112
20 40 0.008 0.060 0.108 0.012 0.044 0.116 0.000 0.036 0.076
20 60 0.008 0.036 0.072 0.016 0.040 0.100 0.020 0.052 0.092
40 20 0.012 0.040 0.076 0.008 0.028 0.076 0.004 0.040 0.084
40 40 0.008 0.044 0.092 0.000 0.052 0.092 0.008 0.040 0.080
40 60 0.012 0.056 0.088 0.004 0.052 0.096 0.012 0.052 0.108
60 20 0.012 0.036 0.088 0.016 0.056 0.084 0.016 0.044 0.120
60 40 0.016 0.040 0.076 0.008 0.048 0.084 0.012 0.064 0.112
60 60 0.016 0.068 0.104 0.020 0.068 0.108 0.016 0.048 0.100

3 20 20 0.016 0.080 0.116 0.020 0.064 0.096 0.028 0.064 0.104
20 40 0.028 0.064 0.100 0.012 0.064 0.124 0.020 0.084 0.152
20 60 0.020 0.092 0.120 0.024 0.064 0.116 0.020 0.068 0.124
40 20 0.012 0.064 0.104 0.020 0.052 0.140 0.024 0.064 0.120
40 40 0.004 0.052 0.112 0.008 0.056 0.116 0.020 0.056 0.108
40 60 0.020 0.056 0.096 0.016 0.040 0.068 0.000 0.044 0.100
60 20 0.020 0.044 0.116 0.008 0.052 0.108 0.008 0.036 0.088
60 40 0.008 0.088 0.136 0.012 0.040 0.088 0.004 0.040 0.084
60 60 0.012 0.064 0.128 0.028 0.060 0.096 0.012 0.068 0.132

Note: The bandwidth is chosen as h = cSX (NT )
−1/(4+p) where SX is the sample standard deviation

of {Xit, i = 1, ..., N, t = 1, ..., T}.
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Table 2: Finite sample rejection frequency for DGPs 4-6 (power study, homoskedastic case)

DGP N T c = 0.5 c = 1 c = 2

1% 5% 10% 1% 5% 10% 1% 5% 10%
4 20 20 0.076 0.260 0.384 0.144 0.332 0.452 0.156 0.412 0.540

20 40 0.296 0.568 0.704 0.424 0.704 0.824 0.528 0.768 0.876
20 60 0.528 0.748 0.844 0.668 0.880 0.960 0.748 0.952 0.984
40 20 0.300 0.544 0.684 0.384 0.664 0.808 0.504 0.780 0.884
40 40 0.756 0.904 0.944 0.864 0.964 0.980 0.908 0.980 0.996
40 60 0.928 0.976 0.996 0.956 0.992 1.000 0.980 0.996 1.000
60 20 0.476 0.772 0.888 0.636 0.900 0.956 0.724 0.948 0.984
60 40 0.956 0.996 1.000 0.988 1.000 1.000 1.000 1.000 1.000
60 60 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 20 20 0.028 0.116 0.180 0.056 0.132 0.248 0.048 0.160 0.268
20 40 0.056 0.140 0.256 0.112 0.260 0.420 0.100 0.324 0.528
20 60 0.060 0.200 0.316 0.192 0.416 0.532 0.280 0.616 0.748
40 20 0.020 0.120 0.212 0.052 0.256 0.364 0.088 0.336 0.544
40 40 0.100 0.268 0.380 0.284 0.548 0.704 0.488 0.836 0.900
40 60 0.220 0.432 0.576 0.544 0.800 0.900 0.804 0.956 0.980
60 20 0.040 0.204 0.308 0.144 0.404 0.568 0.236 0.580 0.732
60 40 0.180 0.468 0.612 0.540 0.808 0.908 0.780 0.952 0.980
60 60 0.500 0.724 0.828 0.876 0.968 0.992 0.988 1.000 1.000

6 20 20 0.016 0.104 0.192 0.088 0.196 0.308 0.144 0.412 0.564
20 40 0.036 0.140 0.220 0.200 0.424 0.568 0.468 0.780 0.860
20 60 0.092 0.244 0.376 0.380 0.612 0.740 0.716 0.924 0.964
40 20 0.028 0.112 0.220 0.120 0.376 0.512 0.324 0.736 0.852
40 40 0.100 0.316 0.460 0.568 0.844 0.916 0.864 0.992 1.000
40 60 0.308 0.556 0.684 0.824 0.948 0.984 0.956 1.000 1.000
60 20 0.072 0.252 0.400 0.316 0.684 0.808 0.572 0.944 0.984
60 40 0.284 0.540 0.660 0.832 0.984 0.996 0.916 1.000 1.000
60 60 0.568 0.776 0.868 0.952 1.000 1.000 0.960 1.000 1.000
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error terms εit are i.i.d. N(0, 1) and independent of λ0ij , F
0
tj , and ηit,j . Table 1 suggests that the

level of our test behaves reasonably well across all DGPs and sample sizes under investigation. More

importantly, the level of our test is robust to different choices of bandwidth.

Table 2 reports the finite sample power of our test against the alternatives specified in DGPs 4-6

at 1%, 5% and 10% nominal levels. We present some important findings from Table 2. First, as either

N or T increases, the power of our test generally increases and finally reaches 1. Second, the choice of

bandwidth appears to have some effect on the power of the test. A larger value of c leads to a larger

testing power.

Tables 3 and 4 report the simulation results for DGPs 1h-6h when the idiosyncratic errors are

conditionally heteroskedastic. To a large extent the results are similar to the homoskedastic case,

although there are some slight difference. For pure dynamic models (DGP 1h), the levels of our test

in the heteroskedastic case oversize in some scenarios. For example, when (N,T ) = (20, 40), (20, 60),

(40, 20) , c = 1 and 2, there are slightly more size distortions of our test at the 5% and 10% nominal

levels in the heteroskedastic case; however, for DGPs 2h-3h, the levels of our test in the heteroskedastic

case generally perform similarly or slightly better than the corresponding homoskedastic cases in DGPs

2-3. In addition, the power of our test continues to perform well in the case of heteroskedasticity.

4.2 An application to the economic growth data

In this application we consider nonparametric dynamic panel data models for the economic growth data

which incorporate common shocks. We shall consider the model

Yit = m (Yi,t−1, ...Yi,t−s,Xit) + F 00t λ0i + εit, (4.1)

where Yit = log(GDPit)− log(GDPi,t−1) is the economic growth of country i in year t, where GDPit is

the real GDP per worker of country i over year t.We set s = 1, 2, 3 to allow for different time lags in the

regressor. Ft denotes common shocks, e.g. technological shocks and financial crises, and λi represents

the heterogeneous impact of common shocks on country i. We are interested in examining the relation

between a country’s economic growth and its initial economic condition as well as the relation between

a country’s economic growth and its capital accumulation. Xit thus includes two variables, a country’s

initial economic condition (Xi,1), which is defined as the logarithm of country i’s real GDP per worker

in the initial year, and its investment share (Xit,2), which is defined as the logarithm of the average

share of physical investment of country i over its GDP in the tth year.

Different economic models predict different relations between economic growth and its initial condi-

tion. For example, Solow (1956) finds a negative relation between the two and Barro (1991) reinforces

Solow’s prediction using a cross country data in the period of 1960 to 1985. On the other hand, the

endogenous growth model (see Romer (1986), Lucas (1988) for reference) predicts that the initial eco-

nomic conditions do not affect the long run economic growth. The relation between a country’s economic

growth and its capital accumulation is not conclusive either. Solow (1956) argues there is no association

between the two and Jones (1995) confirms the point empirically. The endogenous growth model pre-

dicts a positive relation and the argument is reinforced by Bond, Leblebicioglu and Schiantarelli (2010)’s
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Table 3: Finite sample rejection frequency for DGPs 1h-3h (level study, heteroskedastic case)

DGP N T c = 0.5 c = 1 c = 2

1% 5% 10% 1% 5% 10% 1% 5% 10%
1h 20 20 0.016 0.068 0.124 0.016 0.056 0.140 0.024 0.060 0.136

20 40 0.040 0.084 0.144 0.036 0.084 0.148 0.024 0.084 0.144
20 60 0.016 0.068 0.148 0.024 0.084 0.156 0.020 0.080 0.140
40 20 0.028 0.056 0.112 0.024 0.076 0.128 0.016 0.080 0.140
40 40 0.032 0.084 0.144 0.028 0.084 0.134 0.020 0.088 0.144
40 60 0.008 0.044 0.104 0.008 0.060 0.112 0.008 0.068 0.112
60 20 0.004 0.052 0.100 0.012 0.048 0.104 0.016 0.048 0.120
60 40 0.012 0.048 0.108 0.016 0.052 0.096 0.016 0.048 0.104
60 60 0.013 0.038 0.113 0.013 0.044 0.106 0.013 0.050 0.119

