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Variable Selection in Nonparametric and Semiparametric

Regression Models∗

Liangjun Su, Yonghui Zhang

School of Economics, Singapore Management University

September 19, 2012

Abstract

This chapter reviews the literature on variable selection in nonparametric and semiparametric

regression models via shrinkage. We highlight recent developments on simultaneous variable selec-

tion and estimation through the methods of least absolute shrinkage and selection operator (Lasso),

smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to non-

parametric and semiparametric regression models. In particular, we consider variable selection in

additive models, partially linear models, functional/varying coefficient models, single index models,

general nonparametric regression models, and semiparametric/nonparametric quantile regression

models.

JEL Classifications: C14, C52

Key Words: Cross validation, High dimensionality, Lasso, Nonparametric regression, Oracle

property, Penalized least squares, Penalized likelihood, SCAD, Semiparametric regression, Sparsity,

Variable selection

1 Introduction

Over the last 15 years or so high dimensional models have become increasingly popular and gained

considerable attention in diverse fields of scientific research. Examples in economics include wage

regression with more than 100 regressors (e.g., Belloni and Chernozhukov, 2011b), portfolio allocation

among hundreds or thousands of stocks (e.g., Jagannathan and Ma, 2003; Fan, Zhang and Yu, 2011),

VAR models with hundreds of data series (e.g., Bernanke, Boivin and Eliasz, 2005), large dimensional

panel data models of home price (e.g., Fan, Lv and Qi, 2011), among others. A common feature of

high dimensional models is the number of regressors is very large, which may grow as the sample

size increases. This poses a series of challenges for statistical modeling and inference. Penalized

∗Address Correspondence to: Liangjun Su, School of Economics, Singapore Management University, 90 Stamford
Road, Singapore 178903; E-mail: ljsu@smu.edu.sg, Phone: +65 6828 0386.
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least squares or likelihood has become a standard unified framework for variable selection and feature

extraction in such scenarios. For a comprehensive overview of high dimensional modeling, see Fan and

Li (2006) and Fan and Lv (2010).

In high dimensional modeling, one of the most important problems is the choice of an optimal

model from a set of candidate models. In many cases, this reduces to the choice of which subset of

variables should be included into the model. Subset selection has attracted a lot of interest, leading

to a variety of procedures. The majority of these procedures do variable selection by minimizing a

penalized objective function with the following form:

Loss function + Penalization.

The most popular choices of loss functions are least squares, negative log-likelihood, and their variants

(e.g., profiled least squares or profiled negative log-likelihood). There are many choices of penaliza-

tion. The traditional subset selection criterion such as Akaike information criterion (AIC) and Bayesian

information criterion (BIC) uses the 0-norm for the parameters entering the model so that the pe-

nalization term is proportional to the number of nonzero parameters. The bridge estimator (see, e.g.,

Frank and Friedman, 1993; Fu, 1998; Knight and Fu, 2000) uses the -norm (  0). It boils down

the commonly used ridge estimator (Hoerl and Kennard, 1970) when  = 2 and the Lasso estimator

(Tibshirani, 1996) when  = 1. When 0   ≤ 1, some components of the estimator can be exactly
zero with some correctly chosen tuning parameters. Thus, the bridge estimator with 0   ≤ 1 pro-
vides a way to combine variable selection and parameter estimation simultaneously. Among the class

of bridge estimators, Lasso becomes most popular due to its computational and theoretical advan-

tages comparing with other bridge estimators and traditional variable selection methods. Allowing an

adaptive amount of shrinkage for each regression coefficient results in an estimator called the adaptive

Lasso that is first proposed by (Zou, 2006) and can be as efficient as the oracle one in the sense that

the method works asymptotically equivalent to the case as if the correct model were exactly known.

Other variants of Lasso include the group Lasso, adaptive group Lasso, graphic Lasso, elastic net, etc.

Of course, the penalization term can take other forms; examples include the SCAD penalty of Fan and

Li (2001) and the MC penalty of Zhang (2010).

Given the huge literature on variable selection that has developed over the last 15 years, it is im-

possible to review all of the works. Fan and Lv (2010) offer a selective overview of variable selection in

high dimensional feature space. By contrast, in this chapter we focus on variable selection in semipara-

metric and nonparametric regression models with fixed or large dimensions because semiparametric

and nonparametric regressions have gained considerable importance over the last three decades due

to their flexibility in modeling and robustness to model misspecification. In particular, we consider

variable selection in the following models

• additive models

• partially linear models

• functional/varying coefficient models
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• single index models

• general nonparametric regression models

• semiparametric/nonparametric quantile regression models

The first four areas are limited to semiparametric and nonparametric regression models that impose

certain structure to alleviate the “curse of dimensionality” in the nonparametric literature. The fifth

part focuses on variable or component selection in general nonparametric models. In the last part we

review variable selection in semiparametric and nonparametric quantile regression models. Below we

first briefly introduce variable selection via Lasso or SCAD type of penalties in general parametric

regression models and then review its development in the above fields in turn. In the last section we

highlight some issues that require further study.

2 Variable Selection via Lasso or SCAD Type of Penalties in

Parametric Models

In this section we introduce the background of variable selection via Lasso or SCAD type of penalties.

2.1 The Lasso estimator

The Lasso (least absolute shrinkage and selection operator) proposed by Tibshirani (1996) is a popular

model building technique which can simultaneously produce accurate and parsimonious models. For  =

1  , let  denote a response variable and  = (1 )
0
a ×1 vector of covariates/predictors.

For simplicity, one could assume that ( ) are independent and identically distributed (i.i.d.), or

assume that { }=1 are standardized so that  = −1
P

=1  = 0 −1
P

=1 = 0 and

−1
P


2
 = 1 for  = 1   But these are not necessary. The Lasso estimates of the slope coefficients

in a linear regression model solve the 1-penalized least regression problem:

min


X
=1

⎛⎝ −
X

=1



⎞⎠2

subject to

X
=1

¯̄

¯̄
≤  (2.1)

or equivalently,

min


X
=1

⎛⎝ −
X

=1



⎞⎠2

+ 

X
=1

¯̄

¯̄
 (2.2)

where β = (1  )
0
 and  and  are tuning parameters. (2.1) suggests that the Lasso uses a

constraint in the form of 1-norm:
P

=1

¯̄

¯̄
≤  It is similar to the ridge regression with the constraint

of 2-norm:
P

=1 
2
 ≤ . By using the 1-penalty, the Lasso achieves variable selection and shrinkage

simultaneously. However, ridge regression only does shrinkage. More generally, a penalized least squares

(PLS) can have a generic -penalty of the form (
P

=1

¯̄

¯̄
)1, 0 ≤  ≤ 2 When  ≤ 1 the PLS

automatically performs variable selection by removing predictors with very small estimated coefficients.
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In particular, when  = 0, the 0-penalty term becomes
P

=1 1
¡
 6= 0

¢
with 1 (·) being the usual

indicator function, which counts the number of nonzero elements in the vector β = (1  )
0 The

Lasso uses the smallest value of  i.e.,  = 1 which leads to a convex problem.

The tuning parameter  is the shrinkage parameter that controls the amount of regularization.

If  = 0, there is no penalty put on the coefficients and hence we obtain the ordinary least squares

solution; if  → ∞ the penalty is infinitely large and thus forces all of the coefficients to be zero.

These are necessary but insufficient for the Lasso to produce sparse solutions. Large enough  will set

some coefficients exactly equal to zero and is thus able to perform variable selection. In contrast, a

ridge penalty never sets coefficients exactly equal to 0.

Efron, Hastie, Johnstone and Tibshirani (2004) propose the least angel regression selection (LARS)

and show that the entire solution path of the Lasso can be computed by the LARS algorithm. Their

procedure includes two steps. First, a solution path which is indexed by a tuning parameter is con-

structed. Then the final model is chosen on the solution path by cross-validation or using some criterion

such as  The solution path is piecewise linear and can be computed very efficiently. These nice

properties make the Lasso very popular in variable selection.

2.2 Some generalizations and variants of the Lasso

In this subsection, we review some variants of the Lasso: Bridge, the adaptive Lasso, the group Lasso,

and the elastic-net. For other work generalizing the Lasso, we give a partial list for reference.

Bridge. Knight and Fu (2000) study the asymptotics for the Bridge estimator β̂Bridge which is

obtained via the following minimization problem:

min


X
=1

⎛⎝ −
X

=1



⎞⎠2

+ 

X
=1

¯̄

¯̄
 (2.3)

where  is a tuning parameter and   0. For  ≤ 1, the Bridge estimator has the potentially

attractive feature of being exactly 0 if  is sufficiently large, thus combining parametric estimation

and variable selection in a single step.

Adaptive Lasso. Fan and Li (2001) and Fan and Peng (2004) argue that a good variable selection

procedure should have the following oracle properties: () (selection consistency) it can identify the

right subset models in the sense that it selects the correct subset of predictors with probability tending

to one, and () (asymptotic optimality) it achieves the optimal asymptotic distribution as the oracle

estimator in the sense that it estimates the nonzero parameters as efficiently as would be possible if we

knew which variables were uninformative ahead of time. It has been shown that the Lasso of Tibshirani

(1996) lacks such oracle properties whereas the Bridge estimator with 0    1 can possess them

with a well-chosen tuning parameter. Fan and Li (2001) point out that asymptotically the Lasso has

non-ignorable bias for estimating the nonzero coefficients. Zou (2006) first shows that the Lasso could

be inconsistent for model selection unless the predictor matrix satisfies a rather strong condition, and

then propose a new version of the Lasso, called the adaptive Lasso. Adaptive Lasso assigns different

weights to penalize different coefficients in the 1-penalty. That is, the adaptive Lasso estimate β̂ALasso
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of β solves the following minimization problem

min


X
=1

⎛⎝ −
X

=1



⎞⎠2

+ 

X
=1

̂

¯̄

¯̄
 (2.4)

where the weights ̂ ’s are data-dependent and typically chosen as ̂ = |̂ |− for some   0, and

̂ is a preliminary consistent estimator of  that typically has
√
-rate of convergence. Intuitively,

in adaptive Lasso the zero parameter is penalized more severely than a non-zero parameter as the

weight of the zero parameter goes to infinity while that of a nonzero parameter goes to a positive

constant. Zou shows that the adaptive Lasso enjoys the oracle properties so that it performs as well

as if the underlying true model were given in advance. Similar to the Lasso, the adaptive Lasso is also

near-minimax optimal in the sense of Donoho and Johnstone (1994).

Group Lasso. Observing that the Lasso is designed for selecting individual regressor, Yuan and

Lin (2006) consider extensions of the Lasso and the LARS to the case with “grouped variables”. The

group Lasso estimate is defined as the solution to

min


1

2

°°°°°°Y −
X
=1

Xβ

°°°°°°
2

2

+ 

X
=1

°°β°°
 (2.5)

where Y = (1  )
0 X is an × regressor matrix, β = (β

0
1 β

0
)
0
 β is a  × 1 vector,  is

a × positive definite matrix, and k·k2 is an Euclidean norm,
°°β°°

= (β0β)
12, and  ≥ 0 is

a tuning parameter. Two typical choices of  are  and  , where  is a  × identity matrix

and the coefficient  in the second choice is used to adjust for the group size. Obviously, the penalty

function in the group Lasso is intermediate between the 1-penalty that is used in the Lasso and the

2-penalty that is used in ridge regression. It can be viewed as an 1-penalty used for coefficients from

different groups and an 2-penalty used for coefficients in the same group. Yuan and Lin propose a

group version of the LARS algorithm to solve the minimization problem. See Huang, Breheny, and

Ma (2012) for an overview on group selection in high dimensional models.

Elastic-net. As shown in Zou and Hastie (2005), the Lasso solution paths are unstable when the

predictors are highly correlated. Zou and Hastie (2005) propose the elastic-net as an improved version

of the Lasso for analyzing high-dimensional data. The elastic-net estimator is defined as follows

β̂Enet =

µ
1 +

2



¶
argmin



n
kY −Xβk22 + 2 kβk22 + 1 kβk1

o
 (2.6)

where Y = (1  )
0 X is an × regressor matrix, β = (1  )

0 kβk = {
P

=1

¯̄

¯̄}1 and

1 and 2 are tuning parameters. When the predictors are standardized, 1+2 should be replaced by

1+2 The 1-part of the elastic-net performs automatic variable selection, while the 2-part stabilizes

the solution paths to improve the prediction. Donoho, Johnstone, Kerkyacharian, and Picard (1995)

show that in the case of orthogonal design the elastic-net automatically reduces to the Lasso. Zou and

Hastie also propose the adaptive elastic-net estimates:

β̂AdaEnet =

µ
1 +

2



¶
argmin



⎧⎨⎩kY −Xβk22 + 2 kβk22 + 1

X
=1

̂

¯̄

¯̄⎫⎬⎭ (2.7)
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where ̂ = |̂Enet, |− and ̂Enet, denotes the th element of β̂Enet for  = 1   Under some weak

regularity conditions, they establish the oracle property of the adaptive elastic-net.

There has been a large amount of work in recent years, applying and generalizing the Lasso and

1-like penalties to a variety of problems. This includes the adaptive group Lasso (e.g., Wang and

Leng, 2008; Wei and Huang, 2010), fused Lasso (e.g., Tibshirani et al., 2005; Rinaldao, 2009), the

graphical Lasso (e.g., Yuan and Lin, 2007; Friedman et al., 2008), the Dantzig selector (e.g., Candès

and Tao, 2007), near isotonic regularization (e.g., Tibshirani et al., 2010), among others. See Table 1

in Tibshirani (2011) for a partial list of generalizations of the Lasso.

2.3 Other penalty functions

Many non-Lasso-type penalization approaches have also been proposed, including the SCAD and MC

penalties. In the linear regression framework, the estimates are given by

β̂ () = argmin


kY −Xβk2 + 

X
=1


¡¯̄

¯̄¢


where  (·) is a penalty function and  is a penalty parameter. Different penalty functions yield

different variable selection procedures, which have different asymptomatic properties. Note that the

Bridge penalty function takes the form  () =  ||  where   0 is a constant. The ordinary Lasso

penalty function corresponds to  () =  ||.
SCAD. The SCAD (smoothly clipped absolute deviation) penalty function proposed by Fan and Li

(2001) takes the form

 () =

⎧⎪⎪⎨⎪⎪⎩
 if 0 ≤  ≤ 

−(
2−2+2)
2(−1) if     

(+1)2

2
if  ≤ 

and its derivative satisfies that

0 () = 

∙
1 ( ≤ ) +

(− )+
(− 1) 1(  )

¸
where ()+ = max ( 0) and   2 is a constant ( = 37 is recommended and used frequently).

