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Abstract

Motivated by the first differencing method for linear panel data models, we propose a class of

iterative local polynomial estimators for nonparametric dynamic panel data models with or without

exogeous regressors. The estimators utilize the additive structure of the first-differenced model, the

fact that the two additive components have the same functional form, and the unknown function of

interest is implicitly defined as a solution of a Fredholm integral equation of the second kind. We

establish the uniform consistency and asymptotic normality of the estimators. We also propose a

consistent test for the correct specification of linearity in typical dynamic panel data models based

on the L2 distance of our nonparametric estimates and the parametric estimates under the linear

restriction. We derive the asymptotic distributions of the test statistic under the null hypothesis

and a sequence of Pitman local alternatives, and prove its consistency against global alternatives.

Simulations suggest that the proposed estimators and tests perform well in finite samples. We apply

our new methods to study the relation between economic growth, initial economic condition and

capital accumulation and find the nonlinear relation between economic growth and initial economic

condition.
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1 Introduction

There exists an enormous literature on parametric (often linear) panel data models; see the books by

Arellano (2003), Hsiao (2003), and Baltagi (2008) for an excellent overview. Nevertheless, the parametric

functional forms may be misspecified and estimators based on misspecified models are often inconsistent

and thus invalidate subsequent statistical inferences. For this reason, we also observe a rapid growth

of the literature on nonparametric (NP) and semiparametric (SP) panel data models in the last two

decades. See Su and Ullah (2011) for a recent survey on this topic.

To the best of our knowledge, there lacks satisfactory development in NP or SP dynamic panel data

models where a lagged dependent variable enters the nonparametric component instead of a parametric

(usually linear) component of the models. For NP panel data models with fixed effects, the main focus

has been on the model

Yit = m (Xit) + αi + εit, (1.1)

i = 1, ..., N, t = 1, ..., T, where the functional form of m (·) is not specified, the covariate Xit is of d× 1
dimension, and αi is a fixed effect that can be correlated with Xit, and εit’s are idiosyncratic error

terms. Motivated by the first differencing method for linear panel data models, one can consider the

following first-differenced model

∆Yit = m (Xit)−m (Xi,t−1) +∆εit (1.2)

where∆Yit ≡ Yit−Yi,t−1 and∆εit ≡ εit−εi,t−1. Li and Stengos (1996) suggest estimatingm(Xit,Xi,t−1)

≡ m(Xit) − m(Xi,t−1) by first running a local linear regression of ∆Yit on Xit and Xi,t−1, and then

obtaining estimates of m(·) by standard methods of estimating nonparametric additive models, e.g.,
by the marginal integration method of Linton and Nielson (1995) or by the backfitting method (e.g.,

Opsomer and Ruppert (1997), and Mammen, Linton and Nielsen (1999)). Apparently, this method

suffers from the “curse of dimensionality” problem because the first step local linear regression involves

estimating a 2d-dimensional nonparametric object, and it does not utilize the fact that the two additive

components share the same functional form. In view of this, Baltagi and D. Li (2002) obtain consistent

estimators of m(·) by considering the first differencing method and using series approximation for the
nonparametric component.1 Also based on the difference model in (1.2), Henderson, Carroll and Li

(2008) introduce an iterative nonparametric kernel estimator of m (·) and conjecture its asymptotic bias
and variance and asymptotic normality. The crucial assumptions in this latter paper include: 1) εit’s

are independent and identically distributed (IID) across both i and t, and are independent of Xit, and

2) there exists a consistent initial estimator. More recently, Lee (2010) considers the sieve estimation of

(1.1) whenXit = Yi,t−1 via within-group transformation. That is, he considers the following transformed

model

Yit − T−1
TX
s=1

Yis = m (Yi,t−1)− T−1
TX
s=1

m (Yi,s−1) + εit − T−1
TX
s=1

εis (1.3)

1Both Li and Stengos (1996) and Baltagi and D. Li (2002) consider a more general model, namely, a partially linear

model.
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and approximate the unknown smooth function m (·) by some basis functions. Under the assumption
that limN,T→∞N/T = κ ∈ (0,∞) , he finds that the series estimator is asymptotically biased. So he
proposes a bias-corrected series estimator and establishes its asymptotic normality.

Another method that is adopted to estimate the model in (1.1) is based on the profile likelihood

or least squares method in the statistical literature. For example, Su and Ullah (2006a) propose to

estimate the unknown function by profile least squares under the identification condition
PN

i=1 αi = 0,

which boils down to a local linear analogue of the least squares dummy variable (LSDV) estimator for

typical linear panel data models. Under the weaker identification condition that E(αi) = 0, Li and

Sun (2011) propose to mimic the parametric LSDV estimation method by removing the fixed effects

nonparametrically and establish the asymptotic normality of their estimator under the assumption that

εit are independent of αj and E(εit|X ) = 0 for all i, j and t where X ={Xjs, j = 1, ..., N, s = 1, ..., T},
and that T →∞ sufficiently fast as N →∞.

In addition, it is worth mentioning that there are also some studies on semiparametric panel data

models that include the model in (1.1) as a special case. One example is the paper by Sun, Carroll

and Li (2009) who consider the local linear estimation of the varying coefficient panel data models with

fixed effects

Yit = Z0itθ (Xit) + αi + εit, i = 1, ..., N, t = 1, ..., T, (1.4)

where the idiosyncratic error terms εit are independent of Xjs, Zjs and αj for all i,j, t, and s. Note that

this model reduces to (1.1) when Zit ≡ 1. Obviously, they do not allow Yi,t−1 to enter Xit. Another

example is the partially linear panel data models with fixed effects: Baltagi and Q. Li (2002) propose

a semiparametric instrumental variable estimator for estimating a partially linear dynamic panel data

models; Qian andWang (2011) consider the marginal integration estimator of the nonparametric additive

component resulting from the first differencing of a partially linear panel data model. Unfortunately,

none of these models allow the lagged dependent variable to enter the nonparametric component. In

addition, Mammen, Støve and Tjøstheim (2009) consider the consistent estimation of nonparametric

additive panel data models with time effects or with both time and individual effects via backfitting.

But they only establish the asymptotic normality of the resulting estimator in the presence of time

effects only.

In this paper, we propose an iterative kernel estimation of nonparametric dynamic models of the

form

Yit = m (Yi,t−1,Xit) + αi + εit, i = 1, ..., N, t = 1, ..., T, (1.5)

where Xit is a d×1 vector of regressors, m (·, ·) is an unknown but smooth function defined on Rd+1, αi’s
are the individual-specific fixed effects, and εit’s are idiosyncratic error terms. Let Xit ≡ (X 0

it, ...,X
0
i1)

0

and Y i,t−1 ≡
¡
Y 0
i,t−1, ..., Y

0
i1

¢0
.We assume that E

¡
εit|Y i,t−1,Xit

¢
= 0 and consider the first-differenced

model

∆Yit = m (Yi,t−1,Xit)−m (Yi,t−2,Xi,t−1) +∆εit. (1.6)

Apparently, (1.6) has a simple additive structure. But it is different from the typical additive models

in two aspects. First, the error term ∆εit forms a moving average process of order 1 [MA(1)] and is
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correlated with the regressor Yi,t−1 in general. Second, the two additive components in (1.6) share the

same functional form. The first observation indicates that the traditional kernel estimation based on

either marginal integration or backfitting method does not yield a consistent estimator of m (·, ·) . The
second observation, in conjunction with the fact that E [∆εit|Yi,t−2,Xi,t−1] = 0, implies that m (·, ·)
implicitly solves a Fredholm integral equation of the second kind [see (2.7) in Section 2.1], so that we

can propose a simple local polynomial regression-based iterative estimator for it.

Under fairly general conditions which allow nonstationarity of (Yi,t−1,Xit, εit) along the time dimen-

sion and conditional heteroskedasticity among εit, we establish the uniform consistency of the proposed

estimator over a compact set and study its asymptotic normality by passing the cross sectional unit N

to ∞ and holding the time dimension T as a fixed constant as in typical micro panel data models. We

also remark that under some suitable conditions, one can plug our estimate of m (Yi,t−1,Xit) into (1.6)

to obtain a new estimate of m (·) to achieve certain “oracle” properties.
Based on our kernel estimator, we also propose a test for the correct specification of linear dynamic

panel data models. There have been various specification tests for parametric panel data models in

the literature; see Hausman (1978), Hausman and Taylor (1981), Arellano (1990), Arellano and Bond

(1991), Li and Stengos (1992), Metcalf (1996), Baltagi (1999), Fu, Li and Fung (2002), Inoue and Solon

(2006), Okui (2009), among others. Nevertheless, none of these tests are designed to check the correct

specification of linearity in the panel data models. Recently, Lee (2011) proposes a class of residual-based

specification tests for linearity in dynamic panel data models by characterizing the correct specification

of linearity as the martingale difference property of the error terms in the model and extending the

generalized spectral analysis of Hong (1999) to dynamic panel data models. To eliminate the problem

of incidental parameters, she focuses on dynamic panel data models with both large N and large T. So

her test can not be applied to typical micro panel data where T is usually small.

In this paper, we consider a specification test for the linearity of a dynamic panel data model when N

is large and T is small/fixed. Under the null hypothesis of correct specification of linear dynamic panel

data models, various methods can be called upon to estimate the unknown parameters in the linear

regression model. Under the alternative, the functional form of the regression model is left unspecified

as in (1.5) and one can estimate the unknown function by using the method proposed in this paper. We

base our test statistic on the L2 distance between the two functional estimates in the spirit of Härdle and

Mammen (1993), and study its asymptotic properties under the null hypothesis, a sequence of Pitman

local alternatives, and global alternatives.

We use Monte Carlo simulations to examine the finite sample performance of our estimators and

tests. Our iterative estimators can reduce the root mean square error (RMSE) of the initial estimators

(the nonparametric sieve estimators) by 30-40%. Both the levels and powers of our test perform well

in finite samples. We apply our new method to two empirical studies. In the first application, we

study the relationship between economic growth, initial economic condition and capital accumulation.

We find substantial nonlinearity in the relation between a country’s economic growth and its initial

economic condition. We find that the very poor and very rich countries tend to have relatively low

economic growth rates, while medium initial income countries tend to enjoy fast economic growth. In
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the second application, we examine the relation between a firm’s labor inputs and its sales. We do not

find nonlinear relationship between them, thus we validate the use of linear models in this context.

The rest of the paper is organized as follows. In Section 2 we introduce the iterative kernel estimator

for nonparametric dynamic panel data models and study its asymptotic properties. In Section 3, we

propose a consistent test for the correct specification of linear panel data models that are a routine

in empirical studies. The test statistic is based on the L2 distance between the kernel estimate of

the nonparametric regression function under the alternative and the parametric estimate of the linear

dynamic panel data models under the null. In Section 4, we conduct a small number of Monte Carlo

simulations to evaluate the finite sample performance of our estimators and tests. We apply our method

to study (i) the relation between economic growth, initial economic condition and capital accumulations

and (ii) the relation between a firm’s sales and its labor inputs in Section 5. Final remarks are contained

in Section 6. All technical details are relegated to the Appendix.

Throughout the paper, we restrict our attention to the balanced panel. We use i = 1, · · · , N to

denote an individual and t = 1, · · · , T to denote time. All asymptotic theories are established by

passing N to infinity and holding T as a fixed constant. For natural numbers a and b, we use Ia to

denote an a × a identity matrix, 0a×b an a × b matrix of zeros, and la an a × 1 vector of ones. Let
Tl ≡ T−l for l = 1, 2.We use ⊗ and ¯ denote the Kronecker and Hadarmard products, respectively. For
conformable vectors u and v, we use u/v to denote elementwise division. P→ and D→ signify convergence

in probability and distribution, respectively.

2 Kernel estimation of nonparametric dynamic panel data mod-

els

In this section, we first propose a kernel estimator for nonparametric dynamic panel data models based

on a Fredholm integral equation of the second kind. Then we study the uniform consistency and

asymptotic normality of the proposed estimator.

2.1 Kernel estimation based on Fredholm integral equation of the second
kind

We consider the following nonparametric dynamic panel data models

Yit = m (Yi,t−1,Xit) + αi + εit, i = 1, ..., N, t = 1, ..., T, (2.1)

where Xit is a d × 1 vector of regressors, m (·, ·) is an unknown but smooth function defined on Rd+1,
αi’s are the individual-specific fixed effects, and εit’s are idiosyncratic error terms. We assume that

(Yit,Xit, εit) are independently and identically distributed (IID) along the individual dimension but may

not be strictly stationary along the time dimension. In addition, we assume that E
¡
εit|Y i,t−1,Xit

¢
= 0,

where Y i,t−1 ≡
¡
Y 0
i,t−1, ..., Y

0
i1

¢0
and Xit ≡ (X 0

it, ...,X
0
i1)

0
.
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To proceed, we make several remarks on the model in (2.1). First, even though we signify the dynamic

nature of our nonparametric model, the asymptotic theory developed in this paper goes through if Yi,t−1
is missing from m (·, ·) , or if Xit contains higher order lagged dependent variables such as Yi,t−2 and

Yi,t−3. Second, Xit may contain some time-invariant regressors and our estimation strategy can recover

their effects on Yit. This is in sharp contrast with the typical dynamic panel data models because time-

invariant regressors will be wiped out after first-differencing. This observation allows us to re-investigate

the long-run relationship between economic growth, initial economic condition (which is time-invariant),

and capital accumulation through our nonparametric dynamic panel data models. Third, to stay focused,

we do not allow time effects in (2.1). That is, one cannot have the one-way component structure for

εit: εit = γt + vit. The inclusion of time effects will significantly complicate the analysis and be left for

future research.

Motivated by the first-differencing method for linear dynamic panel data models, we consider the

following first-differenced model

∆Yit = m (Yi,t−1,Xit)−m (Yi,t−2,Xi,t−1) +∆εit (2.2)

where ∆Yit ≡ Yit − Yi,t−1 and ∆εit ≡ εit − εi,t−1. Apparently, the above model is an additive model

where the two additive components share the same functional form. In addition, as in the linear dynamic

panel data models, ∆εit is correlated with the regressor Yi,t−1 on the right hand side of (2.2) so that

one has to take into account the endogeneity issue in order to estimate the model. These observations

indicate that the two standard techniques in the kernel literature to handle additive models, namely,

marginal integration and backfitting, are not appropriate without proper modifications. In principle,

one can modify either technique to take into account the two additional features of the above model.

But we are not sure whether the modification is straightforward. One thing that seems transparent to

us is that the marginal integration method is involved with a higher dimension estimation of the two

additive components in the first step and may not utilize the above two specific features effectively.

