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QML Estimation of Dynamic Panel Data Models with Spatial

Errors∗

Liangjun Su and Zhenlin Yang†

School of Economics, Singapore Management University

October 9, 2012

Abstract

We propose quasi maximum likelihood (QML) estimation of dynamic panel models with spatial

errors when the cross-sectional dimension n is large and the time dimension T is fixed. We consider

both the random effects and fixed effects models and derive the limiting distributions of the QML

estimators under different assumptions on the initial observations. We propose a residual-based

bootstrap method for estimating the standard errors of the QML estimators. Monte Carlo simulation

shows that both the QML estimators and the bootstrap standard errors perform well in finite samples

under a correct assumption on initial observations, but may perform poorly when this assumption is

not met.

Key Words: Bootstrap Standard Errors, Dynamic Panel, Fixed Effects, Random Effects, Spatial

Error Dependence, Quasi Maximum Likelihood, Initial Observations.
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1 Introduction

Recently, there has been a growing interest in the estimation of panel data models with cross-sectional
or spatial dependence. See, among others, Anselin (1981), Elhorst (2003), Baltagi et al. (2003), Baltagi
and Li (2004), Chen and Conley (2001), Pesaran (2004), Kapoor et al. (2007), Baltagi et al. (2007a,
b), Mutl and Pfaffermayr (2008), and Lee and Yu (2010a) for an overview on the static spatial panel
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data (SPD) models.1 Adding a dynamic element into a SPD model further increases its flexibility, which
has, since Anselin (2001), attracted the attention of many econometricians. The spatial dynamic panel
data (SDPD) models can be broadly classified into two categories: one is that described in Anselin et al.
(2008) where the dynamic and spatial effects both appear in the model in the forms of lags (in time and
spatial) of the response variable, and the other allows the dynamic effect in the same manner but builds
the spatial effects into the disturbance term. The former has been studied by Yu et al. (2007, 2008)
and Yu and Lee (2007), and the latter by Elhorst (2005), Yang et al. (2006), Mutl (2006), Su and Yang
(2007), and Lee and Yu (2010b). Lee and Yu (2010c) provide an excellent survey on the spatial panel
data models (static and dynamic) and report some recent developments.

In this paper, we consider the latter type of SDPD model, in particular, the dynamic panel data model
with spatial error. We focus on the more traditional panel data where the cross-sectional dimension n is
allowed to grow but the time dimension T is held fixed (usually small), and follow the quasi-maximum
likelihood (QML) approach for model estimation.2 Elhorst (2005) studies the maximum likelihood es-
timation (MLE) of this model with fixed effects, but the asymptotic properties of the estimators are
not given. Mutl (2006) investigates this model using the method of three-step generalized method of
moments (GMM). Yang et al. (2006) consider a more general model where the response is subject to an
unknown transformation and estimate the model by MLE. There are two well-known problems inherent
from short panel and QML estimation, namely the assumptions on the initial values and the incidental
parameters, and these problems remain for the SDPD model that we consider. In the early version of
this paper (Su and Yang, 2007), we derived the asymptotic properties of the quasi-maximum likelihood
estimators (QMLEs) of this model under both the random and fixed effects specifications with initial
observations treated as either exogenous or endogenous, but methods for estimating the standard errors
of the QMLEs were not provided. The main difficulty lies in the estimation of the variance-covariance
(VC) matrix of the score function, where the traditional methods based on sample analogues or analytical
expressions fail due to the presence of a time lag and spatial errors. This difficulty is now overcome by a
residual-based bootstrap method.

For over thirty years of spatial econometrics history, the asymptotic theory for the (Q)ML estimation
of spatial models has been taken for granted until the influential paper by Lee (2004), which establishes
systematically the desirable consistency and asymptotic normality results for the Gaussian QML estimates
of a spatial autoregressive model. He demonstrates that the rate of convergence of the QML estimates
may depend on some general features of the spatial weights matrix. More recently, Yu et al. (2008)
extend the work of Lee (2004) to spatial dynamic panel data models with fixed effects allowing both T

and n to be large. While our work is closely related to theirs, there are clear distinctions. First, unlike
Yu et al. (2008) who consider only fixed effects model, we shall consider both random and fixed effects
specifications of the individual effects. Second, we shall focus on the case of small T , and deal with the
problems of initial conditions and incidental parameters. In contrast, neither problem arises under the

1For alternative approaches to model cross-sectional dependence, see Phillips and Sul (2003), Andrews (2005), Pesaran

(2006), Bai (2009), Moon and Weidner (2010), Pesaran and Tosetti (2011), Su and Jin (2012), among others.
2A panel with large n and small T , called a short panel, remains the prevalent setting in the majority of empirical

microeconometric research (Binder et al., 2005), and evidence from the standard dynamic panel data models shows that

QML estimators are more efficient than GMM estimators (Hsiao et al., 2002; Binder et al., 2005).
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large-n and large-T setting as considered in Yu et al. (2008). Third, spatial dependence is present only in
the error term in our model whereas Yu et al. (2008) consider spatial lag model. It would be interesting
to extend our work to the SDPD model with spatial lag, or with both spatial lag and spatial error.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 presents the
quasi maximum likelihood estimates. Section 4 derives the asymptotic properties of the QMLEs. Section
5 introduces the bootstrap method for standard error estimation. Section 6 presents Monte Carlo results
for the finite sample performance of the QMLEs and their estimated standard errors. Section 7 concludes
the paper. All the proofs are relegated to the appendix.

To proceed, we introduce some general notation and convention. For a positive integer k, let Ik denote
a k × k identity matrix, ιk a k × 1 vector of ones, 0k a k × 1 vector of zeros, and Jk = ιkι

′
k, where ′

denotes transpose. Let A⊗B denotes the Kronecker product of two matrices A and B. Let | · |, ‖ · ‖, and
tr(·) denote, respectively, the determinant, the Frobenius norm, and the trace of a matrix. When B is a
symmetric matrix, we use λmax(B) and λmin(B) denote its largest and smallest eigenvalues, respectively.

2 Model Specification

We consider the spatial dynamic panel data (SDPD) model of the form

yit = ρyi,t−1 + x′itβ + z′iγ + uit, i = 1, · · · , n, t = 1, · · · , T, (2.1)

where the scalar parameter ρ (|ρ| < 1) characterizes the dynamic effect, xit is a p × 1 vector of time-
varying exogenous variables, zi is a q × 1 vector of time-invariant exogenous variables that may include
the constant term, dummy variables representing individuals’ gender, race, etc., and β and γ are the
usual regression coefficients. The disturbance vector ut = (u1t, · · · , unt)′ is assumed to exhibit both
non-observable individual effects and spatially autocorrelated structure, i.e.,

ut = μ+ εt, (2.2)

εt = λWnεt + vt, (2.3)

where μ = (μ1, · · · , μn)′, εt = (ε1t, · · · , εt)′, and vt = (v1t, · · · , vnt)′, with μ representing the unobservable
individual or space-specific effects, εt representing the spatially correlated errors, and vt representing the
random innovations that are assumed to be independent and identically distributed (iid) with mean zero
and variance σ2

v. The parameter λ is a spatial autoregressive coefficient and Wn is a known n× n spatial
weight matrix whose diagonal elements are zero.3

Denoting yt = (y1t, · · · , ynt)′, xt = (x1t, · · · , xnt)′, and z = (z1, · · · , zn)′, the model has the following
reduced-form representation,

yt = ρyt−1 + xtβ + zγ + ut, with ut = μ+ B−1
n vt, t = 1, · · · , T, (2.4)

3It is worth mentioning that Eqs (2.1)-(2.3) allow spatial dependence to be present in the random disturbance term εt

but not in the individual effect μ. See Baltagi, Song and Koh (2003) and Baltagi and Li (2004) for the application of this

type of models. Alternatively we can allow both εt and μ to follow a spatial autoregressive model in our model as is done

by Kapoor et al. (2007) who consider GMM estimation of a static spatial panel model with random effects. Our theory can

readily be modified to take into account of the latter case, and we conjecture that a specification test can also be developed

to test for the two different specifications.
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where Bn = In − λWn. The following specifications are essential for the subsequent developments.
We focus on short panels where n → ∞ but T is fixed and typically small. Throughout the paper,

the initial observations designated by y0 are considered to be available, which can be either exogenous
or endogenous; the individual or space-specific effects μ can be either ‘random’ or ‘fixed’, giving the
so-called random effects and fixed effects models. To clarify, we adopt the view that the fundamental
distinction between random effects and fixed effects models is not whether the unobserved individual-
specific effects μ is random or fixed, but rather whether μ is uncorrelated or correlated with the observed
regressors, and make it clear that μ is considered as a random vector in both models.

To give a unified presentation, we adopt a similar framework as Hsiao et al. (2002): (i) data collection
starts from the 0th period; the process starts from the −mth period, i.e., m periods before the start of
data collection, m = 0, 1, · · · , and then evolves according to the model specified by (2.4); (ii) the starting
position of the process y−m is treated as exogenous; hence the exogenous variables (xt, z) and the errors
ut start to have impact on the response from period −m + 1 onwards; (iii) all exogenous quantities
(y−m, xt, z) are considered as random and inferences proceed by conditioning on them, and (iv) variances
of elements of y−m are constant. Thus, when m = 0, y0 = ym is exogenous, when m ≥ 1, y0 becomes
endogenous, and when m = ∞, the process has reached stationarity.

3 The QML Estimators

In this section we develop quasi maximum likelihood estimates (QMLE) based on Gaussian likelihood
for the SDPD model with random effects as well as the SDPD model with fixed effects. For the former,
we start with the case of exogenous y0, and then generalize it to give a unified treatment on the initial
values. For the latter, a unified treatment is given directly.4

3.1 QMLEs for the random effects model

As indicated above, the main feature of the random effects SDPD model is that the state-specific
effect μ is assumed to be uncorrelated with the observed regressors. Furthermore, it is assumed that μ
contains iid elements of mean zero and variance σ2

μ, and is independent of vt.

Case I: y0 is exogenous (m = 0). In case when y0 is exogenous, it essentially contains no information
with respect to the structural parameters in the system, and thus can be treated as fixed constants. In
this case, x0 is not needed, and the estimation of the system makes use of T periods of data (t = 1, · · · , T ).
In case when y0 is endogenously generated from the system (2.4), it contains useful information about
the parameters in the model, and hence should be used in the model estimation, particularly when T

is small and n is large (Bhargava and Sargan, 1983; Hsiao et al., 2002). In this case x0 is needed for
modelling y0.

4It is well known that when T is fixed the likelihood function for a dynamic panel model depends on the assumptions on

the initial observations (Hsiao, 2003). For example, if |ρ| ≥ 1 or the process {xt} are not stationary, then it does not make

sense to assume that the process generating the yt is the same prior to the periods of observations for t = 1, · · · , T . In this

case, it is reasonable to treat y0 as exogenous. Otherwise, y0 should be treated as endogenous. In general, y0 is considered

to be exogenous when it is reasonable to expect that y0 varies “autonomously”, independently of the other variables in the

model, otherwise it is considered as endogenous.
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Conditional on the observed (exogenous) y0, the distribution of y1 can be easily derived, and hence the
Gaussian quasi-likelihood function based on the observations y1, y2, · · · , yT . Define Y = (y′1, · · · , y′T )′,
Y−1 = (y′0, · · · , y′T−1)

′, X = (x′1, · · · , x′T )′, Z = ιT ⊗z, and v = (v′1, · · · , v′T )′. The SDPD model specified
by (2.1)-(2.3) can be written in matrix form:

Y = ρY−1 +Xβ + Zγ + u, with u = (ιT ⊗ In)μ+ (IT ⊗ B−1)v. (3.1)

Pretending μ and v follow normal distributions leads to u ∼ N(0, σ2
vΩ), where

Ω ≡ Ω(λ, φμ) = φμ(JT ⊗ In) + IT ⊗ (B′B)−1
, (3.2)

φμ = σ2
μ/σ

2
v, and JT = ιT ι

′
T . Note that the dependence of Bn on n and λ is suppressed. The same

notational convention is applied to other quantities such as Y , X, Ω, etc., unless confusion arises.
The distribution of u leads to the distribution of Y − ρY−1, and hence the distribution of Y as the

Jacobian of the transformation is one. Let θ = (β′, γ′, ρ)′, δ = (λ, φμ)′, and ψ = (θ′, σ2
v, δ

′)′. Denoting
u(θ) = Y − ρY−1 −Xβ − Zγ, the quasi-log-likelihood function of ψ is

Lr(ψ) = −nT
2

log(2π) − nT

2
log(σ2

v) −
1
2

log |Ω| − 1
2σ2

v

u(θ)′Ω−1u(θ). (3.3)

Maximizing (3.3) gives the maximum likelihood estimators (MLEs) of ψ if the error components are
truly Gaussian and the quasi maximum likelihood estimators (QMLEs) otherwise. Computationally it is
more convenient to work with the concentrated log-likelihood by concentrating out the parameters θ and
σ2
v. From (3.3), the constrained QMLEs of θ and σ2

v, for a given δ, are,

θ̂(δ) = (X̃′Ω−1X̃)−1X̃′Ω−1Y and σ̂2
v(δ) =

1
nT

ũ(δ)′Ω−1ũ(δ), (3.4)

respectively, where X̃ = (X,Z, Y−1) and ũ(δ) = Y − X̃θ̂(δ). Substituting θ̂(δ) and σ̂2
v(δ) given in (3.4)

back into (3.3) for θ and σ2
v, we obtain the concentrated quasi-log-likelihood function of δ:

Lrc(δ) = −nT
2

[log(2π) + 1] − nT

2
log[σ̂2

v(δ)] −
1
2

log |Ω|. (3.5)

The QMLE δ̂ = (λ̂, φ̂μ)′ of δ maximizes the concentrated log-likelihood (3.5). The QMLEs of θ and σ2
v

are given by θ̂(δ̂) and σ̂2
v(δ̂), respectively. Further, the QMLE of σ2

μ is given by σ̂2
μ = φ̂μσ̂

2
v.