Fan and Li (2001) and Fan and Peng (2004) investigate the properties of penalized least squares and

likelihood estimator with the SCAD penalty. In particular, they show that the SCAD penalty can

yield estimators with the oracle properties. Hunter and Li (2004) suggest using MM algorithms to

improve the performance of SCAD-penalized estimators.

MC. The MC (minimax concave) penalty function proposed by Zhang (2010) is given

 () = 

Z 

0

µ
1− 



¶
+



where   0 is a tuning parameter. Zhang proposes and studies the MC+ methodology that has two

components: a MC penalty and a penalized linear unbiased selection (PLUS) algorithm. It provides
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a fast algorithm for nearly unbiased concave penalized selection in the linear regression model and

achieves selection consistency and minimax convergence rates.

For other penalization methods, see Fan, Huang and Peng (2005) and Zou and Zhang (2009).

3 Variable Selection in Additive Models

In this section, we consider the problem of variable selection in the following nonparametric additive

model

 = +

X
=1

 () +  (3.1)

where  is a response variable and =(1 )
0
is a × 1 vector of covariates,  is the intercept

term, the  ’ are unknown smooth functions with zero means, and  is the unobserved random error

term with mean zero and finite variance 2. It is typically assumed that ()   = 1   are

i.i.d. and some additive components  (·) are zero. The main problem is to distinguish the nonzero

components from the zero components and estimate the nonzero components consistently. The number

of additive components  can be either fixed or divergent as the sample size  increases. In the latter

case, we frequently write  =  In some scenarios,  is allowed to be much larger than .

Many penalized methods have been proposed to select the significant nonzero components for model

(3.1). Huang, Horowitz, and Wei (2010) apply the adaptive group Lasso to select nonzero component

after using the group Lasso to obtain an initial estimator and to achieve an initial reduction of the

dimension. They assume that the number of nonzero  ’s is fixed and give conditions under which the

group Lasso selects a model whose number of components is comparable with the true model. They

show that the adaptive group Lasso can select the nonzero components correctly with probability

approaching one as  increases and achieves the optimal rates of convergence in the “large  small ”

setting. Meier, van de Geer and Bühlmann (2009) consider an additive model which allows for both the

numbers of zero and nonzero  ’s passing to infinity and being larger than . They propose a sparsity-

smoothness penalty for model selection and estimation. Under some conditions, they show that the

nonzero components can be selected with probability approaching 1. However the model selection

consistency is not established. Ravikumar et al. (2009) propose a penalized approach for variable

selection in nonparametric additive models. They impose penalty on the 2-norm of the nonparametric

components. Under some strong conditions on the design matrix and with special basis functions,

they establish the model selection consistency. In all the above three approaches, the penalties are in

the form of group/adaptive Lasso, or variants of the group Lasso. In addition, Xue (2009) proposes

a penalized polynomial spline method for simultaneous variable selection and model estimation in

additive models by using the SCAD penalty. We will review these methods in turn.

Several other papers have also considered variable selection in nonparametric additive models.

Bach (2008) applies a method similar to the group Lasso to select variables in additive models with a

fixed number of covariates and establishes the model selection consistency under a set of complicated

conditions. Avalos, Grandvalet, and Ambroise (2007) propose a method for function estimation and

7



variable selection for additive models fitted by cubic splines, but they don’t give any theoretic analysis

for their method. Lin and Zhang (2006) propose the component selection and smoothing operator

(COSSO) method for model selection and estimation in multivariate nonparametric regression models,

in the framework of smoothing spline ANOVA. The COSSO is a method of regularization with the

penalty functional being the sum of component norms, instead of the squared norm employed in the

traditional smoothing spline method. They show that in the special case of a tensor product design,

the COSSO correctly selects the nonzero additive component with high probability. More recently,

Fan, Feng, and Song (2011) propose several closely related variable screening procedures in sparse

ultral-high-dimensional additive models.

3.1 Huang, Horowitz, and Wei’s (2010) adaptive group Lasso

Huang, Horowitz, and Wei (2010) propose a two-step approach to select and estimate the nonzero

components simultaneously in (3.1) when  is fixed. It uses the group Lasso in the first stage and the

adaptive group Lasso in the second stage.

Suppose that  takes values in [ ] where    are finite numbers. Suppose  [ ()] = 0

for  = 1   to ensure unique identification of  ’s. Under some suitable smoothness assumptions,

 ’s can be well approximated by functions in S, a space of polynomial splines defined on [ ] with
some restrictions. There exists a normalized B-spline basis { 1 ≤  ≤ } for S such that for any
 ∈ S we have

 () =

X
=1

 () , 1 ≤  ≤  (3.2)

Let β =
¡
1  

¢0
and β = (β

0
1 β

0
)

0. Let  = (1  )
0
be a weight vector and

0 ≤  ≤ ∞ for  = 1  . Huang, Horowitz, and Wei consider the following penalized least squares

(PLS) criterion

 (β) =

X
=1

⎡⎣ − −
X

=1

X
=1

 ()

⎤⎦2 + 

X
=1



°°β°°2 (3.3)

subject to
X
=1

X
=1

 () = 0  = 1   (3.4)

where  is a tuning parameter.

Note that (3.3) and (3.4) define a constrained minimization problem. To convert it to an un-

constrained optimization problem, one can center the response and the basis functions. Let ̄ =

−1
P

=1  ()   () =  () − ̄  =
¡
1 ()   

()
¢0
 Z = (1   )

0


Z = (Z1 Z) and Y =
¡
1 − ̄    − ̄

¢0
where ̄ = −1

P
=1  Note that Z is an  ×

“design” matrix for the th covariate. It is easy to verify that minimizing (3.3) subject to (3.4) is

equivalent to minimizing

 (β;) = kY − Zβk22 + 

X
=1



°°β°°2  (3.5)
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In the first step, Huang, Horowitz, and Wei compute the group Lasso estimator by minimizing

1 (β;1) = kY − Zβk22 + 1
P

=1

°°β°°2  which is a special case of (3.5) by setting  = 1

for  = 1   and  = 1 Denote the resulting group Lasso estimator as β̃ ≡ β̃ (1)  In the

second step they minimize the adaptive group Lasso objective function  (β;2) by choosing

 =

(
||β̃ ||−12 if ||β̃ ||2  0
∞ if ||β̃ ||2 = 0

Denote the adaptive group Lasso estimator of β as β̂ ≡ β̂ (2) = (β̂
0
1  β̂

0
)

0. The adaptive

group Lasso estimators of  and  are then given by

̂ = ̄ and ̂ () =

X
=1

β̂ () , 1 ≤  ≤ .

Assume  () 6= 0 for  ∈ 1 = {1  ∗}  = 0 for  ∈ 0 = {∗ + 1  }. Let β̂ =0 β denote
sgn0(||β̂ ||) =sgn0(||β ||) 1 ≤  ≤ , where sgn0 (||) = 1 if ||  0 and = 0 if || = 0. Under

some regularity conditions, Huang, Horowitz, and Wei show that  (β̂ =0 β) → 1 as  → ∞ andP∗

=1 ||β̂−β ||22 =  (
2
+1

2−1
 +42


2
2

2) where  denotes the smoothness parameter

of  ’s (e.g.,  = 2 if each  has continuous second order derivative). In terms of the estimators of the

nonparametric components, they show that


³°°°̂°°°

2
 0,  ∈ 1 and

°°°̂°°°
2
= 0  ∈ 0

´
→ 1 as →∞

and
∗X
=1

°°°̂ − 

°°°2
2
= 

µ



+

1

2


+
4

2
2

2

¶


The above result states that the adaptive group Lasso can consistently distinguish nonzero components

from zero components, and gives an upper bound on the rate of convergence of the estimators.

3.2 Meier, Geer, and Bühlmann’s (2009) sparsity-smoothness penalty

Meier, Geer, and Bühlmann (2009) consider the problem of estimating a high-dimensional additive

model in (3.1) where  =  À . For identification purpose, they assume that all  ’s are centered,

i.e.,
P

=1  () = 0 for  = 1   For any vector  = (1  )
0 ∈ R define kk2 ≡ −1

P
=1 

2
 .

Let  = ( (1)    ())
0
. Meier, Geer, and Bühlmann define the sparsity-smoothness penalty

as

 () = 1

q
kk2 + 22 ()

where 2 () =
R
[ 00 ()]

2 measures the smoothness of  with  00 () denoting the second order

derivative of  ()  and 1 and 2 are two tuning parameters controlling the amount of penalization.

The estimator is given by the following PLS problem:

³
̂1  ̂

´
= argmin

1∈F

°°°°°° −
X

=1



°°°°°°
2



+

X
=1

 () (3.6)
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where F is a suitable class of functions and  = (1  )
0 They choose B-splines to approximate

each function  :  () =
P

=1  (), where  () : R→ R are the B-spline basis functions

and β =
¡
1  

¢0 ∈ R is the parameter vector corresponding to  . Let  denote the

 × design matrix of B-spline basis of the th predictor. Denote the  ×  design matrix as

 = [1 2  ]  By assuming that all  ’s are second order continuously differentiable, one can

reformulate (3.6) as

β̂ = argmin


k −βk2 + 1

X
=1

r
1


β0

0
β + 2β

0
Ωβ (3.7)

where β = (β01 β
0
)
0 and Ω is an  ×  matrix with ( )th element given by Ω =R

00 ()
00
 ()  for   ∈ {1 }. Let  =

1



0
+ 2Ω  Then (3.7) can be written as

a general group Lasso problem

β̂ = argmin


k −βk2 + 1

X
=1

q
β0β  (3.8)

By Cholesky decomposition,  = 0 for some  ×  matrix  . Define β̃ = β and

̃ = 
−1
 . (3.8) reduces to

b̃
β = argmin

̃

°°° − ̃β̃
°°°2

+ 1

X
=1

°°°β̃°°° (3.9)

where β̃ = (β̃
0
1  β̃

0
)
0 and ||β̃ || denotes the Euclidean norm in R . For fixed 2, (3.9) is an

ordinary group Lasso problem. For large enough 1 some of the coefficient group β ∈ R will be

estimated as exactly zero.

Meier, Geer, and Bühlmann argue empirically that the inclusion of a smoothness-part (2 ()) into

the penalty functions yields much better results than having the sparsity-term (kk) only. Under
some conditions, the procedure can select a set of  ’s containing all the additive nonzero components.

However, the model selection consistency of their procedure is not established. The selected set may

include zero components and then be larger than the set of nonzero  ’s.

3.3 Ravikumar, Lafferty, Liu, andWasserman’s (2009) sparse additive mod-

els

Ravikumar, Lafferty, Liu, and Wasserman (2009) propose a new class of methods for high dimen-

sional nonparametric regression and classification called SParse Additive Models (SPAM). The models

combine ideas from sparse linear modelling and additive nonparametric regression. The models they

consider take the form (3.1), but they restrict =(1 )
0 ∈ [0 1] and  =  can diverge with

 They consider a modification of standard additive model optimization problem as follows

min
∈R∈H



⎡⎣ − X
=1

 ()

⎤⎦2
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subject to
X

=1

¯̄

¯̄
≤  and 

h
 ()

2
i
= 1  = 1  

where H denotes the Hilbert subspace 2
¡

¢
of measurable function  () with  [ ()] = 0

and  being the marginal distribution of   = (1  )
0 and  is the rescaling parameter such

that  =  and [ ()
2
] = 1. The constraint that β lies in the 1-ball { : kk1 ≤ } induces

sparsity for the estimate ̂ of  as for the Lasso estimate. Absorbing  in  , we can re-express the

minimization problem in the equivalent Lagrangian form

 ( ) =
1

2


⎡⎣ − X
=1

 ()

⎤⎦2 + 

X
=1

q

£
2 ()

¤
 (3.10)

where  is a tuning parameter. The minimizers for (3.10) satisfy

 () =

⎡⎢⎢⎣1− r

h
 ()

2
i
⎤⎥⎥⎦
+

 () almost surely (a.s.),

where [·]+ denotes the positive part of ·, and  () =  ( |) denotes the projection of the

residuals  = −
P

 6=  () onto H .

To get a sample version of the above solution, Ravikumar et al. insert the sample estimates into

the population algorithm as in standard backfitting. The projection  = ( (1)    ())
0 can

be estimated by smoothing the residuals:

̂ = S

where S is a linear smoother (e.g., an  ×  matrix for the local linear or sieve smoother) and

 = (1  )
0
. Let ̂ =

q
−1

P
=1 ̂

2
 be an estimator of  =

q
[ ()

2
] where ̂

denotes the th element of ̂ . They propose the SPAM backfitting algorithm to solve  ’s as follows:

Given regularization parameter , initialize ̂ () = 0 for  = 1  , and then iterate the following

steps until convergence, for each  = 1   :

1. Compute the residual,  =  −
P

 6= ̂ () ;

2. Estimate  by ̂ = S ;

3. Estimate  by ̂ ;

4. Obtain the soft thresholding estimate ̂ () = [1− ̂]+̂ ;

5. Center ̂ to obtain ̂ ()−−1
P

=1 ̂ () and use this as an updated estimate of  () 

The outputs are ̂ , based on which one can also obtain
P

=1 ̂ () 
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If  () can be written in terms of orthonormal basis functions
©
 :  = 1 2 

ª
:  () =P∞

=1  () with  =
R
 () ()  we can approximate it by ̃ () =

P

=1  ()

where →∞ as →∞ In this case, the smoother S can be taken to be the least squares projection
onto the truncated set of basis

©
1  

ª
. The orthogonal series smoother is S = Ψ(Ψ0Ψ)−1Ψ0 ,

where Ψ denotes the × design matrix with ( )th element given by  ()  Then the back-

fitting algorithm reduces to choosing β = (β01 β
0
)
0 to minimize

1

2

°°°°°° −
X

=1

Ψβ

°°°°°°
2

2

+ 

X
=1

r
1


β0
¡
Ψ0Ψ

¢
β  (3.11)

where β = (1  
)0 Note (3.11) is a sample version of (3.10) and it can be regarded as a

functional version of the group Lasso by using the similar transformation form as used to obtain (3.9).