2h 20 20 0.008 0.056 0.096 0.016 0.068 0.112 0.024 0.072 0.108
20 40 0.008 0.060 0.108 0.004 0.064 0.100 0.000 0.044 0.076
20 60 0.004 0.028 0.076 0.000 0.048 0.084 0.016 0.056 0.116
40 20 0.008 0.052 0.116 0.004 0.028 0.100 0.008 0.036 0.104
40 40 0.008 0.032 0.076 0.008 0.044 0.084 0.008 0.064 0.124
40 60 0.012 0.064 0.108 0.012 0.056 0.088 0.012 0.048 0.084
60 20 0.016 0.048 0.100 0.020 0.048 0.092 0.020 0.060 0.120
60 40 0.020 0.052 0.092 0.020 0.060 0.084 0.008 0.060 0.108
60 60 0.012 0.064 0.112 0.016 0.052 0.096 0.016 0.048 0.084

3h 20 20 0.012 0.052 0.080 0.016 0.044 0.088 0.008 0.048 0.100
20 40 0.020 0.072 0.116 0.024 0.076 0.136 0.012 0.080 0.144
20 60 0.008 0.064 0.100 0.020 0.076 0.116 0.012 0.080 0.132
40 20 0.008 0.060 0.096 0.012 0.088 0.136 0.032 0.088 0.124
40 40 0.004 0.036 0.100 0.004 0.036 0.116 0.008 0.052 0.128
40 60 0.016 0.060 0.108 0.020 0.052 0.092 0.004 0.060 0.116
60 20 0.008 0.048 0.088 0.008 0.048 0.116 0.004 0.044 0.092
60 40 0.016 0.040 0.104 0.012 0.036 0.076 0.004 0.044 0.096
60 60 0.004 0.044 0.104 0.008 0.060 0.124 0.004 0.048 0.096
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Table 4: Finite sample rejection frequency for DGPs 4h-6h (power study, heteroskedastic case)

DGP N T c = 0.5 c = 1 c = 2

1% 5% 10% 1% 5% 10% 1% 5% 10%
4h 20 20 0.152 0.352 0.460 0.228 0.448 0.564 0.296 0.528 0.656

20 40 0.500 0.704 0.796 0.608 0.832 0.900 0.708 0.900 0.936
20 60 0.660 0.848 0.928 0.784 0.932 0.964 0.852 0.964 0.976
40 20 0.404 0.636 0.752 0.520 0.736 0.828 0.632 0.816 0.896
40 40 0.856 0.972 0.984 0.920 0.980 0.992 0.936 0.988 0.992
40 60 0.976 0.996 1.000 0.984 0.996 1.000 0.992 1.000 1.000
60 20 0.648 0.892 0.948 0.752 0.948 0.980 0.820 0.972 0.984
60 40 0.948 1.000 1.000 0.956 1.000 1.000 0.964 0.996 1.000
60 60 0.996 1.000 1.000 0.996 1.000 1.000 0.996 1.000 1.000

5h 20 20 0.096 0.232 0.344 0.192 0.420 0.612 0.220 0.536 0.716
20 40 0.360 0.552 0.684 0.644 0.820 0.896 0.756 0.920 0.980
20 60 0.532 0.776 0.832 0.852 0.956 0.976 0.952 0.996 0.996
40 20 0.304 0.572 0.716 0.616 0.856 0.904 0.740 0.940 0.980
40 40 0.772 0.928 0.964 0.960 0.992 1.000 0.984 1.000 1.000
40 60 0.960 0.988 0.992 0.996 1.000 1.000 1.000 1.000 1.000
60 20 0.516 0.772 0.864 0.828 0.960 0.988 0.904 0.992 0.992
60 40 0.964 0.996 1.000 0.992 1.000 1.000 0.992 1.000 1.000
60 60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6h 20 20 0.124 0.292 0.388 0.352 0.664 0.812 0.664 0.900 0.948
20 40 0.320 0.596 0.732 0.828 0.980 0.988 0.948 1.000 1.000
20 60 0.516 0.772 0.832 0.980 1.000 1.000 0.988 1.000 1.000
40 20 0.312 0.600 0.720 0.752 0.960 0.976 0.856 0.996 1.000
40 40 0.788 0.952 0.976 0.960 1.000 1.000 0.964 1.000 1.000
40 60 0.944 0.988 1.000 0.984 1.000 1.000 0.984 1.000 1.000
60 20 0.576 0.796 0.900 0.840 0.980 1.000 0.840 0.980 1.000
60 40 0.908 1.000 1.000 0.948 1.000 1.000 0.944 1.000 1.000
60 60 0.968 1.000 1.000 0.968 1.000 1.000 0.968 1.000 1.000
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empirical findings. Most of the empirical studies above use linear models despite the fact that there are

no economic theories suggesting the two relations are linear. In view of this, Su and Lu (2012) apply

a new nonparametric dynamic panel data model and find nonlinear relations between economic growth

and its lagged value and initial condition.

The models we use are clearly different from Su and Lu (2012). Su and Lu (2012) use a short panel

data with N = 71 and T = 4 which only allows for additive fixed effects as in traditional panel data

models. Our model incorporates cross section dependence and allows for interactive fixed effects using

large dimensional panel dataset. We use data from the Penn World Table (PWT 7.1). The panel data

covers 104 countries over 50 years (1960-2009). Following Bond, Leblebicioglu and Schiantarelli (2010),

we exclude oil production countries and Botswana, because of the dominant role of mining. We also

drop Nicaragua and Chad for negative record of gross investment in some years. China has two versions

of variable values and we choose to use version one. The results are similar if we use version two instead.

We try different model specifications: pure dynamic models with s = 1, 2, and 3 respectively in

(4.1), and dynamic models with 1− 3 lags, and Xi,1, Xit,2 or both in as (exogenous) regressors in (4.1).

Therefore we have the following twelve models in total.

Model 1: Yit = m (Yi,t−1) + F 00t λ0i + εit,

Model 2: Yit = m (Yi,t−1,Xi,1) + F 00t λ0i + εit,

Model 3: Yit = m (Yi,t−1,Xit,2) + F 00t λ0i + εit,

Model 4: Yit = m (Yi,t−1,Xi,1,Xit,2) + F 00t λ0i + εit,

Model 5: Yit = m (Yi,t−1, Yi,t−2) + F 00t λ0i + εit,

Model 6: Yit = m (Yi,t−1, Yi,t−2,Xi,1) + F 00t λ0i + εit,

Model 7: Yit = m (Yi,t−1, Yi,t−2,Xit,2) + F 00t λ0i + εit,

Model 8: Yit = m (Yi,t−1, Yi,t−2,Xi,1,Xit,2) + F 00t λ0i + εit,

Model 9: Yit = m (Yi,t−1, Yi,t−2, Yi,t−3) + F 00t λ0i + εit,

Model 10: Yit = m (Yi,t−1, Yi,t−2, Yi,t−3,Xi,1) + F 00t λ0i + εit,

Model 11: Yit = m (Yi,t−1, Yi,t−2, Yi,t−3,Xit,2) + F 00t λ0i + εit,

Model 12: Yit = m (Yi,t−1, Yi,t−2, Yi,t−3,Xi,1,Xit,2) + F 00t λ0i + εit.

In all these models, the number of factors has to be determined although it is assumed to be known

in the theoretical development. Following Bai and Ng (2002), we use the following recommended criteria
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to choose the number of factors: 4
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´
in applications.

Following Bai and Ng (2002) we set Rmax to be 8, 10 and 15, and recognize explicitly that PCp1 (R)

and PCp2 (R) depend on the choice of Rmax through σ̂2 and that different criteria may yield different

choices of optimal number of factors R∗. Therefore we choose the number of factors that have the
majority recommendations from these four criteria and three choices of Rmax. Where there is a tie, we

use the larger number of factors. For example, in Model 4 the optimal number of factors is 1 for all

four criteria when Rmax = 8, both PCp1 and PCp2 suggest R∗ to be 7 and both ICp1 and ICp2 suggest

1 when Rmax = 10, PCp1 and PCp2 suggest 5, and ICp1 and ICp2 suggest 1 when Rmax = 15. So our

choice of R∗ will be 1 for Model 4.
Table 5 presents the number of factors determined for each model by using the above procedure and

the bootstrap p-values for our linearity test for different values of c. We use 1000 bootstrap resamples.

The number of chosen factors is either 1 or 2 and the bootstrap p-values are very small in almost all cases.

The latter suggests that the relation between a country’s economic growth rate and its lagged values

is nonlinear, and that the relation between a country’s economic growth rate and its initial economic

condition as well as its investment share may be nonlinear too.

As a robustness check, we conduct the same analysis using different sample periods. Table 6 presents

the bootstrap p-values for our linearity test for different values of c for the sample period from 1950 to

2009 with N = 52, Table 7 presents the results for the period 1970-2009 with N = 147, and Table 8 for

the period 1980-2009 with N = 148. In each scenario, the number of bootstrap resamples is 1000. The

bootstrap p-values are very small in most cases in Tables 6-8, except Models 4, 10 and 12 in Table 6,

and Models 7 and 8 in Table 7. In these cases, we are not able to reject the null of linearity at the 5%

level for all three choices of bandwidth. In addition, when N = 52 is small in Table 6, using Bai and

Ng’s method tends to choose a larger number of factors than when N is large. For Table 8 in all cases,

the bootstrap p-value is 0.000, indicating strong rejection of the null of linearity.

4Note that Bai and Ng (2002) study the determination of number of factors in purely approximating factor models.