In this paper, we consider a kernel estimate of m by taking into account both features mentioned

above. In view of the fact that ∆εit is (conditionally) mean-independent of U i,t−2 ≡ (Y 0
i,t−2,X

0
i,t−1)

0,

we obtain the following conditional moment conditions

E
£
∆Yit −m (Yi,t−1,Xit) +m (Yi,t−2,Xi,t−1) |U i,t−2

¤
= 0. (2.3)

Clearly, for large t the conditioning information set U i,t−2 contains a large number of valid instrument

variables (IVs) for the local nonparametric identification of m. But for technical reasons, it is unrealistic

to use all variables in U i,t−2 for our nonparametric regression. So we consider only a small number of

IVs that are measurable with respect to U i,t−2. In fact, as the following estimation strategy suggests,

we only consider Ui,t−2 ≡ (Yi,t−2,X 0
i,t−1)

0 and leave the efficient choice of IVs for future research.

To proceed, we define some notation. Let U denote a compact set on Rd+1.2 We assume that Ui,t−2
has a positive density on U and denote the conditional probability density function (PDF) of Ui,t−2

2The reason to introduce U is to handle the non-compact support of Ui,t−2. If one is willing to assume that Ui,t−2 has
compact support, then one can take U as the support of Ui,t−2.
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given that Ui,t−2 lies in U as ft−2 (·) . Similarly, we use ft−1|t−2 (·|·) to denote the conditional PDF of
Ui,t−1 given Ui,t−2, conditionally on Ui,t−2 ∈ U . Let

n =
NX
i=1

TX
t=3

1 (Ui,t−2 ∈ U) and nt−2 =
NX
i=1

1 (Ui,t−2 ∈ U) for t ∈ {3, ..., T} ,

where 1 (·) is the usual indicator function. By the weak law of large numbers (WLLN) for IID data,

nt−2/N
P→ pt−2 ≡ P (Ui,t−2 ∈ U) and n/N P→ p where p ≡PT

t=3 pt−2. Let rt|t−2 (u) ≡ −E (∆Yit|Ui,t−2 = u).

Put

f (u) ≡
TX
t=3

pt−2
p

ft−2 (u) , f (ū|u) ≡
TX
t=3

pt−2
p

ft−1|t−2 (ū|u) and r (u) ≡
TX
t=3

pt−2
p

rt|t−2 (u) , (2.4)

where we suppress the dependence of p, f and r on T. Note that both f (·) and f (·|·) are mixture
densities and in the stationary case f (·) and f (·|·) respectively denote the marginal and transitional
densities, conditional on Ui,t−2 ∈ U. We will assume that f (·) is uniformly bounded and bounded below
from 0 on U .
By the law of iterated expectations, (2.3) implies that

m (u) = −E (∆Yit|Ui,t−2 = u) +E [m (Ui,t−1) |Ui,t−2 = u] ,

= rt|t−2 (u) +
Z

m (ū) ft−1|t−2 (ū|u) dū for t = 3, ..., T. (2.5)

Multiplying both sides by pt−2/p and summing up over t = 3, ..., T yields

m (u) = r (u) +

Z
m (ū) f (ū|u) dū (2.6)

where we have used the fact that
PT

t=3 pt−2/p = 1. (2.6) suggests that the parameter of interest, m,

is implicitly defined as a solution to a Fredholm integral equation of the second kind in an infinite

dimensional Hilbert space L2 (f) under certain regularity conditions:

m = r +Am (2.7)

where A: L2 (f)→ L2 (f) is a bounded linear operator defined by

Am (u) =
Z

m (ū) f (ū|u) dū (2.8)

and L2 (f) is a Hilbert space with norm

kmk2 ≡ {< m,m >}1/2 ≡
½Z

U
m (u)2 f (u) du

¾1/2
.

In general, < m1,m2 >≡
R
U m1 (u)m2 (u) f (u) du for any m1, m2 ∈ L2 (f) .

Assume that nonparametric estimators of r and A are given by r̂ and bA. The plug-in estimator m̂
is then given by the solution of

m̂ = r̂ + bAm̂. (2.9)
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In this paper we consider the local polynomial estimates of r and Am. Let u ≡ (y, x0)0 ≡ (u0, ..., ud)0
be a (d+ 1)× 1 vector, where x is d× 1 and y is a scalar. Let j ≡ (j0, j1, ..., jd) be a (d+ 1)-vector of
non-negative integers. Following Masry (1996), we adopt the notation

uj ≡ Πd
i=0u

ji
i , j! ≡ Πd

i=1ji!, |j| ≡
dX
i=0

ji,
X

0≤|j|≤q
≡

qX
k=0

kX
j0=0

· · ·
kX

jd=0

j0+j1+···+jd=k

.

From the definition of uj , we see that the ji’s represent powers applied to the elements of u when

constructing polynomials.

We first describe the q-th order local polynomial estimators r̂ of r and bAm of Am. Given observations

{(Yi,t,Xit)}, we estimate r (u) by r̂ (u) as the minimizing constant in the following weighted least squares
problem:

min
β

NX
i=1

TX
t=3

⎡⎣−∆Yit − X
0≤|j|≤q

β0j ((Ui,t−2 − u) /h)j

⎤⎦2Kh (Ui,t−2 − u) 1 (Ui,t−2 ∈ U) , (2.10)

where β stacks the βj ’s (0 ≤ |j| ≤ q) in lexicographic order (with β0, indexed by 0 ≡ (0, ..., 0), in the
first position, the element with index (0, 0, ..., 1) next, etc.), Kh (u) = h−10 k (y/h0)Π

d
j=1h

−1
j k (xj/hj) for

u ≡ (y, x0)0 , k is a univariate PDF, h = (h0, h1, ..., hd)0 is a bandwidth sequence that shrinks to zero as
N →∞. Note that in (2.10) we have used an indicator function 1 (·) to handle the non-compact support
of Ui,t−2.

Let Ql ≡ (l+d)!/(l!d!) be the number of distinct (d+ 1)-tuples j with |j| = l. In the above estimation

problem, this denotes the number of distinct lth order partial derivatives of r(u) with respect to u. Let

Q ≡ Pq
l=0Ql. Let μh (·) = μ (·/h) , where μ is a stacking function such that μh (Ui,t−2 − u) denotes a

Q×1 vector that stacks ((Ui,t−2 − u) /h)
j
, 0 ≤ |j| ≤ q, in lexicographic order (e.g., μh (u) = (1, (u/h)

0)0

when q = 1). Then it is easy to verify that

r̂ (u) = e01[SNT (u)]
−1 1

n

NX
i=1

TX
t=3

1itKh (Ui,t−2 − u)μh (Ui,t−2 − u)∆Yit

=
1

n

NX
i=1

TX
t=3

Kit (u)∆Yit (2.11)

where e1 ≡ (1, 0, ..., 0)0 is a Q × 1 vector with 1 in the first position and zeros elsewhere, 1it ≡
1 (Ui,t−2 ∈ U) ,

SNT (u) ≡ 1

n

NX
i=1

TX
t=3

1itKh (Ui,t−2 − u)μh (Ui,t−2 − u)μh (Ui,t−2 − u)0 , (2.12)

and

Kit (u) ≡ 1ite01SNT (u)
−1

μh (Ui,t−2 − u)Kh (Ui,t−2 − u) (2.13)

is analogous to the “equivalent kernel” for the above local polynomial regression. bAm (u) is analogously
defined as the estimator of Am (u) with m(Ui,t−1) in place of −∆Yit in the latter’s definition. Given
these estimators, we can study the asymptotic properties of the resulting plug-in estimator m̂ below.
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Like Mammen, Linton and Nielsen (1999) and Mammen, Støve and Tjøstheim (2009, MST hereafter),

our estimators only use observations in the smoothing if the corresponding covariates Ui,t−2 lie in a

compact set U on Rd+1. All other observations are thrown away and not used in the construction of
the estimator. This device will greatly facilitate our asymptotic study by allowing Ui,t−2 to have non-

compact support. If Ui,t−2 is compactly supported, then one can always chooses U to be its support
and then the indicator function becomes redundant in the above definitions.

In terms of numerical algorithm, if A is well behaved in the sense to be clear later, it is well known

that (2.7) implies that m = (I −A)−1r =P∞j=0Ajr where I is an identity operator. In this case, the

sequence of approximations

m(l) = Am(l−1) + r, l = 1, 2, 3, ...

converges to the truth from any starting point m(0). If in addition bA and r̂ are sufficiently close to A
and r respectively, then

m̂(l) = bAm̂(l−1) + r̂, l = 1, 2, 3, ...

converges to m̂.

Note that m (·) is identified only upon to a location shift in (2.2). Under our model assumptions
(A.1(i)-(ii)) in the next section, we have E[m (Ui,t−1)] = E [Yit] . This motivates us to recenter m̂(l) (u) in

each iteration to obtain

m̂(l) (u) +
1

NT1

NX
i=1

TX
t=2

[Yit − m̂(l) (Ui,t−1)],

which is then used in the next iteration.

2.1.1 Using the sieve estimator as an initial estimator

The above iterative procedure requires an initial estimator which may be consistent or not. If we use

a consistent estimator as the initial estimator, then we expect that the procedure converges soon after

a few iterations. So in practice it is desirable to start with a consistent initial estimator. Noting that

(2.2) is an additive model, we propose to estimate m by the sieve method. For an excellent review on

the sieve method, see Chen (2007).

To proceed, let {ql(u), l = 1, 2, · · · } denote a sequence of known basis functions that can well
approximate any square-integrable function of u. Let L ≡ LN be some integer such that L → ∞ as

N →∞. Let

qL(u) ≡ (q1(u), q2(u), · · · , qL(u))0, qi,t−1 ≡ qL(Ui,t−1), ∆qi,t−1 ≡ qi,t−1 − qi,t−2,

∆qi ≡ (∆qi2, · · · , qiT−1)0, and ∆Q ≡ (∆q01,∆q02, · · · ,∆q0N )0.

Obviously we have suppressed the dependence of qit, ∆qit, ∆qi and ∆Q on L, N, or T. In particular,

∆qi and ∆Q are of dimension T2 × L and NT2 × L, respectively.

Under fairly weak conditions, we can approximate m (Ui,t−1)−m (Ui,t−2) in (2.2) by β0m∆qi,t−1 for

some L× 1 vector βm. This motivates us to consider the following model

∆Yit = β0m∆qi,t−1 +∆εit +Rit,
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where Rit ≡ m (Yi,t−1,Xit) − m (Yi,t−2,Xi,t−1) − β0m∆qi,t−1 signifies the approximation error. To

estimate βm in the above model, we run the regression of ∆Yit on ∆qi,t−1 by using an L̄ × 1 valid
instrument vector which we denote as Zit, where L̄ ≥ L. Noting that any measurable function of U i,t−2
can be a valid instrument, we can choose elements of Zit simply as a sequence of measurable functions

of U i,t−2. Following Anderson and Hsiao (1981), the simplest choice of Zit is

Zit = qi,t−2 = qL(Ui,t−2)

in which case L̄ = L. Let

Zi ≡ (Zi3, · · · , ZiT )0, Z ≡ (Z01, Z02, · · · , Z0N)0, PZ = Z (Z0Z)− Z,
∆Yi ≡ (∆Yi3, · · · ,∆YiT )0, ∆Y ≡ (∆Y 0

1 ,∆Y
0
2 , · · · ,∆Y 0

N )
0,

where (·)− denotes any symmetric generalized inverse. The two-stage least squares (2SLS) estimate of
βm is given by

β̃m =
¡
∆Q0PZ∆Q

¢−
∆Q0PZ∆Y.

Then we can obtain a preliminary estimate of m (u) by

m̃0 (u) ≡ β̃
0
mq

L(u).

As before, we recenter m̃0 (u) to estimate m (u) by

m̃ (u) = m̃0 (u) +
1

NT1

NX
i=1

TX
t=2

[Yit − m̃0 (Ui,t−1)] .

Under certain regularity conditions, we can show that m̃ (u) is a consistent estimator of m (u) and

establish its asymptotic normality. To conserve the space, we do not report the formal proofs in this

paper.

2.2 Asymptotic properties of m̂ (u)

Let Yi = (Yi1, ..., YiT )
0
, Xi = (Xi1, ...,XiT )

0
, εi = (εi1, ..., εiT )

0
. We make the following assumptions on

{Yit,Xit, αi, εit}, the function of interest m, the kernel function k and the bandwidth h.

Assumptions

A.1 (i) (Yi,Xi, αi, εi), i = 1, ..., N, are IID. E (αi) = 0.

(ii)E
¡
εit|U i,t−1

¢
= 0 a.s., E

¡
ε2it|Ui,t−2

¢
= σ2t|t−2 (Ui,t−2) a.s., andE

¡
ε2i,t−1|Ui,t−2

¢
= σ2t−1|t−2 (Ui,t−2)

a.s. Let σ2t−2 (·) ≡ σ2t|t−2 (·) + σ2t−1|t−2 (·) .
(iii) The PDF f (·) is uniformly bounded, and bounded below from 0 on U .
(iv) kmk2 < C for some C <∞.

(v)
R
U
R
[m (ū)−m (u)]

2
f (u) f (ū|u) dūdu > 0 for all m ∈ L2 (f) with m 6= 0.

(vi)
R
U
R hf(ū|u)

f(ū)

i2
f (ū) f (u) dūdu <∞.

(vii) supu∈U
R |m (ū)| f (ū|u) dū <∞.

10



A.2 (i) For t = 3, ..., T, ft−2 (·) has all (q + 1)th partial derivatives that are uniformly continuous on U .
(ii) m (·) has all (q + 1)th partial derivatives that are uniformly continuous on U .
(iii) For t = 3, ..., T, σ2t−2 (·) have all second order partial derivatives that are uniformly continuous

on U .
A.3 The kernel function k : R→ R is a symmetric and continuous PDF that has compact support.

A.4 Let h! ≡ Πdl=0hl and khk2 ≡
Pd

l=0 h
2
l . As N → ∞, T is fixed, khk → 0, Nh!/ logN → ∞,

N khk2(q+1) h!→ c ∈ [0,∞).
A.1 (i) is standard in the panel data literature. For simplicity, we do no allow cross sectional depen-

dence among {Xi, αi, εi} . But we allow nonstationarity in the time series {Yit,Xit, εit, t = 1, ..., T}. In
sharp contrast to Lee (2010), we do not need any mixing condition along the time dimension because

we assume T is fixed in this paper. A.1(ii) indicates the process {εit, t ≥ 0} is a martingale difference
sequence (m.d.s.) with respect to the filter generated by U i,t−1. It allows conditional heteroskedasticity

of unknown form. A.1(iii) restricts that f (·) is well behaved on U . A.1(iv) requires the finite second
moment of m (Ui,t−1) in order for L2 (f) to be well defined.
A.1 (v) imposes assumptions on the functional forms of the regression function m (·) and the mixture

densities f (·) and f (·|·). If {Uit, t ≥ 1} is strictly stationary with PDF f (·) and transition density f (·|·)
and the support of f is U , then A.1(v) requires that 0 < E [m (Ui,t−1)−m (Ui,t−2)]

2 /2 =< m,m >

− < m,Am >. Therefore

< m,m > − < m,Am > is positive for all m 6= 0. (2.14)

In other words, there is no nonzero m such that Am = m and hence the operator (I −A) is one-to-one.
In addition, (2.14) implies that (I −A) has eigenvalues (in absolute values) bounded from below by a

positive number 1− γ, say, for some γ ∈ (0, 1). It follows that (I −A) is invertible and (I −A)−1 has
eigenvalues that are bounded by (1− γ)−1 . This implies that

sup
kmk2≤1

°°°(I −A)−1m°°°
2
<∞. (2.15)

A.1(vi) further ensures that the operator A is Hilbert-Schmidt and a fortiori compact. It amounts to

saying that there is no much dependence between Ui,t−1 and Ui,t−2 under the mixture transition density

f (·|·) , and is tightly related to typical mixing conditions on time series. See Carrasco, Florens, and
Renault (2007) for more discussions. A.1(vii) is an assumption on the operator A, which can be easily
satisfied.