The QML estimation of the random effects SDPD model is seen to be very simple under exogenous
y0. The numerical maximization involves only two parameters, namely, the spatial parameter λ and
the variance ratio φμ. The dynamic parameter ρ is estimated in the same way as the usual regression
coefficients and its QMLE has an explicit expression given λ and φμ.

Case II: y0 is endogenous (m ≥ 1). The log-likelihood function (3.3) is derived under the assump-
tion that the initial observation y0 is exogenously given. If this assumption is not satisfied, maximizing
(3.2) generally produces biased estimators (see Bhargava and Sargan, 1983). On the other hand, if the
initial observation y0 is taken as endogenous in the sense that it is generated from the process specified
by (2.4), which starts m periods before the 0th period, then y0 contains useful information about the
model parameters and hence should be utilized in the model estimation. We now present a unified set-up
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for a general m and then argue (see Remark II below) that by letting m = 0 it reduces to the case of
exogenous y0. By successive back substitution using (2.4), we have

y0 = ρmy−m +
m−1∑
j=0

ρjx−jβ + zγ
1 − ρm

1− ρ
+ μ

1 − ρm

1 − ρ
+
m−1∑
j=0

ρjB−1v−j . (3.6)

Letting η0 and ζ0 be, respectively, the exogenous and endogenous components of y0, we have

η0 = ρmy−m +
m−1∑
j=0

ρjx−jβ + zγ
1 − ρm

1 − ρ
= ηm + x0β + zm(ρ)γ, (3.7)

where ηm = ρmy−m +
∑m−1

j=1 ρjx−jβ and zm(ρ) = z 1−ρm

1−ρ ; and

ζ0 = μ
1 − ρm

1 − ρ
+
m−1∑
j=0

ρjB−1v−j , (3.8)

where E(ζ0) = 0 and Var(ζ0) = σ2
μ

(
1−ρm

1−ρ
)2

In + σ2
v

1−ρ2m

1−ρ2 (B′B)−1 . Clearly, both the mean and variance
of y0 are functions of the model parameters and hence y0 is informative to model estimation. Treating
y0 as exogenous will lose such information and cause bias in model estimation.

However, both {x−j, j = 1, · · · , m−1} for m ≥ 2 and y−m for m ≥ 1 in ηm are unobserved, rendering
that (3.7) cannot be used as a model for η0. Some approximations are necessary. In this paper, we follow
Bhargava and Sargan (1983) (see also Hsiao, 2003, p.76) and propose a model for the initial observations
based on the following fundamental assumptions. Let x ≡ (x0, x1, · · · , xT ).

Assumption R0: (i) Conditional on the observables x and z, the optimal predictors for x−j, j ≥ 1,
are x and the optimal predictors for E(y−m), m ≥ 1, are x and z; and (ii) The error resulted from
predicting ηm using x and z is ζ such that ζ ∼ (0, σ2

ζIn) and is independent of u, x and z.

These assumptions lead immediately to the following model for ηm:

ηm = ιnπ1 + xπ2 + zπ3 + ζ ≡ x̃π + ζ, (3.9)

where x̃ = (ιn,x, z) and π = (π1, π
′
2, π

′
3)

′. Clearly, the variability of ζ comes from two sources: the
variability of y−m and the variability of the prediction error from predicting E(y−m) and

∑m−1
j=1 ρjx−jβ

by x and z. Hence, we have the following model for y0 based on (3.6)-(3.9):

y0 = x̃π + x0β + zm(ρ)γ + u0, u0 = ζ + ζ0. (3.10)

The ‘initial’ error vector u0 is seen to contain three components: ζ, μ1−ρm

1−ρ , and
∑m−1

j=0 ρjB−1v−j , being,
respectively, the prediction error from predicting the unobservables, the cumulative random effects up to
the 0th period, and the ‘cumulative’ spatial effects and random shocks up to the 0th period. The term
zm(ρ)γ = z 1−ρm

1−ρ γ represents the cumulative impact of the time-invariant variables z up to period 0 and
needs not be predicted. However, the predictors for ηm still include z, indicating that (i) the mean of
y−m is allowed to be linearly related to z and (ii) ρm may not be small such that the effect of y−m on
ηm is not negligible. If ρm is small which occurs when either m is large or ρ is small, the impact of y−m

6



to ηm can be ignored, and the term zπ3 in (3.10) should be omitted. Some details about the cases with
small ρm are given latter. For the cases where ρm is not negligible, one can easily show that, under strict
exogeneity of x and z, E(u0) = 0,

E(u0u
′
0) = σ2

ζIn + σ2
μa

2
mIn + σ2

vbm(B′B)−1 , and E(u0u
′) = σ2

μam(ι′T ⊗ In),

where am ≡ am(ρ) = 1−ρm

1−ρ and bm ≡ bm(ρ) = 1−ρ2m

1−ρ2 . Let u∗ = (u′0, u
′)′. Under the normality assumption

for the original error components μ and v, and the ‘new’ prediction error ζ, we have u∗ ∼ N(0, σ2
vΩ∗),

where Ω∗ is n(T + 1) × n(T + 1) and has the form:

Ω∗ ≡ Ω∗(ρ, λ, φμ, φζ) =

(
φζIn + φμa

2
mIn + bm(B′B)−1 φμam(ι′T ⊗ In)

φμam(ιT ⊗ In) Ω

)
, (3.11)

φζ = σ2
ζ/σ

2
v, and Ω is given by (3.2). This leads to the joint distribution of (y′0, (Y − ρY−1)′)′, and hence

the joint distribution of (y′0, Y ′)′ or the likelihood function. Again, the arguments of Ω∗ are frequently
suppressed should no confusion arise.

Now let θ = (β′, γ′, π′)′, δ = (ρ, λ, φμ, φζ)′, and ψ = (θ′, σ2
v, δ

′)′. Based on (2.4) and (3.10), the
Gaussian quasi-log-likelihood function of ψ has the form:

Lrr(ψ) = −n(T + 1)
2

log(2π) − n(T + 1)
2

log(σ2
v) −

1
2

log |Ω∗| − 1
2σ2

v

u∗(θ, ρ)′Ω∗−1u∗(θ, ρ), (3.12)

where u∗(θ, ρ) = {(y0 − x0β − zm (ρ) γ − x̃π)′, (Y − ρY−1 −Xβ − Zγ)′}′ ≡ Y ∗ −X∗θ,

Y ∗ = Y ∗ (ρ) =

(
y0

Y − ρY−1

)
and X∗ = X∗ (ρ) =

(
x0 zm (ρ) x̃
X Z 0nT×k

)
.

Maximizing (3.12) gives MLE of ψ if the error components are truly Gaussian and the QMLE otherwise.
Similar to Case I, we work with the concentrated quasi-log-likelihoodby concentrating out the parameters
θ and σ2

v. The constrained QMLEs of θ and σ2
v, given δ, are

θ̂(δ) = (X∗′Ω∗−1X∗)−1X∗′Ω∗−1Y ∗ and σ̂2
v(δ) =

1
n(T + 1)

ũ∗(δ)′Ω∗−1ũ∗(δ), (3.13)

where ũ∗(δ) = u∗(θ̂(δ), ρ) = Y ∗ −X∗ θ̂(δ), and θ̂(δ) = (β̂(δ)′, γ̂(δ)′, π̂(δ)′)′. Substituting θ̂(δ) and σ̂2
v(δ)

back into (3.12) for θ and σ2
v, we obtain the concentrated quasi-log-likelihood function of δ:

Lrrc (δ) = −n(T + 1)
2

[log(2π) + 1] − n(T + 1)
2

log σ̂2
v(δ) −

1
2

log |Ω∗|. (3.14)

Maximizing the concentrated quasi-log-likelihood (3.14) gives the QMLE of δ, denoted by δ̂ = (ρ̂, λ̂, φ̂μ, φ̂ζ)′.
The QMLEs of θ and σ2

v are thus given by θ̂(δ̂) and σ̂2
v(δ̂), respectively, and these of σ2

μ and σ2
ζ are given

by σ̂2
μ = φ̂μσ̂

2
v and σ̂2

ζ = φ̂ζσ̂
2
v, respectively.5

Remark I: To utilize the information contained in the n endogenous initial observations y0, we have
introduced k = p(T + 1) + q+ 1 additional parameters (π, σ2

ζ ) in the model (3.9). Besides the bias issue,

5Unlike the case of exogenous y0, the dynamic parameter ρ now becomes a nonlinear parameter that has to be estimated,

together with λ, φμ and φζ , through a nonlinear optimization process.

7



efficiency gain by utilizing additional n observations is reflected by n − k. Apparently, the condition
n > k has to be satisfied in order for π and σ2

ζ to be identified. If both T and p are not so small (T = 9
and p = 10, say), one may consider to replace the regressors x in (3.9) by the most relevant ones (to the
past), x0 and x1, say, or simply by x = (T + 1)−1

∑T
t=0 xt. In this case k = 2p+ q + 1, and p + q + 1,

respectively.
Remark II: When y0 is exogenous, model (3.10) becomes y0 = x̃π+ u0, where u0 ∼ (0, σ2

0In) and is
independent of u. In this case, we have Ω∗ = diag(σ2

0In,Ω). Model estimation may proceed by letting
m = 0 in (3.14), and the results are almost identical to those from maximizing (3.5). A special case
of this is the one considered in Hsiao (2003, p.76, Case IIa) where y′i0s are simply assumed to be iid
independent of μ′

i. If y′i0s are allowed to be correlated with μ′
i (Case IIb, Hsiao, 2003, p.76), the model

becomes a special case of endogenous y0 as considered above.

Remark III: In general, m is unknown. In dealing with a dynamic panel model with fixed effects
but without spatial dependence, Hsiao et al. (2002) recommend treating m or a function of it as a free
parameter, which is estimated jointly with the other model parameters. However, we note that their
approach requires ρ 
= 0, as when ρ = 0, m disappears from the model and hence cannot be identified.
Elhorst (2005) recommends that an appropriate value of m should be chosen in advance. We concur with
his view for two reasons: (i) an empirical study often tells roughly what the m value is (see, e.g., the
application considered by Elhorst), and (ii) the estimation is often not sensitive to the choice of m unless
it is very small (m ≤ 2), and |ρ| is close to 1, as evidenced by the Monte Carlo results given in Section 6.

While the results given above are under a rather general set-up, some special cases deserve detailed
discussions, which are (a) m = 1, (b) m = ∞, and (c) ρ = 0.