Combined with the soft thresholding step, the update of  in the above algorithm can be thought as

to minimize
1

2

°° −Ψβ
°°2
2
+ 

r
1


β0
¡
Ψ0Ψ

¢
β 

Under some strong conditions, they show that with truncated orthogonal basis the SPAM backfitting

algorithm can recover the correct sparsity pattern asymptotically if the number of relevant variables

∗ is bounded. [∗ denotes the cardinality of the set {1 ≤  ≤  :  6= 0}]. That is, their estimator can
achieve the selection consistency.

3.4 Xue’s (2009) SCAD procedure

Xue (2009) considers a penalized polynomial spline method for simultaneous model estimation and

variable selection in the additive model (3.1) where  is fixed. LetM = { () =
P

=1  () :  ∈

0
 } be the approximation space, where 0 = { : −1

P
=1  () = 0,  ∈ } and  is the

space of empirically centered polynomial splines of degree  ≥ 1 on the th intervals constructed by
interior knots on [0,1]. The penalized least squares estimator is given by

̂ = argmin
=


=1

∈M

"
1

2
k −k2 +

X
=1

 (kk)
#

where =(1  )
0
  = ( (1)   ())

0 and  (·) is a given penalty function depending
on a tuning parameter  Different penalty functions lead to different variable selection procedures.

Noting the desirable properties of the SCAD, they use the spline SCAD penalty.

The proposed polynomial splines have polynomial spline basis representation. Let  =  +  and

 = {1  } be a basis for 0 . For any fixed  = (1  )
0, let () = [1 ()    ()]

0.

One can express ̂ as

̂ () =

X
=1

̂ () and ̂ () = β̂
0
 () for  = 1  
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where β̂ = (β̂
0
1  β̂

0
)
0 minimizes the PLS criterion:

β̂ = argmin
=(01

0

)0

⎡⎣1
2

°°°°° −
X
=1

β0

°°°°°
2



+

X
=1


¡kβk

¢⎤⎦
where kβk

=
p
β0β with  = −1

P
=1 () ()

0
.

Under some mild conditions, she shows that the SCAD penalized procedure estimates the non-zero

function components with the same optimal mean square convergence rate as the standard polynomial

spline estimators, and correctly sets the zero function components to zero with probability approaching

one as the sample size  goes to infinity.

4 Variable Selection in Partially Linear Models

In this section, we consider the problem of variable selection in the following partially linear model

(PLM)

 = 0 +  () +   = 1 2   (4.1)

where  = (1 )
0
is a  × 1 vector of regressors that enter the model linearly,  is a  × 1

vector of regressors that enter the model with an unknown functional form  and  is an error term

such that

 (| ) = 0 a.s. (4.2)

To allow  to increase as  increases, we sometimes write  as  below.

Xie and Huang (2009) consider the problem of simultaneous variable selection and estimation (4.1)

with a divergent number of covariates in the linear part. Ni, Zhang, and Zhang (2009) propose a double-

penalized least squares (DPLS) approach to simultaneously achieve the estimation of the nonparametric

component  and the selection of important variables in  in (4.1). Kato and Shiohama (2009)

consider variable selection in (4.1) in the time series framework. In the large  framework, Chen, Yu,

Zou, and Liang (2012) propose to use the adaptive Elastic-net for variable selection for parametric

components by using profile least squares approach to convert the partially linear model to a classical

linear regression model. Liang and Li (2009) consider variable selection in the PLM (4.1) where 

is a scalar random variable but  is measured with error and is not observable. In addition, Liu,

Wang, and Liang (2011) consider the additive PLM where  () =
P

=1  () in (4.1). Besides, it

is worth mentioning that Bunea (2004) considers covariate selection in  when the dimension of 

is fixed and  is a scalar variable in (4.1) based on a BIC type of information criterion and a sieve

approximation for  (·)  He shows that one can consistently estimate the subset of nonzero coefficients
of the linear part and establish its oralce property. But we will not review this paper in detail as the

procedure is not a simultaneous variable selection and estimation procedure.
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4.1 Xie and Huang’s (2009) SCAD-penalized regression in high-dimension

PLM

Xie and Huang (2009) consider the problem of simultaneous variable selection and estimation in (4.1)

when  =  is divergent with  and  is fixed. To make it explicit that the coefficients depend on 

one can write  = () They allow the number ∗ of nonzero components in () diverge with  too.

Since  is unknown, Xie and Huang use the polynomial splines to approximate it. Let { () : 1 ≤
 ≤ } be a sequence of basis functions. Let  () = (1 ()   

())
0
, B() be the  ×

matrix whose th row is  ()
0
. Under some smoothness conditions,  () can be well approximated

by ()0 () for some () ∈ R  Then the problem of estimating  becomes that of estimating ().

Let  = (1  )
0
and X() = (1 )

0 Then one can consider the following PLS objective

function for estimating () and () with the SCAD penalty



³
() ()

´
=
°°° −X()() −B()()

°°°2
2
+ 

X
=1



³¯̄̄

()


¯̄̄´
where 

()
 denotes the th element of () and  (·) is the SCAD penalty function with  as

a tuning parameter. Let (̂
()

 ̂()) denote the solution to the above minimization problem, and

̂ () = ̂()0 ().

For any () () minimizing  satisfies that

B()0B()() = B()0( −B()())

Let B() = B()(B()0B())−1B()0 be the projection matrix. It is easy to verify that the profile least

squares objective function of the parametric part becomes

̃

³
()

´
=
°°°( − B())

³
 −X()()

´°°°2 + 

X
=1



³¯̄̄

()


¯̄̄´


and ̂
()
= argmin() ̃

³
()

´


Under some regularity conditions that allow divergent ∗, Xie and Huang show that variable se-

lection is consistent, and the SCAD penalized estimators of the nonzero coefficients possess the oracle

properties, and the estimator of the nonparametric estimate can achieve the optimal convergence rate.

4.2 Ni, Zhang, and Zhang’s (2009) double-penalized least squares regres-

sion in PLM

Ni, Zhang, and Zhang (2009) consider a unified procedure for variable selection in the PLM in (4.1)

when  is restricted to be a scalar variable on [0 1]  To simultaneously achieve the estimation of the

nonparametric component  and the selection of important variables in  they propose a double-

penalized least squares (DPLS) approach by minimizing

 ( ) =
1

2

X
=1

£
 − 0 −  ()

¤2
+

1

2

Z 1

0

[00 ()]2  + 

X
=1

2
¡¯̄

¯̄¢
 (4.3)
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The first penalty term in (4.3) penalizes the roughness of the nonparametric fit  () and the sec-

ond penalty term imposes the usual SCAD penalty on the finite dimensional parameter  Let X =

(1 )
0
,  = (1  )

0
, and g = ( (1)    ())

0
. It can be shown that the given 1 and

2 minimizing (4.3) leads to a smoothing spline estimate for  and one can rewrite the DPLS (4.3)

as

 ( ) =
1

2
( −X − g)0 ( −X − g) + 1

2
g0Kg+ 

X
=1

2
¡¯̄

¯̄¢
 (4.4)

where K is the nonnegative definite smoothing matrix defined by Green and Silverman (1994). Given

 one can obtain the minimizer of g as ĝ () = ( + 1K)
−1
( −X) where  is an × identity

matrix. With this, one can obtain readily the profile PLS objective function of  as follows

 () =
1

2
( −X)

0
h
 − ( + 1K)

−1
i
( −X) + 

X
=1

2
¡¯̄

¯̄¢


Let ̂ denote the minimizing solution to the above problem. Ni, Zhang, and Zhang show that ̂ has

the oracle properties in the case of fixed  under some regularity conditions. In the case where  = 

is divergent with  ¿  they also establish the selection consistency by allowing the number ∗ of

nonzero components in  to be divergent at a slow rate.

4.3 Kato and Shiohama’s (2009) partially linear models

Kato and Shiohama (2009) consider the PLM in (4.1) in the time series framework by restricting

 =  =  and allowing  to be a linear process. They assume that  () is an unknown time trend

function that can be exactly expressed as

 () =

X
=1

 () = 0φ

where φ = (1 ()    ())
0
is an -dimensional vector constructed from basis functions { () :

 = 1 }, and  = (1  )
0
is an unknown parameter vector to be estimated. They propose

variable selection via the PLS method:

k − − φk22 + 0α
0Kα+ 

⎛⎝ X
=1

1
¡¯̄

¯̄¢
+

X
=1

2 (||)
⎞⎠

where φ = (φ1 φ)
0
 0 in the second term is used to control the trade-off between the goodness-

of-fit and the roughness of the estimated function, K is an appropriate positive semi-definite symmetric

matrix,  (·) are penalty functions and   = 1 2 are regularization parameters, which control the
model complexity. They consider several different penalty functions: the hard thresholding penalty,

2-penalty in ridge regression, the Lasso penalty, and the SCAD penalty. Under some conditions, they

establish the convergence rates for the PLS estimator, and show its oracle property.
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4.4 Chen, Yu, Zou, and Liang’s (2012) adaptive Elastic-Net estimator

Chen, Yu, Zou, and Liang (2012) propose to use the adaptive Elastic-net (Zou and Zhang, 2009) for

variable selection for parametric components when the dimension  is large, using profile least squares

approach to convert the PLM to a classical linear regression model.

Noting that  (|) = 0 (|) +  () under (4.1)-(4.2), we have

 −(|) = 0 [ −(|)] +  (4.5)

which is a standard linear model if  (|) and (|) were known. Let ̂ (|) and ̂(|)
be the local linear estimators for  (|) and (|) respectively. Let ̂ =  − ̂ (|) 
̂ =  − ̂(|), ̂ = (̂1  ̂)

0 and ̂ = (̂1  ̂)
0 Chen, Yu, Zou, and Liang’s adaptive

Elastic-Net procedure is composed of the following two steps:

1. Construct the Elastic-Net estimator of  given by

̂Enet =

µ
1 +

2



¶
argmin



½°°°̂ − ̂
°°°2
2
+ 2 kk22 + 1 kk1

¾


2. Let ̂ = |̂Enet |− for  = 1   and some   0 where ̂Enet denotes the th element of

̂Enet  The adaptive Elastic-Net estimator of  is given by

̂AdaEnet =

µ
1 +

2



¶
argmin



⎧⎨⎩°°°̂ − ̂
°°°2
2
+ 2 kk22 + ∗1

X
=1

̂

¯̄

¯̄⎫⎬⎭ 

Here, the 1 regularization parameters 1 and 
∗
1 control the sparsity of the Elastic-Net and adaptive

Elastic-Net estimators, respectively. The same 2 for the 2-penalty is used in both steps. Under some

regular conditions that allows diverging , they show that profiled adaptive Elastic-Net procedure

has the oracle property. In particular,  ({ : ̂AdaEnet 6= 0} = A) → 1 as  → ∞ where A =©
 :  6= 0,  = 1  

ª
.

4.5 Liang and Li’s (2009) variable selection with measurement errors

Liang and Li (2009) also consider the model in (4.1)-(4.2) where  is a scalar random variable, and

 is measured with error and is not observable. Let  denote the observed surrogate of , i.e.,

 =  +  (4.6)

where  is the measurement error with mean zero and unknown covariance Σ. Assume  is

independent of (  ). Since  (|) = 0,  () =  (|)− (|)0 . The PLS function
based on partial residuals is defined as

 (Σ ) =
1

2

X
=1

©
[ − ̂ ()]− [ − ̂ ()]

0

ª− 

2
0Σ + 

X
=1


¡¯̄

¯̄¢
 (4.7)
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where ̂ () and ̂ () are estimators of  (|) and  (|), respectively, and  (·) is a
penalty function with a tuning parameter  . The second term is included to correct the bias in the

squared loss function due to the presence of measurement error.

The PLS function (4.7) provides a general framework of variable selection in PLMs with measure-

ment errors. In principle, one can use all kinds of penalty functions. But Liang and Li focus on the

case of SCAD penalty. Under some conditions, they show that with probability approaching one, there

exists a
√
-consistent PLS estimator ̂ when Σ is estimated from partially replicated observations,

and the estimator ̂ possesses the oracle properties. In addition, they also consider the penalized

quantile regression for PLMs with measurement error. See Section 8.1.

4.6 Liu, Wang, and Liang’s (2011) additive PLMs

Liu, Wang, and Liang (2011) consider the additive PLM of this form

 = 0 +

X
=1

 () + 

where  = (1 )
0
and  = (1  )

0
enter the linear and nonparametric components,

respectively, 1   are unknown smooth functions, and  (| ) = 0 a.s. They are interested

in the variable selection in the parametric component. For identification, assume that  [ ()] = 0

a.s. for  = 1  . In addition, they assume that both  and  are fixed.

Since ’s are unknown, Liu, Wang, and Liang propose to use spline approximation. Let S be the
space of polynomial functions on [0 1] of degree  ≥ 1. Let G be the collection of functions  with
additive form  () = 1 (1)+ · · ·+ (). For the th covariate , let  () be the B-spline basis

functions of degree . For any  ∈ G, one can write

 () = 0 ()

where  () = { ()   = −   = 1  }0 ∈ R, and  is the corresponding vector of

coefficients and its elements are arranged in the same order as  (). The PLS objective function is

given by

 ( ) =
1

2

X
=1

£
 − 0 ()− 0

¤2
+ 

X
=1


¡¯̄

¯̄¢


where  (·) is a penalty function with a tuning parameter  . Let ̂ be the PLS estimator. Liu,
Wang, and Liang consider the SCAD penalty function and show that the SCAD variable selection

procedure can effectively identify the significant components with the associated parametric estimators

satisfying the oracle properties. But they do not study the asymptotic properties of the estimators of

nonparametric components.
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5 Variable Selection in Functional/Varying Coefficients Mod-

els

Nonparametric varying or functional coefficient models (VCMs or FCMs) are useful for studying the

time-dependent or the variable-dependent effects of variables. Many methods have been proposed for

estimation of these models. See, e.g., Fan and Zhang (1998) for local polynomial smoothing method

and Huang, Wu, and Zhou (2002) and Qu and Li (2006) for basis expansion and spline method. Several

procedures have been developed for variable selection and estimation simultaneously for these models.