A.2 specifies mainly the smooth conditions on ft−2, m, and σ2t−2. A.3 mainly requires that the

kernel k be compactly supported. This assumption can be relaxed at the cost of lengthy arguments.

A.4 specifies conditions on the choice of bandwidth sequences and the local polynomial order q.

Let S̄NT (u) ≡ E [SNT (u)] . Define

BNT (u) ≡ 1

n

NX
i=1

TX
t=3

K̄it (u)Dmit (u) and VNT (u) ≡ −1
n

NX
i=1

TX
t=3

K̄it (u)∆εit, (2.16)
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where Dmit (u) ≡ m (Ui,t−2)−m (u)−P1≤|j|≤q
1
j!m

(j) (u) (Ui,t−2 − u)j , and

K̄it (u) ≡ e01
£
S̄NT (u)

¤−1
1itKh (Ui,t−2 − u)μh (Ui,t−2 − u) . (2.17)

Note that we use the non-stochastic term S̄NT (u) in the definition of VNT (u) and BNT (u) to facilitate

the analysis in the next section. By the standard local polynomial regression theory [e.g., Masry (1996),

Hansen (2008)], supu∈U |VNT (u)| = (nh!)−1/2[log(n)]1/2 and supu∈U |BNT (u)| = khkq+1 .
The following theorem states the uniform consistency of the estimator m̂ (u) .

Theorem 2.1 Suppose Assumptions A.1-A.4 hold. Then

sup
u∈U

¯̄̄
m̂ (u)−m (u)− VNT (u)− (I −A)−1BNT (u)

¯̄̄
= OP

h
n−1/2(logn)1/2 + v2n

i
, (2.18)

where νn ≡ (nh!)−1/2(logn)1/2 + khkq+1 .

Remark 1. The result in Theorem 2.1 is stronger than that in Theorem 1 of Mammen and Yu (2009)

because we specify the exact probability order on the right hand side of (2.18) and n−1/2(logn)1/2+v2n =

o[(nh!)
−1/2

] under Assumption A.4. In the above theorem VNT (u) and (I −A)−1BNT (u) signifies the

asymptotic variance and bias of m̂ (u) , respectively. For simplicity, in the proof we restrict our attention

to the case where U is a compact set which does not expand to Rd+1 as N → ∞. Under some extra

regularity conditions on f and m, we can follow Hansen (2008) and Li, Lu and Linton (2011) to allow

U(≡ UNT ) to expand to Rd+1 slowly as N → ∞. In this latter case, we have to adjust the uniform

convergence rate accordingly.

The next theorem establishes the asymptotic normality of m̂ (u) .

Theorem 2.2 Suppose Assumptions A.1-A.4 hold. Then for any u ∈interior(U) ,
√
nh!

h
m̂ (u)−m (u)− (I −A)−1B0 (u)

i
D→ N

µ
0,
σ2 (u)

f (u)
e01S−1KS

−1e1

¶
,

where B0 (u) = e01S−1
P
|j|=q+1

1
j!m

(j) (u)
R
K (w)μh (w) (w ¯ h)j dw, S = limN→∞E[S̄NT (u)]/f (u) ,

K =
R
K (ū)2 μ (ū)μ (ū)0 dū, and σ2 (u) ≡PT

t=3
pt−2
p σ2t−2 (u) ft−2 (u) .

Remark 2. The asymptotic bias and variance formulae appear a little bit complicated in the

above theorem. This is because we allow for general order of local polynomial regressions and distinct

bandwidths for different covariates. In the special case where q = 1, one can easily verify that

S =

Ã
1 01×(d+1)

0(d+1)×1 Id+1
R
u2k (u) du

!
, K =

⎛⎜⎝
hR

k (u)
2
du
id+1

01×(d+1)

0(d+1)×1 Id+1

hR
u2k (u)2 du

id+1
⎞⎟⎠ ,

the asymptotic variance reduces to σ2 (u) [
R
k (u)2 du]d+1/f (u) , and B0 (u) =

1
2

Pd
l=0 h

2
l ∂
2m (u) /u2l .

Remark 3. Theorem 2.2 indicates that the asymptotic variance of the estimator m̂ (u) shares the

same structure as that of a typical local polynomial estimator of either m in the model

∆Yit = m (Ui,t−1)−m (Ui,t−2) +∆εit (2.19)
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by pretending the other one is known. Nevertheless, the asymptotic bias of m̂ (u) is different from the

case where one of the two m’s is known in (2.19). The operator (I −A)−1 signifies the accumulated bias
during the iterative procedure. Noting that the error term ∆εit in (2.19) has the structure of moving

averaging of order 1 (MA(1)), one may be tempted to explore such an MA(1) structure to obtain a more

efficient estimate of m (u) , say, by following the lead of Xiao, Linton, Carroll and Mammen (2003) and

Su and Ullah (2006b). Unfortunately, the latter papers require that the error process is invertible, which

is not the case here. So we cannot follow either paper to obtain a more efficient estimate of m (u) .

Remark 4. By pretending m (Ui,t−1) is known in (2.19), we can estimate the second additive

component m (·) in (2.19) by the local polynomial estimator of m as m̂(oracle). It is interesting to

know whether we can propose an estimator that can be as asymptotically efficient as this “oracle”

estimator. The answer is yes if Ui,t−1, t = 2, ..., T, are compactly supported and f (·) is bounded away
from zero on the union U of their supports. For this, we use the above kernel estimate m̂ (·) with
well-chosen undersmoothing bandwidth as an estimate for the first additive component3 and then run a

local polynomial regression to obtain an estimator for the second additive component. Specifically, we

propose the following procedure:

1. For u = Ui,t−1, i = 1, ..., N, and t = 2, ..., T, obtain the estimate m̂h0 (u) as m̂ (u) defined above

by using an undersmoothing bandwidth sequence h0 = (h00, h
0
1, ..., h

0
d) and ignoring the trimming

function 1(·).

2. Run the qth order local polynomial regression of m̂h0 (Ui,t−1) − ∆Yit on Ui,t−2 to obtain the

estimate m̂∗h (u) of m (u) with the typical optimal rate of bandwidth h.

Under some suitable conditions, we can prove that the resulting estimator, m̂∗h (u) , say, is asymptotically

equivalent to the oracle one.4

In the case where Ui,t−1 is not compactly supported for all t = 2, ..., T, we may not obtain uniformly

consistent estimates of m (Ui,t−1) at proper rates so that we have to trim out certain observations in

the second stage. The rate of convergence for m̂∗h (u) will be affected proportionally by the amount of

trimming. For example, let 1∗it = 1 (Ui,t−1 ∈ U) and n∗ =
PN

i=1

PT
t=2 1

∗
it. If we only use observations

with 1∗it = 1 in the second stage regression, then the rate of convergence for m̂∗h (u) would become

(n∗h!)1/2 instead of (NTh!)
1/2 for the oracle estimate. To conserve space, we do not report the details

here.

Remark 5. Here we propose an iterative estimation method. In fact, one can also use non-

iterative method to solve a Fredholm integral equation of the second kind; see, e.g., Linton and Mammen

(2005), Darolles, Fan, Florens, and Renault (2011). This involves solving a linear system of equations.

Specifically, (2.3) implies

m (u)−E [m (Yi,t−1,Xit) | Ui,t−2 = u] = −E [∆Yit | Ui,t−2 = u] for all u. (2.20)

3 In this case we can simply ignore the trimming function used in the above estimation procedure.
4 In addition, it is also interesting to estimate the first order partial derivatives Dm (u) of m (·) in applications, which

typically requires the choice of q ≥ 2. Note that we can obtain an estimate of Dm (u) in the second step above, say, by

D̂∗hm (u) . We can show that D̂∗hm (u) is also asymptotically oracle.
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Replacing the unknown conditional expectations by their local polynomial estimates yields

m (u)− n−1
NX
j=1

TX
s=3

Kjs (u)m (Uj,s−1) = −n−1
NX
j=1

TX
s=3

Kjs (u)∆Yjs. (2.21)

Evaluating (2.21) at u = (Yi,t−1,X 0
i,t)

0 for i = 1, ..., N and t = 3, ..., T yields the following linear system

of equations with NT2 equations and NT2 unknowns (m(Ui,t−1), i = 1, ..., N and t = 3, ..., T ):

M−KM = −KY, (2.22)

where

M≡

⎡⎢⎢⎣
m (U1,2)

...

m (UN,T−1)

⎤⎥⎥⎦ , K≡n−1
⎡⎢⎢⎣

K13 (U1,2) ... KNT (U1,2)
...

...
...

K13 (UN,T−1) ... KNT (UN,T−1)

⎤⎥⎥⎦ , and Y≡
⎡⎢⎢⎣
∆Y13

...

∆YNT

⎤⎥⎥⎦ .
The solution to the above linear system of equations is given by

M̂ = − (INT2−K)−1KY.

For any evaluation point u ∈ U , the non-iterative estimator of m(u) is given by

m̆ (u) = n−1 [K13 (u) , · · · ,KNT (u)]
³
M̂−Y

´
.

The iterative and non-iterative estimators are asymptotically equivalent. Nevertheless, the non-

iterative estimator involves the inversion of an NT2 × NT2 matrix. Therefore, in practice, especially

when the sample size is large, the iterative method may be preferred to.

3 A specification test for linear dynamic panel data models

In this section we consider the functional form specification test for dynamic panel data models. We

focus on testing the correct specification of the most widely used linear dynamic panel data models

versus the nonparametric dynamic panel data models considered above.

3.1 Hypotheses

To be concrete, we consider the model in (2.1). The null hypothesis of interest is

H0 : m (Ui,t−1) = β00Ui,t−1 a.s. for some β0 ∈ B ⊂ Rd+1 (3.1)

where i = 1, ..., N, t = 2, ..., T, and B is compact subset of Rd+1. The alternative hypothesis is

H1 : Pr
£
m (Ui,t−1) = β0Ui,t−1

¤
< 1 ∀ β ∈ B for some t = 2, ..., T. (3.2)

Recently, Lee (2011) proposes a residual-based test to check the validity of the linear dynamic

models with both large N and T. Her test requires the consistent estimation of the generalized spectral

derivatives which is impossible for fixed T.
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In this paper we propose an alternative test for H0 versus H1 which is applicable for fixed T.5 The

proposed test is based on the comparison of the restricted estimate under H0 and the unrestricted
estimate under H1, say in the spirit of Härdle and Mammen (1993). We consider the following smooth
functional

Γ ≡
Z £

m(u)− β00u
¤2
a(u)f(u)du, (3.3)

where a(u) is a user-specified nonnegative weighting function with compact support U . Clearly Γ = 0
under H0 and is generally nonzero under H1. Hence we can consider a test based on Γ.
The previous section gives a consistent estimate of m(u) under H1, and β0 can be estimated by

various ways consistently under H0. Let β̂ denote a
√
N -consistent estimator of β0. Then a natural

feasible test statistic could be

ΓNT ≡ 1

NT1

NX
i=1

TX
t=2

h
m̂(Ui,t−1)− β̂

0
Ui,t−1

i2
a(Ui,t−1). (3.4)

We will show that after being appropriately centered and scaled, ΓNT is asymptotically normally dis-

tributed under some suitable assumptions.

3.2 Asymptotic null distribution

Define the asymptotic bias and variance for our test statistic respectively:

BNT ≡ (h!)−1/2 T1p−1
Z Z

e01S̄NT (u)
−1 μ (v)μ (v)0 S̄NT (u)

−1 e1K (v)2 σ2 (u+hv) a (u) f̄ (u) dvdu,

(3.5)

and

σ20 ≡ 2T 21 p
−2
Z Z Z Z

e01S̄NT (v)
−1

μ (u)μ (u+w)0 S̄NT (v)
−1

e1e
0
1S̄NT (v)

−1
μ (ũ)μ (ũ+w)0

×S̄NT (v)
−1 e1K (u)K (ũ)K (u+ w)K (ũ+ w)σ4 (v) a (v)2 f̄ (v)2 dũdudvdw

i
, (3.6)

where f̄ (u) ≡ T−11
PT

t=2 f
(uc)
t−1 (u) and f

(uc)
t−1 (·) is the unconditional PDF of Ui,t−1 (without conditioning

on that Ui,t−2 lies in U).
If d < 3, it suffices to base our test on the local linear regression. In this case, we can use the

simplified version of BNT and σ20 as

B(ll)NT ≡ (h!)−1/2 T1p−1Cd+1
1

Z
σ2 (u) a (u) f̄ (u) f (u)−2 du, (3.7)

and

σ
2(ll)
0 ≡ 2T 21 p−2Cd+1

2

Z
σ4 (u) a (u)2 f̄ (u)2 f (u)−4 du, (3.8)

where C1 ≡
R
R k (z)

2 dz, and C2 =
R
R
¡R
R k (z) k (z + z̄) dz

¢2
dz̄. For any k, we can calculate C1 and

C2 explicitly. If we use the Gaussian kernel,6 i.e., k(z) =
¡
1/
√
2π
¢
e−z

2/2, then C1 = 1/(2
√
π) and

5We conjecture that our asymptotic theory can also be extended to the case of large T.
6While the Gaussian kernel does not have compact support, it can be approximated arbitrarily well by compactly

supported kernels. See Ahn (1997, p.13).
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C2 = 1/(2
√
2π). If we use the Epanechnikov kernel instead, i.e., k(z) = 0.75(1 − z2)1(|z| ≤ 1), then

C1 = 0.6, and C2 = 0.4338. One can readily show that BNT = B(ll)NT + oP (1) and σ20 = σ
2(ll)
0 if d < 3.

We add the following assumptions.

A.5 (i)
√
N(β̂ − β0) = OP (1) under H0.

(ii) max2≤t≤T E[kUi,t−1k2] <∞.