(a) m=1. When the process starts just one period before the start of data collection, the model
(3.10) becomes y0 = ρy−1 + x0β + zγ + μ+ B−1v0, zm(ρ) = z, and

Ω∗ =

(
(φζ + φμ)In + (B′B)−1, φμ(ι′T ⊗ In)
φμ(ι′T ⊗ In), Ω

)
.

In this case, ρ becomes a linear parameter again and the estimation can be simplified by putting ρ

together with β, γ and π which can be concentrated out from the likelihood function. Now, denoting the
response vector and the regressor matrix by:

Ỹ =

(
y0

Y

)
and X̃ =

(
x0 z 0n×1 x̃
X Z Y−1 0nT×k

)
,

the estimation proceeds with θ = (β′, γ′, ρ, π)′ and δ = (λ, φμ, φζ)′.

(b) m=∞. When the process has reached stationarity (m→ ∞ and |ρ| < 1), the model for the initial
observations becomes y0 =

∑∞
j=0 ρ

jx−jβ+ zγ
1−ρ + μ

1−ρ +
∑∞

j=0 ρ
jB−1v−j . As η∞ =

∑∞
j=0 ρ

jx−jβ involves
only the time-varying regressors, its optimal predictors should be (ιn,x). The estimation proceeds by
letting zm(ρ) = z∞(ρ) = z

1−ρ , am = a∞ = 1
1−ρ , bm = b∞ = 1

1−ρ2 , x̃ = (ι,x), and π = (π1, π
′
2)′.

(c) ρ = 0. When the true value of the dynamic parameter is zero, the model becomes static with
yt = xtβ + zγ + μ +B−1vt, t = 0, 1, · · · , T . At this point, the true values for all the added parameters,
π and σζ, are automatically zero.
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3.2 QMLEs for the fixed effects model

In this section, we consider the QML estimation of the SDPD model with fixed effects, i.e., the vector
of unobserved individual-specific effects μ in model (2.4) is allowed to correlate with the time-varying
regressors xt. Due to this unknown correlation, μ acts as if they are n free parameters, and with T

fixed the model cannot be consistently estimated due to the incident parameter problem. Following the
standard practice, we eliminate μ by first-differencing (2.4) to give

Δyt = ρΔyt−1 + Δxtβ + Δut, Δut = B−1Δvt, t = 2, 3, · · · , T. (3.15)

Clearly, (3.15) is not defined for t = 1 as Δy1 depends on Δy0 and the latter is not observed. Thus, even
if y0 (hence Δy0) is exogenous, one cannot formulate the likelihood function by conditioning on Δy0 as
in the early case. To obtain the joint distribution of Δy1,Δy2, · · · ,ΔyT or the transformed likelihood
function for the remaining parameters based on (3.15), a proper approximation for Δy1 needs to be made
so that its marginal distribution can be obtained, whether y0 is exogenous or endogenous. We present a
unified treatment for the fixed effects model where the initial observations y0 can be exogenous (m = 0)
as well as endogenous (m ≥ 1).

Under the general specifications given at the end of Section 2, continuous back substitution to the
previous m(≥ 1) periods leads to

Δy1 = ρmΔy−m+1 +
m−1∑
j=0

ρjΔx1−jβ +
m−1∑
j=0

ρjB−1Δv1−j. (3.16)

Note that (i) Δy−m+1 represents the changes after the process has made its first move, called the initial
endowment ; (ii) while the starting position y−m is assumed exogenous, the initial endowment Δy−m+1

is endogenous, and (iii) when m = 0, Δy−m+1 = Δy1, i.e., the initial endowment becomes the observed
initial difference. The effect of the initial endowment decays as m increases. However, when m is small,
their effect can be significant, and hence a proper approximation to it is important. In general, write
Δy1 = Δη1 + Δζ1, where Δη1 and Δζ1, the exogenous and endogenous components of Δy1, are given as

Δη1 = ρmE(Δy−m+1) +
m−1∑
j=0

ρjΔx1−jβ ≡ ηm + Δx1β, (3.17)

Δζ1 = ρm[Δy−m+1 −E(Δy−m+1)] +
m−1∑
j=0

ρjB−1Δv1−j, (3.18)

where ηm = ρmE(Δy−m+1) +
∑m−1

j=1 ρjΔx1−jβ. Note that when m = 0, the summation terms in (3.17)
and (3.18) should vanish, and as a result Δη1 = E(Δy1) and Δζ1 = Δy1 − E(Δy1).

Clearly, the observations Δx1−j, j = 1, · · · , m − 1, m ≥ 2, are not available, and the structure
of E(Δy−m+1), m ≥ 1, is unknown. Hence ηm is completely unknown. Furthermore, as ηm is an
n × 1 vector, it cannot be treated as a free parameter vector to be estimated; otherwise the incidental
parameters problem will be confronted again.6 Hsiao et al. (2002) remark that to get around this problem,
the expected value of η1, conditional on the observables, has to be a function of a finite number of

6Unless the original model (2.4) does not contain time-varying variables as in Anderson and Hsiao (1981).
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parameters, and that such a condition can hold provided that {xit} are trend-stationary (with a common
deterministic linear trend) or first-difference stationary processes. Letting Δx = (Δx1, · · · ,ΔxT ), we
have the following fundamental assumptions.

Assumption F0: (i) The optimal predictors for Δx1−j, j = 1, 2, · · · and E(Δy−m+1), m = 0, 1, · · · ,
conditional on the observables, are Δx; (ii) Collectively, the errors from using Δx to predict ηm is
ε ∼ (0, σ2

εIn), and (iii) y−m = E(y−m) + e, where e ∼ (0, σ2
eIn).

Assumption F0(i) and Assumption F0(ii) lead immediately to a ‘predictive’ model for ηm:

ηm = π1ιn + Δx π2 ≡ Δ̃x π + ε, m = 0, 1, · · · ,

where Δ̃x = (ιn,Δx) and π = (π1, π
′
2)′. Thus, Δη1 defined in (3.17) can be predicted by: Δη1 =

Δ̃x π + Δx1β + ε. The original theoretical model (2.1) and Assumption F0(iii) lead to

Δy−m+1 −E(Δy−m+1) = B−1v−m+1 − e, m = 0, 1, · · · ,

which gives Δζ1 = −ρme + ρmB−1v−m+1 +
∑m−1

j=0 ρjB−1Δv1−j when m ≥ 1, and −e + B−1v1 when
m = 0. We thus have the following model for the observed initial difference,

Δy1 = Δ̃xπ + Δx1β + ε+ Δζ1 ≡ Δ̃xπ + Δx1β + Δũ1, (3.19)

where Δũ1 = ε+Δζ1 = ε−ρme+ρmB−1v−m+1 +
∑m−1

j=0 ρjB−1Δv1−j. Let ζ = ε−ρme. By assumption,
the elements of ζ = ε− ρme are iid with variance σ2

ζ = σ2
ε + σ2

eρ
2m.

Note that when m = 0, Δu1 = ε− e+B−1v1. The approximation (3.19) is associated with Bhargava
and Sargan’s (1983) approximation for the standard dynamic random effects model with endogenous
initial observations. See Ridder and Wansbeek (1990) and Blundell and Smith (1991) for a similar
approach. By construction, we can verify that under strict exogeneity of xit, i.e., E(ζi|Δxi,1, · · · ,Δxi,T ) =
0, and independence between ζ and {Δv1−j, j = 0, 1, · · · , m− 1},

E(Δũ1Δũ′1) = σ2
ζIn + σ2

vcm(B′B)−1 = σ2
vB

−1(φζBB′ + cmIn)B′−1, and (3.20)

E(Δũ1Δu′t) = −σ2
v(B

′B)−1 for t = 2, and 0 for t = 3, 4, · · · , T, (3.21)

where cm ≡ cm(ρ) = 2
1+ρ

− ρ2m(1−ρ)
1+ρ

and φζ = σ2
ζ/σ

2
v. Note that c0 = 1, c∞ = 2

1+ρ
and cm(0) = 2.

Letting Δu = (Δũ′1,Δu′2, · · · ,Δu′T ), we have Var(Δu) = σ2
vΩ†, where

Ω† ≡ Ω†(ρ, λ, φζ) = (IT ⊗ B−1)HE(IT ⊗ B′−1), (3.22)

E = φζBB
′ + cmIn, and HE is an nT × nT matrix defined as

HE =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E −In 0 · · · 0 0 0
−In 2In −In · · · 0 0 0
0 −In 2In · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2In −In 0
0 0 0 · · · −In 2In −In
0 0 0 · · · 0 −In 2In

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.23)
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The expression for Ω† given in (3.22) greatly facilitates the calculation of the determinant and inverse of
Ω† as seen in the subsequent subsection. Derivations of score and Hessian matrix requires the derivatives
of Ω†, which can be made much easier based on the following alternative expression

Ω† = φζ(�1 ⊗ In) + hcm ⊗ (B′B)−1, (3.24)

where �1 is a T × T matrix with 1 in its top-left corner and zero elsewhere, and hcm is hs defined in
Section 3.3 with s replaced by cm.

In the following, we simply refer to the dimension of π to be k. Now let θ = (β′, π′)′, δ = (ρ, λ, φζ)′,
and ψ = (θ′, σ2

v, δ
′)′. Note that ψ is a (p+ k+4)× 1 vector of unknown parameters. Based on (3.15) and

(3.19), the Gaussian quasi-log-likelihood of ψ has the form:

Lf (ψ) = −nT
2

log(2π) − nT

2
log(σ2

v) −
1
2

log
∣∣Ω†∣∣− 1

2σ2
v

Δu(θ, ρ)′Ω†−1Δu(θ, ρ), (3.25)

where Δu(θ, ρ) = ΔY † (ρ) − ΔX†θ,

ΔY † (ρ) =

⎛⎜⎜⎜⎜⎝
Δy1
Δy2 − ρΔy1
...
ΔyT − ρΔyT−1

⎞⎟⎟⎟⎟⎠ , and ΔX† =

⎛⎜⎜⎜⎜⎝
Δx1 Δ̃x
Δx2 0n×k
...

...
ΔxT 0n×k

⎞⎟⎟⎟⎟⎠ .

Maximizing (3.25) gives the Gaussian MLE or QMLE of ψ. First, given δ = (ρ, λ, φζ)′, the constrained
MLEs or QMLEs of θ and σ2

v are, respectively,

θ̂(δ) = (ΔX†′Ω†−1ΔX†)−1ΔX†′Ω†−1ΔY † (ρ) and σ̂2
v(δ) =

1
nT

Δ̃u(δ)′Ω†−1Δ̃u(δ), (3.26)

where Δ̃u(δ) equals Δu(θ, ρ) with θ being replaced by θ̂(δ). Substituting θ̂(δ) and σ̂2
v(δ) back into (3.25)

for θ and σ2
v, we obtain the concentrated quasi-log-likelihood function of δ:

Lfc (δ) = −nT
2

[log(2π) + 1]− nT

2
log σ̂2

v(δ) −
1
2

log |Ω†|. (3.27)

The QMLE δ = (ρ̂, λ̂, φ̂ζ)′ of δ maximizes the concentrated quasi-log-likelihood (3.27). The QMLEs of θ
and σ2

v are given by θ̂(δ̂) and σ̂2
v(δ̂), respectively. Further, the QMLE of σ2

ζ are given by σ̂2
ζ = φ̂ζ σ̂

2
v.

Remark IV: We require that n > pT +1 for the identification of the parameters in (3.19). When this
is too demanding, it can be addressed in the same manner as in the random effects model by choosing
variables Δx̃ with a smaller dimension. For example, replacing Δx in (3.19) by Δx = T−1

∑T
t=1 Δxt

gives Δx̃ = (ιn,Δx), and dropping Δx in (3.19) gives Δ̃x = ιn. In each case, the variance-covariance
structure of Δu remains the same.