Following Moon and Weidner (2010a) their method can be extended to linear dynamic panel data models with interactive

fixed effects. Such an extension is also possible under the local alternative considered in this paper. To conserve space we

do not report the details.
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Table 5: Bootstrap p-values for the application to economic growth data (1960-2009, N=104)

Number of factors c = 0.5 c = 1 c = 2
Model 1 2 0.004 0.004 0.003
Model 2 1 0.000 0.000 0.000
Model 3 1 0.000 0.000 0.000
Model 4 1 0.000 0.000 0.000
Model 5 2 0.023 0.024 0.026
Model 6 1 0.000 0.000 0.000
Model 7 1 0.000 0.000 0.000
Model 8 1 0.000 0.000 0.000
Model 9 2 0.050 0.047 0.070
Model 10 1 0.000 0.000 0.000
Model 11 1 0.000 0.000 0.000
Model 12 1 0.001 0.000 0.000
Note: The numbers in the main entries are the p-values based on 1000 bootstrap resamples.

Table 6: Bootstrap p-values for the application to economic growth data (1950-2009, N=52)

Number of factors c = 0.5 c = 1 c = 2
Model 1 3 0.022 0.016 0.168
Model 2 3 0.030 0.015 0.014
Model 3 3 0.035 0.037 0.048
Model 4 3 0.187 0.106 0.123
Model 5 2 0.025 0.024 0.056
Model 6 1 0.000 0.000 0.000
Model 7 3 0.006 0.016 0.018
Model 8 1 0.027 0.001 0.000
Model 9 4 0.019 0.052 0.141
Model 10 3 0.207 0.015 0.009
Model 11 3 0.066 0.027 0.015
Model 12 3 0.138 0.055 0.063

Table 7: Bootstrap p-values for the application to economic growth data (1970-2009, N=147)

Number of factors c = 0.5 c = 1 c = 2
Model 1 1 0.000 0.000 0.000
Model 2 2 0.000 0.000 0.000
Model 3 2 0.000 0.000 0.000
Model 4 2 0.000 0.000 0.000
Model 5 2 0.024 0.025 0.027
Model 6 2 0.000 0.000 0.000
Model 7 2 0.197 0.202 0.381
Model 8 2 0.208 0.181 0.186
Model 9 2 0.000 0.000 0.000
Model 10 2 0.000 0.000 0.000
Model 11 2 0.000 0.000 0.000
Model 12 2 0.000 0.000 0.000
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Table 8: Bootstrap p-values for the application to economic growth data (1980-2009, N=148)

Number of factors c = 0.5 c = 1 c = 2
Model 1 1 0.000 0.000 0.000
Model 2 1 0.000 0.000 0.000
Model 3 1 0.000 0.000 0.000
Model 4 1 0.000 0.000 0.000
Model 5 1 0.000 0.000 0.000
Model 6 1 0.000 0.000 0.000
Model 7 1 0.000 0.000 0.000
Model 8 1 0.000 0.000 0.000
Model 9 1 0.000 0.000 0.000
Model 10 1 0.000 0.000 0.000
Model 11 1 0.000 0.000 0.000
Model 12 1 0.000 0.000 0.000

5 Concluding remarks

In this paper we propose a nonparametric consistent test for the correct specification of linear panel

data models with interactive fixed effects. After we estimate the model under the null hypothesis of

linearity, we obtain the residuals which are then used to construct our test statistic. We show that our

test is asymptotically normally distributed under the null hypothesis and a sequence of Pitman local

alternatives and propose a bootstrap procedure to obtain the bootstrap p-values. Simulations suggest

that our bootstrap-based test works well in finite samples. We illustrate our method by applying it to

an economic growth data. We find significant nonlinear relationship in the data set.
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APPENDIX
Let C signify a generic constant whose exact value may vary from case to case. Let bac denote the

integer part of real number a. Let δNT ≡ min(
√
N,
√
T ). Let ED (·) and VarD (·) denote the conditional

expectation and variance given D ≡
©
F 0, λ0

ª
, respectively. Let αik ≡ λ00i

¡
λ00λ0/N

¢−1
λ0k and ηts ≡

F 00t
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¢−1
F 0s . Let Φ1 ≡ λ0

¡
λ00λ0

¢−1 ¡
F 00F 0

¢−1
F 00, Φ2 ≡ F 0

¡
F 00F 0

¢−1 ¡
λ00λ0

¢−1 ¡
F 00F 0

¢−1
F 00,

and Φ3 ≡ λ0
¡
λ00λ0

¢−1 ¡
F 00F 0

¢−1 ¡
λ00λ0

¢−1
λ00.

A Proof of Theorem 3.1

The proof follows from closely the proofs of Theorems 2.1 and 3.1 in Moon and Weidner (2010a, MW
hereafter). So we only outline the difference. By allowing local deviations from the linear panel data

models, the consistency of β̂ can be demonstrated as inMW. Let X0 = (
√
NT/ kek)e, �0 ≡ kek /

√
NT,

and �k ≡ β0k−βk for k = 1, ..., p. Note that under H1 (γNT ) , conditions (A.6) and (A.7) inMW continue

to hold for sufficiently large (N,T ) as
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°° = o (1). This enables us to apply Lemma

A.1(iii) of MW to obtain
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5The subscript indices in T (v1)k1...
or T (vl)···kg may contain either one (e.g., k1 or kg) or two elements (e.g., (k1, k2) or

(kg−1, kg)) depending on whether v1 or vl takes value 1 or 2.
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where we use the fact that S(0)T (1)k S(0) = 0 and F 0λ00Φ3λ0F 00 = PF 0 . Similarly,
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Clearly, L1NT and L2NT are linear and quadratic in �k = β0k − βk, k = 1, ..., p, respectively, and RNT

reflects the terms in the third order likelihood expansion that are asymptotically negligible (argued

below). Noting that L(g)
¡
λ0, F 0,Xk1 ,Xk2 , ...,Xkg

¢
is linear in the last g elements and �0X0 = e, we

have

L1NT (β) ≡
2

NT

pX
k=1

�k

∙
L(2)

¡
λ0, F 0,Xk, e

¢
+
3

2
L(3)

¡
λ0, F 0,Xk, e, e

¢¸

=
2

NT

pX
k=1

�k

⎡⎣tr (Mλ0XkMF 0e0)− 1
2

X
all 6 permutations of (Xk,e,e)

tr (Mλ0XkMF 0e0Φ1e0)

⎤⎦
= −2γNT

¡
β − β0

¢0 ³
C
(1)
NT + C

(2)
NT

´
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where the p× 1 vectors C(1)NT and C
(2)
NT are defined in (3.1) and (3.2), respectively. Next,

L2NT (β) =
1

NT

pX
k1=1

pX
k2=1

�k1�k2tr
¡
Mλ0Xk1MF 0X0

k2

¢
=
¡
β − β0

¢0
DNT

¡
β − β0

¢
where DNT is defined in (3.3). As in MW, noticing that

1

NT
(�0)

g−r L(g)
¡
λ0, F 0,Xk1 , ...,Xkr ,X0...,X0

¢
= OP

µ³
kek /

√
NT

´g−r¶
= OP

³¡
δ−1NT + γNT

¢g−r´
,

we can readily determine the probability order ofRNT asRNT ≡ OP

³°°β − β0
°°2 ¡δ−1NT + γNT

¢
+
°°β − β0

°°3´ .
It follows that

LNT (β) = LNT

¡
β0
¢
− 2γNT

¡
β − β0

¢0 ³
C
(1)
NT + C

(2)
NT

´
+
¡
β − β0

¢0
DNT

¡
β − β0

¢
+ R̃NT (β) (A.1)

where

R̃NT (β) = OP

n°°β − β0
°°2 ¡δ−1NT + γNT

¢
+
°°β − β0

°°3 + °°β − β0
°° ¡δ−3NT + γ3NT

¢o
. (A.2)

Under Assumptions A.1-A.3, we can readily show that DNT = D + oP (1) , C
(1)
NT = OP (1) , and

C
(2)
NT = OP

¡
δ−2NT /γNT

¢
. Let ϑNT ≡ γNTD

−1
NT (C

(1)
NT + C

(2)
NT ). In view of the fact that LNT (β̂) ≤

LNT

¡
β0 + ϑNT

¢
, we apply (A.1) to the objects on both sides to obtain³

β̂ − β0 − ϑNT

´0
DNT

³
β̂ − β0 − ϑNT

´
≤ R̃NT

¡
β0 + ϑNT

¢
− R̃NT

³
β̂
´

= OP

£
γ2NT

¡
δ−1NT + γNT

¢
+ γNT δ

−3
NT

¤
− R̃NT

³
β̂
´

where the last line follows from (A.2) and Assumption A.3. Consequently,

β̂ − β0 = ϑNT +OP {
£
γ2NT

¡
δ−1NT + γNT

¢
+ γNT δ

−3
NT

¤1/2},
and the result follows.