(iii) The weight function a (·) is a nonnegative function that is uniformly continuous and bounded
on its compact support U .
A.6 As N →∞, N(h!)2/(logN)2 →∞, (h!)1/2 logN → 0, and khkq+1 (h!)−1/2 → 0.

A.5(i) is weak and can be met for various estimates of β0 in correctly specified linear dynamic panel

data models. A.5(ii) specifies the weak conditions on a (·) . The simple indicator function 1 {· ∈ U} suf-
fices. A.6 requires the bandwidth be undersmoothing in comparison with the optimal rate of bandwidth

in estimating m.

Theorem 3.1 Under Assumptions A.1-A.3 and A.5-A.6, NT1 (h!)
1/2
ΓNT − BNT

D→ N(0, σ20) under

H0.

Remark 6. The proof of the above theorem is quite involved. Because we do not have a closed

form estimate for m (·) under the alternative, we can only rely on the consistent estimate m̂ studied

previously. By the stochastic expression reported in Theorem 2.1, we can demonstrate that m̂ (u) −
m (u)− VNT (u)− (I −A)−1BNT (u) has asymptotic negligible effect on the asymptotic distribution of

our test statistic. In addition, BNT (u) = 0 under H0, which implies that VNT (u) alone contributes to

both the asymptotic bias and variance of our test statistic. Then we can write the leading term of our

test statistic as a well-behaved third order V -statistic. This V -statistic can be further decomposed as a

second U -statistic, plus a bias term (BNT ) and some asymptotically negligible terms. See the proof of

Theorem 3.1 in the appendix.

Remark 7. To implement, we need consistent estimates of the asymptotic bias and variance. To

achieve this goal, we propose to estimate the error term ∆εit in the first-differenced model consistently.

There is a temptation to use the nonparametric residuals

∆̃εit = ∆Yit − m̂ (Ui,t−1) + m̂ (Ui,t−2) .

Unfortunately, this estimate does not serve our purpose unless {Ui,t−1} has a compact support. For the
infinite support case, our device to use observations with Ui,t−2 lying on U can ensure the consistency of
m̂ (Ui,t−2) with m (Ui,t−2) at a proper rate but not that of m̂ (Ui,t−1) with m (Ui,t−1) whenever Ui,t−1
lies in the tail of the distributions. Below we propose consistent estimates for B(ll)NT and σ

2(ll)
0 (or BNT

and σ20), based on the parametric residuals

∆̂εit ≡ ∆Yit − β̂
0
Ui,t−1 + β̂

0
Ui,t−2.

Note that ∆̂εit −∆εit is OP (N
−1/2) under H0 by Assumption A.5(i), and is OP (λNT ) under the local

alternative H1(λNT ) defined in (3.9) below.
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Define7

σ̂2 (u) ≡ 1

n

NX
j=1

TX
s=3

1jsLh (Uj,s−2 − u)
³
∆̂εjs

´2
, f̂ (u) ≡ 1

n

NX
j=1

TX
s=3

1jsLh (Uj,s−2 − u) ,

b̄f (u) ≡ 1

NT1

NX
j=1

TX
s=2

Lh (Uj,s−1 − u) ,

where Lh (u) = h−10 l (y/h0)Π
d
j=1h

−1
j l (xj/hj) for u ≡ (y, x0)0 , and l is a univariate kernel function with

compact support in R. The condition on l is specified in the following assumption.

A.7 Let γ ≥ 2. The kernel function l : R→ R is symmetric, continuous and compactly supported such
that l (·) is a γth order kernel: R sjl (s) du = δj0 for j = 1, . . . , γ − 1,

R
sγ l (s) ds = κγ < ∞, where δij

is the Kronecker’s delta. The γth order derivatives of ft−2 (·) , t = 3, ..., T, exist and are continuous.
When d < 3 and local linear regressions are applied, we propose to estimate the asymptotic bias

B(ll)NT by

B̂(ll)NT ≡ (h!)−1/2 T1Nn−1Cd+1
1

1

NT1

NX
i=1

TX
t=2

σ̂2 (Ui,t−1) a (Ui,t−1) f̂ (Ui,t−1)
−2

and the asymptotic variance σ2(ll)0 by

σ̂
2(ll)
NT ≡ 2T 21N2n−2Cd+1

2

1

NT1

NX
i=1

TX
t=2

£
σ̂2(Ui,t−1)

¤2
a (Ui,t−1)

2 b̄f (Ui,t−1) f̂ (Ui,t−1)−4 .
For the general case when d ≥ 3 or higher order local polynomial is used, we propose to apply

the residuals ∆̂εit to estimate BNT in (3.5) and σ20 in (3.6) directly as in Hoderlein, Su and White

(2011). Let Ŵi,t−2 ≡ (U 0i,t−2, ∆̂εit)0, and ζ̂(Ŵi,t−1, Ŵj,s−2) ≡ Kjs (Ui,t−1) ∆̂εjs. Then we can estimate

the asymptotic bias, BNT , and variance, σ20, by

B̂NT = (h!)
1/2

n−2
NX
i=1

TX
t=2

NX
j=1

TX
s=3

h
ζ̂
³
Ŵi,t−1, Ŵj,s−2

´i2
a (Ui,t−1) , and

σ̂2NT = 2h!T 21N
2n−4

NX
i=1

TX
t=3

NX
j=1

TX
s=3

"
1

NT1

NX
l=1

TX
r=2

ζ̂
³
Ŵl,r−1, Ŵi,t−2

´
ζ̂
³
Ŵl,r−1, Ŵj,s−2

´
a (Ul,r−1)

#2
.

Clearly, the computation now becomes quite involved.

It is tedious to show the consistency of either type of estimates under either H0 or H1 (λNT ) with

λNT = (NT1)
−1/2(h!)−1/4 [e.g., B̂NT − BNT = oP (1) and σ̂2NT − σ20 = oP (1)]. Then the following

feasible test statistics

JNT ≡
h
NT1 (h!)

1/2 ΓNT − B̂NT

i
/

q
σ̂2NT

and

J
(ll)
NT ≡

h
NT1 (h!)

1/2
ΓNT − B̂(ll)NT

i
/

q
σ̂
2(ll)
NT

are asymptotically distributed as N (0, 1) under suitable conditions. The result is summarized in the

following corollary.

7Note that σ̂2 (u) estimates σ2 (u) ≡ T
s=3 (ps−2/p)σ

2
s−2 (u) fs−2 (u) .
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Corollary 3.2 Under Assumptions A.1-A.3 and A.5-A.7, JNT
D→ N(0, 1) under H0. If d < 3 and

q = 1, J
(ll)
NT

D→ N(0, 1) under H0.

Noting that the JNT or J
(ll)
NT test is one-sided, we reject the null for large values of JNT or J

(ll)
NT .

3.3 Local power property and consistency

To derive the asymptotic power function of JNT or J
(ll)
NT under a sequence of Pitman local alternatives,

we need to consider the multi-array process8

{(X [NT ]0
it , Y

[NT ]
it )0, i = 1, ..., N, t = 1, ..., T, N = 1, 2, ..., T = 1, 2, ...}.

Let f [NT ]
t−2 (·) denote the PDF of U [NT ]

i,t−2 ≡ (Y
[NT ]0
i,t−2 ,X

[NT ]0
i,t−1 )

0 conditional on that U [NT ]
i,t−2 lies in U . Let

f
[NT ]
t−1|t−2 (·|·) denote the conditional PDF of U [NT ]

i,t−1 given U
[NT ]
i,t−2 conditional on that U

[NT ]
i,t−2 lies in U . Define

f [NT ] (·) and f [NT ] (·|·) analogously as f (·) and f (·|·) in (2.4). We consider the following sequence of
Pitman local alternatives

H1 (λNT ) : m(U
[NT ]
i,t−1) = β00U

[NT ]
i,t−1 + λNT δNT (U

[NT ]
i,t−1) a.s. (3.9)

where λNT → 0 as N →∞ and δNT (·) is a measurable function such that μ0 ≡ limN→∞
R
δNT (u)

2a(u)

f [NT ] (u) du exists and is finite. Let U [NT ]
i,t−1 ≡ (U [NT ]0

i,t−1 , U
[NT ]0
i,t−2 , ..., U

[NT ]0
i,1 )0.

The following theorem studies the asymptotic local power property of JNT and J
(ll)
NT under H1(λNT ).

Theorem 3.3 Let Assumptions A.1-A.2 hold for the process (X [NT ]
it , Y

[NT ]
it , αi, εit) with obvious mod-

ifications, e.g., with f [NT ] (·) f [NT ] (·|·) , and U
[NT ]
i,t−1, replacing f (·), F (·|·) , and U i,t−1, respectively.

Let Assumptions A.3 and A.5-A.6 hold. Suppose that λNT = (NT1)
−1/2 (h!)−1/4 in H1(λNT ). Then

Pr(JNT ≥ z|H1(λNT ))→ 1− Φ(z − μ0/σ0) and the same result also holds for J
(ll)
NT if d < 3 and q = 1.

The above theorem says that our test statistic JNT or J
(ll)
NT has nontrivial power against H1(λNT )

with λNT = (NT1)
−1/2 (h!)−1/4 whenever μ0 > 0. The rate λNT = (NT1)

−1/2
(h!)

−1/4 is slower than

the parametric rate (NT1)
−1/2 as h!→ 0.

The following theorem shows that the test is consistent.

Theorem 3.4 Suppose Assumptions A.1-A.7 hold. Suppose that μA ≡ T−11
PT

t=2E{[m(Ui,t−1)− β00Ui,t−1]
2

a (Ui,t−1)} > 0. Then P (JNT > αNT )→ 1 as N →∞ for any nonstochastic sequence λNT = o[NT1 (h!)
1/2].

3.4 A bootstrap version of the test

It is well known that nonparametric tests based on their asymptotic normal null distributions may

perform poorly in finite samples. As an alternative, people frequently rely on bootstrap p-values to

make inference. Therefore it is worthwhile to propose a bootstrap procedure to improve the finite

sample performance of our test. Below we propose a recursive bootstrap procedure to obtain the

bootstrap p-values for our test. The procedure goes as follows:
8 It is also fine to allow εit and αi to be [NT ]-dependent.
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1. Estimate the restricted model under H0 and obtain the residuals ε̂it = Yit − ρ̂Yi,t−1 − β̂
0
−1Xit,

where β̂ = (ρ̂, β̂
0
−1)0 is any

√
N -consistent IV or GMM estimate of β. Calculate the test statistic

JNT based on {Yit,Xit}. Let α̂i ≡ ε̂i ≡ T−1
PT

t=1 ε̂it.

2. Obtain the bootstrap error ε∗it =
¡
ε̂it − ε̂i

¢
ηit for i = 1, 2, . . . , N and t = 2, . . . , T, where ηit’s are

IID across both i and t and follow a two point distribution: ηit = (1 − √5)/2 with probability
(1 +

√
5)/2
√
5 and ηit = (

√
5 + 1)/2 with probability (

√
5 − 1)/2√5. Generate the bootstrap

analogue Y ∗it of Yit as

Y ∗it = ρ̂Y ∗i,t−1 + β̂
0
−1Xit + α̂i + ε∗it for i = 1, 2, . . . , N and t = 2, . . . , T,

where Y ∗i1 = Yi1.

3. Given the bootstrap resample {Y ∗it , Xit}, estimate both the restricted (linear) and unrestricted
(nonparametric) first-differenced model and calculate the bootstrap test statistic J∗NT or J(ll)∗NT

analogously to JNT or J
(ll)
NT .

4. Repeat steps 2 and 3 for B times and index the bootstrap test statistics as {J∗NT,l}Bl=1. The
bootstrap p-value is calculated by p∗ ≡ B−1

PB
l=1 1

³
J∗NT,l > JNT

´
.

Remark 8. We make a few remarks on the above bootstrap procedure. First, we impose the

null hypothesis of linear dynamic panel data models in step 2. Second, in view of the fact that T

is fixed, the process {Y ∗it , t = 1, 2, ..., T} cannot have the identical marginal distribution (conditional
or unconditional on the data) for any i = 1, ...,N. Fortunately, the asymptotic theories we developed

so far allows nonstationarity along the time dimension. Third, conditional on the data, (Y ∗it , ε
∗
it) are

independently but not identically distributed (INID) across i, and ε∗it are also independently distributed

across t. So we need to resort to the CLT for second order U -statistics with INID data (e.g., de Jong

(1987)) to justify the asymptotic validity of the above bootstrap procedure. In particular, we conjecture

that one can show that J∗NT
D→ N (0, 1) conditionally on the observed sample. To conserve the space,

we omit the details.

Remark 9. We can also construct the specification test using the non-iterative estimators by

replacing the iterative estimator m̂ with m̆ in Remark 5.

4 Simulations

In this section, we conduct Monte Carlo simulations to examine the finite sample performance of our

proposed estimators and test statistics.

4.1 Data generating processes

We consider the following six data generating processes (DGPs):

DGP 1: Yit = 0.25Yi,t−1 + αi + εit;
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DGP 2: Yit = 0.25Yi,t−1 − 0.75Xit + αi + εit;

DGP 3: Yit = cos (Yi,t−1) + αi + εit;

DGP 4: Yit = 2Φ(Yi,t−1 − Y 2
i,t−1) + αi + εit;

DGP 5: Yit = 2cos(Yi,t−1) + exp(Xit) + αi + εit;

DGP 6: Yit = 2Φ(Yi,t−1 − Y 2
i,t−1) [1 +Φ(Xit)] + αi + εit;

where Φ (·) is the standard normal CDF, αi are IID U (−1/2, 1/2) , εit are IID N (0, 1) across both i

and t, Xit = 0.5αi + ηit, ηit are IID U (−1, 1) across both i and t, {αi} , {εit} , and {ηit} are mutually
independent.

Apparently, DGPs 1 and 2 are linear models with and without exogenous regressors, respectively.

DGP 3 and 4 are nonlinear dynamic panel data models without exogenous regressors, and DGPs 5 and

6 are nonlinear dynamic panel data model with one exogenous regressor Xit. The lagged dependent

variable Yi,t−1 and the exogenous regressor Xit enter DGP 5 additively and DGP 6 multiplicatively

through some nonlinear transformations. Using the notation in Sections 2-3, m (·) is defined as follows:
DGP 1: m (y) = 0.25y;

DGP 2: m (y, x) = 0.25y − 0.75x;
DGP 3: m (y) = cos (y) ;

DGP 4: m (y) = 2Φ
¡
y − y2

¢
;

DGP 5: m (y, x) = 2 cos (y) + exp (x) ;

DGP 6: m (y, x) = 2Φ
¡
y − y2

¢
[1 +Φ (x)] .

We assume that these functional forms are completely unknown. Our purpose here is to estimate m

and test for the linearity of m.