Wang and Xia (2009) propose adaptive group Lasso for variable selections in VCMs with fixed  based

on kernel estimation; Lian (2010) extends their approach by using double adaptive lasso and allowing

 to be divergent with  Zhao and Xue (2011) consider SCAD variable selection for VCMs with

measurement error. Li and Liang (2008) considers variable selection in generalized varying-coefficient

partially linear models by using the SCAD penalty. In addition Wang, Chen, and Li (2007), Wang, Li,

and Huang (2008) and Wei, Huang, and Li (2011) consider sieve-estimation-based variable selection in

VCMs with longitudinal data where the penalty takes either the SCAD or group Lasso form.

5.1 Wang and Xia’s (2009) kernel estimation with adaptive group Lasso

penalty

Wang and Xia (2009) consider the following varying coefficient model (VCM)

 =  0
 () +  (5.1)

where  = (1 )
0
is a  × 1 vector of covariates,  is a scalar variable that takes values

on [0,1], and  is the error term satisfying  (| ) = 0 a.s. The coefficient vector  () =

(1 ()    ())
0 ∈ R is an unknown but smooth function in , whose true value is given by 0 () =

(01 ()   0 ())
0. Without loss of generality, assume that there exists an integer ∗ ≤  such that

0  [20 ()] ∞ for any  ≤ ∗ but [20 ()] = 0 for   ∗. The main objection is to select the

variables in  with nonzero coefficients when  is fixed.

Let  = ( (1)    ())
0 and 0 = (0 (1)   0 ())

0 Note that the last (− ∗) columns

for 0 should be 0. The selection of variables becomes identifying sparse columns in the matrix 0.

Following the group Lasso of Yuan and Lin (2006), Wang and Xia propose the following PLS estimate

̂ = (̂ (1)   ̂ ())
0 = argmin∈R×  ()

where

 () =

X
=1

X
=1

[ − ()]
2
 ( − ) +

X
=1

 kk  (5.2)

 = (1  )
0
is a vector of tuning parameters,  () = −1(),  (·) is a kernel function,

 is a bandwidth parameter,  denotes the th column of  for  = 1  , and k·k denotes the
usual Euclidean norm. Let ̂ denote the th column of ̂ for  = 1   so that we can also
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write ̂ = (̂1  ̂)They propose an iterated algorithm based on the idea of the local quadratic

approximation of Fan and Li (2001). Let ̃ be an initial estimate of 0 and ̂
()

 = (̂
()

1   ̂
()

 ) =

(̂
()

 (1)   ̂
()

 ())
0 be the Lasso estimate in the th iteration. The objective function in (5.2)

can be locally approximated by

X
=1

X
=1

[ − ()]
2
 ( − ) +

X
=1


kk2°°°̂()

°°° 
Let ̂

(+1)

 denote the minimizer. Its th row is given by

̂
(+1)

 () =

"
X
=1


0
 ( − ) +()

#−1 X
=1

 ( − )

where () is a × diagonal matrix with its th diagonal component given by ||̂() ||,  = 1  .
The estimate for  () is

̂ () =

"
X
=1


0
 ( − ) +()

#−1 X
=1

 ( − ) 

Let ̂ () = (̂1 ()   ̂∗ ())
0 and ̂ () = (̂∗+1 ()   ̂ ())

0. Under some regular

conditions, Wang and Xia show that: ()  (sup∈[01] ||̂ () || = 0)→ 1; and () sup∈[01] ||̂ ()−
̂ () || = 

¡
−25

¢
, where

̂ () =

"
X
=1

()
0
() ( − )

#−1 X
=1

() ( − )

stands for the oracle estimator, and () = (1 0)
0
. The second part implies that ̂ () has

the oracle property.

They also propose to choose the tuning parameters  by

 =
0

−12||̃||


where ̃ is the th column of the unpenalized estimate ̃. 0 can be selected according to the following

BIC-type criterion

BIC = log() +  × log ()


where 0 ≤  ≤  is the number of nonzero coefficients identified by ̂ and  is defined as

 =
1

2

X
=1

X
=1

h
 − 0

̂ ()
i2

 ( − ) 

Under some conditions, they show that the tuning parameter ̂ selected by the BIC-type criterion can

identify the true model consistently.
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5.2 Lian’s (2010) double adaptive group Lasso in high-dimensional VCMs

Lian (2010) studies the problem of simultaneous variable selection and constant coefficient identification

in high-dimensional VCMs based on B-spline basis expansion. He considers the VCM in (5.1) but allows

for  =  À . In addition, he explicitly allows some nonzero coefficients in  () to be constant a.s.

Using spline expansions,  () can be approximated by
P

=1  ()  where { ()}

=1 is a

normalized B-spline basis. Lian proposes the following PLS estimate

̂ = argmin
1

2

X
=1

⎡⎣ − X
=1

X
=1

 ()

⎤⎦2 + 1

X
=1

1 kk+ 2

X
=1

2 kk 

where 1, 2 are regularization parameters, 1 = (11  1)
0
and 2 = (21  2)

0
are two given

vectors of weights,  = (1  
)
0
, kk =

qP

=1 
2
, and kk =

qP

=1

£
 − ̄

¤2
with ̄ =

−1
P

=1 . The first penalty is used for identifying the zero coefficients while the second is used

for identifying the nonzero constant coefficients.

The minimization problem can be solved by the locally quadratic approximation as Fan and Li

(2001) and Wang and Xia (2009). He also proposes a BIC-type criterion to select 1 and 2. Under

some suitable conditions, he shows that consistency in terms of both variable selection and constant

coefficients identification can be achieved, and the oracle property of the constant coefficients can be

established.

5.3 Zhao and Xue’s (2011) SCAD variable selection for VCMs with mea-

surement errors

Zhao and Xue (2011) consider variable selection for the VCM in (5.1) when the covariate is measured

with errors and  is error-free. That is,  is not observed but measured with additive error:

 =  + 

where  is the measurement error that is assumed to be independent of (  ) and have zero

mean and variance-covariance matrix Σ  .

Like Lian (2010), Zhao and Xue propose to approximate  () by a linear combination of B-spline

basis functions. Let  () = (1 ()   
())0  = (1 ()

0
  ()

0
) = [⊗ ()]

and  = (01  
0
)
0 Let ̃ = (1 ()

0
   ()

0
) = [ ⊗  ()] where  denotes the th

element in  Observing that


h
̃̃

0
 | 

i
=

0
 +Ω ()

where Ω () = [ ⊗ ()]Σ  [ ⊗ ()]
0 they propose a bias-corrected PLS objective function

 () =

X
=1

h
 − 0̃

i2
−

X
=1

X
=1

0Ω () + 

X
=1


¡kk¢ 
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where  (·) is the SCAD penalty function with  as a tuning parameter and kk = (0)
12

with

 =
R 1
0
 () ()

0
 They establish the consistency of the variable selection procedure and derive

the optimal convergence rate of the regularized estimators.

5.4 Li and Liang’s (2008) variable selection in generalized varying-coefficient

partially linear model

Li and Liang (2008) consider the generalized varying-coefficient partially linear model (GVCPLM)

 { (  )} = 0 () + 0

where  (  ) =  (| =  =  = )   is -dimensional,  is -dimensional, and  is a

scalar random variable. They assume that  and  are fixed and focus on the selection of significant

variables in the parametric component based on i.i.d. observations (  )  = 1  . The

conditional quasi-likelihood of  is  ( ( )), where

 ( ) =

Z 



− 

 ()


and  () is a specific variance function. Then the penalized likelihood function is defined by

 ( ) =

X
=1


£
−1 ( 0

 () + 0)  
¤− 

X
=1


¡¯̄

¯̄¢

(5.3)

where  denotes the th element of   (·) is a specific penalty function with a tuning parameter
 , and −1 denotes the inverse function of  They propose to use the SCAD penalty. Since  ()

is unknown, they first use local likelihood technique to estimate  (), then substitute the resulting

estimate into the above penalized likelihood function and finally maximize (5.3) with respect to .

Under some conditions, they establish the rate of convergence for the resulting PLS estimator ̂ of .

With proper choices of penalty functions and tuning parameters, they show the asymptotic normality

of ̂ and demonstrate that the proposed procedure performs as well as an oracle procedure. To select

variables in  that is associated with the nonparametric component, they propose a generalized

likelihood ratio (GLR) test statistic to test the null hypothesis of some selected components being zero.

5.5 Sieve-estimation-based variable selection in VCMs with longitudinal

data

Several papers address the issue of variable selection in VCMs with longitudinal data. They base the

variable selection on sieve estimation with either SCAD or Lasso penalty with balanced or unbalanced

data.

Let () be the expression level of the th individual at time  where  = 1   and  = 1   .

Wang, Chen, and Li (2007) consider the following VCM

 () =  () +

X
=1

 () +  () (5.4)
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where  () indicates the overall mean effect,  () is the error term, and other objects are defined as

above. They approximate  () by using the natural cubic B-spline basis:  () ≈
P

=1  ()

where () is the natural cubic B-spline basis function, for  = 1  and the number of interior

knots is given by  − 4. They propose a general group SCAD (gSCAD) procedure for selecting the

groups of variables in a linear regression setting. Specifically, to select non-zero  (), they minimize

the following PLS loss function

 ( ) =

X
=1

X
=1

(
 −  ()−

X
=1

X
=1

 [ ()]

)2
+ 

X
=1

 (kβk)

where  =  (),  = ( (1)    ( ))
0  (·) is the SCAD penalty with  as a tuning parameter,

and β = (1  
)0 An iterative algorithm based on local quadratic approximation of the non-

convex penalty  (kβk) as in Fan and Li (2001) is proposed. Under some overly restrictive conditions
such as the knot locations are held fixed as the sample size increases, they generalize the arguments in

Fan and Li (2001) to the group selection settings and establish the oracle property of gSCAD group

selection procedure.

Wang, Li, and Huang (2008) consider a model similar to (5.4) but allow for unbalanced data:

 () =

X
=1

 () () +  () (5.5)

where  = 1    = 1    () is the covariate with time-varying effects, and the number of

covariates  is fixed. They propose a PLS estimator using the SCAD penalty and basis expansion. The

coefficients  () can be approximated by a basis expansion  () ≈
P

=1  () where various

basis systems including Fourier bases, polynomial bases, and B-spline bases, can be used in the basis

expansion to obtain () for  = 1  Their objective function is given by

X
=1



X
=1

(
 ()−

X
=1

X
=1

 [ () ()]

)2
+

X
=1


¡kβkR

¢
where the ’s are weights taking value 1 if we treat all observations equally or 1 if we treat each

individual subject equally, kβk2R
= β

0
Rβ, R is an  ×  kernel matrix whose ( )-th

element is given by

 =

Z 1

0

 () () 

Under suitable conditions, they establish the theoretical properties of their procedure, including con-

sistency in variable selection and the oracle property in estimation.

More recently, Wei, Huang, and Li (2011) also consider the model in (5.5) but allow the number of

variables (= ) to be larger than . They apply the group Lasso and basis expansion to simultane-

ously select the important variables and estimate the coefficient functions. The objective function of

the group Lasso is given by

1

2

X
=1

X
=1

(
 ()−

X
=1

X
=1

 [ () ()]

)2
+

X
=1

 kβkR
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where kβkR
is defined as above. Under some conditions, they establish the estimation consistency

of group Lasso and the selection consistency of adaptive group Lasso.

6 Variable Selection in Single Index Models

As a natural extension of linear regression model, the single index model (SIM) provides a specification

that is more flexible than parametric models while retaining the desired properties of parametric mod-

els. It also avoids the curse of dimensionality through the index structure. Many methods have been

proposed to estimate the coefficients in SIMs. Most of them can be classified into three categories.

The first category includes the average derivative estimation method (Härdle and Stoker, 1989), the

structure adaptive method (Hristache et al., 2001) and the outer product of gradients method (Xia, et

al. 2002), which only focus on the estimation of unknown coefficients. The second category consists of

methods that estimate the unknown link function and coefficients simultaneously, including Ichimura’s

(1993) semiparametric least square estimation and the minimum average conditional variance estima-

tion (MAVE) by Xia et al. (2002). The third one is related to the inverse regression and is developed

for sufficient dimension reduction (SDR), see, e.g., Li (1991).

Variable selection is a crucial problem in SIMs. Many classical variable selection procedures for

linear regressions have been extended to SIMs. See, for example, Naik and Tsai (2001) and Kong

and Xia (2008) for AIC and cross-validation. Based on the comparison of all the subsets of predictor

variables, these methods are computationally intensive. Recently, Peng and Huang (2011) use penalized

least squares method to estimate the model and select the significant variables simultaneously. Zeng, He

and Zhu (2011) consider a Lasso-type approach called sim-Lasso for estimation and variable selection.

Liang, Liu, Li and Tsai (2010) consider variable selection in partial linear single-indexed models using

the SCAD penalty. Yang (2012) consider variable selection for functional index coefficient models.

Some variable selection procedures are also proposed for generalized SIMs, see Zhu and Zhu (2009),

Zhu, Qian, and Lin (2011) and Wang, Xu, and Zhu (2012).

6.1 Peng and Huang’s (2011) penalized least squares for SIM

Peng and Huang (2011) consider the SIM

 =  ( 0
) +   = 1 2   (6.1)

where  (·) is a smooth unknown function,  is a × 1 vector of covariates,  = (1  )0 is a × 1
vector of parameters, and  is a white noise with unknown variance 

2. For identification, let kk = 1
and sign(1) = 1 where sign() = 1 if   0 = −1 otherwise. They follow the idea of Carroll et al.
(1997) and use an iterative algorithm to estimate  and the link function  simultaneously.