Remark V: Hsiao et al. (2002, p.110), in dealing with a dynamic panle data model without spatial
effect, recommend treating cm(ρ) as a free parameter to be estimated together with other model param-
eters. This essentially requires that ρ 
= 0 and m be an unknown number. Note that cm(0) = 2 and
c∞(ρ) = 2/(1 + ρ), which become either a constant or a pure function of ρ. Our set-up allows both ρ = 0
and m = ∞ so that a test for the existence of dynamics can be carried out and a stationary model can
be fit. As in the case of the random effects model, we again treat m as known, chosen in advance based
on the given data (see Remark III given in section 3.2).
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3.3 Some computational notes

Maximization of Lrc(δ), Lrrc (δ) and Lfc (δ) involves repeated evaluations of the inverse and determinants
of the nT × nT matrices Ω and Ω†, and the n(T + 1) × n(T + 1) matrix Ω∗. This can be a great burden
when n or T or both are large. By Magnus (1982, p.242), the following identities can be used to simplify
the calculation involving Ω defined in (3.1):

|Ω| = |(B′B)−1 + φμTIn| · |B|−2(T−1), (3.28)

Ω−1 = T−1JT ⊗ ((B′B)−1 + φμTIn
)−1 + (IT − T−1JT ) ⊗ (B′B). (3.29)

The above formulae reduce the calculations of the inverse and determinant of an nT × nT matrix to the
calculations of those of several n× n matrices, where the key element is the n× n matrix B. By Griffith
(1988), calculations of the determinants can be further simplified as:

|B| =
n∏
i=1

(1 − λwi), and |(B′B)−1 + φμTIn| =
n∏
i=1

[(1 − λwi)−2 + φμT ], (3.30)

where w′
is are the eigenvalues of W . The above simplifications are also used in Yang et al. (2006).

For the determinant and inverse of Ω∗ defined in (3.11), let ω11 = φζIn + φμa
2
mIn + bm(B′B)−1,

ω21 = ω′
12 = φμam(ιT ⊗ In), and D = ω11 −ω12Ω−1ω21. We have by using the formulas for a partitioned

matrix (e.g., Magnus and Neudecker, 2002, p.106), |Ω∗| = |Ω| · |D|, and

Ω∗−1 =

(
D−1 −D−1ω12Ω−1

−Ω−1ω21D
−1 Ω−1 + Ω−1ω21D

−1ω12Ω−1

)
. (3.31)

Thus, the calculations of the determinant and inverse of the n(T + 1)× n(T + 1) matrix Ω∗ are reduced
to the calculations of those of the n× n matrix D, and those of Ω given in (3.28) and (3.29).

For the determinant and inverse of Ω† defined in (3.22), by the properties of matrix operation,

|Ω†| = |(IT ⊗ B−1)| · |HE| · |(IT ⊗ B′−1)| = |B|−2T |HE|,
Ω†−1 = (IT ⊗B′−1)−1H−1

E (IT ⊗B−1)−1 = (IT ⊗ B′)H−1
E (IT ⊗ B),

where |HE| = |TE − (T − 1)In =
∏n
i=1[Tφζ(1 − λwi)2 + Tcm − T + 1] as in (3.30), and

H−1
E = (1 − T )(h−1

0 ⊗ E∗−1) + (h−1
1 − (1 − T )h−1

0 ) ⊗ (E∗−1E), (3.32)

where E∗ = TE − (T − 1)In, and the T × T matrices hs, s = 0, 1, are

hs =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

as in Hsiao et al. (2002, Appendix B), who also give |hs| = 1 + T (s− 1) and the expression for h−1
s .
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4 Asymptotic Properties of the QMLEs

In this section we study the consistency and asymptotic normality of the proposed QML estimators for
the dynamic panel data models with spatial errors. We first state and discuss a set of generic assumptions
applicable to all three scenarios discussed in Section 3. Then we proceed with each specific scenario
where, under some additional assumptions, the key asymptotic results are presented. To facilitate the
presentation, some general notation (old and new) is given.

General notation: (i) recall ψ = (θ′, σ2
v, δ

′)′, where θ and σ2
v are the linear and scale parameters

and can be concentrated out from the likelihood function, and δ is the vector of nonlinear parameters
left in the concentrated likelihood function. Let ψ0 = (θ′0, σ

2
v0, δ

′
0)

′ be the true parameter vector. Let
Ψ be the parameter space of ψ, and Δ the space of δ. (ii) A parametric function, or vector, or matrix,
evaluated at ψ0, is denoted by adding a subscript 0, e.g., B0 = B|λ=λ0 , and similarly for Ω0, Ω∗

0, Ω†
0, etc.

(iii) The common expectation and variance operators ‘E’ and ‘Var’ correspond to ψ0.

4.1 Generic assumptions

To provide a rigorous analysis of the QMLEs, we need to assume different sets of conditions based
on different model specifications. Nevertheless, for both the random and fixed effects specifications we
first make the following generic assumptions.

Assumption G1: (i) The available observations are: (yit, xit, zi), i = 1, · · · , n, t = 0, 1, · · · , T ,
with T ≥ 2 fixed and n → ∞; (ii) The disturbance vector ut = (u1t, · · · , unt)′ exhibits both individual
effects and spatially autocorrelated structure defined in (2.2) and (2.3) and vit are iid for all i and t with
E(vit) = 0, Var(vit) = σ2

v, and E|vit|4+ε0 <∞ for some ε0 > 0; (iii) {xit, t = · · · ,−1, 0, 1, · · ·} and {zi}
are strictly exogenous and independent across i; (iv) |ρ| < 1 in (2.1); and (v) The true parameter ψ0 lies
in the interior of a convex compact set Ψ.

Assumption G1(i) corresponds to traditional panel data models with large n and small T . One can
consider extending the QMLE procedure to panels with large n and large T ; see, for example, Phillips
and Sul (2003). Assumption G1(ii) is standard in the literature. Assumption G1(iii) is not as strong as
it appears in the spatial econometrics literature, since in most spatial analysis regressors are treated as
nonstochastic fixed constants (e.g., Anselin, 1988; Kelejian and Prucha, 1998, 1999, 2010; Lee, 2002, 2004;
Lin and Lee, 2010; Robinson, 2010; Su and Jin, 2010; Su, 2012). One can relax the strict exogeneity
condition in Assumption G1(iii) like Hsiao et al. (2002) but this will complicate our analysis in case
of spatially correlated errors. Assumption G1(iv) can be relaxed for the case of random effects with
exogenous initial observations without any change of the derivation. It can also be relaxed for the fixed
effects model with some modification of the derivation as in Hsiao et al. (2002). Assumption G1(v) is
commonly assumed in the literature but deserves some further discussion.

For QML estimation, it is required that λ lie within a certain space so as to guarantee the positiveness
of the determinant of In − λW and hence the existence of (In − λW )−1. If the eigenvalues of the
spatial weight matrix W are real, then such a space would be (1/wmin, 1/wmax) where wmin and wmax

are, respectively, the smallest and the largest eigenvalues of W ; if, further, W is row normalized, then
wmax = 1 and 1/wmin < −1, and the parameter space of λ becomes (1/wmin, 1) (see Anselin, 1988). In
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general, the eigenvalues of W may not be all real and in this case Kelejian and Prucha (2010) suggest
the parameter space be (−1/τn, 1/τn) where τn is the spectral radius of W , giving a parameter space
dependent upon the number of spatial units. This parameter space can be converted to (−1, 1) if one
works with τ−1

n W . In this case Assumption G1(v) requires that λ lies in a compact subset of (−1, 1).
For the spatial weight matrix, we make the following assumptions.

Assumption G2: (i) The elements wij of W are at most of order h−1
n , denoted by O(h−1

n ), uniformly
in all i and j. As a normalization, wii = 0 for all i; (ii) The ratio hn/n → 0 as n goes to infinity; (iii)
The matrix B0 is nonsingular; (iv) The sequences of matrices {W} and {B−1

0 } are uniformly bounded in
both row and column sums; (v) {B−1} are uniformly bounded in either row or column sums, uniformly
in λ in a compact parameter space Λ, and cλ ≤ infλ∈Λλmax(B) ≤ supλ∈Λ λmax(B) ≤ c̄λ <∞.

Assumptions G2(i)-(iv) parallel Assumptions 2-4 of Lee (2004). Like Lee (2004), Assumptions G2(i)-
(iv) provide the essential features of the weight matrix for the model. Assumption G2(ii) is always
satisfied if {hn} is a bounded sequence. We allow {hn} to be divergent but at a rate smaller than n

as in Lee (2004). Assumption G2(iii) guarantees that the disturbance term is well defined. Kelejian
and Prucha (1998, 1999, 2001) and Lee (2004) also assume Assumption G2(iv) which limits the spatial
correlation to some degree but facilitates the study of the asymptotic properties of the spatial parameter
estimators. By Horn and Johnson (1985, p. 301), limsupn‖λ0W‖ < 1 is sufficient to guarantee that B−1

0

is uniformly bounded in both row and column sums. By Lee (2002, Lemma A.3), Assumption G2(iv)
implies {B−1} are uniformly bounded in both row and column sums uniformly in a neighborhood of λ0.
Assumption G2(v) is stronger than Assumption G2(iv) and is required in establishing the consistency
results.

4.2 Random effects model

We now present detailed asymptotic results for the SDPD model with random effects. Beside the
generic assumptions given earlier, some additional assumptions specific for this model are necessary.

Assumption R: (i) μi’s are iid with E(μi) = 0, Var(μi) = σ2
μ, and E|μi|4+ε0 <∞ for some ε0 > 0;

(ii) μi and vjt are mutually independent, and they are independent of xks and zk for all i, j, k, t, s; (iii)
All elements in (xit, zi) have 4 + ε0 moments for some ε0 > 0.

Assumption R(i) and the first part of Assumption R(ii) are standard in the random effects panel
data literature. The second part of Assumption R(ii) is for convenience. Alternatively we can treat the
regressors as nonstochastic matrix.

Case I: y0 is exogenous. To derive the consistency of the QML estimators, we need to ensure that
δ = (λ, φμ)′ is identifiable. Then, the identifiability of other parameters follows. Following White (1994)
and Lee (2004), define Lr∗c (δ) = maxθ,σ2

v
E[Lr(θ, σ2

v, δ)], where we suppress the dependence of Lr∗c (δ) on
n. The optimal solution to maxθ,σ2

v
E[Lr(θ, σ2

v, δ)] is given by

θ̃(δ) = [E(X̃′Ω−1X̃)]−1E(X̃′Ω−1Y ) and (4.1)

σ̃2
v(δ) =

1
nT

E[u(θ̃(δ))′Ω−1u(θ̃(δ))]. (4.2)
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Consequently, we have

Lr∗c (δ) = −nT
2

[log(2π) + 1] − nT

2
log[σ̃2

v(δ)] −
1
2

log |Ω|. (4.3)

We impose the following identification condition.

Assumption R: (iv) limn→∞ 1
2nT

{
log |σ2

v0Ω0| − log |σ̃2
v (δ) Ω (δ) |} 
= 0 for any δ 
= δ0, and 1

nT X̃
′X̃

is positive definite almost surely for sufficiently large n.

The first part of Assumption R(iv) parallels Assumption 9 in Lee (2004). It is a global identification
condition related to the uniqueness of the variance-covariance matrix of u. With this and the uniform
convergence of 1

nT [Lrc(δ) − Lr∗c (δ)] to zero on Δ proved in the Appendix C, the consistency of δ̂ follows.
The consistency of θ̂ and σ̂2

v follows from that of δ̂ and the second part of Assumption R(iv).

Theorem 4.1 Under Assumptions G1, G2, and R(i)-(iv), if the initial observations yi0 are exogenously
given, then ψ̂

p−→ ψ0.

To derive the asymptotic distribution of ψ̂, we need to make a Taylor expansion of ∂
∂ψLr(ψ̂) = 0 at

ψ0, and then to check that the score function and Hessian matrix have proper asymptotic behavior. We
report both the score and Hessian here to provide insights for the asymptotic theory and to facilitate the
practical applications. First, the score function S(ψ) = ∂

∂ψLr(ψ) has the elements

∂Lr(ψ)
∂θ

= 1
σ2

v
X̃′Ω−1u(θ),

∂Lr(ψ)
∂σ2

v
= 1

2σ4
v
u(θ)′Ω−1u(θ) − nT

2σ2
v
,

∂Lr(ψ)
∂ω = 1

2σ2
v
u(θ)′Pωu(θ) − 1

2 tr (PωΩ) , ω = λ, φμ,

where Pω = Ω−1ΩωΩ−1 and Ωω = ∂
∂ωΩ (δ) for ω = λ, φμ. One can easily verify that Ωλ = IT ⊗ A and

Ωφμ = JT ⊗ In where A = ∂
∂λ(B′B)−1 = (B′B)−1(W ′B + B′W )(B′B)−1 . At ψ = ψ0, the last three

components of the score function are linear and quadratic functions of u ≡ u(θ0) and one can readily
verify that their expectations are zero. The first component also has a zero expectation by Lemma B.6.
Note that the elements in u are not independent and that X̃ contains the lagged dependent variable,
thus the standard results, such as the central limit theorem (CLT) for linear and quadratic forms in
Kelejian and Prucha (2001) cannot be directly applied. For the last three components, we need to plug
u = (ιT ⊗ In)μ + (IT ⊗B−1

0 )v into ∂
∂ψ

Lr(ψ0) and apply the CLT to linear and quadratic functions of μ
and v separately. For the first component, a special care has to be given to Y−1 (see Lemmas B.6 and
B.8 for details).