4.2 Implementation

To implement our estimation and testing procedures, we need to obtain the initial sieve estimator. We

choose Hermite polynomials as the sieve base (see Blundell, Chen, and Kristensen, 2007). For DGPs 1,

3 and 4, we have only one endogenous regressor Yi,t−1 in the unknown function m (·) so that we can
approximate the one-dimensional function m (y) by the Hermite polynomials:

qL0 (y) ≡
h
1,
¡
y − Ȳ

¢
,
¡
y − Ȳ

¢2
, ...,

¡
y − Ȳ

¢L0−1i0
exp

¡−(y − Ȳ )2/
£
2S2Y

¤¢
(4.1)

where Ȳ and SY are the sample mean and standard deviation of {Yi,t−2} , respectively. In DGPs 2, 5
and 6, we have two terms in the unknown function m (y, x) . Other than qL0 (y) and qL0 (x) , 9 we also

use their cross product terms to approximate m (y, x) . We simply choose L0 = b(NT2)
1/4c+ 1, where

bac denotes the integer part of a. In this case, the total number of approximating terms in the sieve
base is given by L0 in DGPs 1, 3 and 4 and L0(2 + L0) in DGPs 2, 5 and 6.

For the estimation and testing, we need to choose both the kernel function and the bandwidth

sequence. We use the Epanechnikov kernel k (z) = 0.75
¡
1− z2

¢
1 (|z| ≤ 1) , and choose the bandwidth

9qL0 (x) ≡ 1, x− X̄ , x− X̄
2
, ..., x− X̄

L0−1 0
exp −(x− X̄)2/ 2S2X , where X̄ and SX are the sample mean

and standard deviation of {Xi,t−1} , respectively.
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by the Silverman’s “rule of thumb”: h = 2.35SU (NT2)
−1/(5+d) where SU = SY and d = 0 in DGPs 1,

3 and 4, and SU = (SY , SX) and d = 1 in DGPs 2, 5 and 6. This bandwidth is usually not optimal,

especially for dependent data. There may exist some other bandwidth that improves the final estimates.

But we leave the development of a data-driven rule for the selection of “optimal” bandwidth for the

proposed algorithm for future research.

The convergence criterion we use for the estimation is as follows: stop the iteration procedure ifPJ
j=1

£
m(l+1) (uj)−m(l) (uj)

¤2PJ
j=1

£
m(l) (uj)

¤2
+ 0.0001

< 0.001,

where uj , j = 1, ..., J, are the J evaluation points. In practice, researchers can choose the evaluation

points they are interested in. Here we let the number of evaluation points be 50 for DGPs 1, 3 and 4

and 225 for DGPs 2, 5 and 6. For each DGP, the evaluation points are fixed across replications and

approximately evenly distributed between 0.2 quantile and 0.8 quantile of the data points. The similar

convergence criterion is used in, e.g., Nielsen and Sperlich (2005), Henderson, Carroll and Li (2008),

and MST (2009). For the specification test, we let the data points be the evaluation points.

For the (N,T ) pair, we consider N = 50, 100, 200, and T = 4, 6. For each scenario, the number of

replications is 1000 for the estimation and 250 for the test. The number of bootstrap resamples for the

test is 200. Also, we need to choose the compact set U . For this, we trim out the data on the two-sided

5% tails along each dimension in Ui,t−2.

Further, for both estimation and testing, we use both iterative and non-iterative methods; see

Remarks 5 and 9.

4.3 Estimation results

Table 1 reports the estimation results for T = 4. For all the DGPs, the median or average RMSEs of both

iterative and non-iterative estimators are smaller than those of the initial estimators. Relative to the

initial estimators, for most DGPs the RMSEs can be reduced by 30-40% using either iterative or non-

iterative estimators. Comparing the performances of iterative estimators and non-iterative estimators,

iterative estimators are slightly better. For the iterative estimators, Table 3 presents the median of

number of iterations. For all the DGPs, the number of iteration is quite small; after 3-4 iterations,

the estimates converge. This means that the iterations do not require much computation time. It also

suggests that our initial estimates are well chosen. Figure 1 illustrates the estimation results for DGP

1 when N = 50 and 100. Figure 2 shows the estimation results for DGP 3.10

Table 2 presents the estimation results for T = 6. Again, for all the DGPs, the median or average

RMSEs of initial estimators can be reduced by up to 30-40%. The performances of iterative estimators

or non-iterative estimators are similar. The median number of iteration for the iterative estimators are

quite modest: around 2 to 3 as shown in Table 3.

10Figures for other DGPs are available upon request.
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4.4 Specification test results

We examine the empirical level and power of our test statistics. Table 4 shows the empirical rejection

frequencies at the three conventional nominal levels (1%, 5% and 10%) for N = 50, 100, and 200 and

T = 4. We use DGPs 1 and 2 to examine the level behavior of the test. The levels behave reasonably

well for both DGPs. For DGP 1, the levels for both iterative and non-iterative methods are slightly

under-sized. For DGP 2, the rejection frequencies for the iterative method are similar to the nominal

levels and those for non-iterative methods are slightly smaller than the nominal levels. We use DGPs

3-6 to examine the empirical power of our test. The powers of both iterative and non-iterative methods

are good. They increase rapidly as N increases; when N increases to 200, the powers are about 90% or

higher even for the 1% test.

Table 5 presents the rejection frequencies for N = 50, 100 and T = 6. Again, for DGPs 1 and 2,

the rejection frequencies are close to the nominal levels. For DGP 3-6, the power of tests increase with

both N and T. When N = 100 and T = 6, the powers are above 90% for most cases.

5 Empirical applications

5.1 Economic growth, initial economic condition, and capital accumulation

In this subsection, we apply our new nonparametric dynamic panel data models to study the important

question of economic growth. Specifically, we examine two questions in details. First, what is the relation

between a country’s economic growth and its initial level of income? Second, what is the relation between

a country’s economic growth and its capital accumulation? For the first question, Solow’s (1956) growth

model predicts that economic growth rates are negatively associated with the initial income levels. The

endogenous growth models (e.g., Romer, 1986 and Lucas, 1988) argue that the differences in initial

income levels are transitory and do not affect the long-run economic growth. Barro (1991) examines the

question empirically using a cross-section of countries in the period 1960-1985 and finds that the growth

rate of real GDP per capita is negatively related to the initial (1960) level of real GDP per capita. For the

second question, different models predict different relationships between economic growth and physical

capital investment. Solow’s (1956) growth model shows that there is no association between economic

growth and investment in the steady state. Endogenous growth models (e.g., Romer, 1986), predict a

positive association between economic growth and investment. In a neoclassic growth model, Carroll

and Weil (1994) show that “exogenous increase in growth makes subsequent saving fall.” Thus, from the

theoretical point of view, the relation between economic growth and investment is not conclusive. There

are also many empirical studies on the relationship between economic growth and capital accumulation

(e.g., Bond, Leblebicioglu, and Schiantarelli, 2010, BLS). The empirical evidence is also mixed. Some

suggest little or no association between investment and economic growth rate (e.g., Jones, 1995); others

show positive relationship (e.g., BLS). Most of the empirical studies on these two questions use linear

models. Nevertheless, as Durlauf (2000) puts it, for many growth theories, “the linear regression is a

misspecification of the growth process.” In this subsection, we investigate these two questions using our
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nonparametric models that allow general nonlinearity of unknown form.

We use a panel data of 71 countries over 41 years (1960-2000). The dataset is same as in BLS.11

We first examine the ten year growth rate. Let Yit denote the economic growth rate of country i over

the tth decade. For example, Yi1=ln (GDPi,1970) − ln (GDPi,1960), where GDPi,s is the real GDP per

worker for country i in year s as in BLS. We include two more regressors other than the lagged Yit:

a country’s initial economic condition (X1,i) and its investment share (X2,it). Specifically, X1,i is the

logarithm of country i’s real GDP per worker in 1960, which represents its initial economic condition.

X2,it is the logarithm of the average share of physical investment of country i over its GDP over the tth

decade. So, here N = 71 and T = 4. We consider the nonparametric fixed effects model:

Yit = m (Yi,t−1,X1,i,X2,it) + αi + εit, i = 1, ..., 71, t = 1, ..., 4. (5.1)

We first present the estimation results in Figure 3. Figure 3(a) presents the relation between a

country’s ten year economic growth rate and its lagged ten year growth rate. Specifically, it shows the

estimate of m (·, x̄1, x̄2) , where x̄1 and x̄2 are fixed at the medians of X1,i and X2,it, respectively. It is

clear that this figure suggests a nonlinear relationship between the current growth rate of real DGP per

worker and its lagged value. When the lagged growth rate is in the relatively low range (-0.1 to 0.2),

the relation between the current growth rate and the lagged growth rate is positive; when the lagged

growth rate is in the relatively high range (0.2 to 0.5), the relation between them becomes negative.

In Figure 3(b), we present the relation between a country’s ten year economic growth and its initial

GDP per worker; i.e., we plot the estimates of m (ȳ, ·, x̄2), where ȳ and x̄2 are the medians of Yi,t−1
and X2,it, respectively. Again, we observe substantial nonlinearity. When initial income levels are

high, as found in much of the early literature they tend to be negatively associated with economic

growth rates. Nevertheless, when initial income levels are low, they tend to be positively associated

with economic growth rates. This suggests that both very poor countries and very rich countries tend

to have low economic growth rates and countries with medium initial income levels may enjoy fast

economic growth.

Figure 3(c) shows the relation between a country’s economic growth and its investment share. We

observe a positive relation between them. The figure appears linear, though it becomes flatter when the

investment share is large.

It is apparent that there is substantial nonlinear relationship among the three variables. Our formal

specification tests of linearity soundly reject the null. When we use 200 bootstrap resamples, the

bootstrap p-values of the tests based on iterative and non-iterative estimates are 0 and 0.01, respectively.

As a robust check, we perform the same analysis using five year growth rates over the same period

(1960-2000). That is, we let Yit denote the growth rate of real GDP per worker for country i over the

tth five-year period; for example, Yi1 = ln (GDPi,1965)− ln (GDPi,1960) . X1,i again is the logarithm of

real GDP per worker in 1960. X2,it is the logarithm of average investment share for country i over

11There are several differences between BLS and our study. For example, BLS study the annual economic growth rates;

we study the long-run (5 and 10 year) growth rates. BLS use a linear fixed effect model; we allow nonlinearity. We only

include one lag of Yit, and Xit as explantory variables; BLS use multiple lags of Yit and Xit.
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the tth five-year period. So, here we have N = 71 and T = 8. We find very similar patterns for the

relations among the three economic variables. The estimation results are presented in Figures 3(d)-(f).

Our specification tests also reject the null of linearity at the 5% significance level. Table 6 reports all

the specification test results.

In summary, we find the nonlinear relation between a country’s economic growth rate and its lagged

value. We also find that the relation between a country’s economic growth rate and its initial economic

condition is nonlinear. This study shows that using linear models to characterize the relationship among

these economic variables may overlook the important nonlinearity.

5.2 Firm labor inputs and sales

In this subsection, we illustrate our methods by studying the relation between a firm’s sales and its

labor inputs. Let Yit = ln (Sit/Kit) and Xit = ln (Lit/Kit) , where Sit, Kit, and Lit are firm i’s sales,

capital inputs, and labor inputs in year t, respectively. Again, we consider the nonparametric dynamic

panel data model:

Yit = m (Yi,t−1,Xit) + αi + εit.

The lagged sales Yi,t−1 can potentially affect the current sales Yit, for example, through the change

of inventories. Labor inputs Xit also affect Yit through the change of production. We expect positive

relationship between Yit and Xit. However, without looking into the data, we have no good reason to

believe that the relation between them is linear.

We use the same dataset as in Bond (2002) to investigate the question.12 The number of firms is

N = 509 and the number of time periods is T = 8. Figure 4 presents the estimation results. In Figures

4(a)-(c), we set x̄ to be fixed at 0.25, 0.5 and 0.75 quantiles of Xit, respectively, and plot the estimates of

m (·, x̄) . In all the three figures, Yi,t−1 is positively associated with Yit and the relation appears linear.

In Figures 4(d)-(f), we set ȳ to be the 0.25, 0.5 and 0.75 quantiles of Yit, respectively, and draw the

estimates of m (ȳ, ·) . Without any surprise, Xit is positively associated with Yit, as high labor inputs

lead to high sales. However, it is interesting to observe that the relation between labor inputs and sales

appears linear in both Figures 4(e) and (f). In Figure 4(d) where ȳ is the 0.25 quantile of Yit, we observe

some nonlinearity: when Xit increases to the value around -3.5, Yit declines with Xit. Nevertheless, our

formal specification tests do not reject the linearity of m (·, ·). The p-values of our specification tests
based on the iterative and non-iterative estimates are 0.35 and 0.41, respectively. In conclusion, our

study validates the use of linear model for this context.

12There are some differences between our study and Bond (2002). Bond (2002) uses a linear static model with correlated

errors (εit). He uses sales as the dependent variable and labor and capital inputs as the covariates. We study a dynamic

model, but assume errors (εit) are uncorrelated. Also, to reduce the number of covariates, we use the ratio of sales over

capitals as the dependent variable and the ratio of labors over capitals as the covariates.
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6 Concluding remarks

This paper provides a new iterative estimation method for nonparametric dynamic panel models. We

consider a short panel where the number of time periods T is fixed. The new estimator utilizes the

additive structure of the first differenced model and is defined as a solution to a Fredholm integral

equation of the second kind. We prove its uniform consistency and asymptotic normality. This paper

also provides specification tests for the linearity of dynamic panel models. The tests are based on the

L2 distance between parametric and nonparametric estimators. Monte Carlo simulations show that

our estimators and tests perform well in finite samples. We illustrate our methods with two empirical

applications on economic growth and on firm sales. In the economic growth application, we find that

the relationship between economic growth rates and initial income levels are nonlinear. However, we do

not find nonlinearity between firm sales and labor inputs in the second application.

There are many interesting topics for further research. First, we only consider the test for neglected

nonlinearity in linear panel data models. But the tools developed in this paper can be used to test for

the correct specification of many parametric or semiparametric panel data models, including the widely

used partially linear models where the lagged dependent variables enter the model linearly and the other

regressors (usually exogenous) enter the model nonparametrically. Second, in terms of estimation, we

did not explore all valid instruments in the information set. (2.3) suggests that all variables contained

in U i,t−2 can be utilized for the estimation purpose but our iterative estimation strategy only requires

the use of Ui,t−2, a subset of U i,t−2, in the spirit of Anderson and Hsiao (1981). It is not clear whether

one can follow Arellano and Bond (1991) in the parametric framework and use other lagged variables

in U i,t−2 to improve the efficiency of our estimate. It seems desirable to study the optimal choice of

instruments. Third, our nonparametric panel data models can be extended along several dimensions.