Remark. Noting that under H1 (γNT ) ,

C
(1)
NT,k =

1

NT
tr (Mλ0XkMF 0∆0) +

1

NTγNT

tr (Mλ0XkMF 0ε0)

= (NT )−1 tr (Mλ0XkMF 0∆0) +OP

¡
δ−2NTγ

−1
NT

¢
= (NT )−1 tr (Mλ0XkMF 0∆0) +OP (1) = OP (1) ,

and similarly C(2)NT,k = OP

¡
δ−2NT /γNT + γNT

¢
= OP

¡
δ−2NTγNT

¢
= OP (1) , we have

β̂ − β0 = γNTD
−1
NTΠNT +OP

¡
δ−2NT

¢
(A.3)

where ΠNT is defined in (3.4). If γNT = N−1/2T−1/2(h!)−1/4, then δ−2NT = o(γNT ) under Assumption

A.7. This means that C(2)NT and the second term in C
(1)
NT are asymptotically smaller than the first term

in C
(1)
NT .
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B Proof of Theorem 3.2

Following MW, we can readily show that

MF̂ =MF 0 +

pX
k=1

³
β0k − β̂k

´
M

(0)
k +M (1) +M (2) +M (rem), (B.1)

where

M
(0)
k = −MF 0X0

kΦ1 − Φ01XkMF 0 for k = 1, ..., p,

M (1) = −MF 0ε0Φ1 − Φ01εMF 0 ,

M (2) = MF 0ε0Φ1ε0Φ1 + Φ01εΦ
0
1εMF 0 −MF 0ε0Mλ0εΦ2 − Φ2ε0Mλ0εMF 0 −MF 0ε0Φ3εMF 0 +Φ01εMF 0ε0Φ1,

and the remainder M (rem) satisfies°°°M (rem)
°°°
F

= OP

µ³
δ−1NT + γNT +

°°°β̂ − β0
°°°´°°°β̂ − β0

°°°+ (NT )
−3/2

max
³√

N,
√
T
´3
+ γ3NT

¶
= OP

¡
δ−1NT γNT + δ−3NT

¢
= OP

¡
δ−1NTγNT

¢
under Assumption A.7. (B.2)

It is straightforward to show that°°°M (0)
k

°°°
F
= OP (1) for k = 1, ..., p,

°°°M (1)
°°°
F
= OP

³
N−1/2

´
, and

°°°M (2)
°°°
F
= OP

¡
δ−2NT

¢
. (B.3)

Combining (B.1) with (2.14) yields

ε̂i = MF 0 (εi + ci) +

pX
k=1

³
β0k − β̂k

´
M

(0)
k

¡
εi + F 0λ0i + ci

¢
+M (1)

¡
εi + F 0λ0i + ci

¢
+
³
M (2) +M (rem)

´ ¡
εi + F 0λ0i + ci

¢
≡ d1i + d2i + d3i + d4i, say, (B.4)

where ci ≡ Xi(β
0 − β̂) +

¡
mi −Xiβ

0
¢
. It follows that

NT (h!)
1/2

ĴNT = aNT

X
1≤i,j≤N

(d1i + d2i + d3i + d4i)
0Kij (d1j + d2j + d3j + d4j)

= aNT

X
1≤i,j≤N

{d01iKijd1j + d02iKijd2j + d03iKijd3j + d04iKijd4j + 2d
0
1iKijd2j

+ 2d01iKijd3j + 2d
0
1iKijd4j + 2d

0
2iKijd3j + 2d

0
2iKijd4j + 2d

0
3iKijd4j}

≡ A1 +A2 +A3 +A4 + 2A5 + 2A6 + 2A7 + 2A8 + 2A9 + 2A10, say,

where aNT ≡ (h!)1/2 / (NT ) . We complete the proof by showing that under H1(γNT ), (i) Ā1 ≡ A1 −
B1NT−B2,1NT

D→ N (0, V0) , (ii) A2 = B2,2NT+oP (1) , (iii) A5 = B2,3NT+oP (1) , and (iv) As = oP (1)

for s = 3, 4, 6, ..., 10, where B1NT is defined in (3.6),

B2,1NT ≡ (NT )−2
X

1≤i,j≤N

¡
∆i −XiD

−1
NTΠNT

¢0
MF 0KijMF 0(∆j −XjD

−1
NTΠNT ),

B2,2NT ≡ (NT )−2
X

1≤i,j≤N

¡
D−1NTΠNT

¢0
X̄ 0
iKijX̄j

¡
D−1NTΠNT

¢
+ oP (1) ,

B2,3NT ≡ (NT )
−2 X

1≤i,j≤N

¡
∆i −XiD

−1
NTΠNT

¢0
MF 0KijX̄j

¡
D−1NTΠNT

¢
,
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and X̄i ≡ N−1
PN

l=1 αilMF 0Xl. This is true because in view of the fact that

MF 0∆i −MF 0XiD
−1
NTΠNT + X̄iD

−1
NTΠNT = MF 0∆i −

Ã
MF 0Xi −N−1

NX
l=1

αilMF 0Xl

!
D−1NTΠNT

= MF 0∆i − X̃iD
−1
NTΠNT ,

we have

B2,1NT +B2,2NT + 2B2,3NT =
1

(NT )2

X
1≤i,j≤N

¡
MF 0∆i −MF 0XiD

−1
NTΠNT + X̄iD

−1
NTΠNT

¢0Kij

× (MF 0∆j −MF 0XjD
−1
NTΠNT + X̄jD

−1
NTΠNT )

=
1

(NT )2

X
1≤i,j≤N

³
MF 0∆i − X̃iD

−1
NTΠNT

´0
Kij(MF 0∆j − X̃jD

−1
NTΠNT )

= B2NT .

We prove (i) , (ii) and (iii) in Propositions B.1, B.2 and B.5, respectively. (iv) is proved in Propositions

B.3, B.4, and B.6-B.10 below.

Proposition B.1 Ā1
D→ N (0, V0) under H1 (γNT ) .

Proof. Noting that B1NT = aNT

PN
i=1 ε

0
iMF 0KiiMF 0εi, we have

Ā1 = aNT

X
1≤i,j≤N

(εi + ci)
0MF 0KijMF 0 (εj + cj)−B1NT −B2,1NT

= aNT

X
1≤i6=j≤N

ε0iMF 0KijMF 0εj +

⎛⎝aNT

X
1≤i,j≤N

c0iMF 0KijMF 0cj −B2,1NT

⎞⎠
+2aNT

X
1≤i,j≤N

ε0iMF 0KijMF 0cj

≡ A1,1 +A1,2 + 2A1,3, say.

We complete the proof by showing that: (i) A1,1
D→ N (0, V0) , (ii) A1,2 = oP (1) , and (iii) A1,3 = oP (1) .

First, we show (i) . Using MF 0 = IT − PF 0 and the fact that K0ji = Kij we can decompose Ā11 as

follows

A1,1 = aNT

X
1≤i6=j≤N

ε0iKijεj − 2aNT

X
1≤i6=j≤N

ε0iPF 0Kijεj + aNT

X
1≤i6=j≤N

ε0iPF 0KijPF 0εj

≡ A1,11 − 2A1,12 +A1,13.

By Lemmas D.3(i) and (ii) , A1,12 = oP (1) and A1,13 = oP (1) . So we can prove (i) by showing that

A1,11
D→ N (0, V0) . To achieve this goal, we rewrite A1,11 as follows

A1,11 =
(h!)

1/2

NT

X
1≤i6=j≤N

ε0iKijεj =
X

1≤i<j≤N
Wij
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whereWij ≡WNT (ui, uj) ≡ 2 (h!)1/2 (NT )−1
P

1≤t,s≤T Kij,tsεjsεit and ui ≡ (εi,Xi). Noting that A1,11
is a second order degenerate U-statistic that is “clean” (ED [WNT (ui, uj) |ui] = ED [WNT (ui, uj) |uj ] =
0 a.s.), we apply Proposition 3.2 in de Jong (1987) to prove the central limit theorem for A1,11 by

showing that (i1) VarD(A1,11) = V0 + oP (1) , (i2) GI ≡
P
1≤i<j≤N ED

¡
W 4

ij

¢
= oP (1) , (i3) GII ≡P

1≤i<j<k≤N ED
³
W 2

ikW
2
jk +W 2

ikW
2
ij +W 2

jkW
2
ji

´
= oP (1) , and (i4)GIII ≡

P
1≤i<j<k<l≤N ED(WijWik

WljWlk +WijWilWkjWkl +WikWilWjkWjl) = oP (1) .

For (i1) , noting that ED(A1,11) = 0 and εi’s are independent across i conditional on D, we have

VarD(A1,11) =
4h!

(NT )2

X
1≤i<j≤N

TX
t1=1

TX
t2=1

TX
s1=1

TX
s2=1

ED (Kij,t1s1Kij,t2s2εit1εit2εjs1εjs2)

=
4h!

(NT )
2

X
1≤i<j≤N

TX
t=1

TX
s=1

ED
¡
K2ij,tsε2itε2js

¢
= V0 + oP (1) .

(i2) follows from the Markov inequality and the fact that

E (GI) =
16 (h!)2

(NT )
4

X
1≤i<j≤N

X
1≤t1,...,t8≤T

E [ED (εit1εit3εit5εit7εjt2εjt4εjt6εjt8Kij,t1t2Kij,t3t4Kij,t5t6Kij,t7t8)]

=
(h!)2

(NT )
4O

h
N2

³
T 6 (h!)

−1
+ T 4 (h!)