The unknown function  (·) can be approximated locally by a linear function

 () ≈  () + 0 () ( − )
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when  lies in the neighborhood of , and 0 () =  ()  Given , one can estimate  () and

0 () by choosing ( ) to minimize

X
=1

[ − −  ( 0
 − )]

2
 (

0
 − ) (6.2)

where  (·) =  (·)  and  (·) is a symmetric kernel function. Let ̂ (· ) denote the estimate of
 () given  Given ̂ (· ), one can estimate  by minimizing the following PLS function

X
=1

[ − ̂ ( 0
 )]

2
+ 

X
=1


¡¯̄

¯̄¢

(6.3)

where  (·) is the SCAD penalty function with a tuning parameter . To solve the above nonlinear

optimization problem, Peng and Huang propose to use the local approximation idea and update the

estimate of  given the current estimates (0) and ̂ by minimizing the following penalized least squares

function

X
=1

h
 − ̂

³
 0
̂
(0)
 ̂

(0)
´
− ̂0

³
 0
̂
(0)
 ̂

(0)
´
 0


³
 − ̂

(0)
´i2

+ 

X
=1


¡¯̄

¯̄¢
 (6.4)

The estimation procedure for  and  (·) is summarized as follows:

1. Obtain an initial estimate of , say ̂
(0)
 by the least squares regression of  on  Let ̂ =

̂
(0)

°°°̂(0)°°° ·sign(̂(0)1 ) where ̂(0)1 is the first element of ̂

(0)
.

2. Given ̂, find ̂( ̂) = ̂ and ̂0( ̂) = ̂ by minimizing (6.2).

3. Update the estimate of  by minimizing (6.4) with ̂
(0)
being replaced by ̂.

4. Continue Steps 2-3 until convergence.

5. Given the final estimate ̂ from Step 4, refine the estimate ̂( ̂) of  (·) by minimizing (6.2).

Peng and Huang argue that the above iterative algorithm can be regarded as an EM algorithm and

different bandwidth sequence should be used in Steps 2-3 and 5. In Steps 2-3, one should assure the

accuracy of the estimate of  and thus an undersmoothing bandwidth should be used to obtain the

estimate of ; in step 5, one can obtain the final estimate of  by using the optimal bandwidth as if

 were known. They discuss the choice of these two bandwidths and the tuning parameter  as well.

Under some conditions, they derive the convergence rate for ̂ and show its oracle property.

6.2 Zeng, He, and Zhu’s (2011) Lasso-type approach for SIMs

Zeng, He, and Zhu (2011) consider a Lasso-type approach called sim-Lasso for estimation and variable

selection for the SIM in (6.2). The sim-Lasso method penalizes the derivative of the link function
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and thus can be considered as an extension of the usual Lasso. They propose the following PLS

minimization problem:

min
kk=1

X
=1

X
=1

£
 −  − 

0 ( −)
¤2
 + 

X
=1

| |
X

=1

|| (6.5)

where  = (1  )
0  = (1  )0  =  ( −) 

P
=1 ( −), (·) =  (·) ,

 (·) is a kernel function and  is the bandwidth, and  is the tuning parameter. Denote the ob-

jective function in (6.5) as  (  ) and its minimizer as ̂ () = (̂1 ()   ̂ ())
0
 ̂ () =

(̂1 ()   ̂ ())
0 and ̂ ().

Note that the first part of  (  ) is the objective function for the MAVE estimation of  Its

inner summation is
X
=1

£
 −  − 

0 ( −)
¤2
  (6.6)

which is the least squares loss function for the local smoothing of  at 0  A natural way to penalize

(6.6) is to penalize the vector of linear coefficient  via the lasso type of penalty, yielding

X
=1

£
 −  − 

0 ( −)
¤2
 +  | |

X
=1

||  (6.7)

Summing (6.7) over  leads to the objective function in (6.5). The penalty term 
P

=1 | |
P

=1 ||
has two-fold impact on the estimation of . First, as the usual Lasso, it make ̂ () sparse and thus

performs variable selection. Second, it also enforces shrinkage in ̂ () and may shrink some ̂ ()’s to

zero. The second point is important as when  is relatively flat, its derivative is close to zero and does

not contain much information about 

Given  and , the target function  (  ) can be minimized by  = ̃ − 
0
³
̃ −

´
,

where ̃ =
P

=1 and ̃ =
P

=1 . Then  (  ) can be simplified to

 ( ) = min


 (  )

=

X
=1

X
=1

h
 − ̃ − 

0
³
 − ̃

´i2
 + 

X
=1

| |
X

=1

|| 

When  is fixed, the target function  is decoupled into  separate target functions, that is,  =P
=1 , where

 =

X
=1

h
 − ̃ − 

0
³
 − ̃

´i2
 + ∗ | |

and ∗ = 
P

=1 ||. The solution is

̂ = sgn(
0)

Ã¯̄
0

¯̄
− 

P
=1 || 2

0

!+
(6.8)

where

 =

X
=1

³
 − ̃

´³
 − ̃

´
 and  =

X
=1

³
 − ̃

´³
 − ̃

´0
 
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For fixed , minimizing  ( ) becomes

̂ = argmin


X
=1

X
=1

h
 − ̃ − 

0
³
 − ̃

´i2
 + ∗

X
=1

|| (6.9)

where ∗ = 
P

=1 | |. It can be solved by the LARS-Lasso algorithm. The algorithm is summarized

as follows:

1. Get an initial estimate ̂ of 

2. Given ̂, calculate ̂ as (6.8)

3. Given ̂ = (̂1  ̂)
0 use the LARS-Lasso algorithm to solve (6.9)

4. Renormalize ̂ to ||̂||̂ and ̂ to ̂||̂|| and use them as ̂ and ̂ below.

5. Repeat Steps 2-4 until (̂ ̂) converges.

Zeng, He and Zhu propose to use 10-fold cross-validation procedure to choose the penalty parameter

 and use the rule of thumb for bandwidth. They focus on the computational aspect of sim-Lasso but

have not established its theoretical properties. They conjecture that by choosing the penalty parameter

 properly the sim-lasso possesses the usual consistency and convergence rate, but admit that the proof

is nontrivial due to the interaction between the bandwidth  and the penalty parameter .

6.3 Liang, Liu, Li, and Tsai’s (2010) partially linear single-index models

Liang, Liu, Li, and Tsai (2010) consider the following partially linear single-index model (PLSIM)

 =  ( 0α) + 0
β + ,  = 1   (6.10)

where  and  are -dimensional and -dimensional covariate vectors, respectively, α =(1  )
0
,

β =
¡
1  

¢0
,  (·) is an unknown differentiable function,  is random error with zero mean and

finite variance 2, and ( ) and  are independent. They assume that kαk = 1 and 1 is positive

for identification. They propose a profile least-squares procedure to estimate the model and the SCAD

penalty to select the significant variables.

Let  ∗ =  −  0
β and Λ = 0α. For given ξ =

¡
α0β0

¢0
,  (·) can be estimated by the local

linear regression to minimize

X
=1

[ − −  (Λ − )− 0
β]

2
 (Λ − ) 

with respect to  and , where  is defined as before. Let (̂ ̂) denote the minimizer. Then the

profile estimator of  (·) is given by

̂ (; ξ) = ̂ =
20 ( ξ)01 ( ξ)−10 ( ξ)11 ( ξ)

00 ( ξ)20 ( ξ)−2
10 ( ξ)

26



where  ( ξ) =
P

=1  (Λ − ) (Λ − )

( 0

β − )

for  = 0 1 2 and  = 0 1They consider a

PLS function

 (ξ) =
1

2

X
=1

[ − ̂ (0α; ξ)− 0
β]

2
+ 

X
=1

1 (| |) + 

X
=1

2 (||)

where  (·) is a penalty function with a regularization parameter . Different penalty functions for
different elements of α and β are allowed. If one wants to select variables in  only, one can set

2 (·) = 0 for  = 1   Similarly, if one wants to select variables in  only, one can set 1 (·) = 0
for  = 1  .

Because it is computationally expensive to minimize a criterion function with respect to (+ )-

dimensional regularization parameters, Liang, Liu, Li, and Tsai follow the approach of Fan and Li

(2004) and set 1 = (̂ ) and 2 = (̂


) where  is the tuning parameter, and (̂ )

and (̂


) are the standard errors of the unpenalized profile least squares estimators of  and 

respectively, for  = 1   and  = 1  . Then they propose to use the SCAD penalty and select 

by minimizing the BIC-like criterion function given by

 () = log { ()}+ log




where  () = −1
P

=1

h
 − ̂(0α̂; ξ̂)− 0

β̂

i2
 ξ̂ = (α̂

0
 β̂

0
)
0 is the SCAD estimator of ξ

by using the tuning parameter  and  is the number of nonzero coefficients in ξ̂. They show that

the BIC tuning parameter selector enables us to select the true model consistently and their estimate

enjoys the oracle properties under some mild conditions.

In addition, it is worth mentioning that Liang and Wang (2005) consider the PLSIM in (6.10)

when  is measured with additive error:  = + where  is independent of ( )  They

propose two kernel estimation methods for this model but do not discuss the variable selection issue.

6.4 Yang’s (2012) variable selection for functional index coefficient models

Yang (2012) considers the following functional index coefficient model (FICM) of Fan, Yao, and Cai

(2003)

 = 
¡
0

¢0
 +  (6.11)

where  = 1    = (1 )
0
is a × 1 vector of covariates,  is a  × 1 vector of covariate,

 is an error term with mean zero and variance 2  = (1  )
0 is a  × 1 vector of unknown

parameters, and  (·) = (1 (·)    (·))0 is a vector of -dimensional unknown functional coefficients.
Assume that kk = 1 and the first element 1 of  is positive for identification. The sparsity of the
model may come from two aspects: some of the functional index coefficients,  (·)   = 1   are

identically zero; and some elements of  are zero. Yang proposes a two-step approach to select the

significant covariates with functional coefficients, and then variable selection is applied to choose local

significant variables with parametric coefficients. The procedure goes as follows:
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1. Given a
√
-consistent initial estimator ̂

(0)
of  (e.g., that of Fan, Yao and Cai (2003)), we

minimize the penalized local least squares to obtain the estimator ̂ of  : ̂ = argmin


( ̂
(0)
)

where

 ( ) =

X
=1

X
=1

h
 − 

¡
0

¢0


i2

¡
0 − 0

¢
+ 

X
=1

 (kk)

 () =  ()   is a kernel function,  is a bandwidth parameter,  = (
¡
01

¢
 


¡
0

¢
)0 and  (·) is the SCAD penalty function with tuning parameter .

2. Given the estimator ̂ of  we minimize the penalized global least squares objective function

 ( ̂) to obtain an updated estimator ̂ of  where

 ( ̂) =
1

2

X
=1

h
 − ̂

¡
0

¢0


i2
+ 

X
=1

 (||) 

and  (·) is the SCAD penalty function with tuning parameter 

Note that if one uses the Lasso penalty ( () =  ||), the objective function in the first step
becomes the penalized least squares criterion function used by Wang and Xia (2009). Yang proposes to

choose the tuning parameters to minimize a BIC-type criterion function. Assuming that both  and 

are fixed, he studies the consistency, sparsity, and the oracle property of the resulting functional index

coefficient estimators ̂(̂
0
) and ̂. He applies his methodology to both financial and engineering data

sets.

6.5 Generalized single index models

Zhu and Zhu (2009) consider estimating the direction of  and selecting important variables simulta-

neously in the following generalized single index model (GSIM) proposed by Li and Duan (1989) and

Li (1991):

 =  ( 0
 ) (6.12)

where  (·) is an unknown link function,  is a × 1 vector of covariates, and  is an error term that

is independent of  They allow  =  to diverge as the sample size →∞. The model in (6.12) is
very general and covers the usual SIM and the heteroskedastic SIM (e.g.,  = 1 (

0) + 2 (
0) )

as two special cases. Assume that  () = 0 and let Σ =Cov().

Let  () denote the cumulative distribution function (CDF) of the continuous response variable

. Define

∗ = argmin


 [ (0 ( ))]

where  (0 ( )) = − ( ) 0 +  (0) is a loss function and  (·) is a convex function. They
show that under the sufficient recovery condition (which intuitively requires 

¡
|0¢ to be linear in

0 : : 
¡
|0¢ = Σ ¡0Σ¢−1 0) ∗ identifies  in model (6.12) up to a multiplicative scalar.

The main requirement for such an identification is that  [ (0 ( ))] has a proper minimizer. This

28



condition relates to the unknown link function  (·) and is typically regarded as mild and thus widely
assumed in the literature on SDR. To exclude the irrelevant regressors in the regression, Zhu and Zhu

(2009) propose to estimate  as follows

̂ = argmin


1

2

X
=1

 (0  ()) + 

X
=1

 (| |)

where  () = −1
P

=1 1 ( ≤ ) is the empirical distribution function (EDF) of   is the th

coordinate of  and  (·) is a penalty function with tuning parameter 
The loss function  (0 ( )) covers the least squares measure as a special case, that is,  (0  ())

= [0 −  ()]
2
2 by letting  (0) =

£
0

0
+  2 ()

¤
2 Then the least square estimation is

∗ = argmin


 [ (0  ())] = argmin


 [ ()− 0
]

2
= Σ−1Cov(  ())

The sample version of the least squares estimate is given by

̂ = argmin


1

2

X
=1

[0 −  ()]
2
2 + 

X
=1

 (| |) 

Zhu and Zhu (2009) suggest using the SCAD penalty. Under some regular conditions, they show that

̂ enjoys the oracle properties.

Zhu, Qian, and Lin (2011) follow the idea of Zhu and Zhu (2009) and propose a kernel-based method

which automatically and simultaneously selects important predictors and estimates the direction of 

in (6.12). As in Zhu and Zhu (2009), they also assume that  () = 0 and use Σ to denote Cov()

The definition of the model in (6.12) is equivalent to saying that conditional on 0  and  are

independent. This implies the existence of a function ̃ such that

 (|) = ̃
¡
|0¢ (6.13)

where  (|) is the conditional probability density function (PDF) of  given and ̃ can be regarded

as the conditional PDF of  given 0  (6.13), together with the chain rule, implies that

 (|)


= 
̃
¡
|0¢


¡
0
¢  (6.14)

That is, the first derivative of  (|) with respect to  is proportional to  This motivates Zhu, Qian,
and Lin (2011) to identify the direction of  through the derivative of the conditional PDF  (|) 
Let  () =  ()  where  (·) is a univariate kernel function and  is a bandwidth parameter.