For example, we can also allow time effects in our model so that the mode in (2.1) becomes

Yit = m (Yi,t−1,Xit) + αi + γt + εit,

where the extra term γt signifies the time effects. The appearance of the time effects will significantly

complicate the analysis. For another example, one can also extend our estimation method to partially

linear models

Yit = β0Zit +m (Yi,t−1,Xit) + αi + εit,

or functional coefficient models

Yit = θ (Yi,t−1,Xit)
0 Zit + αi + εit,

where Zit is a p× 1 vector of regressors. We leave these for the future research.
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Table 1: Estimation results (T = 4)

DGP N Median RMSE Mean RMSE

Initial Iterative Non-iterative Initial Iterative Non-iterative

Estimator Estimator Estimator Estimator Estimator Estimator

1 50 0.270 0.186 (68.89%) 0.199 (73.70%) 0.302 0.196 (64.90%) 0.215 (71.19%)

100 0.203 0.138 (67.98%) 0.153 (75.37%) 0.227 0.148 (65.20%) 0.162 (71.37%)

200 0.128 0.100 (78.13%) 0.109 (85.16%) 0.138 0.108 (78.26%) 0.119 (86.23%)

2 50 0.504 0.292 (57.94%) 0.277 (54.96%) 0.524 0.306 (58.40%) 0.294 (56.11%)

100 0.344 0.221 (64.24%) 0.216 (62.79%) 0.358 0.231 (64.53%) 0.227 (63.41%)

200 0.266 0.170 (63.91%) 0.169 (63.53%) 0.273 0.176 (64.47%) 0.174 (63.74%)

3 50 0.286 0.182 (63.64%) 0.202 (70.63%) 0.312 0.202 (64.74%) 0.229 (73.40%)

100 0.216 0.146 (67.59%) 0.159 (73.61%) 0.241 0.156 (64.73%) 0.173 (71.78%)

200 0.134 0.115 (85.82%) 0.115 (85.82%) 0.144 0.122 (84.72%) 0.127 (88.19%)

4 50 0.273 0.189 (69.23%) 0.214 (78.39%) 0.297 0.205 (69.02%) 0.242 (81.48%)

100 0.204 0.145 (71.08%) 0.166 (81.37%) 0.224 0.157 (70.09%) 0.183 (81.70%)

200 0.133 0.113 (84.96%) 0.129 (96.99%) 0.144 0.118 (81.94%) 0.138 (95.83%)

5 50 0.601 0.435 (72.38%) 0.472 (78.54%) 0.644 0.452 (70.19%) 0.506 (78.57%)

100 0.418 0.343 (82.06%) 0.369 (88.28%) 0.442 0.353 (79.86%) 0.392 (88.69%)

200 0.333 0.266 (79.88%) 0.282 (84.68%) 0.353 0.277 (78.47%) 0.296 (83.85%)

6 50 0.539 0.374 (69.39%) 0.385 (71.43%) 0.570 0.386 (67.72%) 0.405 (71.05%)

100 0.377 0.299 (79.31%) 0.309 (81.96%) 0.390 0.306 (78.46%) 0.320 (82.05%)

200 0.285 0.231 (81.05%) 0.241 (84.56%) 0.291 0.237 (81.44%) 0.249 (85.57%)

Note: The numbers in brackets are the ratios of the iterative or non-iterative estimator’s RMSE over that of

the initial estimator.
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Table 2: Estimation results (T = 6)

DGP N Median RMSE Mean RMSE

Initial Iterative Non-iterative Initial Iterative Non-iterative

Estimator Estimator Estimator Estimator Estimator Estimator

1 50 0.194 0.141 (72.68%) 0.146 (75.26%) 0.206 0.151 (73.30%) 0.152 (73.79%)

100 0.131 0.105 (80.15%) 0.110 (83.97%) 0.135 0.111 (82.22%) 0.116 (85.93%)

200 0.092 0.080 (86.96%) 0.080 (86.96%) 0.099 0.084 (84.85%) 0.086 (86.87%)

2 50 0.345 0.217 (62.90%) 0.210 (60.87%) 0.353 0.229 (64.87%) 0.218 (61.76%)

100 0.266 0.170 (63.91%) 0.166 (62.41%) 0.270 0.175 (64.81%) 0.173 (64.07%)

200 0.198 0.132 (66.67%) 0.129 (65.15%) 0.200 0.135 (67.50%) 0.132 (66.00%)

3 50 0.196 0.142 (72.45%) 0.149 (76.02%) 0.215 0.153 (71.16%) 0.157 (73.02%)

100 0.126 0.115 (91.27%) 0.111 (88.10%) 0.135 0.121 (89.63%) 0.120 (88.89%)

200 0.097 0.091 (93.81%) 0.083 (85.57%) 0.102 0.096 (94.12%) 0.088 (86.27%)

4 50 0.183 0.140 (76.50%) 0.151 (82.51%) 0.195 0.153 (78.46%) 0.168 (86.15%)

100 0.126 0.112 (88.89%) 0.120 (95.24%) 0.133 0.119 (89.47%) 0.132 (99.25%)

200 0.093 0.083 (89.25%) 0.093 (100.00%) 0.100 0.088 (88.00%) 0.100 (100.00%)

5 50 0.393 0.331 (84.22%) 0.357 (90.84%) 0.418 0.340 (81.34%) 0.375 (89.71%)

100 0.321 0.268 (83.49%) 0.279 (86.92%) 0.336 0.272 (80.95%) 0.291 (86.61%)

200 0.220 0.210 (95.45%) 0.205 (93.18%) 0.228 0.213 (93.42%) 0.213 (93.42%)

6 50 0.359 0.293 (81.62%) 0.300 (83.57%) 0.371 0.300 (80.86%) 0.309 (83.29%)

100 0.281 0.236 (83.99%) 0.240 (85.41%) 0.285 0.240 (84.21%) 0.249 (87.37%)

200 0.208 0.187 (89.90%) 0.188 (90.38%) 0.210 0.189 (90.00%) 0.191 (90.95%)

Note: The numbers in brackets are the ratios of the iterative or non-iterative estimator’s RMSE over that of

the initial estimator.
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Table 3: Median number of iterations

DGP \ (N,T ) (50, 4) (100, 4) (200, 4) (50, 6) (100, 6) (200, 6)

1 4 3 3 3 3 3

2 5 4 4 4 4 3

3 3 3 2 3 2 2

4 3 2 2 2 2 2

5 4 3 3 3 3 3

6 4 3 3 3 3 3

Table 4: Empirical rejection frequency (T = 4)

DGP N T Iterative Method Non-iterative Method

1% 5% 10% 1% 5% 10%

1 50 4 0.012 0.040 0.060 0.000 0.008 0.036

100 4 0.000 0.052 0.080 0.004 0.032 0.040

200 4 0.008 0.044 0.064 0.004 0.024 0.056

2 50 4 0.024 0.056 0.096 0.004 0.024 0.048

100 4 0.000 0.040 0.100 0.008 0.036 0.068

200 4 0.028 0.052 0.104 0.016 0.036 0.060

3 50 4 0.232 0.488 0.664 0.208 0.404 0.536

100 4 0.576 0.828 0.892 0.392 0.692 0.824

200 4 0.892 0.988 0.992 0.844 0.972 0.988

4 50 4 0.336 0.648 0.764 0.164 0.432 0.568

100 4 0.692 0.896 0.952 0.452 0.704 0.824

200 4 0.976 1.000 1.000 0.944 0.992 1.000

5 50 4 0.088 0.284 0.524 0.108 0.392 0.612

100 4 0.420 0.752 0.916 0.500 0.900 0.984

200 4 0.912 1.000 1.000 0.992 1.000 1.000

6 50 4 0.148 0.372 0.524 0.152 0.372 0.480

100 4 0.472 0.760 0.864 0.468 0.728 0.844

200 4 0.900 0.980 0.992 0.896 0.988 0.988
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Table 5: Empirical rejection frequency (T = 6)

DGP N T Iterative Method Non-iterative Method

1% 5% 10% 1% 5% 10%

1 50 6 0.000 0.032 0.064 0.008 0.028 0.060

100 6 0.008 0.032 0.084 0.016 0.024 0.072

2 50 6 0.032 0.064 0.096 0.028 0.068 0.092

100 6 0.012 0.076 0.148 0.016 0.068 0.136

3 50 6 0.556 0.828 0.900 0.648 0.852 0.884

100 6 0.912 0.980 0.996 0.952 0.992 1.000

4 50 6 0.740 0.904 0.944 0.708 0.880 0.932

100 6 0.992 1.000 1.000 0.984 1.000 1.000

5 50 6 0.328 0.708 0.900 0.768 0.968 0.992

100 6 0.888 0.992 1.000 1.000 1.000 1.000

6 50 4 0.484 0.784 0.880 0.576 0.796 0.884

100 4 0.880 0.976 0.992 0.936 0.980 0.996

Table 6: Specification test results for economic growth application (1960-2000)

10 year growth rates 5 year growth rates

Iterative Method 0 0.04

Non-iterative Method 0.01 0.05

Note: The numbers in the main entries are the p-values based on 200 bootstraps.
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Figure 1: Estimation results for DGP 1
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(ȳ

,x̄
1
,x

2
)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0.08

0.1

0.12

0.14

0.16
(d) 5 year growth rate and its lag

y: lag of 5 year growth rate

E
st

im
at

es
of

m
(y

,x̄
1
,x̄

2
)

7.5 8 8.5 9 9.5 10 10.5
−0.05

0

0.05

0.1

0.15

0.2
(e) 5 year growth rate and initial GDP level

x1: logarithm of GDP in 1960

E
st

im
at

es
of

m
(ȳ
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Figure 3: Economic growth, initial economic condition, and capital accumulation
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Appendix

A Proof of the results in Sections 2 and 3

Proof of Theorem 2.1

Let |m|∞ ≡ supu∈U |m (u)| . Let ∆n ≡ (nh!)−1/2 and νn ≡ ∆n(logn)
1/2 + khkq+1 . Following the

proof of Theorem 1 in Mammen and Yu (2009, MY), we can prove the theorem by verifying the following

conditions:

(B1) supkmk2≤1 |Am|∞ <∞;
(B2) supkmk2≤1

°°°(I −A)−1m°°°
2
<∞;

(B3) supkmk2≤1
¯̄̄
( bA−A)m¯̄̄

∞
= OP (νn) ;

(B4) There exists a decomposition r̂ − r + ( bA−A)m =VNT + BNT + RNT with random functions

VNT , BNT and RNT such that: a) ||VNT ||2 = OP (∆n) , b) |A (I −A)−1 VNT |∞ = OP (
p
logn/n ), c)

||BNT ||2 = OP (khkq+1), and d) |RNT |∞ = OP [∆n(logn)
1/2νn]. To see this, noting that A−1 − C−1 =

A−1(C −A)C−1 and (I −A)−1 = I +A (I −A)−1 , we have

m̂−m = (I − bA)−1r̂ − (I −A)−1r
= (I − bA)−1 (r̂ − r) + [(I − bA)−1 − (I −A)−1]r
= (I − bA)−1 h(r̂ − r) + ( bA−A)(I −A)−1ri
= (I − bA)−1 h(r̂ − r) + ( bA−A)mi = (I − bA)−1 [VNT +BNT +RNT ]

= VNT + bA(I − bA)−1VNT + (I − bA)−1BNT + (I − bA)−1RNT

= VNT + (I −A)−1BNT +
h bA(I − bA)−1VNT +DBNT + (I − bA)−1RNT

i
, (A.1)

where D ≡ (I − bA)−1 − (I −A)−1 . It follows that¯̄
m̂−m− VNT − (I −A)−1BNT

¯̄
∞ ≤

¯̄̄ bA(I − bA)−1VNT

¯̄̄
∞
+ |DBNT |∞ +

¯̄̄
(I − bA)−1RNT

¯̄̄
∞
. (A.2)

Following the proof of Theorem 5 in MST, we can prove that under conditions (B1)-(B4),

| bA(I − bA)−1VNT |∞ = OP (
p
logn/n), |DBNT |∞ = OP (νn khkq+1), and

|(I − bA)−1RNT |∞ = OP [∆n(logn)
1/2νn]. (A.3)

Then the result in Theorem 2.1 follows.

First, Assumption A.1(vii) ensures (B1) and Assumption A.1(v) ensures (B2) as remarked in Section

2.2. Next, we verify (B3). Let m̄ (u) ≡ Am (u) . Then we have the following bias-variance decomposition

( bA−A)m (u) =
1

n

NX
i=1

TX
t=3

Kit (u)m(Ui,t−1)− m̄ (u)

=
1

n

NX
i=1

TX
t=3

Kit (u) [m(Ui,t−1)− m̄ (Ui,t−2)] +
1

n

NX
i=1

TX
t=3

Kit (u) [m̄ (Ui,t−2)− m̄ (u)]

≡ A1NT (u) +A2NT (u) , say,
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where we have used the result that 1n
PN

i=1

PT
t=3Kit (u) = 1 in view of the fact SNT (u)

−1 SNT (u) = IQ.

By the latter fact again, it is well known that we can write A2NT (u) as A2NT (u) =
1
n

PN
i=1

PT
t=3Kit (u)

×Dm̄it (u) , where Dm̄it (u) ≡ m̄ (Ui,t−2) − m̄ (u) −P1≤|j|≤q
1
j!m̄

(j) (u) (Ui,t−2 − u)j . By the standard

arguments for local polynomial regressions [e.g., Masry (1996), Hansen (2008)],

sup
u∈U

|A1NT (u)| = OP [∆n(logn)
1/2] and sup

u∈U
|A2NT (u)| = OP (khkq+1).

Then (B3) follows.

Now, we verify condition (B4) with VNT and BNT defined in (2.16) and RNT given by

RNT (u) = e01{[SNT (u)]
−1 − £S̄NT (u)

¤−1} [R1NT (u) +R2NT (u)] , (A.4)

where

R1NT (u) =
−1
NT2

NX
i=1

TX
t=3

1itKh (Ui,t−2 − u)μh (Ui,t−2 − u)∆εit,

R2NT (u) =
1

NT2

NX
i=1

TX
t=3

1itKh (Ui,t−2 − u)μh (Ui,t−2 − u)Dmit (u) ,

and Dmit (u) ≡ m (Ui,t−2)−m (u)−
P
1≤|j|≤q

1
j!m

(j) (u) (Ui,t−2 − u)
j
. Noting that −∆Yit+m(Ui,t−1) =

m (Ui,t−2)−∆εit and r (u) + m̄ (u) = m (u) by (2.6), we have

r̂ (u)− r (u) + bAm (u)−Am (u) =
1

NT2

NX
i=1

TX
t=3

Kit (u) [−∆Yit +m(Ui,t−1)]− [r (u) + m̄ (u)]

=
1

NT2

NX
i=1

TX
t=3

Kit (u) {−∆εit + [m (Ui,t−2)−m (u)]}

=
1

NT2

NX
i=1

TX
t=3

Kit (u) {−∆εit +Dmit (u)}

= VNT (u) +BNT (u) +RNT (u) .