−2´i
= O

¡
N−2T 2h! +N−2

¢
= o (1) ,

where we use the fact that the term inside the last summation takes value 0 if either #{t1, t3, t5, t7} = 4
or #{t2, t4, t6, t8} = 4. For (i3) , we write GII =

P
1≤i<j<k≤N ED

³
W 2

ikW
2
jk +W 2

ikW
2
ij +W 2

jkW
2
ji

´
≡

GII,1 +GII,2 +GII,3. Then

E (GII,1) =
16 (h!)2

(NT )
4

X
1≤i<j<k≤N

X
1≤t1,...,t6≤T

E
£
ED

¡
ε2it1ε

2
jt2εkt3εkt4εkt5εkt6Kik,t1t3Kik,t1t4Kjk,t2t5Kjk,t2t6

¢¤
=

(h!)2

(NT )
4O

h
N3

³
T 5(h!)−1 + T 4 (h!)

−2´i
= O

¡
TN−1h! +N−1

¢
= o (1) ,

where we use the fact that the term inside the last summation takes value 0 if #{t3, t4, t5, t6} = 4. It
follows that GII,1 = oP (1) by the Markov inequality. Similarly, GII,s = oP (1) for s = 2, 3. Thus we have

GII = oP (1) . For (iv) , we write GIII =
P

1≤i<j<k<l≤N [ED(WijWikWljWlk) + ED(WijWilWkjWkl)+

ED(WikWilWjkWjl)] ≡ GIII,1 +GIII,2 +GIII,3. Then

E (GIII,1) =
16 (h!)2

(NT )
4

X
1≤i<j<k<l≤N

X
1≤t1,...,t8≤T

E[εit1εit3εjt2εjt6εkt4εkt8εlt5εlt7Kij,t1t2Kik,t3t4Klj,t5t6Klk,t7t8 ]

=
16 (h!)2

(NT )
4

X
1≤i<j<k<l≤N

X
1≤t1,t2,t4,t5≤T

E[ε2it1ε
2
jt2ε

2
kt4ε

2
lt5Kij,t1t2Kik,t1t4Klj,t5t2Klk,t5t4 ]

=
(h!)2

(NT )
4O

¡
N4T 4

¢
= O

³
(h!)

2
´
= o (1) .

So GIII,1 = oP (1) . By the same token, GIII,s = oP (1) for s = 2, 3. It follows that GIII = oP (1).
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Next we show (ii) . Let c̃i ≡ γNT

¡
∆i −XiD

−1
NTΠNT

¢
. Then by (A.3)

ci = γNT

¡
∆i −XiD

−1
NTΠNT

¢
+OP (δ

−2
NT )Xi = c̃i +OP (δ

−2
NT )Xi. (B.5)

Noting that aNT

P
1≤i,j≤N c̃0iMF 0KijMF 0 c̃j = (NT )

−2P
1≤i,j≤N

¡
∆i −XiD

−1
NTΠNT

¢0
MF 0KijMF 0(∆j

−XjD
−1
NTΠNT ) = B2,1NT , we have

A1,2 = aNT

X
1≤i,j≤N

(ci − c̃i)
0
MF 0KijMF 0 (cj − c̃j) + 2aNT

X
1≤i,j≤N

c̃0iMF 0KijMF 0 (cj − c̃j)

≡ A1,21 + 2A1,22, say.

Let cK ≡ max1≤i,j≤N kKijk . Then cK = OP (T ) by Lemma D.1. By (B.5), the fact that
PN

i=1 kXik =
OP

¡
NT 1/2

¢
by the Markov inequality, and the fact that kMF 0k = 1,

|A1,21| ≤ aNT

X
1≤i,j≤N

kMF 0k2 kKijk kci − c̃ik kcj − c̃jk = aNT cKOP (δ
−4
NT )

X
1≤i,j≤N

kXik kXjk

= OP (aNT δ
−4
NTT )OP

¡
N2T

¢
= OP (NTδ−4NT (h!)

1/2) = oP (1) .

Similarly, we can show that A1,22 = oP (1) . This completes the proof of (ii) .

Now we show (iii) . We decompose A1,3 as follows

A1,3 = γNTaNT

X
1≤i,j≤N

ε0iMF 0KijMF 0∆j + aNT

X
1≤i,j≤N

ε0iMF 0KijMF 0Xj(β
0 − β̂)

≡ γNTA1,31 +A1,32(β
0 − β̂), say.

In view of the fact that ||β0 − β̂|| = OP (γNT ) , we can prove A1,3 = oP (1) by showing that (iii1)

γNTA1,31 = oP (1) and (iii2) γNTA1,32 = oP (1) . The last two claims are proved in Lemma D.2(i) and

(ii) , respectively. This completes the proof.

Proposition B.2 A2 = B2,2NT+oP (1) under H1 (γNT ) , where B2,2NT = (NT )−2
P

1≤i,j≤N
¡
D−1NTΠNT

¢0
X̄ 0
iKijX̄j

¡
D−1NTΠNT

¢
+ oP (1) .

Proof. First, we decompose A2 as follows

A2 =

pX
k=1

³
β0k − β̂k

´ pX
l=1

³
β0l − β̂l

´
aNT

X
1≤i,j≤N

¡
ε0i + λ00i F

00 + c0i
¢
M

(0)
k KijM

(0)
l

¡
εj + F 0λ0j + cj

¢
=

pX
k=1

³
β0k − β̂k

´ pX
l=1

³
β0l − β̂l

´
aNT

X
1≤i,j≤N

λ00i F
00M (0)

k KijM
(0)
l F 0λ0j

+

pX
k=1

³
β0k − β̂k

´ pX
l=1

³
β0l − β̂l

´
aNT

X
1≤i,j≤N

{ε0iM
(0)
k KijM

(0)
l εj + c0iM

(0)
k KijM

(0)
l cj

+ 2ε0iM
(0)
k KijM

(0)
l F 0λ0j + 2ε

0
iM

(0)
k KijM

(0)
l cj + 2λ

0
iF

00M (0)
k KijM

(0)
l cj}

≡ A2,1 +A2,2, say.
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We prove the proposition by showing that (i) A2,1 = B2,2NT + oP (1) and (ii) A2,2 = oP (1) . (i) follows

because

A2,1 = aNT

pX
k=1

³
β0k − β̂k

´ pX
l=1

³
β0l − β̂l

´ X
1≤i,j≤N

λ00i F
00Φ01XkMF 0KijMF 0X0

lΦ1F
0λ0j

= aNT

pX
k=1

³
β0k − β̂k

´ pX
l=1

³
β0l − β̂l

´ X
1≤i,j≤N

λ00i
¡
λ00λ0

¢−1
λ00XkMF 0KijMF 0X0

lλ
0
¡
λ00λ0

¢−1
λ0j

=
1

(NT )
2

pX
k=1

ι0kD
−1
NTΠNT

pX
l=1

ι0lD
−1
NTΠNT

X
1≤i,j≤N

λ00i
¡
λ00λ0

¢−1
λ00XkMF 0KijMF 0X0

lλ
0
¡
λ00λ0

¢−1
λ0j

+oP (1)

=
1

(NT )
2

X
1≤i,j≤N

pX
k=1

ι0kD
−1
NTΠNT X̄

0
k,·iKij

pX
l=1

ι0lD
−1
NTΠNT X̄l,·j + oP (1)

=
1

(NT )2

X
1≤i,j≤N

¡
D−1NTΠNT

¢0
X̄ 0
iKijX̄j

¡
D−1NTΠNT

¢
+ oP (1) = B2,2NT + oP (1) ,

where ιk is a p× 1 vector with 1 in the kth place and zeros elsewhere, and X̄i ≡ N−1
PN

l=1 αilMF 0Xl

is a T × p matrix whose kth column is given by X̄i,·k ≡
³
λ00i
¡
λ00λ0

¢−1
λ00XkMF 0

´0
.

To show (ii) , we assume that p = 1 for notational simplicity. In this case, we can write Xk andPp
k=1(β

0
k− β̂k)M

(0)
k simply as X and (β0− β̂)M (0), respectively, whereM (0) = −MF 0X0Φ1−Φ01XMF 0 .

Then

A2,2 =
³
β0 − β̂

´2
aNT

X
1≤i,j≤N

{ε0iM (0)KijM
(0)εj + c0iM

(0)KijM
(0)cj + 2ε

0
iM

(0)KijM
(0)F 0λ0j

+ 2ε0iM
(0)KijM

(0)cj + 2λ
0
iF

00M (0)KijM
(0)cj}

≡
³
β0 − β̂

´2
{A2,21 +A2,22 + 2A2,23 + 2A2,24 + 2A2,25} , say.

Noting that
°°°β0 − β̂

°°° = OP (γNT ) , we prove (ii) by showing that Ā2,2s ≡ γ2NTA2,2s = oP (1) for

s = 1, 2, ..., 5.

Noting that°°°M (0)εi

°°° = k(MF 0X0Φ1 + Φ01XMF 0) εik = OP

³
T−1/2

´°°F 00εi°°+OP

³
N−1/2T−1/2

´
kX0εik , (B.6)

we have¯̄
Ā2,21

¯̄
≤ (NT )

−2 X
1≤i,j≤N

kKijk
°°°M (0)εi

°°°°°°M (0)εj

°°°
≤ cKOP

¡
N−2T−2

¢ X
1≤i,j≤N

h
OP

³
T−1/2

´°°F 00εi°°+OP

³
N−1/2T−1/2
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and¯̄
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In addition, by (B.3) and (B.5)¯̄
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Proposition B.3 A3 = oP (1) under H1 (γNT ) .