Note that  (|) ≈  [ ( − ) | = ] = 
£
 ( − ) |0 = 0

¤ ≈ ̃
¡
|0¢ as  → 0. When

 is Gaussian with mean zero and covariance matrix Σ a direct application of Stein’s lemma yields

that

 () = Σ−1 [ ( − )] ≈ 

∙
 (|)



¸
as → 0

When the normality assumption does not hold, Zhu, Qian, and Lin (2011) relax it to the widely assumed

linearity condition as in the sufficient recovery condition and show that  () and thus  [ ( )] are
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proportional to  for any fixed bandwidth  Let

 ( ) = 
h


³
̃ − 

´
|
i
−

h


³
̃ − 

´i
(6.15)

where ̃ is an independent copy of  They find that  [ ( )] is in spirit the solution to the following

least squares minimization problem

0 =  [ ()] = argmin


 [  ()− 0
]

2
 (6.16)

Note that the sample analogue of  ( ) is given by

̂ ( ) =
1



X
=1

 ( −  )− 1

2

X
=1

X
=1

 ( − ) 

Then one can obtain the unpenalized estimate of 0 by

̂0 = argmin


X
=1

h
̂  ()− 0


i2



The adaptive Lasso estimate of 0 is given by

̂0 = argmin


X
=1

h
̂ ()− 0


i2
+ 

X
=1

̂ | |

where ̂ =
¯̄̄
̂0

¯̄̄−
and ̂0 is the th element of ̂0 for  = 1   Assuming that  is fixed, Zhu,

Qian, and Lin establish the oracle properties of ̂0 under some regularity conditions.

Wang, Xu, and Zhu (2012) consider the variable selection and shrinkage estimation for several

parametric and semiparametric models with the single-index structure by allowing  =  to be

divergent with  Let  =Cov(  ()) for any function  Define  = Σ
−1 Under the assumption


¡
|0¢ is linear in 0 Theorem 2.1 in Li (1991) immediately implies that  is proportional to

 i.e.,  =  for some constant  The least squares index estimate of  is given by

̂ = argmin


X
=1

[ ()− 0
]

2


They propose a response-distribution transformation by replacing  by the CDF  () of  minus

1/2. Since  is unknown in practice, they suggest using its EDF  and define the distribution-

transformation least squares estimator as

̂ = argmin


X
=1

∙
 ()− 1

2
− 0



¸2


The penalized version is given by

̂ = argmin


X
=1

∙
 ()− 1

2
− 0



¸2
+

X
=1


¡¯̄

¯̄¢


where  (·) can be the SCAD penalty or the MC penalty of Zhang (2010). They establish the selection
consistency by allowing  =  to grow at any polynomial rate under some moment conditions for .

If ’s are normally distributed, it also allows  to grow exponentially fast.
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7 Variable/Component Selection in General Nonparametric

Models

In the previous four sections we review variable selection in semiparametric and nonparametric re-

gression models that impose certain structures to alleviate the notorious “curse of dimensionality”

problem in the literature. In this section we review variable selection in general nonparametric models

that do not assume these structures. Even so, we remark that it is frequently assumed that certain

decomposition of the general nonparametric regression functions exists, in which case the latter also

exhibits a specific additive structure.

The literature on variable or component selection in general nonparametric models can be classified

into two categories. The first category is carried out in the framework of Smoothing Spline ANalysis

Of VAriance (SS-ANOVA) or global function approximation; see, e.g., Lin and Zhang (2006), Bunea

(2008), Storlie, Bondell, Reich and Zhang (2011), and Comminges and Dalayan (2011). Lin and Zhang

(2006) propose a new method called COmponent Selection and Smoothing Operator (COSSO) for

model selection and model fitting in multivariate nonparametric regression models, in the framework

of smoothing spline ANOVA (SS-ANOVA). As Huang, Breheny and Ma (2012) remark, the COSSO

can be viewed as a group Lasso procedure in a reproducing kernel Hilbert space. Storlie, Bondell, Reich

and Zhang (2011) propose the adaptive COSSO (ACOSSO) to improve the performance of COSSO.

Bunea (2008) investigates the consistency of selection via the Lasso method in regression models,

where the regression function is approximated by a given dictionary of  functions. Comminges and

Dalayan’s (2011) consider consistent variable selection in high dimensional nonparametric regression

based on an orthogonal Fouries expansion of the regression function. The second category focuses on

local selection of significant variables. Bertin and Lecué (2008) implement a two-step procedure to

reduce the dimensionality of a local estimate. Lafferty and Wasserman (2008) introduce the Rodeo

procedure, which attempts to assign adaptive bandwidths based on the derivative of kernel estimate

with respect to the bandwidth for each dimension. Miller and Hall (2010) propose a method called

LABAVS in local polynomial regression to select the variables and estimate the model.

7.1 Lin and Zhang’s (2006) COSSO

Lin and Zhang (2006) consider the nonparametric regression

 =  () + ,  = 1   (7.1)

where  is the regression function to be estimated,  = (1 )
0 ∈ X = [0 1]


are -dimensional

vectors of covariates, and  is independent noise with mean zero and finite variance 2. In the

framework of SS-ANOVA,  exhibits the decomposition

 () = +

X
=1

 () +
X

1≤≤
 (  ) + · · · (7.2)

where  = (1  )
0  is a constant,  ’s are the main effects,  are the two-way interactions, and

so on. The sequence is usually truncated somewhere to enhance interpretability. One can assure the
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identifiability of the terms in (7.2) by some side conditions through averaging operators.

Let F be the reproducing kernel Hilbert space (RKHS) corresponding to the decomposition in (7.2).
For the definition of RKHS, see Wahba (1991). Frequently F is a space of functions with a certain

degree of smoothness, e.g., the second order Sobolev space, S2 = { :  0 are absolutely continuous
and 00 ∈ 2 [0 1]} Let H be a function space of functions of  over [0 1] such that H = {1}⊕ H̄ .

Then F is the tensor product space of H ,

F = ⊗=1H = {1}⊕
X

=1

H̄ ⊕
X


¡H̄ ⊗ H̄

¢⊕ · · ·  (7.3)

Each functional component in the SS-ANOVA decomposition (7.2) lies in a subspace in the orthogonal

decomposition (7.3) of ⊗=1H  But in practice the higher-order interactions are usually truncated for

convenience to avoid the curse of dimensionality. In the simplest case where  () = +
P

=1  ()

with  ∈ H̄  the selection of functional components is equivalent to variable selection. In the general

SS-ANOVA models model selection amounts to the selection of main effects and interaction terms in

the SS-ANOVA decomposition. A general expression for the truncated space can be written as

F = {1}⊗ ©⊗=1F
ª

(7.4)

where F1 F are  orthogonal subspaces of F .  =  gives the special case of additive models. When

only main effects and two-way interaction effects are retained, the truncated space has  = (+1)2,

which includes  main effect spaces and  (− 1) 2 two-way interaction spaces.
Denote the norm in the RKHS F by k·k. A traditional smoothing spline type method finds  ∈ F

to minimize
1



X
=1

[ −  ()]
2
+ 

X
=1

−1
°° 

°°2 (7.5)

where   is the orthogonal projection of  onto F and  ≥ 0. If  = 0, the minimizer is taken to
satisfy

°° 
°°2 = 0. The COSSO procedure finds  ∈ F to minimize

1



X
=1

[ −  ()]
2
+ 2 () with  () =

X
=1

°° 
°° (7.6)

where  is a smoothing parameter. The penalty term  () is a sum of RKHS norms, instead of the

squared RKHS norm penalty employed in the smoothing spline.  () is a convex functional, which

ensures the existence of the COSSO estimate. Let ̂ = ̂+
P

=1 ̂ be a minimizer of (7.6)

Lin and Zhang (2006) form F using S2 with squared norm

kk2 =
µZ 1

0

 () 

¶2
+

µZ 1

0

0 () 
¶2
+

µZ 1

0

00 () 
¶2

(7.7)

for each of the H in (7.3). They show that an equivalent expression of (7.6) is

1



X
=1

[ −  ()]
2
+ 0

X
=1

−1
°° 

°°2 + 

X
=1

 subject to  ≥ 0 (7.8)
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for  = 1  , where 0 is a constant and  is a smoothing parameter. The constant 0 can be fixed

at any positive value. For fixed , the COSSO (7.8) is equivalent to the smoothing spline (7.5). From

the smoothing spline literature, it is well known that the solution  has the form

 () =

X
=1

 ( ) + 

where  = (1  )
0
and  =

P
=1  with  being the reproducing kernel of F (the  × 

matrix { ()}=1). Then  () = +1 where 1 is an ×1 vector of ones. The problem
(7.6) can be written as

1



⎛⎝ −
X

=1

− 1

⎞⎠0⎛⎝ −
X

=1

− 1

⎞⎠+ 0

X
=1


0+ 

X
=1

 (7.9)

where  = (1  )
0 and  ≥ 0 for  = 1  . For fixed , (7.9) can be written as

min

( −− 1)

0
( −− 1) + 0

0

Then  and  can be solved as in Wahba (1991). On the other hand, if  and  are fixed, let  = 

and  be the matrix with the th column being  .  that minimizes (7.9) is the solution to

min

( −)

0
( −) + 

X
=1

 subject to  ≥ 0 for  = 1  

or

min

( −)

0
( −)  subject to  ≥ 0  = 1   and

X
=1

 ≤

where  = − (12)0− 1 and  is a positive constant. The tuning parameter can be chosen by

5-fold or 10-fold cross-validation. Lin and Zhang study the theoretical properties such as the existence

and rate of convergence of the COSSO estimator.

In the framework of SS-ANOVA, Zhang and Lin (2006) study the component selection and smooth-

ing for nonparametric regression in the more general setting of exponential family regression, and Leng

and Zhang (2006) study the same issue for a nonparametric extension of the Cox proportional haz-

ard model. The former allows the treatment of non-normal responses, binary and polychotomous

responses, and event counts data. The latter demonstrates great flexibility and easy interpretability

in modeling relative risk functions for censored data.

7.2 Storlie, Bondell, Reich, and Zhang’s (2011) ACOSSO

The oracle properties used before are mainly defined for the finite dimensional parameter in parametric

or semiparametric models. In the context of nonparametric regression, Storlie, Bondell, Reich, and

Zhang (2011) extend this notion by saying a nonparametric regression estimator has the nonparametric

weak (np)-oracle property if it selects the correct subset of predictors with probability tending to one,
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and estimates the regression function at the optimal nonparametric rate. Note that the strong version

of the oracle property requires the estimator should have the asymptotic distribution as the oracle one.

The SS-ANOVA-based COSSO procedure has not been demonstrated to possess the weak np-oracle

property. Instead, it has a tendency to over-smooth the nonzero functional components in order to

set the unimportant functional components to zero. Storlie, Bondell, Reich, and Zhang propose the

adaptive COSSO (ACOSSO) which possesses the weak np-oracle properties.

Like Lin and Zhang (2006), Storlie, Bondell, Reich, and Zhang consider the nonparametric re-

gression model in (7.1) where  = (1 )
0 ∈ X = [0 1]


 ’s are independent of  and are

uniformly sub-Gaussian with zero mean. They obtain their estimate of the function  ∈ F that

minimizes
1



X
=1

[ −  ()]
2
+ 

X
=1



°° 
°° (7.10)

where 0   ≤ ∞ are weights that can depend on an initial estimate of  , e.g., the COSSO estimate

̃ . They suggest the choice

 =
°°°  ̃

°°°−
2

for  = 1  

where
°°°  ̃

°°°
2
= {RX [  ̃ ()]2}12 and   0 The tuning parameter is also chosen via 5-fold or

10-fold cross-validation. Under some regular conditions, they show their estimator possess the weak

np-oracle property when  ∈ F is additive in the predictors so that F = {1} ⊕ F1 ⊕ · · · ⊕ F where
each F is a space of functions corresponding to  

7.3 Bunea’s (2008) consistent selection via the Lasso

Bunea (2008) considers the approximation of the regression function  in (7.1) with elements of a given

dictionary of  functions. Let

Λ =

⎧⎪⎨⎪⎩ ∈ R :

°°°°°° −
X
=1



°°°°°°
2

≤ 
2


⎫⎪⎬⎪⎭
where   0 is a constant depending only on  and  is a positive sequence that converges to

zero. For any  = (1   )
0 ∈ R  let  () denote the index set corresponding to the non-zero

components of  and  () its cardinality. Let ∗ = min { () :  ∈ Λ}  Define

∗ = argmin
∈R

⎧⎪⎨⎪⎩
°°°°°° −

X
=1



°°°°°°
2

: () = ∗

⎫⎪⎬⎪⎭ 

Let ∗ =  (∗) denote the index set corresponding to the non-zero elements of ∗ Note the cardinality

of ∗ is given by ∗ and thus ∗ =
P

∈∗ 
∗
 provides the sparest approximation to  that can be

realized with  ∈ Λ and k∗ − k2 ≤ 
2
  This motivates Bunea to treat ∗ as the target index

set.
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Bunea considers estimating the set ∗ via the 1−penalized least squares. First, he computes

̂ = argmin
∈R

⎧⎨⎩ 1
X
=1

[ −  ()]
2
+ 2

X
=1

 | |
⎫⎬⎭

where  =  kk and kk
2


= −1

P
=1 [ ()]

2
 Let ̂ denote the index set corresponding

to the non-zero components of ̂ He shows that 
³
̂ = ∗

´
→ 1 as →∞ under some conditions in

conjunction with the requirement that ∗ → 0

7.4 Comminges and Dalayan’s (2011) consistent variable selection in high

dimensional nonparametric regression

Comminges and Dalayan (2011) consider the general nonparametric regression model (7.1) where ’s

are assumed to take values in [0 1]

  (|) = 0 

¡
2 |

¢
= 2 and  =  may diverge to the

infinity with  They assume that  is differentiable with a squared integrable gradient and that the

density function  () of  exists and is bounded away from 0 from below. Define the Fourier basis

k () =

⎧⎪⎨⎪⎩
1 if k = 0√
2 cos (2k0) if k ∈ (Z)+√
2 sin (2k0) if − k ∈ (Z)+

where (Z)+ denotes the set of all k =(1  )
0 ∈Z\ {0} such that the first nonzero element of k is

positive Let

Σ =

(
 :

X
k∈Z

  k 
2≤  ∀ ∈ {1  }

)
where  · ·  stands for the scalar product in 2 ([0 1]


;R)  i.e.,  

R
[01]

 ()  ()  for any

  ∈ 2 ([0 1]

;R)  Comminges and Dalayan assume that the regression function  belongs to Σ

and for some  ⊂ {1  } of cardinality ∗ ≤   () = ̄ () for some ̄ : R|| → R, and it holds

that

 [ ] ≡
X

k: 6=0
k [ ]

2 ≥  ∀ ∈ 

where k [ ] = k   Clearly,  refers to the sparsity pattern of  and  [ ] = 0 if  ∈ 

The Fourier coefficients k [ ] can be estimated by their empirical counterparts

̂k =
1



X
=1

k ()

 ()
 k ∈Z

Let  = {k ∈Z : kkk2 ≤  kkk0 ≤ } and  (∗ ) =Card{k ∈Z∗ : kkk22 ≤ ∗ 1 6= 0} where
 ∈ N and   0 Note that if  ∈  then k [ ] = 0 for every k such that  6= 0 and if  ∈  then

there exists k ∈Z with  6= 0 such that |k [ ]|  0 Comminges and Dalayan define their estimator

of  by

̂ () =

½
 ∈ {1  } : max

k∈∗ : 6=0

¯̄̄
̂k

¯̄̄
 

¾

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They show that 
³
̂ () 6= 

´
≤ 3 (6)

−∗
under some regularity conditions related to  (∗ )

and ( ∗ )  It is possible for ∗ to be either fixed or tend to the infinity as →∞ Unfortunately,

Comminges and Dalayan deliberately avoid any discussion on the computational aspects of the variable

selection and focus exclusively on the consistency of variable selection without paying any attention

to the consistency of regression function estimation. Two problems have to be addressed in order to

implement their procedure, namely, the estimate of the typically unknown density function  and the

determination of ∗

7.5 Bertin and Lecué’s (2008)

Bertin and Lecué (2008) consider the nonparametric regression model (7.1) where ’s are i.i.d. Gaussian

random variables with variance 2 and independent of ’s, and  is the unknown regression function.