As in Masry (1996) and Hansen (2008), we can show that supu∈U |R1NT (u)| = OP [∆n(logn)
1/2],

supu∈U |R2NT (u)| = OP (khkq+1), and supu∈U |SNT (u)− S̄NT (u) | = OP [∆n(logn)
1/2]. It follows that

RNT (u) = OP [∆n(logn)
1/2νn]. This verifies (B4d).

By the Fubini theorem, Assumptions A.1(i), (ii), and (iii), it is easy to show that

E kVNT k22 =
1

N2T 22

NX
i=1

TX
t=3

TX
s=3

Z
U
e01
£
S̄NT (u)

¤−1
E [1itKh (Ui,t−2 − u)μh (Ui,t−2 − u)∆εit

× 1isKh (Ui,s−2 − u)μh (Ui,s−2 − u)∆εis]
£
S̄NT (u)

¤−1
e1f (u) du = O

¡
∆2n
¢
.

It follows that kVNT k2 = OP (∆n) by the Chebyshev inequality. This verifies (B4a). Define the operator

L (ū, u) by A (I −A)−1m (u) = RU L (u, ū)m (ū) f (ū) dū. Following Linton and Mammen (2005, p.821),
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we can show that
R
U
R
U L (u, ū)2m (ū) f (ū) f (u) dūdu <∞ and

A (I −A)−1 VNT (u) =

Z
U
L (u, ū) 1

NT2

NX
i=1

TX
t=3

1ite
0
1S̄NT (ū)

−1
μh (Ui,t−2 − ū)Kh (Ui,t−2 − ū) dū∆εit

=
1

NT2

NX
i=1

TX
t=3

ξ (Ui,t−2, u)∆εit,

where ξ (v, u) =
R
U L (u, ū) 1 (v ∈ U) e01S̄NT (ū)

−1
μh (v − ū)Kh (v − ū) dū. Then we can apply the expo-

nential inequality for IID data (as in Masry’s proof for strong mixing data) to show supu∈U |A (I −A)−1
VNT (u) | = OP (

p
logn/n), i.e., (B4b) holds. Finally, |BNT |∞ = OP (khkq+1), implying that kBNT k2 =

OP (khkq+1), i.e., (B4c) holds. ¥

Proof of Theorem 2.2

Theorem 2.1 implies that
√
nh![m̂ (u) −m (u) − (I −A)−1BNT (u)] =

√
nh!VNT (u) + oP (1) . We

prove the theorem by showing that

√
nh!VNT (u) =

−√h!√
n

NX
i=1

TX
t=3

1ite
0
1

£
S̄NT (u)

¤−1
μh (Ui,t−2 − u)Kh (Ui,t−2 − u)∆εit

D→ N

µ
0,
σ2 (u)

f (u)
e01S−1

Z
K (ū)

2
μ (ū)μ (ū)

0
dūS−1e1

¶
(A.5)

and √
nh! [BNT (u)−B0(u)] = oP (1) . (A.6)

(A.5) can be proved by the Liapounov central limit theorem (CLT). To prove (A.6), we first calculate

the bias

E [BNT (u)] = e01
£
S̄NT (u)

¤−1 TX
t=3

nt−2
n

1

nt−2

NX
i=1

E [1itKh (Ui,t−2 − u)μh (Ui,t−2 − u)Ditm (u)]

= e01
£
S̄NT (u)

¤−1 TX
t=3

pt−2
p

Z
1 (u+ h¯ w ∈ U)K (w)μh (w)

×
X

|j|=q+1

1

j!
m(j) (u) (w ¯ h)j ft−2 (u+ h¯ w) dw + o(khkq+1)

= e01
£
S̄NT (u)

¤−1 X
|j|=q+1

1

j!
m(j) (u)

Z
K (w)μh (w) (w ¯ h)j dwf (u) + o(khkq+1)

= e01S−1
X

|j|=q+1

1

j!
m(j) (u)

Z
K (w)μh (w) (w ¯ h)

j
dw + o(khkq+1),

where recall f (u) =
PT

t=3(pt−2/p)ft−2 (u) , and the last line follows from the fact that S̄NT (u) →
f (u) S for all u ∈interior(U) as N → ∞. In addition, by the straightforward variance calculations, we

have Var(BNT (u)) = O((nh!)−1 khk2). Hence (A.6) follows by the fact that √nh! khkq+1 = O (1) by

Assumption A.4. ¥
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Proof of Theorem 3.1

By (A.1), m̂(u) = m (u) + VNT (u) + R̂NT (u) , where

R̂NT (u) = (I −A)−1BNT (u) + bA(I − bA)−1VNT (u) +DBNT (u) + (I − bA)−1RNT (u) . (A.7)

Let bNT ≡ NT1 (h!)
1/2 and ait ≡ a(Ui,t−1). It follows that

bNTΓNT = (h!)1/2
NX
i=1

TX
t=2

h
m(Ui,t−1) + VNT (Ui,t−1)− β̂

0
Ui,t−1 + R̂NT (Ui,t−1)

i2
ait

= (h!)
1/2

NX
i=1

TX
t=2

h
m(Ui,t−1) + VNT (Ui,t−1)− β̂

0
Ui,t−1

i2
ait

+2 (h!)1/2
NX
i=1

TX
t=2

h
m(Ui,t−1) + VNT (Ui,t−1)− β̂

0
Ui,t−1

i
R̂NT (Ui,t−1) ait

+(h!)
1/2

NX
i=1

TX
t=2

R̂NT (Ui,t−1)
2
ait

≡ ΓNT1 + 2ΓNT2 + ΓNT3, say. (A.8)

First, we dispense with the term ΓNT3 that is easiest to analyze. Noting that under H0, BNT (u) = 0

for all u ∈ Rd+1 as Dmit (u) = 0, we have

R̂NT (u) = bA(I − bA)−1VNT (u) + (I − bA)−1RNT (u) ≡ R̃NT (u) , (A.9)

and the result in (A.3) in the proof of Theorem 2.1 can be strengthened to¯̄̄
(I − bA)−1RNT

¯̄̄
∞
= Op

¡
∆2n logn

¢
. (A.10)

This, together with (A.3), implies that¯̄̄
R̃NT

¯̄̄
∞
= OP [(logn/n)

1/2 +∆2n logn]. (A.11)

By (A.9), (A.11) and Assumption A.6, ΓNT3 = NT (h!)
1/2

OP

¡
logn/n+∆4n(logn)

2
¢
= oP (1).

Next, we study ΓNT1. We make the following decomposition:

ΓNT1 = (h!)
1/2

NX
i=1

TX
t=2

n
VNT (Ui,t−1) +

£
m(Ui,t−1)− β00Ui,t−1

¤
+ (β0 − β̂)0Ui,t−1

o2
a(Ui,t−1)

=
6X
l=1

DlNT , (A.12)

where

D1NT = (h!)1/2
NX
i=1

TX
t=2

[VNT (Ui,t−1)]
2 ait,

D2NT = (h!)
1/2

NX
i=1

TX
t=2

£
m(Ui,t−1)− β00Ui,t−1

¤2
ait,

D3NT = (h!)1/2 (β0 − β̂)0
NX
i=1

TX
t=2

Ui,t−1U 0i,t−1ait(β0 − β̂),
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D4NT = 2 (h!)
1/2

NX
i=1

TX
t=2

VNT (Ui,t−1)
£
m(Ui,t−1)− β00Ui,t−1

¤
ait,

D5NT = 2 (h!)1/2 (β0 − β̂)0
NX
i=1

TX
t=2

Ui,t−1VNT (Ui,t−1) ait,

D6NT = 2 (h!)
1/2
(β0 − β̂)0

NX
i=1

TX
t=2

Ui,t−1
£
m(Ui,t−1)− β00Ui,t−1

¤
ait.

Under H0, DlNT = 0 for l = 2, 4, 6. By Lemma A.1 below, D1NT − BNT
D→ N

¡
0, σ20

¢
under H0. By

Assumption A.5 and the Markov inequality, we can readily show that D3NT = OP ((h!)
1/2) = oP (1) .

Now, write D5NT = 2(β0 − β̂)0D̄5NT where

D̄5NT = (h!)1/2
NX
i=1

TX
t=2

Ui,t−1VNT (Ui,t−1) ait =
(h!)

1/2

NT2

NX
i=1

TX
t=2

NX
j=1

TX
s=3

Ui,t−1K̄js,it∆εjsait

=
(h!)

1/2

NT2

NX
i=1

TX
t=2

TX
s=3

Ui,t−1K̄is,it∆εisait +
(h!)

1/2

NT2

NX
i=1

TX
t=2

NX
j 6=i,j=1

TX
s=3

Ui,t−1K̄js,it∆εjsait

≡ D̄5NT,1 + D̄5NT,2,

K̄js,it ≡ K̄js (Ui,t−1) , and K̄it (u) is defined in (2.17). It is easy to show that D̄5NT,1 = OP [(h!)
−1/2].

Noting that E(D̄5NT,2) = 0 and E(D̄5NT,2)
2 = O(Nh!), we have D̄5NT,2 = OP [(Nh!)1/2] by the

Chebyshev inequality. Hence D5NT = OP [(Nh!)−1/2 + (h!)1/2] = oP (1) .

Now, we study ΓNT2. We first decompose ΓNT2 as follows.

ΓNT2 = (h!)
1/2

NX
i=1

TX
t=2

VNT (Ui,t−1) R̂NT (Ui,t−1) ait

+(h!)1/2
NX
i=1

TX
t=2

£
m(Ui,t−1)− β00Ui,t−1

¤
R̂NT (Ui,t−1) ait

+(h!)
1/2
(β0 − β̂)0

NX
i=1

TX
t=2

Ui,t−1R̂NT (Ui,t−1) ait ≡ ΓNT2,1 + ΓNT2,2 + ΓNT2,3. (A.13)

Note that ΓNT2,2 = 0 under H0. By (A.9), (A.11) and Assumptions A.5-A.6, we have

|ΓNT2,3| ≤ (h!)1/2
°°°β0 − β̂

°°° ¯̄̄R̃NT

¯̄̄
∞

NX
i=1

TX
t=2

|Ui,t−1ait|

= (h!)
1/2

OP (N
−1/2)OP [(logn/n)

1/2 +∆2n logn]OP (N) = oP (1) .

Under H0, by (A.9) we can further decompose ΓNT2,1 as follows

ΓNT2,1 = (h!)
1/2

NX
i=1

TX
t=2

VNT (Ui,t−1) bA(I − bA)−1VNT (Ui,t−1) ait

+(h!)1/2
NX
i=1

TX
t=2

VNT (Ui,t−1) (I − bA)−1RNT (u) ait

≡ ΓNT2,11 + ΓNT2,12, say.
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To study ΓNT2,11, we can first show that | bA(I − bA)−1VNT − A(I − A)−1VNT |∞ = OP [∆
2
n(logn)

1/2].

Using this, the uniform bound for VNT (u) and Assumption A.6, we have ΓNT2,11 = Γ̄NT2,11+N (h!)1/2

OP [∆
2
n(logn)

1/2]OP [∆n(logn)
1/2] = Γ̄NT2,11 + oP (1) , where

Γ̄NT2,11 = (h!)
1/2

NX
i=1

TX
t=2

VNT (Ui,t−1)A(I −A)−1VNT (Ui,t−1) ait.

By straightfoward moment calculations and the Chebyshev inequality, we can show that Γ̄NT2,11 =

oP (1) . Hence ΓNT2,11 = oP (1) . For ΓNT2,12, by the Jensen inequality, (A.10), the study of D1NT and

Assumption A.6, we have

|ΓNT2,12| ≤ (h!)1/2
¯̄̄
(I − bA)−1RNT

¯̄̄
∞

NX
i=1

TX
t=2

|VNT (Ui,t−1)| ait

≤
p
NT1 (h!)

1/2
¯̄̄
(I − bA)−1RNT

¯̄̄
∞

(
NX
i=1

TX
t=2

[VNT (Ui,t−1)]
2
ait

)1/2
=

p
NT1 (h!)

1/2Op

¡
∆2n logn

¢
OP [(h!)

−1/2] = oP (1) .

Hence ΓNT2,1 = oP (1) and ΓNT2 = oP (1) . This completes the proof of Theorem 3.1. ¥

Lemma A.1 D1NT − BNT
D→ N

¡
0, σ20

¢
.

Proof. Let Wit ≡
¡
U 0i,t−2,∆εit

¢0
and Wi ≡ (W 0

i3, ...,W
0
iT )

0. Then we can write D1NT as a third

order V -statistic:

D1NT =
(h!)1/2

n2

NX
i=1

TX
t=2

NX
j=1

TX
s=3

NX
l=1

TX
r=3

K̄js,itK̄lr,it∆εjs∆εlrait

=
(h!)

1/2

N2

NX
i1=1

NX
i2=1

NX
i3=1

ζ (Wi1 ,Wi2 ,Wi3) ,

where ζ (Wi,Wj ,Wl) = N2n−2
PT

t=2

PT
s=3

PT
r=3 K̄js,itK̄lr,it∆εjs∆εlrait. To study the asymptotic dis-

tribution ofD1NT , we need to use the U -statistic theory (e.g., Lee (1990)). Let ϕ (wi1 , wi2)≡ E[ζ(W1, wi1 ,

wi2)], and ζ̄(wi1 , wi2 , wi3) ≡ ζ (wi1 , wi2 , wi3)− ϕ (wi2 , wi3) . Then we can decompose D1NT as follows

D1NT =
(h!)1/2

N2

NX
i=1

NX
i2=1

ϕ (Wi1 ,Wi2) +
(h!)1/2

N2

NX
i=1

NX
i2=1

NX
i3=1

ζ̄ (Wi1 ,Wi2 ,Wi3)

≡ D1NT,1 +D1NT,2, say.

First, we considerD1NT,2.WriteE(D1NT,2)
2 = N−4h!

PN
i1,...,i6=1

E
£
ζ̄ (Wi1 ,Wi2 ,Wi3) ζ̄ (Wi4 ,Wi5 ,Wi6)

¤
.

Observing that E
£
ζ̄ (Wi1 , wi2 , wi3)

¤
= E

£
ζ̄ (wi1 ,Wi2 , wi3)

¤
= E[ζ̄(wi1 , wi2 ,Wi3)] = 0, E[ζ̄(Wi1 ,Wi2 ,

Wi3)ζ̄(Wi4 , Wi5 ,Wi6)] = 0 if there are more than three distinct elements in {i1, . . . , i6} . In view of this,
we can show that

E(D1NT,2)
2 = O(N−1 (h!)−1 +N−2 (h!)−2 +N−3 (h!)−3) = o (1) .
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Then D1NT,2 = oP (1) by the Chebyshev inequality.