Proof. Recall M (1) = −MF 0ε0Φ1 − Φ01εMF 0 and Φ1 = λ0
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F 00. Noting that
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where we have repeatedly used the rotational property of the trace operator, the fact that

tr (AB) ≤ μ1 (A) tr (B) (B.7)

for any symmetric matrix A and p.s.d. matrix B (see, e.g., Bernstein, 2005, Proposition 8.4.13), and

the fact that

tr (AB) ≤ tr (A) tr (B) (B.8)

for any two p.s.d. matrices A and B (see, e.g., Bernstein, 2005, Fact 8.10.7). It follows that°°°M (1)εi

°°° = OP

³
(NT )−1/2

´°°F 00εi°° (B.9)

By the fact that
°°M (1)
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¡
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Combining (B.9) and (B.10) yields°°°M (1) (εi + ci)
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³
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´
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We will use these results frequently.

Now, we decompose A3 as follows.

A3 = aNT

X
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¢
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0
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00M (1)KijM
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≡ A3,1 +A3,2 +A3,3 + 2A3,4 + 2A3,5 + 2A3,6, say.

We prove the proposition by demonstrating that A3,s = oP (1) for s = 1, 2, ..., 6. By (B.9)-(B.11) and

(B.3), we have
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|A3,5| ≤ aNT
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and
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By Lemmas D.3(iii)-(iv) and the fact that MF 0 = IT −PF 0 , A3,2 = aNT

P
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oP (1). This completes the proof.

Proposition B.4 A4 = oP (1) under H1 (γNT ) .

Proof. Noting that
°°M (2) +M (rem)

°° = OP

¡
δ−2NT

¢
by (B.3) and (B.2), we have
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Proposition B.5 A5 = B2,3NT + oP (1) under H1 (γNT ) , where B2,3NT ≡ (NT )−2
P
1≤i,j≤N (∆i−

XiD
−1
NTΠNT )

0 MF 0KijX̄j
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¢
.

Proof. First, we decompose A5 as follows
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≡ A5,1 +A5,2, say.
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We prove the proposition by showing that (i) A5,1 = B2,3NT +oP (1) , and (ii) A5,2 = oP (1) . (i) follows

because by (A.3)

A5,1 = −aNT

pX
k=1

³
β0k − β̂k

´ X
1≤i,j≤N
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To show (ii) , again we assume that p = 1 for notational simplicity. As before, we now write Xk andPp
k=1(β

0
k − β̂k)M

(0)
k simply as X and (β0 − β̂)M (0), respectively. Then
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We prove the proposition by showing that Ā5,2s = γNTA5,2s = oP (1) for s = 1, 2, ..., 5. By Lemma

D.3(iv) , Ā5,21 = oP (1) . By Lemma D.2(iii) , Ā5,25 = oP (1) . So we are left to show that Ā5,2s = oP (1)
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we have
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It follows that Ā5,22 = oP (1) .

By (B.5), (B.6) and (B.3),¯̄
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This completes the proof.

Proposition B.6 A6 = oP (1) under H1 (γNT ) .

Proof. First, we decompose A6 as follows
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and
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This completes the proof of the proposition.

Proposition B.7 A7 = oP (1) under H1 (γNT ) .

Proof. First we decompose A7 as follows
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By Lemma D.5(i) , A7,2 = oP (1) . By Lemma D.4(iii) , A7,3 = oP (1) . We complete the proof of the

proposition by showing that A7,s = oP (1) for s = 1, 4, 5, 6, 7.
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For A7,5, we decompose it as follows
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Noting that kPF 0εik = OP (T
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°°F 00εi°° , we have by (B.2),
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For A7,51, we have by (B.2),
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where we use the fact that
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It follows that A7,5 = oP (1) .

Now, we decompose A7,6 as follows
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As in the study of A7,52, we can bound A7,62 by oP (1) . Similarly, as in the study of A7,51, we have by
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It follows that A7,6 = oP (1) .

Proposition B.8 A8 = oP (1) under H1 (γNT ) .

Proof. Again, assuming p = 1, we can decompose A8 as follows

A8 =
³
β0 − β̂

´
aNT

X
1≤i,j≤N

{(ε0i + c0i)M
(1)KijM

(0)
¡
εj + F 0λ0j + cj

¢
+ λ00i F

00M (1)KijM
(0)εj + λ00i F

00M (1)KijM
(0)F 0λ0j + λ00i F

00M (1)KijM
(0)cj}

≡
³
β0 − β̂

´
(A8,1 +A8,2 +A8,3 +A8,4) .

We prove the claim by showing that Ā8,s ≡ γNTA8,s = oP (1) for s = 1, 2, 3, 4. By Lemma D.3(viii),

Ā8,2 = oP (1) . By Lemma D.2(v), Ā8,3 = oP (1) .
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By (B.11) and (B.5), we can readily show that¯̄
Ā8,1

¯̄
≤ γNTaNT

°°°M (0)
°°° X
1≤i,j≤N

kKijk
°°°M (1) (εi + ci)

°°°°°εj + F 0λ0j + cj
°°

≤ cKγNTaNT

°°°M (0)
°°° X
1≤i,j≤N

°°εj + F 0λ0j + cj
°°

×
n
OP

³
(NT )−1/2

´°°F 00εi°°+OP (N
−1/2γNT ) (kXik+ k∆ik)

o
= TγNTaNTOP

³
N3/2T 1/2

´
= OP

³
T 1/2δ−1NT (h!)

1/4
´
= oP (1) ,

and ¯̄
Ā8,4

¯̄
≤ cKOP

¡
γ2NTaNT

¢ °°°M (1)F 0
°°° X
1≤i,j≤N

°°λ0i°° (kXjk+ k∆jk)

= N−2T−1OP

³
N−1/2T 1/2

´
OP

³
N2T 1/2

´
= OP

³
N−1/2

´
= oP (1) .

This completes the proof.

Proposition B.9 A9 = oP (1) under H1 (γNT ) .

Proof. Again, we assume that p = 1. By the fact that ||β0 − β̂|| = OP (γNT ) and (B.2)-(B.3), we

have

|A9| ≤ cKaNT

°°°β0 − β̂
°°°°°°M (0)

°°°°°°M (2) +M (rem)
°°°

×
X

1≤i,j≤N

¡
kεik+

°°F 0λ0i°°+ kcik¢ ¡kεjk+ °°F 0λ0j°°+ kcjk¢
= TOP

¡
aNTγNT δ

−2
NT

¢
OP

¡
N2T

¢
= OP

³√
NTδ−2NT (h!)

1/4
´
= oP (1) .

Proposition B.10 A10 = oP (1) under H1 (γNT ) .

Proof. First we decompose A10 as follows

A10 = aNT

X
1≤i,j≤N

{(ε0i + c0i)M
(1)Kij(M

(2) +M (rem))
¡
εj + F 0λ0j + cj

¢
+λ00i F

00M (1)KijM
(rem)

¡
εj + F 0λ0j + cj

¢
+ λ00i F

00M (1)KijM
(2)εj

+λ00i F
00M (1)KijM

(2)F 0λ0j + λ00i F
00M (1)KijM

(2)cj}
≡ A10,1 +A10,2 +A10,3 +A10,4 +A10,5.

By Lemma D.5(ii), A10,3 = oP (1) . By Lemma D.4(iii), A10,4 = oP (1) . We complete the proof of the

proposition by showing that A10,s = oP (1) for s = 1, 2, 5.
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By (B.2), (B.3) and (B.11)

|A10,1| ≤ aNT

°°°M (2) +M (rem)
°°° X
1≤i,j≤N

kKijk
°°°M (1) (εi + ci)

°°° ¡kεjk+ °°F 0λ0j°°+ kcjk¢
≤ cKOP

¡
aNT δ

−2
NT

¢⎧⎨⎩OP

³
(NT )−1/2

´ X
1≤i,j≤N

°°F 00εi°° ¡kεjk+ °°F 0λ0j°°+ kcjk¢

+OP (N
−1/2γNT )

X
1≤i,j≤N

(kXik+ k∆ik)
¡
kεjk+

°°F 0λ0j°°+ kcjk¢
⎫⎬⎭

= TOP

¡
aNT δ

−2
NT

¢
OP (N

3/2T 1/2 +N−1/2γNTN
2T ) = oP (1) ,

|A10,2| ≤ cKaNT

°°°M (1)F 0
°°°°°°M (rem)

°°° X
1≤i,j≤N

°°λ0i°° ¡kεjk+ °°F 0λ0j°°+ kcjk¢
≤ TaNTOP

³
N−1/2T 1/2

´
OP

¡
δ−1NTγNT

¢
OP (N

2T 1/2) = OP (T
1/2δ−1NT (h!)

1/4) = oP (1) ,

and

|A10,5| ≤ cKOP (γNT ) aNT

°°°M (1)F 0
°°°°°°M (2)

°°° X
1≤i,j≤N

°°λ0i°° (kXjk+ k∆jk)

= TγNTaNTOP

³
N−1/2T 1/2

´
OP

¡
δ−2NT

¢
OP (N

2T 1/2) = OP (T
1/2δ−2NT (h!)