The Hessian matrix Hr,n(ψ) ≡ ∂2

∂ψ∂ψ′Lr(ψ) has the elements

∂2Lr(ψ)
∂θ∂θ′ = − 1

σ2
v
X̃′Ω−1X̃, ∂2Lr(ψ)

∂θ∂σ2
v

= − 1
σ4

v
X̃′Ω−1u(θ),

∂2Lr(ψ)
∂θ∂ω = − 1

σ2
v
X̃′Pωu(θ), ω = λ, φμ,

∂2Lr(ψ)
∂σ2

v∂σ
2
v

= − 1
σ6

v
u(θ)′Ω−1u(θ)+ nT

2σ4
v
,

∂2Lr(ψ)
∂σ2

v∂ω
= − 1

2σ4
v
u(θ)′Pωu(θ), ω = λ, φμ,

∂2Lr(ψ)
∂ω∂
 = qω
[u(θ)], for ω,� = λ, φμ,

where qω
(u) ≡ 1
2tr(P
Ωω − Ω−1Ωω
) − 1

2σ2
v
u′(2P
Ωω − Ω−1Ωω
)Ω−1u for ω,� = λ, φμ; and Ωω
 =

∂2

∂ω∂
Ω (δ) for ω,� = λ, φμ. It is easy to see that Ωλλ = IT ⊗ Ȧ where Ȧ = ∂
∂λA = 2(B′B)−1[(W ′B

+B′W )A−W ′W ], and all other Ωω
 matrices are 0nT×nT .
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Again, we see that most of the Hessian elements are quadratic forms of u(θ) whose asymptotic behavior
is easy to study. Special care needs to be given to the elements involving X̃ (see Lemma B.7 for details).
Let Γr,n(ψ) = E[ ∂∂ψLr(ψ) ∂

∂ψ′Lr(ψ)] be the variance-covariance matrix of the score vector.7 See Appendix
A for the expression of Γr,n(ψ). We have the following theorem.

Theorem 4.2 Under Assumptions G1, G2, and R(i)-(iv), if the initial observations yi0 are exogenously
given, then

√
nT (ψ̂ − ψ0)

d−→ N(0, H−1
r ΓrH−1

r ), where Hr = limn→∞ 1
nTE [Hr,n(ψ0)] and Γr = limn→∞

1
nT Γr,n(ψ0), both assumed to exist, and (−Hr) is assumed to be positive definite.

As in Lee (2004), the asymptotic results in Theorem 4.2 is valid regardless of whether the sequence
{hn} is bounded or divergent. The matrices Γr and Hr can be simplified if hn → ∞ as n → ∞. When
both μi and vit are normally distributed, the asymptotic variance-covariance matrix reduces to −H−1

r .

Case II: y0 is endogenous. In this case, define Lrr∗c (δ) = maxθ,σ2
v
E[Lrr(θ, σ2

v, δ)], where we suppress
the dependence of Lrr∗c (δ) on n. The optimal solution to maxθ,σ2

v
E[Lrr(θ, σ2

v, δ)] is now given by

θ̃(δ) = [E(X∗′Ω∗−1(δ)X∗)]−1E
[
X∗′Ω∗−1(δ)Y ∗(ρ)

]
and (4.4)

σ̃2
v(δ) =

1
n(T + 1)

E[u∗(θ̃(δ), ρ)′Ω∗−1(δ)u∗(θ̃(δ), ρ)]. (4.5)

Consequently, we have

Lrr∗c (δ) = −n(T + 1)
2

[log(2π) + 1]− n(T + 1)
2

log σ̃2
v(δ) −

1
2

log |Ω∗|. (4.6)

We make the following identification assumption.

Assumption R: (iv∗) limn→∞ 1
2n(T+1)

{
log |σ2

v0Ω
∗
0| − log |σ̃2

v (δ) Ω∗ (δ) |} 
= 0 for any δ 
= δ0. Both
1
n x̃

′x̃ and 1
nT (X,Z)′(X,Z) are positive definite almost surely for sufficiently large n.

The following theorem establishes the consistency of QMLE for the random effects model with en-
dogenous initial observations. Similarly, the key result is to show that 1

n(T+1) [Lrrc (δ) −Lrr∗c (δ)] coverges
to zero uniformly in δ ∈ Δ, which is given in Appendix C.

Theorem 4.3 Under Assumptions G1, G2, R0, R(i)-(iii) and R(iv∗), if the initial observations yi0 are
endogenously given, then ψ̂

p−→ ψ0.

Again, to derive the asymptotic distribution of ψ̂, one starts with a Taylor expansion of the score
function, Srr(ψ) = ∂

∂ψLrr(ψ), of which the elements are given below:

∂Lrr(ψ)
∂θ

= 1
σ2

v
X∗′Ω∗−1u∗(θ, ρ),

∂Lrr(ψ)
∂σ2

v
= 1

2σ4
v
u∗(θ, ρ)′Ω∗−1u∗(θ, ρ) − n(T+1)

2σ2
v
,

∂Lrr(ψ)
∂ρ = − 1

σ2
v
u∗ρ(θ, ρ)′Ω∗−1u∗(θ, ρ) + 1

2σ2
v
u∗(θ, ρ)′P ∗

ρ u
∗(θ, ρ) − 1

2 tr(P ∗
ρΩ∗),

∂Lrr(ψ)
∂ω = 1

2σ2
v
u∗(θ, ρ)′P ∗

ωu
∗(θ, ρ) − 1

2 tr(P ∗
ωΩ∗) for ω = λ, φμ, and φζ ,

7It is well known that for normally distributed individual-specific effects μi and error terms vit , Γr,n(ψ0) = −E[Hr,n(ψ0)]

under some mild conditions. We do not impose normality restriction in this paper.
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where u∗ρ(θ, ρ) = ∂
∂ρu

∗(θ, ρ), P ∗
ω = Ω∗−1Ω∗

ωΩ∗−1, Ω∗
ω = ∂

∂ωΩ∗ (δ) for ω = ρ, λ, φμ, and φζ have the
expressions

u∗ρ(θ, ρ) = −
⎛⎝ ȧmZγ

Y−1

⎞⎠ , Ω∗
ρ =

⎛⎝ 2φμamȧmIn + ḃm(B′B)−1 φμȧm(ι′ ⊗ In)

φμȧm(ι⊗ In) 0nT×nT

⎞⎠ ,

Ω∗
λ =

⎛⎝ bm 0′T

0T IT

⎞⎠⊗ A, Ω∗
φμ

=

⎛⎝ a2
m amι

′
T

amιT JT

⎞⎠⊗ In, and Ω∗
φζ

=

⎛⎝ 1 0′T

0T 0T×T

⎞⎠⊗ In,

where ȧm = d
dρam(ρ) and ḃm = d

dρ bm(ρ), and their expressions can easily be obtained. One can readily
verify that E[ ∂∂ψLrr(ψ0)] = 0. The asymptotic normality of the score is given in Lemma B.13. The
asymptotic normality of the QMLE thus follows if the Hessian matrix, Hrr,n(ψ) ≡ ∂2

∂ψ∂ψ′Lrr(ψ), given
below possesses the desired stochastic convergence property.

∂2Lrr(ψ)
∂θ∂θ′ = − 1

σ2
v
X∗′Ω∗−1X∗,

∂2Lrr(ψ)
∂θ∂σ2

v
= − 1

σ4
v
X∗′Ω∗−1u∗(θ, ρ),

∂2Lrr(ψ)
∂θ∂ρ = 1

σ2
v
X∗′
ρ Ω∗−1u∗(θ, ρ) + 1

σ2
v
X∗′Ω∗−1u∗ρ(θ, ρ) − 1

σ2
v
X∗′P ∗

ρ u
∗(θ, ρ),

∂2Lrr(ψ)
∂θ∂ω = − 1

σ2
v
X∗′P ∗

ωu
∗(θ, ρ), for ω = λ, φμ, and φζ ,

∂2Lrr(ψ)
∂σ2

v∂σ
2
v

= − 1
σ6

v
u∗(θ, ρ)′Ω∗−1u∗(θ, ρ) + n(T+1)

2σ4
v
,

∂2Lrr(ψ)
∂σ2

v∂ρ
= 1

σ4
v
u∗ρ(θ, ρ)′Ω∗−1u∗(θ, ρ) − 1

2σ4
v
u∗(θ)′P ∗

ρu
∗(θ, ρ),

∂2Lrr(ψ)
∂σ2

v∂ω
= − 1

2σ4
v
u∗(θ, ρ)′P ∗

ωu
∗(θ, ρ), for ω = λ, φμ, and φζ,

∂2Lrr(ψ)
∂ρ∂ρ = − 1

σ2
v
u∗ρρ(θ, ρ)′Ω∗−1u∗(θ, ρ) − 1

σ2
v
u∗ρ(θ, ρ)′Ω∗−1u∗ρ(θ, ρ) + 2

σ2
v
u∗ρ(θ, ρ)′P ∗

ρ u
∗(θ, ρ) + q∗ρρ[u∗(θ, ρ)],

∂2Lrr(ψ)
∂ρ∂ω = 1

σ2
v
u∗ρ(θ, ρ)′P ∗

ωu
∗(θ, ρ) + q∗ρω[u∗(θ, ρ)], for ω = λ, φμ, and φζ ,

∂2Lrr(ψ)
∂ω∂
 = q∗ω
[u∗(θ, ρ)], for ω,� = λ, φμ, and φζ.

where q∗ω
(u∗) ≡ 1
2tr(P ∗


Ω∗
ω − Ω∗−1Ω∗

ω
) − 1
2σ2

v
u∗′(2P ∗


Ω∗
ω − Ω∗−1Ω∗

ω
)Ω∗−1u∗ for ω,� = ρ, λ, φμ, and

φζ , X∗
ρ = ∂

∂ρX
∗, u∗ρρ(θ, ρ) = ∂2

∂ρ2u
∗(θ, ρ), and Ω∗

ρω = ∂2

∂ρ∂ωΩ∗ for ω = ρ, λ, φμ, and φζ . The second-order
partial derivatives of Ω∗ are

Ω∗
ρρ =

(
2φμ(ȧ2

m + äm)In + b̈m(B′B)−1 , φμäm(ι′ ⊗ In)
φμäm(ι⊗ In) 0nT×nT

)
, Ω∗

ρλ =
(
ḃmA, 0n×nT
0nT×n 0nT×nT

)
,

Ω∗
ρφμ

=
(

2amȧmIn, ȧm(ι′ ⊗ In)
ȧm(ι⊗ In) 0nT×nT

)
, Ω∗

λλ =
(
bm 0
0 IT

)
⊗ Ȧ,

and all other Ω∗
ω
 matrices are 0n(T+1)×n(T+1), where äm = ∂

∂ρ ȧm and b̈ = ∂
∂ρ ḃm and their ex-

act expressions can be easily derived. Finally, X∗
ρ has a sole non-zero element ȧmz, and u∗ρρ(θ, ρ) =

(−ämγ′z′, 01×nT )′.

Let Γrr,n(ψ) = E[ ∂∂ψLrr(ψ) ∂
∂ψ′Lrr(ψ)] be the variance-covariance matrix of the score vector with its

detail given in Appendix A. We now state the asymptotic normality result.
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Theorem 4.4 Under Assumptions G1, G2, R0, R(i)-(iii) and R(iv∗), if the initial observations are
endogenously given, then

√
nT (ψ̂−ψ0)

d−→ N(0, H−1
rr ΓrrH−1

rr ), where Hrr = limn→∞ 1
n(T+1)

E [Hrr,n(ψ0)]
and Γrr = limn→∞ 1

n(T+1)Γrr,n(ψ0), both assumed to exist, and (−Hrr) is assumed to be positive definite.