Suppose the nonparametric regression function  satisfies a sparseness condition:

 () = ̄ (R) (7.11)

where R = ( :  ∈ R), R ⊂ {1  } is a subset of  covariates, of size ∗ = |R|   Obviously,

R denotes the set of relevant variables. They are interested in the pointwise estimation of  at a

fixed point  = (1  )
0
and the construction of some estimate ̂ having the smallest pointwise

integrated quadratic risk [̂ ()−  ()]2

Assume  to be -Holderian around  with   0, denoted by  ∈ Σ ( ). A function  : R → R

is -Holderian at point  with   0 if ()  is -times differentiable in  ( = bc); and () there
exists   0 such that for any  = (1  ) ∈ ∞ ( 1) (the unit ∞-ball of center  and radius

1), | ()−  () ( )| ≤  k− k1 , where  () (· ) is the Taylor polynomial of order  associated
with  at point . Assume that there exists a subset of  = {1  ∗} ⊂ {1  } such that

 (1  ) = ̄(1   ∗ )

That is, the “real” dimension of the model is not  but ∗. Bertin and Lecué’s goal is twofold: ()

determine the set of indices  = {1  ∗}  and () construct an estimator of  () that converges
at rate −2(2+

∗) which is the fastest convergence rate when  ∈ Σ ( ) and the above sparsity
condition is satisfied.

To determine the set of indices, based on the principle of local linear regression, they consider the

following set of vectors

Θ̄1 () = argmin
∈R+1

⎧⎨⎩ 1



X
=1

"
 − 

µ
 − 



¶0


#2


µ
 − 



¶
+ 2 kk1

⎫⎬⎭
where  () = (1 1  )

0
for any  = (1  )

0
  = (0 1  )  kk1 =

P
=0 | |,  is a

bandwidth, and  (·) is symmetric kernel function. The 1 penalty makes the solution vector Θ̄ ()
sparse and then selects the variables locally. Another selection procedure, which is close to the previous
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one but requires less assumption on the regression function, is given by

Θ̄2 () = argmin
∈R+1

⎧⎨⎩ 1



X
=1

"
 + max + − 

µ
 − 



¶0


#2


µ
 − 



¶
+ 2 kk1

⎫⎬⎭
where   0 is a constant, max  0 and | ()| ≤ max Here, the response variable  is translated

by max + .

Let ̂1 and ̂2 be the subset of indices selected by the above procedures for a given . Based on

these sets of indices, Bertin and Lecué consider a local polynomial regression of degree  = bc by
regressing  on the selected variables. Under different conditions on function  , they show that ̂1 = 

or ̂2 =  with a probability approaching 1, and for ̂2 the local polynomial estimate in the second

step can achieve the fastest convergence rate under some conditions. The selection is proved to be

consistent when ∗ =  (1) but  is allowed to be as large as log up to a multiplicative constant.

7.6 Lafferty and Wasserman’s (2008) Rodeo procedure

Lafferty and Wasserman (2008) presented a greedy method for simultaneously preforming local band-

width selection and variable selection in the nonparametric regression model (7.1) where ’s are i.i.d.

Gaussian random variables with zero mean and variance 2. Suppose the nonparametric regression

function  satisfies a sparseness condition in (7.11) with ∗ = |R| ¿ . Without loss of generality, we

assume that R = (1  ∗)
0
so that the last − ∗ elements in  are irrelevant. Based on the idea

that bandwidth and variable selection can be simultaneously performed by computing the infinitesimal

change in a nonparametric estimator as a function of smoothing parameters, Lafferty and Wasserman

propose the general framework for the regularization of derivative expectation operator (Rodeo).

The key idea is as follows. Fix a point  and let ̂ () be an estimator of  () based on a vector

of smoothing parameters  = (1  )
0. Let  () = [̂ ()]. Assume that  =  is one of the

observed data points and ̂0 () = . In this case,  () =  (0) =  (). If  = ( () : 0 ≤  ≤ 1)
is a smooth path through the set of smoothing parameters with  (0) = 0 and  (1) = 1 (or any other

fixed large bandwidth). Then

 () =  (0) =  (1) +  (0)−  (1)

=  (1)−
Z 1

0

 ( ())




=  (1)−
Z 1

0

 ( ())
0
̇ () 

where  ( ()) = ∇ () =
³

1

  


´0
and ̇ () =

()


. Noting that an unbiased estimator of

 (1) is ̂1 (), an unbiased estimator of  () is

 () =

Ã
̂ ()

1
 

̂ ()



!0

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The naive estimator

̂ () = ̂1 ()−
Z 1

0

 ( ())
0
̇ () 

is equal to ̂0 () = , which is a poor estimator because of the large variance of  () for small .

Nevertheless, the sparsity assumption on  suggests that  () is also sparse for some paths. Then

using an estimator ̂ () which uses the sparsity assumption yields the following estimate of  ()

̃ () = ̂1 ()−
Z 1

0

̂ ( ())
0
̇ () 

The implementation of such an estimator requires us to find a path for which the derivative  () is

also sparse, and then take advantage of this sparseness when estimating  () along that path.

A key observation is that if  is irrelevant in  then changing the bandwidth  should cause only

a small change in ̂ ()  Conversely, if  is relevant in  then changing  should cause a large change

in ̂ ()  Thus  () = ̂ ()  should discriminate between relevant and irrelevant covariates.

Let  ∈ H =
©
0 0 

20 
ª
for some  ∈ (0 1)  A greedy version of estimator of  ()  the th

element of  ()  would set ̂ () = 0 when   ̂  where ̂ is the first  such that | ()|   ()

for some threshold  where  =  for a scalar  means  = (  )
0
 a × 1 vector. That is

̂ () =  ()1 (| ()|   ()) 

This greedy version, coupled with the hard threshold estimator, yields ̃ () = ̂
̂
() where ̂ =

(̂1  ̂)
0 This is a bandwidth selection procedure based on testing.

For local linear regression, Lafferty and Wasserman give explicit expressions for  ()  The local

linear estimator of  () by using kernel  and bandwidth  = (1  )
0 is given by

̂ () =

X
=1

 (  )

where  (  ) = 01 (
0
)

−1
Ã

1

− 

!
 (− ) is the effective kernel, 1 = (1 0  0)

0
,

 () = (1)
−1

 (11  )   is an  × (+ 1) matrix whose th row is given by

(1 ( − )0), and  is a diagonal matrix with ( )-element  ( − )  In this case,

 () =
̂ ()


=

X
=1

 (  )




Lafferty and Wasserman derive the explicit expression for  (  )  and  ()  Let

 = Var ( () |1 ) = 2
X
=1

µ
 (  )



¶2


They illustrate how to perform the Rodeo via the hard thresholding as follows:

1. Select a constant  ∈ (0 1) and the initial bandwidth 0 =  log log
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2. Initialize the bandwidths, and activate all covariates: ()  = 0 for  = 1   and ()

A = {1 2  } 

3. While A is nonempty, for each  ∈ A: () compute  and  ; () compute threshold value

 = 
√
2 log; and () if | |  , reassign select  to  ; otherwise remove  from A.

4. Output the bandwidth ∗ = (1  ) and estimator ̃ () = ̂∗ ().

Under some conditions, the Rodeo outputs bandwidths ∗ that satisfies  (∗ = 0 for all  

∗)→ 1 where recall  ’s are irrelevant variables for all   ∗ In particular, the Rodeo selection is

consistent when  =  (log log log) and its estimator achieves the near optimal minimax rate of

convergence while ∗ does not increase with  Lafferty and Wasserman explain how to estimate 2

used in the definition of   and obtain other estimators of  () based on the soft thresholding.

7.7 Miller and Hall’s (2010) LABAVS in local polynomial regression

Miller and Hall (2010) propose a flexible and adaptive approach to local variable selection using local

polynomial regression. The key technique is careful adjustment of the local regression bandwidths

to allow for variable redundancy. They call their method as LABAVS, standing for “locally adaptive

bandwidth and variable selection”. The model is as given in (7.1). They consider the local poly-

nomial estimation of  at a fixed point  Let  =diag
¡
21  

2


¢
 Let  () = Π


=1 () be the

-dimensional rectangular kernel formed from a univariate kernel  with support on [−1 1] such as the
tricubic kernel:  () = (3532)

¡
1− 2

¢3
1 (|| ≤ 1)  Let  () = ||−12 ¡

−12
¢
 We write

 () when  varies as a function of  Asymmetric bandwidths are defined as having a lower and an

upper diagonal bandwidth matrix,  and   respectively, for a given estimation point  The ker-

nel weight of an observation  at an estimation point  with asymmetrical local bandwidth matrices

 () and  () is given by

() () ( − ) = Π
:

 ()
−1



Ã
 − 

 ()

!
× Π

:≥
 ()

−1


Ã
 − 

 ()

!


which amounts to having possibly different window sizes above and below  in each direction.

Miller and Hall’s LABAVS algorithm works as follows:

1. Find an initial bandwidth matrix  =diag
¡
2  2

¢


2. For each point  of a representative grid in the data support, perform local variable selection to

determine disjoint index sets ̂+ () and ̂− () for variables that are considered relevant and

redundant, respectively. Note that ̂+ ()∪ ̂− () = {1  } 

3. For any given  derive new local bandwidth matrices  () and  () by extending the

bandwidth in each dimension indexed in ̂− ()  The resulting space given nonzero weight by

the kernel () () (− ) is the rectangle of maximal area with all grid points 0 inside

the rectangle satisfying ̂+ (0) ⊂ ̂+ () where ̂+ () is calculated explicitly as in Step 2, or

taken as the set corresponding the closet grid point to 
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4. Shrink the bandwidth slightly for those variables in ̂+ () according to the amount that band-

widths have increased in the other variables.

5. Compute the local polynomial estimate at  excluding variables in ̂− () and using adjusted

asymmetrical bandwidths  () and  ()  For example, in the local linear regression case,

one chooses  and  to minimize

X
=1

[ − − 0 ( − )]
2
() () ( − ) 

Steps 2 and 4 of the above algorithm are referred to as the variable selection step and variable

shrinkage step, respectively. Miller and Hall suggest three possible ways to select variables at  in Step

2, namely, hard thresholding, backwards stepwise approach, and local Lasso. Let

̄ =

P
=1() ( − )P
=1() ( − )

 and ̄ =

P
=1 () ( − )P
=1() ( − )



which are the local standardization of the data at point  Let ̃ =
¡
 − ̄

¢ £
() ( − )

¤12


and ̃ =
(−̄)[()(−)]12

=1(−̄)

2
()(−)

12  In the local linear regression case, the hard thresholding
method chooses parameters to minimize the weighted least squares

X
=1

⎡⎣̃ − 0 −
X

=1

̃

⎤⎦2 
and classifies as redundant variables for which

¯̄̄
̂

¯̄̄
  for some tuning parameter  where (̂0  ̂)

is the solution to the above minimization problem. The variable shrinkage step and Step 3 are fairly

complicated and computationally demanding. We refer the readers directly to Miller and Hall (2010)

who also compare their approach with other local variable selection approaches in Bertin and Lecué

(2008) and Lafferty and Wasserman (2008). They establish the strong oracle property for their esti-

mator.

8 Variable Selection in semiparametric/nonparametric Quan-

tile Regression

As a generalization of least absolute deviation regression (LADR), quantile regression (QR) has at-

tracted huge interest in the literature and has been widely used in economics and finance; see Koenker

(2005) for an overview. To select the significant variables is an important problem for QR. Many

procedures have been proposed. Koenker (2004) applies the Lasso penalty to mixed-effects linear QR

model for longitudinal data to shrink the estimator of random effects. Wang, Li and Jiang (2007) con-

sider linear LADR with the adaptive Lasso penalty. Zou and Yuan (2008) propose a model selection

procedure based on composite linear QRs. Wu and Liu (2009) consider the SCAD and adaptive Lasso
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in linear QR models. Belloni and Chernozhukov (2011a) consider 1-penalized or post-1-penalized QR

in high-dimensional linear sparse models. Liang and Li (2009) propose penalized QR (PQR) for PLMs

with measurement error by using orthogonal regression to correct the bias in the loss function due to

measurement error. Koenker (2011) considers the additive models for QR which include both paramet-

ric and nonparametric components. Kai, Li, and Zou (2011) consider efficient estimation and variable

selection for semiparametric varying-coefficient PLM using composite QR. Lin, Zhang, Bondell, and

Zou (2012) consider variable selection for nonparametric QR via SS-ANOVA. In this section, we focus

on reviewing variable selection in semiparametric/nonparametric QR models.