1/4) = oP (1) .

This completes the proof of the proposition.

C Proof of Theorem 3.3

By Theorem 3.2, it suffices to prove the theorem by showing that (i) B̂1NT = B1NT + oP (1) and (ii)

V̂NT = VNT + oP (1) under H1 (γNT ) . For (i) , we apply (B.4) to obtain

B̂1NT = aNT

NX
i=1

(d1i + d2i + d3i + d4i)
0Kii (d1i + d2i + d3i + d4i)

= aNT

NX
i=1

{d01iKiid1i + d02iKiid2i + d03iKiid3i + d04iKiid4i + 2d
0
1iKiid2i + 2d

0
1iKiid3i

+ 2d01iKiid4i + 2d
0
2iKiid3i + 2d

0
2iKiid4i + 2d

0
3iKiid4i}

≡ Ã1 + Ã2 + Ã3 + Ã4 + 2Ã5 + 2Ã6 + 2Ã7 + 2Ã8 + 2Ã9 + 2Ã10, say,

where aNT ≡ (h!)1/2 / (NT ) . Following the proof of Theorem 3.2, it is trivial to show that under

H1 (γNT ) , Ã1 = B1NT + oP (1) and Ãs = 0 for s = 2, 3, ..., 10. For example, for Ã1 we have

Ã1 = aNT

NX
i=1

(εi + ci)
0MF 0KiiMF 0 (εi + ci)

= aNT

NX
i=1

ε0iMF 0KiiMF 0εi + aNT

NX
i=1

c0iMF 0KiiMF 0ci + 2aNT

NX
i=1

ε0iMF 0KiiMF 0ci

≡ Ã1,1 + Ã1,2 + 2Ã1,3, say.
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The first term is B1NT . By (B.5), the second and third terms are respectively bounded above by

aNT

NX
i=1

kKiik kMF 0cik2 ≤ OP

¡
γ2NT

¢
aNT

NX
i=1

kKiik (kXik+ k∆ik)2

= OP

¡
γ2NTaNT

¢
OP

¡
NT 2

¢
= OP

¡
N−1

¢
= oP (1)

and

aNT

NX
i=1

kKiik kMF 0εik kMF 0cik ≤ OP (γNT ) aNT

NX
i=1

kKiik kεik (kXik+ k∆ik)

= OP (γNTaNT )OP

¡
NT 2

¢
= OP

³
T 1/2N−1/2(h!)1/4

´
= oP (1) .

It follows that Ã1 = B1NT + oP (1) .

To show (ii) , we decompose V̂NT − VNT as follows

V̂NT − VNT = 2h! (NT )−2
X

1≤t,s≤T

X
1≤i6=j≤N

£
K2ij,tsε2itε2js −ED

¡
K2ij,tsε2itε2js

¢¤
+2h! (NT )

−2 X
1≤t,s≤T

X
1≤i6=j≤N

K2ij,ts
¡
ε̂2itε̂

2
js − ε2itε

2
js

¢
≡ V1NT + V2NT , say.

Noting that ED (V1NT ) = 0 and ED
¡
V 2
1NT

¢
= OP

¡
N−1

¢
by the independence of (εit,Xit) across i given

D, we have V1NT = oP (1) by the Chebyshev inequality. For V2NT , we further decompose it as follows

V2NT = 2h! (NT )
−2 X

1≤t,s≤T

X
1≤i6=j≤N

K2ij,ts
¡
ε̂2it − ε2it

¢ ¡
ε̂2js − ε2js

¢
+2h! (NT )

−2 X
1≤t,s≤T

X
1≤i6=j≤N

K2ij,ts
¡
ε̂2it − ε2it

¢
ε2js

+2h! (NT )−2
X

1≤t,s≤T

X
1≤i6=j≤N

K2ij,tsε2it
¡
ε̂2js − ε2js

¢
≡ 2V2NT,1 + 2V2NT,2 + 2V2NT,3.

Noting that V2NT,3 = V2NT,2 as Kij,ts = Kji,st by the symmetry of K, we prove V2NT = oP (1) by

showing that (ii1) V2NT,1 = oP (1) , and (ii2) V2NT,2 = oP (1) .

To show (ii1) , we use
P

i,t to denote
PN

i=1

PT
t=1 . By the uniform boundedness of the kernel function

K by K̄, and the Cauchy-Schwarz inequality,

|V2NT,1| ≤ K̄2 (h!)−1 (NT )−2
X
i,t

X
j,s

¯̄¡
ε̂2it − ε2it

¢ ¡
ε̂2js − ε2js

¢¯̄

= K̄2 (h!)−1

⎧⎨⎩(NT )−1
X
i,t

|(ε̂it − εit) (ε̂it + εit)|

⎫⎬⎭
2

≤ K̄2

⎧⎨⎩(h!)−1 (NT )−1
X
i,t

(ε̂it − εit)
2

⎫⎬⎭
⎧⎨⎩(NT )−1

X
i,t

(ε̂it + εit)
2

⎫⎬⎭ .
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In view of the fact that
P

i,t ε̂
2
it ≤

P
i,t ε

2
it and using the Markov inequality, we have

(NT )−1
X
i,t

(ε̂it + εit)
2 ≤ 2 (NT )−1

X
i,t

¡
ε̂2it + ε2it

¢
≤ 4 (NT )−1

X
i,t

ε2it = OP (1) .

So we can prove V2NT,1 = oP (1) by showing that V2NT,11 ≡ (h!)−1 (NT )
−1P

i,t (ε̂it − εit)
2
= oP (1) .

By (B.4), ε̂i − εi = d̃1i + d2i + d3i + d4i where d̃1i ≡ d1i − εi. It follows that

V2NT,11 = (h!)−1 (NT )−1
NX
i=1

°°°d̃1i + d2i + d3i + d4i

°°°2
F

≤ 4 (h!)
−1
(NT )

−1
NX
i=1

½°°°d̃1i°°°2
F
+ kd2ik2F + kd3ik

2
F + kd4ik

2
F

¾
= 4V2NT,11a + V2NT,11b + V2NT,11c + V2NT,11d, say.

Noting that kPF 0εik2F = OP

¡
T−1

¢ °°F 00εi°°2F and kMF 0cik2F ≤ kcik
2
F = O

¡
γ2NT

¢
(kXik2F + k∆ik2F ), we

have

V2NT,11a = (h!)
−1
(NT )

−1
NX
i=1

kPF 0εi +MF 0cik2F

≤ 2 (h!)−1 (NT )−1
NX
i=1

³
kPF 0εik2F + kMF 0cik2F

´
= 2 (h!)

−1
(NT )

−1
(
OP

¡
T−1

¢ NX
i=1

°°F 00εi°°2F +OP

¡
γ2NT

¢ NX
i=1

³
kXik2F + k∆ik2F

´)
= OP

³¡
T−1 + γ2NT

¢
(h!)

−1´
.

Similarly,

V2NT,11b ≤
°°°β0 − β̂

°°°2 pX
k=1

°°°M (0)
k

°°° (h!)−1 (NT )−1
NX
i=1

°°εi + F 0λ0i + ci
°°2
F
= OP

³
γ2NT (h!)

−1´ ,
V2NT,11c ≤

°°°M (1)
°°°2
F
(h!)

−1
(NT )

−1
NX
i=1

°°εi + F 0λ0i + ci
°°2
F
= OP

³
N−1 (h!)−1

´
,

V2NT,11d =
°°°M (2) +M (rem)

°°°2
F
(h!)−1 (NT )−1

NX
i=1

°°εi + F 0λ0i + ci
°°2
F
= OP

³
δ−4NT (h!)

−1´ .
It follows that V2NT,11 = OP ((T

−1 +N−1 + γ2NT ) (h!)
−1
) = oP (1) and thus V2NT,1 = oP (1) .

For (ii2) , we use the fact when K is a symmetric PDF, there exists another symmetric PDF K0

such that K can be written as a two-fold convolution of K : K (u) =
R
K0 (v)K0 (u− v) dv. De-

fine K0
h analogously as Kh. By the Minkowski inequality, the fact that Kij,ts = Kh (Xit −Xjs) =
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R
K0
h (Xit − x)K0

h (Xjs − x) dx, the Fubini theorem, and the Cauchy-Schwarz inequality

|V2NT,2| ≤ h! (NT )−2
X
i,t

X
j,s

K2ij,ts
¯̄
ε̂2it − ε2it

¯̄
ε2js

= h! (NT )
−2
Z Z X

i,t

¯̄
ε̂2it − ε2it

¯̄
K0
h (Xit − x)K0

h (Xit − x̄)
X
j,s

ε2jsK
0
h (Xjs − x)K0

h (Xjs − x̄) dxdx̄

≤ {V2NT,21V2NT,22}1/2 ,

where

V2NT,21 = h! (NT )−2
Z Z ⎡⎣X

i,t

¯̄
ε̂2it − ε2it

¯̄
K0
h (Xit − x)K0

h (Xit − x̄)

⎤⎦2 dxdx̄,
V2NT,22 = h! (NT )−2

Z Z ⎡⎣X
j,s

ε2jsK
0
h (Xjs − x)K0

h (Xjs − x̄)

⎤⎦2 dxdx̄.
Again, by the relationship between K and K0, the study of V2NT,1, and the Markov inequality, we have

V2NT,21 = h! (NT )−2
X
i,t

X
j,s

¯̄
ε̂2it − ε2it

¯̄ ¯̄
ε̂2js − ε2js

¯̄
[Kh (Xit −Xjs)]

2

= OP

³
(T−1 +N−1 + γ2NT ) (h!)