4.3 Fixed effects model

For the fixed effects model, we need to supplement the generic assumptions, Assumptions G1 and
G2, made above with the following assumption on the regressors.

Assumption F: (i) The processes {xit, t = · · · ,−1, 0, 1, · · ·} are trend-stationary or first-differencing
stationary for all i = 1, · · · , n; (ii) All elements in (Δvit,Δxit) have 4 + ε0 moments for some ε0 > 0;
(iii) 1

nTΔX†′ΔX† is positive definite almost surely for sufficiently large n.

Define Lf∗c (δ) = maxθ,σ2
v
E[Lf(θ, σ2

v, δ)], where we suppress the dependence of Lf∗c (δ) on n. Let
ΔY = (01×n,Δy′1, ...,Δy

′
T−1)

′. The optimal solution to maxθ,σ2
v
E[Lf(θ, σ2

v, δ)] is now given by

θ̃(δ) =
{
E
[(

ΔX†)′ Ω†−1ΔX†
]}−1

E
[(

ΔX†)′ Ω†−1ΔY † (ρ)
]

and (4.7)

σ̃2
v(δ) =

1
nT

E[Δu(θ̃(δ), ρ)′Ω†−1Δu(θ̃(δ), ρ)]. (4.8)

Consequently, we have

Lf∗c (δ) = −nT
2

[log(2π) + 1] − nT

2
log[σ̃2

v(δ)] −
1
2

log |Ω†|. (4.9)

The following identification condition is needed for our consistency result.

Assumption F: (iv) limn→∞ 1
2nT

{
log |σ2

v0Ω
†
0| − log |σ̃2

v (δ)Ω† (δ) |
}

= 0 for any δ 
= δ0.

With this identification condition, the consistency of δ̂ follows if 1
nT

[Lfc (δ)−Lf∗c (δ)] converges to zero
uniformly on Δ. The consistency of θ̂ and σ̂2

v then follows from the consistency of δ̂ and the identification
condition given in Assumption F(iii). We have the following theorem.

Theorem 4.5 Under Assumptions G1, G2, F0, and F, we have ψ̂
p−→ ψ0.

To derive the asymptotic distribution of ψ̂, one needs the score function Sf (ψ) = ∂
∂ψ

Lf(ψ):

∂Lf(ψ)
∂θ = 1

σ2
v
ΔX†′Ω†−1Δu(θ, ρ),

∂Lf(ψ)
∂σ2

v
= 1

2σ4
v
Δu(θ, ρ)′Ω†−1Δu(θ, ρ) − nT

2σ2
v
,

∂Lf(ψ)
∂ρ = − 1

σ2
v
Δuρ(θ, ρ)′Ω†−1Δu(θ, ρ) + 1

2σ2
v
Δu(θ, ρ)′P †

ρΔu(θ, ρ) − 1
2 tr(Ω†−1Ω†

ρ),
∂Lf(ψ)
∂ω = 1

2σ2
v
Δu(θ, ρ)′P †

ωΔu(θ, ρ) − 1
2 tr(Ω†−1Ω†

ω) for ω = λ, φζ,

where Δuρ(θ, ρ) = ∂
∂ρΔu(θ, ρ) = −(0′n×1,Δy′1, · · · ,Δy′T−1)

′, and Ω†
ω = ∂

∂ωΩ† (δ) and P †
ω = Ω†−1Ω†

ωΩ†−1

for ω = ρ, λ, and φζ. From (3.24), it is easy to see that Ω†
ρ = hċm ⊗ (B′B)−1, Ω†

λ = hcm ⊗ A, and
Ω†
φζ

= �1 ⊗ In, where ċm = ∂
∂ρcm(ρ). Again, one can readily verify that E[ ∂∂ψLf(ψ0)] = 0. The

asymptotic normality of the score is given in Lemma B.15. The asymptotic normality of ψ̂ thus follows
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if the Hessian matrix, Hf,n(ψ) ≡ ∂2

∂ψ∂ψ′Lf(ψ), given below possesses the desired stochastic convergence
property.

∂2Lf(ψ)
∂θ∂θ′ = − 1

σ2
v
ΔX†′Ω†−1ΔX†,

∂2Lf(ψ)
∂θ∂σ2

v
= − 1

σ4
v
ΔX†′Ω†−1Δu(θ, ρ),

∂2Lf(ψ)
∂θ∂ρ

= 1
σ2

v
ΔX†′Ω†−1Δuρ(θ, ρ) − 1

σ2
v
ΔX†′P †

ρΔu(θ, ρ),
∂2Lf(ψ)
∂θ∂ω

= − 1
σ2

v
ΔX†′P †

ωΔu(θ, ρ), for ω = λ, φζ ,

∂2Lf(ψ)
∂σ2

v∂σ
2
v

= − 1
σ6

v
Δu(θ, ρ)′Ω†−1Δu(θ, ρ) + nT

2σ4
v
,

∂2Lf(ψ)
∂σ2

v∂ρ
= 1

σ4
v
Δuρ(θ, ρ)′Ω†−1Δu(θ, ρ) − 1

2σ4
v
Δu(θ, ρ)′P †

ρΔu(θ, ρ),
∂2Lf(ψ)
∂σ2

v∂ω
= − 1

2σ4
v
Δu(θ, ρ)′P †

ωΔu(θ, ρ), for ω = λ, φζ ,

∂2Lf(ψ)
∂ρ∂ρ = − 1

σ2
v
Δuρ(θ, ρ)′Ω†−1Δuρ(θ, ρ) + 2

σ2
v
Δuρ(θ, ρ)′P †

ρΔu(θ, ρ) + q†ρρ[Δu(θ, ρ)],
∂2Lf(ψ)
∂ρ∂ω = 1

σ2
v
Δuρ(θ, ρ)′P †

ωΔu(θ, ρ) + q†ρω[Δu(θ, ρ)], for ω = λ, φζ ,

∂2Lf(ψ)
∂ω∂
 = q†ω
[Δu(θ, ρ)], for ω,� = λ, φζ ,

where q†ω
(Δu) ≡ 1
2 tr(P †


Ω†
ω − Ω†−1Ω†

ω
) − 1
2σ2

v
Δu′(2P †


Ω†
ω − Ω†−1Ω†

ω
)Ω†−1Δu for ω, � = ρ, λ, and
φζ . The second derivatives Ωω
 of Ω are: Ωρρ = hc̈m ⊗ (B′B)−1 where c̈m = ∂

∂ρ
ċm, Ωρλ = hċm ⊗ A,

Ωλλ = hcm ⊗ Ȧ, and the remaining are all zero matrices.
Let Γf,n(ψ) = E[ ∂∂ψLf(ψ) ∂

∂ψ′Lf(ψ)]. (See Appendix A for some details.) We now state the asymptotic
normality result.

Theorem 4.6 Under Assumptions G1, G2, F0 and F, we have
√
nT (ψ̂ − ψ0)

d−→ N(0, H−1
f ΓfH−1

f ),
where Hf = limn→∞ 1

nT E [Hf,n(ψ0)] and Γr = limn→∞ 1
nT Γf,n(ψ0), both assumed to exist, and (−Hf )

is assumed to be positive definite.

5 Bootstrap Estimate of the Variance-Covariance Matrix

From Theorems 4.2, 4.4 and 4.6, we see that the asymptotic variance-covariance (VC) matrices of
the QMLEs of the three models considered are, respectively, H−1

r ΓrH−1
r , H−1

rr ΓrrH−1
rr , and H−1

f ΓfH−1
f .

Practical applications of the asymptotic normality theory depend upon the availability of a consistent
estimator of the asymptotic VC matrix. Obviously, the Hessian matrices evaluated at the QMLEs provide
consistent estimators for Hr, Hrr, and Hf , i.e., Ĥr ≡ 1

nT
Hr,n(ψ̂), Ĥrr ≡ 1

n(T+1)
Hrr,n(ψ̂), and Ĥf ≡

1
nTHf,n(ψ̂). The formal proofs of the consistency of these estimators can be found in the proofs of
Theorems 4.2, 4.4, and 4.6, respectively. However, consistent estimators for Γr ,Γrr, and Γf , the VC
matrices of the scores (normalized), are not readily available due to the presence of the lagged dependent
variable in the regressors. The basic problem is that the explicit expressions for Γr,n(ψ0),Γrr,n(ψ0), and
Γf,n(ψ0) are not readily available, and hence the usual plug-in method cannot be applied.8 Thus, an
alternative method is desired.

8This is not a problem for the exact likelihood inference (Elhorst, 2005, Yang et al. 2006) as in this case the VC matrix

of the score function equals the negative expected Hessian. Hence, the asymptotic VC matrices of the MLEs in the three

models considered reduce to −H−1
r ,−H−1

rr and −H−1
f , respectively, of which sample analogues exist.
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In this section, we introduce a residual-based bootstrap method for estimating the variance of the
scores, with the bootstrap draws made on the joint empirical distribution function (EDF) of the n

transformed vectors of residuals. While the general principle for our bootstrap method is the same for
all the three models considered above, different structures of the residuals and the score functions render
them a separate consideration.

5.1 Random effects model with exogenous initial values

Write the model as: yt = ρyt−1 + xtβ + zγ + ut, ut = μ + B−1vt, t = 1, 2, · · · , T , now viewed as
a real-world data generating process (DGP). We have, Var(ut) = σ2

v(φμIn + (B′B)−1) ≡ σ2
vΣ(λ, φμ).

Define the transformed residuals (t-residuals):

rt = Σ− 1
2 (λ, φμ)ut, t = 1, · · · , T,

where Σ
1
2 (λ, φμ) is a square-root matrix of Σ(λ, φμ). Then, E(rt) = 0 and Var(rt) = In. Thus, the

elements of rt are uncorrelated, which are iid if μ and vt are normal satisfying the conditions given in
Assumptions G1 and R. As our asymptotics depend only on n, these uncorrelated residuals lay out the
theoretical foundation for a residual-based bootstrap method. Let r̂t be the QML estimate of rt, and F̂n,t
be the empirical distribution function (EDF) of the centered r̂t, for t = 1, 2, · · · , T . Let S(Y−1 , u, ψ0) be
the score function given below Theorem 4.1, written in terms of the lagged response Y−1, the disturbance
vector u and the true parameter vector ψ0. The bootstrap procedure for estimating Γn,r(ψ0) is as follows.

1. Compute the QMLE ψ̂ and obtain the QML residuals {r̂t, t = 1, 2, · · · , T}. For each t, center r̂t to
obtain F̂n,t.

2. Draw a random sample of size n from each F̂n,t, t = 1, 2, · · · , T , to give T samples of bootstrap
residuals {r̂b1, · · · , r̂bT}.

3. Conditional on y0, xt, z, and the QMLE ψ̂, generate the bootstrap data according to

yb1 = ρ̂y0 + x1β̂ + zγ̂ + Σ
1
2 (λ̂, φ̂μ)r̂b1,

ybt = ρ̂ybt−1 + xtβ̂ + zγ̂ + Σ
1
2 (λ̂, φ̂μ)r̂bt , t = 2, 3, · · · , T.

The bootstrapped values of u and Y−1 are given by ub = vec[Σ
1
2 (λ̂, φ̂μ)(r̂b1, · · · , r̂bT )] andY b−1 =

vec(y0 , yb1, · · · , ybt−1), respectively.

4. Compute S(Y b−1, u
b, ψ̂), where S(Y−1, u, ψ0) is the score function.

5. Repeat steps 2-4 B times, and the bootstrap estimate of Γn,r(ψ0) is given by

Γ̂bn,r =
1
B

B∑
b=1

(
S(Y b

−1 , u
b, ψ̂)S(Y b−1 , u

b, ψ̂)′
)
− 1
B

B∑
b=1

S(Y b
−1 , u

b, ψ̂) · 1
B

B∑
b=1

S(Y b−1 , u
b, ψ̂)′. (5.1)

A justification for the validity of the above bootstrap procedure goes as follows. First, note that
the score function can be written as S(Y−1 , u, ψ), viewed as a function of random components and
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parameters. Note that ut = μ + B−1vt, t = 1, · · · , T . If ψ0 and the distributions of μi and vit were all
known, then to compute the value of Γn,r(ψ0), one can simply use the Monte Carlo method: (i) generate
Monte Carlo samples μm and vmt , t = 1, · · · , T , to give a Monte Carlo value um, (ii) compute the Monte
Carlo value Y m−1 based on um, x and z, through the real-world DGP, (iii) compute a Monte Carlo value
Sm(ψ0) = S(Y m−1, u

m, ψ0) for the score function, and (iv) repeat (i)-(iii) M times to give a Monte Carlo
approximation to the value of Γn,r(ψ0) as

Γmn,r(ψ0) ≈ 1
M

B∑
m=1

Sm(ψ0)Sm(ψ0)′ − 1
M

M∑
m=1

Sm(ψ0) · 1
M

M∑
m=1

Sm(ψ0)′, (5.2)

which can be made to an arbitrary level of accuracy by choosing an arbitrarily large M . Note that
ut = σv0Σ

1
2 (λ0, φμ0)rt. The step (i) above is equivalent to draw random sample rmt from the distribution

F of rit, the i element of rt, and compute umt = σv0Σ
1
2 (λ0, φμ0)rmt .