8.1 Liang and Li’s (2009) penalized quantile regression for PLMs with mea-

surement error

Liang and Li (2009) consider the PLM in (4.1) when  is measured with additive error:

 =  +  (8.1)

where  is the measurement error with mean zero and unknown covariance Σ and  is independent

of (  ). They propose a penalized quantile regression (PQR) based on the orthogonal regression.

That is, the objective function is defined as the sum of squares of the orthogonal distances from the

data points to the straight line of regression function, instead of residuals from the classical regression.

He and Liang (2000) apply the idea of orthogonal regression for QR for both linear and partially

linear models with measurement error, but do not consider the variable selection problem. Liang

and Li further use the orthogonal regression method to develop a PQR procedure to select significant

variables in the PLMs.

To define orthogonal regression for QR with measurement error, it is assumed that the random

vector ( 
0
)
0 follows an elliptical distribution with mean zero and covariance matrix 2Σ where 2

is unknown, and Σ is a block diagonal matrix with (1 1)-element being 1 and the last ×  diagonal

block matrix being  Liang and Li assume  is known but discuss that it can be estimated with

partially replicated observations in practice.

Let  () =  ( − 1(  0))  Note that the solution to minimizing  ( − ) over  ∈ R is the
th quantile of  Liang and Li define the PQR objective function to be of the form

 () =

X
=1



Ã
̂ − ̂ 0

p
1 + 0

!
+ 

X
=1


¡| |¢ (8.2)

where ̂ =  − ̂ () and ̂ = − ̂ () using the notation defined in Section 4.5, and  (·)
is a penalty function with tuning parameter   He and Liang (2000) propose the QR estimate of 

by minimizing the first term in (8.2) and also provide insights for this. Compared with the PLS in

Section 4.5, the PQR uses the factor
p
1 + 0 to correct the bias in the loss function due to the

presence of measurement error in  Liang and Li establish the oracle property for the PQR estimator

by assuming  is fixed.
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8.2 Koenker’s (2011) additive models for quantile regression

Koenker (2011) considers models for conditional quantiles indexed by  ∈ (0 1) of the general form

| ( | ) =  0
0 +

X
=1

 ()  (8.3)

where  is a  × 1 vector of regressors that enter the conditional quantile function linearly, and
the nonparametric component ’s are continuous functions, either univariate or bivariate. Let  =

(1  )
0
be a vector of functions. Koenker proposes to estimate these unknown functions and 0 by

solving

min
()

X
=1



⎛⎝ − 0
 −

X
=1

 ()

⎞⎠+ 0 kk1 +
X

=1

 (∇) (8.4)

where  () is defined as above, kk1 =
P

=1 || and  (∇) denotes the total variation of the deriv-
ative or gradient of the function  . For  with absolutely continuous derivative 

0, the total variation

of 0 : R→ R is given by  (0 ()) =
R |00 ()|  while for  : R2→ R,  (∇) = R °°∇2 ()°° 

where k·k is the usual Hilbert-Schmidt norm for matrices and ∇2 () denotes the Hessian of  (). The
Lasso penalty kk1 leads to a sparse solution for parametric component and then select the nonzero
parametric components.

To select the tuning parameter , Koenker proposes an SIC-like criterion

 () =  log ̂ () +
1

2
 () log

where ̂ () = −1
P

=1  ( − ̂ ( )), and  () is the effective dimension of the fitted model

 ( ) =  0
̂ +

X
=1

̂ () 

where  is a collection of  ’s. For linear estimator  () is defined as the trace of a pseudo projection

matrix, which maps observed response into fitted values. In general form,

 () = div (̂) =

X
=1

̂ ( )




He proposes some methods to obtain the pointwise and uniform confidence bands for the estimate of

nonparametric components but does not study the theoretical properties of the above variable selection

procedure.

8.3 Kai, Li, and Zou’s (2011) composite quantile regression

Kai, Li, and Zou (2011) consider the following varying coefficient partial linear models

 = 0 () + 0
α () + 0β +  (8.5)

where (  )   = 1   are i.i.d., 0 (·) is a baseline function of scalar random variable ,

α (·) = {1 (·)   1 (·)}0 consists of 1 unknown varying coefficient functions, β =
¡
1  2

¢0
is a
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2-dimensional coefficient vector and  is random error with zero mean and CDF  (·). They assume
that  is independent of  and 

Note that the th conditional quantile function of  given ( ) = (  ) is

 (  ) = 0 () + 0α () + 0β + 

where  = −1 (). All quantile regression estimates (α̂ () and β̂ ) estimate the same target

quantities (α () and β) with the optimal rate of convergence. Therefore, they consider combining the

information across multiple quantile estimates to obtain improved estimates of α () and β, which leads

to the composite quantile regression (CQR) proposed by Zou and Yuan (2008). Let  = ( + 1),

 = 1   for a given . The CQR estimates of 0 (·), α (·) and β are obtained by minimizing the
following CQR loss function

X
=1

X
=1

 ( − 0 ()− 0
α ()−  0β) 

Noting that  (·) are unknown for  = 0 1  1, but they can be approximated locally by linear

functions:  () ≈  () + 0 () ( − ) =  +  ( − ) when  lies in the neighborhood of .

Then let {ã0 ̃0 ã b̃ β̃} be the minimizer of the local CQR function defined by
X

=1

X
=1

 { − 0 − 0 ( − )− 0
 [a+ b ( − )]− 0} ( − ) 

where  () =  ()  with  and  being the kernel and bandwidth, respectively, a0 =

(01  0)
0
 a =(1  1)

0
 b =(1  1)

0
 and ã0 = (̃01  ̃0)

0
, and we have suppressed the

dependence of these estimates on  Initial estimates of 0 () and α () are then given by

̃0 () =
1



X
=1

̃0 and α̃ () = ã

Given these initial estimates, the estimate of β can be refined by

β̂ = argmin


X
=1

X
=1

 [ − ̃0 ()− 0
ã ()−  0β]

which is called the semi-CQR estimator of β. Given β̂, the estimates of the nonparametric parts can

be improved by the following minimization problem

min
a00,ab

X
=1

X
=1



h
 −  0β̂ − 0 − 0 ( − )− 0

 [a+ b ( − )]
i
 ( − ) 

In view of the fact that variable selection is a crucial step in high-dimensional modeling, Kai, Li,

and Zou focus on the selection of nonzero components in the vector β of parametric coefficients. Let

 (·) be a penalty function with tuning parameter . The penalized loss function is
X

=1

X
=1

 ( − ̃0 ()− 0
α̃ ()− 0β) + 

2X
=1


¡¯̄

¯̄¢

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Note that the objective function is nonconvex and both loss function and penalty parts are nondif-

ferentiable. They propose to follow the one-step sparse estimate scheme in Zou and Li (2008) to

derive a one-step sparse semi-CQR estimator. First, they obtain the unpenalized semi-CQR estimator

β̂
(0)
= (̂

(0)

1   ̂
(0)

2
)0. Then they define

 (β) =

X
=1

X
=1

 ( − ̃0 ()− 0
α̃ ()− 0β) + 

2X
=1

0
³¯̄̄
̂
(0)



¯̄̄´ ¯̄

¯̄


They call β̂


() = argmin  (β) as one-step sparse semi-CQR estimator.

Under some conditions, they show that β̂


enjoys the oracle property and the property holds

for a class of concave penalties. To choose the tuning parameter , a BIC-like criterion is proposed as

follows

 () = log

"
X

=1

X
=1



³
 − ̂0 ()− 0

α̂ ()− 0β̂


()
´#
+
log




where  is the number of nonzero coefficients in the parametric part of the fitted models. They

propose to use ̂ = argmin () as the tuning parameter.

8.4 Lin, Zhang, Bondell and Zou’s (2012) sparse nonparametric quantile

regression

Lin, Zhang, Bondell and Zou (2012) adopt the COSSO-type penalty to develop a new penalized

framework for joint quantile estimation and variable selection. In the framework of SS-ANOVA, a

function  () = 
¡
(1)  ()

¢
has the ANOVA decomposition in (7.2). The entire tensor-product

space for estimating  () is given in (7.3). But in practice the higher-order interactions are usually

truncated for convenience to avoid the curse of dimensionality. (7.4) gives a general expression for

truncated space. Using the notation defined in Section 7.1, the regularization problem of joint variable

selection and estimation is defined by

min


1



X
=1

 ( −  ()) + 

X
=1



°° 
°°
F

where   is the projection of  on F , the penalty function penalize the sum of component norms, and

 ∈ (0∞) is weight. In principle, smaller weights are assigned to important function components
while larger weights are assigned to less important components. This is in the same spirit of the

adaptive Lasso and adaptive COSSO. They also propose to construct the weight  ’s from the data

adaptively:

−1 =
°°°  ̃

°°°
2

=

(
−1

X
=1

h
  ̃ ()

i2)12
for  = 1  

where ̃ is a reasonable initial estimator of  say the kernel quantile regression (KQR) estimator of

Li, Liu, and Zhu (2007) which is obtained by penalizing the roughness of the function estimator using
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its squared functional norm in a RKHS. That is, the KQR solves the regularization problem

min
∈H

1



X
=1

 ( −  ()) +


2
kk2H

where H is a RKHS and k·kH
is the corresponding function norm.

An equivalent expression of the above optimization problem is

min


1



X
=1

 ( −  ()) + 0

X
=1

2 
−1


°° 
°°2
F s.t.

X
=1

 ≤ ,  ≥ 0

where both 0 and  are smoothing parameters. Lin, Zhang, Bondell and Zou show that the solution

has the following structure

̂ () = ̂+

X
=1

̂

X
=1

̂

2
 ( )

where ĉ = (̂1  ̂)
0 ∈ R, ̂ ∈ R, and  ( ) is the reproducing kernel of subspace F . Let R

be the  ×  matrix with ( )-th element 
 =

P
=1

2
 
−1
  (). Let c =(1  )

0
and

θ = (1  )
0
 The objective function becomes

min
c

1



X
=1



Ã
 − −

X
=1





!
+ 0c

0Rc s.t.

X
=1

 ≤  ≥ 0

An iterative optimization algorithm is proposed to solve the above problem.

1. Fix , solve ( c) by

min
c

1



X
=1



Ã
 − −

X
=1





!
+ 0c

0Rc;

2. Fix ( c), solve  by

min


1



X
=1



⎛⎝ ∗ −
X

=1



⎞⎠+ 0c
0Gθ s.t.

X
=1

 ≤  ≥ 0

where  ∗ =  − , and  is the ( )-th element of ×  matrix G =
¡
−21 1c  

−2
 c

¢


The optimization problems in Steps 1-2 can be cast into quadratic programming and linear pro-

gramming problems, respectively. So both can be solved using standard optimization softwares. A

SIC-like criterion is proposed to select the tuning parameter. However the theoretical properties of the

new variable selection procedure are not discussed.

9 Concluding Remarks

In this chapter we survey some of the recent developments on variable selections in nonparametric

and semiparametric regression models. We focus on the use of Lasso, SCAD, or COSSO-type penalty
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for variable or component selections because of the oracle property of the SCAD and the adaptive

versions of Lasso and COSSO. The oracle property has been demonstrated for some of the variable

selection procedures but not for others (e.g., variable selection in nonparametric/semiparametric QR).

It is interesting to develop variable selection procedures with the oracle property for some of the

models reviewed in this chapter. In addition, the i.i.d. assumption has been imposed in almost all

papers in the literature. It is important to relax this assumption to allow for either heterogeneity

or serial/spatial dependence in the data. More generally, one can study variable selection for more

complicated semiparametric/nonparametric models via shrinkage.

Despite the huge literature on Lasso or SCAD type techniques in statistics, we have seen very few

developments of them in econometrics until 2009. Almost all of the works on variable selection in

statistics are based on the assumption that the regressors are uncorrelated with or independent of the

error terms, namely, they are exogenous. However, in economic applications there are many examples in

which some covariates are endogenous due to measurement error, omitted variables, sample selection,

or simultaneity. The endogeneity causes inconsistent estimate by the PLS method and misleading

statistical inference and one has to resort to instrumental variables (IVs) to handle this problem.

Caner (2009) seems to be the first published paper to address this issue through shrinkage GMM

estimation. Since then we have observed a large literature on the use of Lasso or SCAD type techniques

in econometrics to cope with endogeneity in parametric models. They fall into three categories. The

first category focuses on selection of covariates or parameters in the structural equation, see Caner

(2009), Caner and Zhang (2009), and Fan and Liao (2011, 2012). Caner (2009) considers covariate

selection in GMM with Bridge penalty when the number of parameters is fixed; Caner and Zhang

(2009) study covariate selection in GMM via adaptive elastic-net estimation by allowing the number

of parameters to diverge to infinity; Fan and Liao (2011) consider variable selection with endogenous

covariates in ultra high-dimensional regressions via penalized GMM and penalized empirical likelihood

(EL); Fan and Liao (2012) propose a penalized focused GMM (FGMM) criterion function to select

covariates. The second category focuses on the selection relevant IVs (or deletion of irrelevant/weak

IVs); see Belloni, Chernozhukov, and Hansen (2010), Caner and Fan (2011), and García (2011). Belloni,

Chernozhukov, and Hansen (2010) introduce a heteroskedasticity-consistent Lasso-type estimator to

pick optimal instruments among many of them. Caner and Fan (2011) use the adaptive Lasso to

distinguish relevant and irrelevant/weak instruments in heteroskedastic linear regression models with

fixed numbers of covariates and IVs. García (2011) proposes a two stage least squares (2SLS) estimator

in the presence of many weak and irrelevant instruments and heteroskedasticity. The third category

focuses on the selection both covariates and valid IVs; see Liao (2011) and Gautier and Tsybakov

(2011). Liao (2011) considers the selection of valid moment restrictions via adaptive Lasso, Bridge and

SCAD, and the selection of group variables and group valid moment restrictions via adaptive group

Lasso when the number of parameters is fixed. Gautier and Tsybakov (2011) extend the Dantzig

selector of Candès and Tao (2007) to the linear GMM framework and propose a new procedure called

self tuning instrumental variable (STIV) estimator for the selection of covariates and valid IVs when

the number of covariates/parameters can be larger than the sample size. Nevertheless, none of these

works address the issue of flexible functional form. It is interesting to consider variable selection for
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semiparametric or nonparametric models with endogeneity. Sieve estimation or local GMM estimation

via shrinkage seems to be a very promising field to delve into.
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