−1´
= oP (1) ,

and

V2NT,22 = h! (NT )−2
X
i,t

X
j,s

ε2jsε
2
it [Kh (Xit −Xjs)]

2 = OP (1) .

It follows that V2NT,2 = oP (1) . Thus we have shown that V2NT = oP (1) . This completes the proof of

(ii) and the theorem.

D Some Technical Lemmas

In this appendix we provide some technical lemmas that are used in the proof of Theorem 3.1. We only

prove the first lemma, and the proofs of the other lemmas are provided in the supplementary appendix,

which is not intended for publication but will be made available online.

Lemma D.1 Suppose Assumptions A.4-A.7 hold. Then cK ≡ max1≤i,j≤N kKijk = OP (T ) .

Proof. Noting that kKijk2 ≤ kKijk1 kKijk∞ where kKijk1 = max1≤s≤T
PT

t=1 |Kh (Xit −Xjs)|
and kKijk∞ = max1≤t≤T

PT
s=1 |Kh (Xit −Xjs)|, it suffices to prove the lemma by showing that (i)

max1≤i,j≤N T−1 kKijk1 = OP (1) and (ii) max1≤i,j≤N T−1 kKijk∞ = OP (1) . We only prove (i) as the

proof of (ii) is almost identical.
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Let cNT ≡ (NT )
1/q0 , ηiT,js ≡ T−1

PT
t=1Kh (Xit −Xjs) and η̄iT,js ≡ T−1

PT
t=1Kh (Xit −Xjs)

×1 {kXjsk ≤ cNT } . Then by the Markov inequality and Assumption A.5(iv), for any �∗ > 0

Pr

µ
max

1≤i,j≤N
max
1≤s≤T

¯̄
ηiT,js − η̄iT,js

¯̄
≥ �∗

¶
= Pr

Ã
max

1≤i,j≤N
max
1≤s≤T

T−1
TX
t=1

Kh (Xit −Xjs) 1 {kXjsk > cNT } ≥ �∗
!

≤ Pr

µ
max
1≤j≤N

max
1≤s≤T

kXjsk > cNT

¶
≤

NX
j=1

TX
s=1

Pr (kXjskq0 > cq0NT )

≤ 1

cq0NT

NX
j=1

TX
s=1

E [kXjskq0 1 (kXjskq0 > cq0NT )] = o (1) .

It follows that we can prove (i) by showing that LNT ≡ max1≤i≤N LiNT = OP (1) , where

LiNT ≡ max
kxk≤cNT

T−1
TX
t=1

Kh (Xit − x) .

By the Minkowski inequality

LiNT ≤ max
kxk≤cNT

¯̄̄̄
¯T−1

TX
t=1

Kh (Xit − x)−E [Kh (Xit − x)]

¯̄̄̄
¯+ max

kxk≤cNT

¯̄̄̄
¯T−1

TX
t=1

E [Kh (Xit − x)]

¯̄̄̄
¯

≡ LiNT,1 + LiNT,2, say. (D.1)

By the change of variables and Assumptions A.4(v), A.6(i) and A.7

max
1≤i≤N

LiNT,2 = max
1≤i≤N

max
kxk≤cNT

¯̄̄̄Z
fi (x+ h¯ u)K (u) du

¯̄̄̄
≤ Cf , (D.2)

where ¯ denotes the Hadamard product. By Hansen (2008, Theorems 2 and 4), LiNT,1 = oP (1) for

each i. A close examination of the proofs of these theorems indicates that this result continues to hold

under Assumptions A.4, A.6, and A.7 when we take maximum over i, namely,

max
1≤i≤N

LiNT,1 = oP (1) . (D.3)

To see why (D.3) holds, we can take any small � > 0 and cover the compact set {kxk ≤ cNT } with
Q = cpNT (h!)

−1 �−p balls of the form Al = {s : kx− xlk ≤ � (h!)1/p}. The main step in the uniformity
proof is to show that for any finite C1 > 0,

Pr

Ã
max
1≤i≤N

sup
1≤l≤Q

|ϕiT (xl)| ≥ �C1

!
= o (1) , (D.4)

where ϕiT (x) = (Th!)−1
PT

t=1 Zi,t (x) and Zi,t (x) = h!{Kh (Xit − x) − E [Kh (Xit − x)] . Let K̄ ≡
[supu∈R k (u)]p. Noting that max1≤i≤N supxE[

Pτ
t=1 Zi,t (x)]

2 ≤ C2τh! for some C2 <∞, we can apply
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the exponential inequality for strong mixing processes (e.g., Hansen, 2008, pp.739-740) to bound the

left hand side of (D.4) from above by

NQPr (|ϕiT (xl)| ≥ �C1) = NQ max
1≤i≤N

sup
1≤l≤Q

Pr

Ã¯̄̄̄
¯
TX
t=1

Zi,t (xl)

¯̄̄̄
¯ ≥ C1�Th!

!

≤ 4NQ

"
exp

Ã
− C21�

2T 2 (h!)
2

64C2Th! +
16
3 K̄C1�Th!τ

!
+

T

τ
α (τ)

#

≤ 4NQ

∙
exp

µ
− C21�

2Th!

64C2 +
16
3 K̄C1�τ

¶
+ CαTτ

−1α (τ)
¸

→ 0 as (N,T )→∞

for any choice of τ such that Th!/τ À T η for some η > 0 and (NT )(1+p/q0) (h!)−1 τ−1α (τ) = o (1) .

Assumption A.4(i) ensures the existence of such a τ . As a result, (D.4) holds and one can complete the

rest of the proof for (D.3) as in Hansen (2008). Combining (D.1), (D.2), and (D.3) yields LNT = OP (1) .

This completes the proof.

Lemma D.2 Suppose the conditions in Theorem 3.2 hold. Then

(i) D1,1 ≡ γNTaNT

P
1≤i,j≤N ε0iMF 0KijMF 0∆j = oP (1) ;

(ii) D1,2 ≡ γNTaNT

P
1≤i,j≤N ε0iMF 0KijMF 0Xj = oP (1) ;

(iii) D1,3 ≡ γNTaNT

P
1≤i,j≤N ε0iMF 0KijM

(0)F 0λ0j = oP (1) ;

(iv) D1,4 ≡ aNT

P
1≤i,j≤N c0iMF 0KijM

(1)F 0λ0j = oP (1) ;

(v) D1,5 ≡ γNTaNT

P
1≤i,j≤N λ00i F 00M (1)KijM

(0)F 0λ0j = oP (1) .

Lemma D.3 Suppose the conditions in Theorem 3.2 hold. Then

(i) D2,1 ≡ aNT

P
1≤i6=j≤N ε0iPF 0Kijεj = oP (1) ;

(ii) D2,2 ≡ aNT

P
1≤i6=j≤N ε0iPF 0KijPF 0εj = oP (1) ;

(iii) D2,3 ≡ aNT

P
1≤i,j≤N λ00i

¡
λ00λ0

¢−1
λ00εKijε

0λ0
¡
λ00λ0

¢−1
λ0j = oP (1) ;

(iv) D2,4 ≡ aNT

P
1≤i,j≤N λ00i

¡
λ00λ0

¢−1
λ00εKijPF 0ε0λ0

¡
λ00λ0

¢−1
λ0j = oP (1) ;

(v) D2,5 ≡ γNTaNT

P
1≤i6=j≤N ε0iMF 0KijM

(0)εj = oP (1) ;

(vi) D2,6 ≡ aNT

P
1≤i,j≤N ε0iMF 0KijM

(1)F 0λ0j = oP (1) ;

(vii) D2,7 ≡ aNT

P
1≤i6=j≤N ε0iMF 0KijM

(1)cj = oP (1) ;

(viii) D2,8 ≡ aNT

P
1≤i6=j≤N λ00i F 0M (1)KijM

(0)εj = oP (1) .

Lemma D.4 Suppose the conditions in Theorem 3.2 hold. Then

(i) D3,1 ≡ aNT

P
1≤i,j≤N ε0iM

(1)KijM
(1)F 0λ0j = oP (1) ;

(ii) D3,2 ≡ aNT

P
1≤i6=j≤N ε0iMF 0KijM

(1)εj = oP (1) ;

(iii) D3,3 ≡ aNT

P
1≤i,j≤N ε0iMF 0KijM

(2)F 0λ0j = oP (1) ;

(iv) D3,4 ≡ aNT

P
1≤i,j≤N λ0iF 0M (1)KijM

(2)F 0λ0j = oP (1) .

Lemma D.5 Suppose the conditions in Theorem 3.2 hold. Then

(i) D4,1 ≡ aNT

P
1≤i6=j≤N ε0iMF 0KijM

(2)εj = oP (1) ;

(ii) D4,2 ≡ aNT

P
1≤i6=j≤N λ00i F

00M (1)KijM
(2)εj = oP (1) .
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