However, in the real world, ψ0 is unknown. In this case, it is clear that a Monte Carlo estimate of
Γn,r(ψ0) can be obtained by plugging ψ̂ into (5.2),

Γ̂mn,r =

(
1
M

B∑
m=1

Sm(ψ̂)Sm(ψ̂)′ − 1
M

M∑
m=1

Sm(ψ̂) · 1
M

M∑
m=1

Sm(ψ̂)′
)
. (5.3)

In the real world, F , or the distributions of μi and vit are also unknown. However, we note that the
only difference between Γ̂bn,r given in (5.1) and Γ̂mn,r given in (5.3) is that rbt for the former is from the
EDF F̂n,t, but rmt for the latter is drawn from the true distribution F . The bootstrap DGP that mimics
the real-world DGP must be yb1 = ρ̂y0 + x1β̂ + zγ̂ + ub1, and ybt = ρ̂yt−1 + xtβ̂ + zγ̂ + ubt , t = 2, · · · , T .
Thus, if F̂n,t provides a consistent estimate for the true but unknown distribution F , which is typically
the case as ψ̂ is consistent for ψ0, then Γ̂bn,r and Γ̂mn,r are asymptotically equivalent. The extra variability
caused by replacing F by F̂n,t is of the same order as that from replacing ψ0 by ψ̂. This justifies the
validity of the proposed bootstrap procedure.

5.2 Random effects model with endogenous initial values

When the initial observations y0 are endogenously given, the disturbance vector now becomes
(u0, u1, u2, · · · , uT ) such that Var(u0) = σ2

vω11 and Var(ut) = σ2
vΣ(λ, φμ), t = 1, 2, · · · , T , where ω11 is de-

fined above (3.31) and Σ(λ, φμ) is defined in Section 5.1. Define the transformed residuals: r0 = ω
− 1

2
11 u0,

and rt = Σ− 1
2 (λ, φμ)ut, t = 1, · · · , T , where ω

1
2
11 is a square-root matrix of ω11. Now, denote the

QML estimates of the transformed residuals as {r̂0, r̂1, · · · , r̂T}, and the EDF of the centered r̂t by
F̂n,t, t = 0, 1, · · · , T . Draw a random sample of size n each from Fn,t, to give bootstrap residuals
{r̂0, r̂b1, · · · , r̂bT}. The bootstrap values for the response variables are thus generated according to

yb0 = x̃π̂ + ω̂
1
2 r̂b0, and ybt = ρ̂ybt−1 + xtβ̂ + zγ̂ + Σ

1
2 (λ̂, φ̂μ)r̂bt , t = 1, 2, · · · , T.

The rest is analogous to those described in Section 5.1, including the justifications for the validity of this
bootstrap procedure.
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5.3 Fixed effects model with endogenous initial values

When the individual effects are treated as fixed, and the initial differences are modelled by (3.19),
the disturbance vector becomes after first-differencing: (Δũ1,Δu2, · · · ,ΔuT ), where Δũ1 is defined in
(3.19) and Δut = B−1vt as in (3.15) such that Var(Δũ1) = σ2

v(φζIn + cm(B′B)−1) ≡ σ2
vω and Var(ut) =

2σ2
v(B′B)−1, t = 2, · · · , T . Define the transformed residuals: r1 = ω− 1

2 Δũ1 and rt = 1√
2
But, t =

2, · · · , T , where ω
1
2 is square-root matrix of ω. Denote the QML estimates of the transformed residuals

as {r̂1, r̂2, · · · , r̂T}, and the EDF of the centered r̂t by F̂n,t, t = 1, · · · , T . Draw a random sample of
size n from Fn,t, t = 1, · · · , T , to give bootstrap residuals {r̂1, r̂b2, · · · , r̂bT}. The bootstrap values for the
response variables are thus generated according to

Δyb1 = Δx̃π̂ + ω̂
1
2 r̂b0, and ybt = ρ̂Δybt−1 + Δxtβ̂ +

√
2B̂−1r̂bt , t = 2, 3, · · · , T.

The rest is analogous to those described in Section 5.1, including the justifications for the validity of this
bootstrap procedure.

6 Finite Sample Properties of the QMLEs

Monte Carlo experiments are carried out to investigate the performance of the QMLEs in finite
samples and that of the bootstrapped estimates of the standard errors. In the former case, we investigate
the consequences of treating the initial observations as endogenous when they are in fact exogenous, and
vice versa. In the latter case we study the performance of standard error estimates based on only the
Hessian, or only the bootstrapped variance of the score, or both, when errors are normal or nonnormal.
We use the following data generating process (DGP):

yt = ρyt−1 + β0ιn + xtβ1 + zγ + ut

ut = μ+ εt

εt = λWnεt + vt

where yt, yt−1, xt, and z are all n × 1 vectors. The elements of xt are generated in a similar fashion as
in Hsiao et al. (2002),9 and the elements of z are randomly generated from Bernoulli(0.5). The spatial
weight matrix is generated according to Rook or Queen contiguity, by randomly allocating the n spatial
units on a lattice of k×m (≥ n) squares, finding the neighbors for each unit, and then row normalizing.
We choose β0 = 5, β1 = 1, γ = 1, σμ = 1, σv = 1, a set of values for ρ ranging from −0.9 to 0.9, a set
of values for λ in a similar range, T = 3 or 7, and n = 50 or 100. Each set of Monte Carlo results
(corresponding to a combination of the ρ and λ values) is based on 1000 samples. For bootstrapping
standard errors, the number of bootstrap samples is chosen to be B = 999 + �n0.75� where �·� denotes
the integer part of ·. Due to space constraints, only a subset of results are reported. The error (vt)
distributions can be (i) normal, (ii) normal mixture (10% N(0, 4) and 90% N(0, 1)), or (iii) centered
χ2(5) or χ2(3). For the case of random effects model, μ and vt are generated from the same distribution.

9The detail is: xt = μx + gt1n + ζt, (1 − φ1L)ζt = εt + φ2εt−1, εt ∼ N(0, σ2
1In), μx = e + 1

T+m+1

PT
t=−m εt, and

e ∼ N(0, σ2
2). Let θx = (g, φ1, φ2, σ1, σ2). Alternatively, the elements of xt can be randomly generated from N(0,4).
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Random effects model. Table 1 reports the Monte Carlo mean and rmse for the random effects
model when the data are generated according to either m = 0 or m = 6, but the model is estimated
under m = 0, 6, and 200. The results show clearly that a correct treatment on the initial values leads to
excellent estimation results in general, but a wrong treatment may give totally misleading results.

Some details are as follows. When the true m value is 0, i.e., y0 is exogenous, estimating the model
as if m = 6 or 200 can give very poor results when ρ is large. When ρ is not large or when ρ is negative
(not reported for brevity), the estimates under a wrong m value improve but are still far from being
satisfactory. In contrast, when the true m value is 6 but are treated as either 0 or 200, the resulted
estimates are in general quite close to the true estimates except for the case of m = 0 under a large
and positive ρ. This shows that the model estimates are not sensitive to the exact choice of m when
y0 is endogenous and is treated as endogenous. Comparing the results of Table 1a and 1b, we see that
non-normality does not deteriorate the results of a wrong treatment of the initial values in terms of mean,
but it does in terms of rmse. We note that, when the true m value is 0 but is treated as 6 or 200, the
poor performance of the estimates when ρ is large and positive may be attributed to the fact that the
quantities zm(ρ) and am(ρ), given below (3.7) and above (3.11), have 1 − ρ as their denominators.

Table 2 reports the standard errors of the estimates based on (1) only the bootstrapped variance of the
score (seSCb), (2) only the Hessian matrix (seHS), and (3) both the bootstrapped variance of the score
and the Hessian (seHSb). The results show that when errors are normal, all three methods give averaged
standard errors very close to the corresponding Monte Carlo SDs; but when errors are non-normal, only
the seHSb method gives standard errors close to the corresponding Monte Carlo SDs; see in particular the
standard errors of φμ and σ2

v. More results corresponding to other choices of the spatial weight matrices,
and other values of ρ and λ are available from the authors upon request.

Fixed effects model. The fixed effects μ are generated according to either 1
T

∑T
t=1 xt+e or e, where

e is generated in the same way as μ in the random effects model. The reported results correspond to
the former. Table 3 reports the Monte Carlo mean and rmse for the fixed effects model when the data
are generated according to either m = 0 or m = 6, but the model is estimated under m = 0, 6, and 200.
The results show again that a correct treatment on the initial values leads to excellent estimation results
in general, and that a wrong treatment on the initial values may lead to misleading results though to a
much lesser degree as compared with the case of random effects model. When results corresponding to
uncorrelated fixed effects (unreported for brevity) show that whether the individual effects are correlated
with the regressors or not does not affect the performance of the fixed-effects QMLEs.

Some details are as follows. When the true m value is 0, i.e., y0 is exogenous, estimates of the model
parameters as if m = 6 or 200 can be poor when ρ is negative and large. When ρ is not large or when ρ
is positive (not reported for brevity), the estimates under a wrong m are quite satisfactory. This shows
that the model estimates are less sensitive to the treatment on y0 when it is endogenous. Comparing
the results of Table 3a and 3b, we see that non-normality does not deteriorate the results of a wrong
treatment of the initial values in terms of mean, but it does in terms of rmse.

Contrary to the case of random effects model, when the true m value is 0 but is treated as 6 or 200
the estimates of the fixed effects model are poor when ρ is large but negative. This may be attributed to
the quantity cm(ρ) defined below (3.21) which has 1 + ρ as its denominator. Comparing the results for
the fixed effects model with those for the random effects model, it seems that the fixed effects model is
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less sensitive to the treatment of the initial values.
Table 4 reports seSCb, seHS, and seHSb along with the Monte Carlo SDs for comparison. The results

show that when errors are normal, all three methods give averaged standard errors very close to the
corresponding Monte Carlo SDs; but when errors are non-normal, the standard errors of σ̂2

v from the
seHSb method are much closer to the corresponding Monte Carlo SDs than those from the other two
methods. More results corresponding to other choices of the spatial weight matrices, and other values of
ρ and λ are available from the authors upon request.

7 Conclusion

The asymptotic properties of the quasi maximum likelihood estimators of dynamic panel models with
spatial errors are studied in detail under the framework that the cross-sectional dimension n is large and
the time dimension T is fixed, a typical framework for microeconomics data. Both the random effects
and fixed effects models are considered, and the assumptions on the initial values and their impact on the
subsequent analyses are given a special attention. The difficulty in implementing the robust standard error
estimates (due to the lack of analytical expressions for the variance of the score function) is overcome by
a simple residual-based bootstrap method. Monte Carlo simulation shows that both the QML estimators
and the bootstrap standard errors perform well in finite samples under a correct assumption on initial
observations, but the QMLEs can perform poorly when this assumption is not met.