Now, we consider D1NT,1. Note that

ϕ (Wi,Wj) = N2n−2
TX
t=2

TX
s=3

TX
r=3

Z
K̄is (u) K̄jr (u)∆εjs∆εlra (u) f

(uc)
t−1 (u) du

= T1N
2n−2

TX
s=3

TX
r=3

Z
K̄is (u) K̄jr (u)∆εjs∆εlra (u) f̄ (u) du,

where recall f̄ (u) ≡ T−11
PT

t=2 f
(uc)
t−1 (u) . ThenD1NT,1 = B1NT+V1NT , where B1NT = N−1 (h!)1/2

PN
i=1

ϕ (Wi,Wi) and V1NT = 2N
−1 (h!)1/2

P
1≤i<j≤N ϕ (Wi,Wj) contribute to the asymptotic bias and vari-

ance of our test statistic, respectively. Note that

B1NT = N−1 (h!)1/2 T1N2n−2
NX
j=1

TX
s=3

TX
r=3

Z
e01S̄NT (u)

−1
μh (Uj,s−2 − u)μh (Uj,r−2 − u)

0
S̄NT (u)

−1
e1

×1js1jrKh (Uj,s−2 − u)Kh (Uj,r−2 − u)∆εjs∆εjra (u) f̄ (u) du

= (h!)
1/2

T1Nn−2
NX
j=1

TX
s=3

Z
e01S̄NT (u)

−1
μh (Uj,s−2 − u)μh (Uj,s−2 − u)

0
S̄NT (u)

−1
e1

×1jsKh (Uj,s−2 − u)2 [∆εjs]
2 a (u) f̄ (u) du+OP ((h!)

1/2)

= (h!)
1/2

T1Nn−2
NX
j=1

TX
s=3

Z
E[e01S̄NT (u)

−1
μh (Uj,s−2 − u)μh (Uj,s−2 − u)

0
S̄NT (u)

−1
e1

×1jsKh (Uj,s−2 − u)
2
σ2 (Uj,s−2)]a (u) f̄ (u) du+OP (Nh!)−1/2 + (h!)1/2)

= (h!)
−1/2

T1d
−1
Z Z

e01S̄NT (u)
−1

μ (v)μ (v)
0
S̄NT (u)

−1
e1K (v)

2
σ2 (u+ hv) dva (u) f̄ (u) du

+OP (Nh!)−1/2 + (h!)1/2)

≡ BNT +OP [(Nh!)−1/2 + (h!)1/2], say,

where the third equality follows from the straightforward moment calculations and the Chebyshev

inequality. Note that BNT = O[(h!)−1/2]. If d < 3, noting that (h!)−1/2 khk2 = o (1) , we have

BNT = (h!)
1/2

T1Nn−1
Z

e01S̄NT (u)
−1
Z

K (v)
2
μ (v)μ (v)

0
dvS̄NT (u)

−1
e1σ

2 (u) a (u) f̄ (u) f (u) du

+o (1)

= (h!)
1/2

T1Nn−1C̄1
Z

σ2 (u) a (u) f̄ (u) f (u)
−1

du+ o (1) ,

where C̄1 = e01S−1
R
K (v)

2
μ (v)μ (v)

0
dvS−1e1. If q = 1, C̄1 =

R
K (v)

2
dv = Cd+1

1 .

In view of the fact that V1NT is a second-order degenerate U -statistic and Wi are IID across i, we

can easily verify that all the conditions of Theorem 1 of Hall (1984) are satisfied and a central limit

theorem applies to it: V1NT
D→ N

¡
0, σ20

¢
, where σ20 = limn→∞ σ2NT and σ2NT = 2h!E [ϕ (W1,W2)]

2
.
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We now calculate σ2NT .

σ2NT = 2h!T 21N
4n−4E

"
TX
s=3

TX
r=3

Z
K̄1s (u) K̄2r (u)∆ε1s∆ε2ra (u) f̄ (u) du

#2

= 2h!T 21N
4n−4E

"
TX
s=3

TX
r=3

Z
e01S̄NT (u)

−1
μh (U1,s−2 − u)μh (U2,r−2 − u)

0
S̄NT (u)

−1
e1

×Kh (U1,s−2 − u)Kh (U2,r−2 − u) 11s12r∆ε1s∆ε2ra (u) f̄ (u) du
i2

= 2 (h!)
−1

T 21N
4n−4

×E
"

TX
s=3

TX
r=3

Z
e01S̄NT (U1,s−2+h¯ ũ)−1 μ (ũ)μ

µ
ũ+

U1,s−2-U2,r−2
h

¶0
S̄NT (U1,s−2+h¯ ũ)−1 e1

×K (ũ)K

µ
ũ+

U1,s−2-U2,r−2
h

¶
11s12r∆ε1s∆ε2ra (U1,s−2+h¯ ũ) f̄ (U1,s−2+h¯ ũ) dũ

¸2
= 2 (h!)−1 T 21N

4n−4E

"
TX
s=3

TX
r=3

Z Z
e01S̄NT (U1,s−2)

−1 μ (u)μ
µ
u+

U1,s−2-U2,r−2
h

¶0
S̄NT (U1,s−2)

−1 e1

×e01S̄NT (U1,s−2)
−1

μ (ũ)μ

µ
ũ+

U1,s−2-U2,r−2
h

¶0
S̄NT (U1,s−2)

−1
e1

×K (u)K (ũ)K

µ
u+

U1,s−2 − U2,r−2
h

¶
K

µ
ũ+

U1,s−2 − U2,r−2
h

¶
×11s12rσ2s−2 (U1,s−2)σ2r−2 (U2,r−2) a (U1,s−2)2 f̄ (U1,s−2)2 dũdu

i
+O(khk2 + h!)

= 2T 21 p
−2
Z Z Z Z

e01S̄NT (v)
−1

μ (u)μ (u+w)0 S̄NT (v)
−1

e1e
0
1S̄NT (v)

−1
μ (ũ)μ (ũ+w)0 S̄NT (v)

−1
e1

×K (u)K (ũ)K (u+ w)K (ũ+ w)σ4 (v) a (v)
2
f̄ (v)

2
dũdudvdw

i
+O(khk2 + h!)

= σ20 + o (1) ,

where T 21N
2n−2 → T 21 /p

2 as n/N P→ p. In the case where q = 1, we have σ20 = σ
2(ll)
0 = 2T 21 p

−2 R [R K (u)

K (u+ v) du]2dv
R
σ4 (ū) a (ū)

2
f̄ (ū)

2
f (ū)

−4
dū.

Proof of Corollary 3.2

By Theorem 3.1, it suffices to prove (i) B̂(ll)
NT = B

(ll)
NT + oP (1) and (ii) σ̂

2(ll)
NT = σ

2(ll)
0 + oP (1) for the

local linear case with d < 3,13 and (iii) B̂NT = BNT + oP (1) and (iv) σ̂
2
NT = σ20+ oP (1) for the general

case. We only prove (i) and (ii) because the proofs of (iii) and (iv) are analogous but tedious. In fact,

we prove a stronger claim: (i) and (ii) hold under H1(λNT ) with λNT = (NT1)
−1/2(h!)−1/4.

We first show (i). In view of the fact that m (u) = β00u+ λNT δNT (u) under H1(λNT ), we have

∆̂εit = ∆εit + (β0 − β̂)0 (Ui,t−1 − Ui.t−2) + λNT [δNT (Ui,t−1)− δNT (Ui,t−2)]

≡ ∆εit +A1it +A2it, say.

13Strictly speaking, the proof of (i) requires both q = 1 and d < 3, whereas that of (ii) requires only q = 1.
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Using the fact that β̂ − β0 = OP (λNT ) under H1(λNT ), and Assumptions A2-A4, we can readily show

that uniformly in u ∈ U ,

σ̂2 (u) =
1

n

NX
j=1

TX
s=3

1jsLh (Uj,s−2 − u) (∆εjs +A1js +A2js)
2

=
1

n

NX
j=1

TX
s=3

1jsLh (Uj,s−2 − u)∆ε2js +OP (λNT )

=
TX
s=3

ns−2
n

1

ns−2

NX
j=1

E
£
1jsLh (Uj,s−2 − u)∆ε2js

¤
+OP [λNT + (Nh!)

−1/2
]

=
TX
s=3

ps−2
p

σ2s−2 (u) fs−2 (u) +OP [λNT + (Nh!)
−1/2

+ khkγ ]

= σ2 (u) +OP [(Nh!)−1/2 + khkγ ].

In addition, |f̂ − f |∞ = OP [(Nh!/ logN)
−1/2

+ khkγ ] by standard theory for kernel density estimation.
It follows that

B̂(ll)NT = (h!)−1/2 T1Nn−1Cd+1
1

1

NT1

NX
i=1

TX
t=2

n
σ2 (Ui,t−1) +OP [(Nh!)−1/2 + khkγ ]

o
a (Ui,t−1)

×
n
f (Ui,t−1)

−2 +OP [(Nh!/ logN)−1/2 + khkγ ]
o

= (h!)−1/2 T1Nn−1Cd+1
1

1

NT1

NX
i=1

TX
t=2

σ2 (Ui,t−1) a (Ui,t−1) f (Ui,t−1)
−2

+(h!)
−1/2

OP ((Nh!/ logN)
−1/2

+ khkγ)
= B(ll)NT + oP (1) .

Similarly, we can show that

σ̂
2(ll)
NT = 2T 21N

2n−2Cd+1
2

1

NT1

NX
i=1

TX
t=2

σ4 (Ui,t−1) a (Ui,t−1) f̄ (Ui,t−1) f (Ui,t−1)
−4 + oP (1)

= σ
2(ll)
NT + oP (1) . ¥

Proof of Theorem 3.3

The proof follows closely from that of Theorem 3.1, now keeping the additional terms that do not

vanish under H1 (λNT ) with λNT = (NT1)
−1/2 (h!)−1/4 . In view of the fact B̂NT = BNT + oP (1) and

σ̂NT = σ20 + oP (1) [or B̂
(ll)
NT = B

(ll)
NT + oP (1) and σ̂

2(ll)
NT = σ

2(ll)
0 + oP (1) if d < 3 and q = 1] under

H1 (λNT ) and the results for DlNT , l = 1, 3, 5, continue to hold H1 (λNT ), it suffices to show that under

H1 (λNT ) , (i) ΓNT3 = oP (1) , (ii) ΓNT2 = oP (1) , (iii) D2NT
P→ μ0 and (iv) DlNT = oP (1) for s = 4,

6, where ΓNT3, ΓNT2, and the D’s are defined in the proof of Theorem 3.1.

We first show (i). Decompose

R̂NT (u) =
h
(I −A)−1BNT (u) +DBNT (u)

i
+
h bA(I − bA)−1VNT (u) + (I − bA)−1RNT (u)

i
≡ B̃NT (u) + R̃NT (u) .
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Noting that Dmit (u) = OP (λNT khkq+1) and |BNT |∞ = OP (λNT khkq+1) under H1 (λNT ) , we can

show that
¯̄̄
B̃NT

¯̄̄
∞
= OP (λNT khkq+1) and

¯̄̄
R̃NT

¯̄̄
∞
= OP [(logn/n)

1/2 + ∆2n logn + λNT khkq+1]. It
follows that ¯̄̄

R̂NT

¯̄̄
∞
= OP [(logn/n)

1/2 +∆2n logn+ λNT khkq+1] under H1 (λNT ) , (A.14)

and

ΓNT3 ≤ 2
¯̄̄
R̂NT

¯̄̄2
∞
(h!)

1/2
NX
i=1

TX
t=2

a(U
[NT ]
i,t−1)

= OP [logn/n+∆
4
n (logn)

2 + λ2NT khk2(q+1)] (h!)1/2O (N) = oP (1) .

Similarly, using (A.14) and the decomposition in (A.13), we can show that ΓNT2 = oP (1) under

H1 (λNT ) .

To show (iii), using the WLLN for IID data (along the individual dimension) yields

D2NT =
1

NT1

NX
i=1

TX
t=2

h
δNT (U

[NT ]
i,t−1)

i2
a(U

[NT ]
i,t−1)

=

Z
δNT (u)

2 a (u) f [NT ] (u) du+ oP (1) = μ0 + oP (1) under H1 (λNT ) .

Let K̄[NT ]
js,it be as defined as K̄js,it with (U

[NT ]
i,t−1, U

[NT ]
j,s−2) in place of (Ui,t−1, Uj,s−2). Then under H1 (λNT )

D4NT =
−2γNT (h!)

1/2

NT2

NX
i=1

TX
t=2

NX
j=1

TX
s=3

K̄[NT ]
js,it∆εjsδNT (U

[NT ]
i,t−1)a(U

[NT ]
i,t−1)

= −2γNT (h!)
1/2

NT2

NX
i=1

TX
t=2

TX
s=3

K̄[NT ]
is,it ∆εisδNT (U

[NT ]
i,t−1)a(U

[NT ]
i,t−1)

−2γNT (h!)
1/2

NT2

NX
i=1

TX
t=2

NX
j 6=i,j=1

TX
s=3

K̄[NT ]
js,it∆εjsδNT (U

[NT ]
i,t−1)a(U

[NT ]
i,t−1)

= −2D4NT,1 − 2D4NT,2.

It is easy to show that D4NT,1 = OP [γNT (h!)
−1/2

] = OP [N
−1/2 (h!)−3/4] = oP (1) . In view of that

E(D4NT,2) = 0, and E(D4NT,2)
2 = OP [(h!)

1/2
], we have D4NT,2 = OP [(h!)

1/4
] by the Chebyshev

inequality. It follows that D4NT = OP [N
−1/2 (h!)−3/4 + (h!)1/4] = oP (1). Analogously, we can show

that D6NT = OP [N
−1/2 (h!)−1/2 + (h!)1/2] = oP (1) . This completes the proof of the theorem. ¥

Proof of Theorem 3.4

The proof follows closely from that of Theorems 3.1 and 3.3. By (A.8), (A.12), and the fact that¯̄̄
R̂NT

¯̄̄
∞
= oP (1) under H1, we can readily show that

ΓNT = b−1NTΓNT1 +
¡
2b−1NTΓNT2 + b−1NTΓNT3

¢
= b−1NT

6X
l=1

DlNT + oP (1) ,

43



where recall bNT ≡ NT1 (h!)
1/2

. It is easy to show that b−1NTDlNT = oP (1) under H1 for l = 1, 3, 4, 5, 6.
Under H1, by the WLLN for IID data, we have

b−1NTD2NT =
1

NT1

NX
i=1

TX
t=2

£
m(Ui,t−1)− β00Ui,t−1

¤2
ait = μA + oP (1) .

In addition, under H1, we have b−1NT B̂NT = oP (1) and σ̂2NT
P→ σ̄2 < ∞. It follows that b−1NTJNT =

[ΓNT − b−1NT B̂NT ]/
q
σ̂2NT = μA/

√
σ̄2 + oP (1) , and the conclusion follows. ¥
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