24



Appendix A: Information Matrices

The elements of the information matrix for the random effects model with exogenous y0, Γr,n(ψ0) ≡
E[ ∂∂ψLr(ψ0) ∂

∂ψ′Lr(ψ0)], are, for ω,� = λ, φμ:

Γr,θθ = 1
σ2

v0
E(X̃′Ω−1

0 X̃), Γr,θσ2
v

= 1
2σ6

v0
E(X̃′Ω−1

0 uu′Ω−1
0 u),

Γr,θω = 1
2σ4

v0
E(X̃′Ω−1

0 uu′Pω0u), Γr,σ2
vσ

2
v

= 1
σ4

v0
g(Ω−1

0 ,Ω−1
0 ),

Γr,σ2
vω

= 1
σ2

v0
g(Ω−1

0 , Pω0), Γr,ω
 = g(Pω0, P
0),

where g(A,B) ≡ 1
4σ4

v0
E(u′Auu′Bu) − 1

4 tr(AΩ0)tr(BΩ0), and Pω is defined below Theorem 4.1. The
explicit form of g can be obtained from Lemma B.4(1). The other elements do not possess explicit forms
due to the complications caused by Y−1.

The elements of the information matrix for the random effects model with endogenous y0, Γrr,n(ψ0) ≡
E[ ∂

∂ψ
Lrr(ψ0) ∂

∂ψ′Lrr(ψ0)], are, for ω and � = λ, φμ, or φζ :

Γrr,θθ = 1
σ2

v0
E(X∗′Ω∗−1

0 X∗), Γrr,θσ2
v

= 1
σ2

v0
f∗1 (Ω∗−1

0 ),

Γrr,θρ = f∗1 (P ∗
ρ0) − f∗2 (Ω∗−1

0 ), Γrr,θω = g∗1(P ∗
ω0),

Γrr,σ2
vσ

2
v

= 1
σ4

v0
g∗1(Ω∗−1

0 ,Ω∗−1
0 ), Γrr,σ2

vρ
= 1

σ2
v0

[g∗1(P ∗
ρ0,Ω

∗−1
0 ) − g∗2(Ω

∗−1
0 ,Ω∗−1

0 )],

Γrr,σ2
vω

= 1
σ2

v0
g∗1(Ω

∗−1
0 , P ∗

ω0), Γrr,ρρ = 1
σ4

v0
E[(u∗′ρ Ω∗−1

0 u∗)2] + g∗1(P ∗
ρ0, P

∗
ρ0) − 2g∗2(Ω

∗−1
0 , P ∗

ρ0),

Γrr,ρω = g∗1(P ∗
ρ0, P

∗
ω0) − g∗2(Ω

∗−1
0 , P ∗

ω0), Γrr,ω
 = g∗1(P ∗
ω0, P

∗

0),

where f∗1 (A) ≡ 1
2σ4

v0
E(X∗′Ω∗−1

0 u∗u∗′Au∗), f∗2 (A) ≡ 1
σ4

v0
E(X∗′Ω∗−1

0 u∗u∗′ρ Au∗), P ∗
ω is defined below The-

orem 4.3, g∗1(A,B) ≡ 1
4σ4

v
E(u∗′Au∗u∗′Bu∗) − 1

4
tr(AΩ∗

0)tr(BΩ∗
0), and g∗2(A,B) ≡ 1

4σ4
v0
E(u∗′ρ Au

∗u∗′Bu∗).
As X∗ is exogenous, the explicit forms of f∗1 and g∗1 can be obtained from Lemma B.4. The functions f∗2
and g∗2 , however, do not possess explicit expressions due to the complications caused by u∗ρ.

The elements of the information matrix for the fixed effects model with exogenous or endogenous y0,
Γf,n(ψ0) = E[ ∂∂ψLf (ψ0) ∂

∂ψ′Lf(ψ0)], are, for ω,� = λ, φζ :

Γrr,θθ = 1
σ2

v0
E(ΔX†′Ω†−1

0 ΔX†), Γrr,θσ2
v

= 1
σ2

v0
f†1 (Ω†−1

0 ),

Γrr,θρ = f†1 (P †
ρ0) − f†2 (Ω†−1

0 ), Γrr,θω = f†1 (P †
ω0),

Γrr,σ2
vσ

2
v

= 1
σ4

v0
g†1(Ω

†−1
0 ,Ω†−1

0 ), Γrr,σ2
vρ

= 1
σ2

v0
[g†1(P

†
ρ0,Ω

†−1
0 ) − g†2(Ω

†−1
0 ,Ω†−1

0 )],

Γrr,σ2
vω

= 1
σ2

v0
g†1(Ω

†−1
0 , P †

ω0), Γrr,ρρ = 1
σ4

v0
E[(Δu†′ρΩ†−1

0 Δu†)2] + g†1(P
†
ρ0, P

†
ρ0) − 2g†2(Ω

†−1
0 , P †

ρ0),

Γrr,ρω = g†1(P
†
ρ0, P

†
ω0) − g†2(Ω

†−1
0 , P †

ω0), Γrr,ω
 = g†1(P
†
ω0, P

†

0),

where f†1 (A) ≡ 1
2σ4

v0
E(ΔX†′Ω†−1

0 Δu†Δu†′AΔu†), f†2 (A) ≡ 1
σ4

v0
E(ΔX†′Ω†−1

0 Δu†Δu†′ρAΔu†), g†1(A,B) ≡
1

4σ4
v
E(Δu†′AΔu†Δu†′BΔu†) − 1

4
tr(AΩ†

0)tr(BΩ†
0), g

†
2(A,B) ≡ 1

4σ4
v0
E(Δu†′ρ AΔu†Δu†′BΔu†), and P †

ω is

defined below Theorem 4.5. As ΔX† is exogenous, the explicit forms of f†1 and g†1 can be obtained from
Lemma B.4. The functions f†2 and g†2, however, do not possess explicit expressions as they involve Δu†ρ.

Appendix B: Some Useful Lemmas

We introduce some fundamental lemmas (existing and new) that are used in the proofs of the main
results. For any random variable a with a zero mean and a finite fourth moment, let κa ≡ E(a4) −

25



3[E(a2)]2. The first one is from Kelejian and Prucha (1999) and Lee (2002).

Lemma B.1 Let Pn and Qn be two n× n matrices that are uniformly bounded in both row and column
sums. Let Rn be a conformable matrix whose elements are uniformly O(on) for a certain sequence on.
Then we have: (1) PnQn is also uniformly bounded in both row and column sums; (2) any (i, j) elements
Pn,ij of Pn are uniformly bounded in i and j and tr(Pn) = O(n); (3) the elements of PnRn and RnPn

are uniformly O(on).

Noting that both W and B−1 are all uniformly bounded in both row and column sums under our
assumptions, and recalling A = (B′B)−1(W ′B + B′W )(B′B)−1 and Ȧ = 2(B′B)−1[(W ′B + B′W )A
−W ′W ], it is easy to apply the above results to prove the following lemma.

Lemma B.2 (1) B′B, (B′B)−1,Ω,Ω−1,Ω∗,Ω∗−1,Ω†,Ω†−1, A, and Ȧ are all uniformly bounded in both
row and column sums.

(2) tr(D1ΩD2)/n = O(1) for D1, D2 = Ω−1,Ω−1(IT ⊗ A)Ω−1,Ω−1(JT ⊗ In)Ω−1, and Ω−1(IT ⊗ Ȧ).
The same conclusion holds when Ω is replaced by Ω∗ or Ω†, and D1 and D2 are replaced by their analogs
corresponding to the case of Ω∗ or Ω†.

(3) tr(B′−1RB−1)/n = O(1) where R is an n × n nonstochastic matrix that is uniformly bounded in
both row and column sums.

Lemma B.3 Let {ai}ni=1 and {bi}ni=1 be two independent iid sequences with zero means and fourth mo-
ments. Let σ2

a = E(a2
1), σ2

b = E(b21). Let qn and pn be n× n nonstochastic matrices. Then
(1) E[(a′qna)(a′pna)] = κa

∑n
i=1 qn,iipn,ii + σ4

a[tr(qn)tr(pn) + tr(qn(pn + p′n))],
(2) E[(a′qna)(b′pnb)] = σ2

aσ
2
btr(qn)tr(pn),

(3) E[(a′qnb)(a′pnb)] = σ2
aσ

2
btr(qnp

′
n),

where, e.g., qn,ij denotes the (i, j)th element of qn.

Proof. To show (1), write E[(a′qna)(a′pna)] = E(
∑n

i=1

∑n
j=1

∑n
k=1

∑n
l=1 aiajqn,ijakalpn,kl). Noting

that E(aiajakal) will not vanish only when i = j = k = l, (i = j) 
= (k = l), (i = k) 
= (j = l), and
(i = l) 
= (j = k), we have

E[(a′qna)(a′pna)] = E(a4
1)
∑n

i=1 qn,iipn,ii + σ4
a

∑n
i=1

∑n
j �=i(qn,iipn,jj + qn,ijpn,ij + qn,ijpn,ji)

= κa
∑n

i=1 qn,iipn,ii + σ4
a

∑n
i=1

∑n
j=1(qn,iipn,jj + qn,ijpn,ij + qn,ijpn,ji)

= κa
∑n

i=1 qn,iipn,ii + σ4
a[tr(qn)tr(pn) + tr(qn(pn + p′n))].

The result (2) follows from the independence between a′qna and b′pnb. For (3), E[(a′qnb)(a′pnb)] =
E(
∑n

i=1

∑n
j=1

∑n
k=1

∑n
l=1 aibjqn,ijakblpn,kl) = E(

∑n
i=1

∑n
j=1 a

2
i b

2
jqn,ijpn,ij) = σ2

aσ
2
b tr(qnp

′
n).

Lemma B.4 Recall u = (ιT ⊗ In)μ+ (IT ⊗B−1
0 )v. Let a = ζ + μ(1 − ρm0 )/(1 − ρ0) +

∑m−1
j=0 ρj0B

−1
0 v−j ,

where ζ, μ, and v are defined in the text. In particular, ζ′is are iid and independent of μ and v. Let
qn, pn, rn, sn, tn be nT × nT , nT × nT , n× n, n × nT and n× nT nonstochastic matrices, respectively.
Further, qn, pn, and rn are symmetric. Then
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(1) E[(u′qnu)(u′pnu)] = κμ
∑n

i=1Gqn,1iiGpn,1ii + κv
∑n

i=1Gqn,2iiGpn,2ii

+σ4
v[tr(qnΩ0)tr(pnΩ0) + 2tr(qnΩ0pnΩ0)],

(2) E[(u′qnu)(a′rna)] = κμ(1−ρm
0 )2

(1−ρ0)2
∑n

i=1Gqn,1iirn,ii + σ4
v[tr(rnω11)tr(qnΩ0) + 2tr(ω12qnω21pn)],

(3) E[(a′snu)(a′tnu)] = κμ(1−ρm
0 )2

(1−ρ0)2
∑n

i=1(sn(ιT ⊗ In))ii(tn(ιT ⊗ In))ii
+σ4

v[tr(snω21)tr(tnω21) + tr(snω21tnω21) + tr(snΩ0t
′
nω11)],

(4) E[(u′qnu)(u′s′na)] = κμ(1−ρm
0 )

1−ρ0
∑n

i=1Gqn,1ii((ι′T ⊗ In)s′n)ii + σ4
v[tr(qnΩ0)tr(s′nω12) + 2tr(Ω0s

′
nω12qn)],

(5) E[(a′rna)(a′snu)] = κμ(1−ρm
0 )3

(1−ρ0)3
∑n

i=1 rn,ii(sn(ιT ⊗ In))ii + σ4
v[(rnω11)tr(snω21) + 2tr(rnω11snω21)],

where Gqn,1 ≡ (ι′T ⊗ In)qn(ιT ⊗ In), Gqn,2 ≡ (IT ⊗ B′−1
0 )qn(IT ⊗ B−1

0 ), and, e.g., Gqn,1ij denotes the
(i, j)th element of Gqn,1.

Proof. We only sketch the proof of (1) and (2) since it mainly follows from Lemma B.3 and the proof
of other claims is similar. First, let Gqn,3 ≡ (ι′T ⊗ In)qn(IT ⊗B−1

0 ). Then by the independence of μ and
v and Lemma B.3, we have

E[(u′qnu)(u′pnu)] = E(μ′Gqn,1μμ
′Gpn,1μ+ v′Gqn,2vv

′Gpn,2v + μ′Gqn,1μv
′Gpn,2v

+v′Gqn,2vμ
′Gpn,1μ+ 2μ′Gqn,3vμ

′Gpn,3v + 2v′G′
qn,3

μv′Gpn,3μ)
= κμ

∑n
i=1Gqn,1iiGpn,1ii + κv

∑n
i=1Gqn,2iiGpn,2ii

+σ4
v[tr(qnΩ0)tr(pnΩ0)+2tr(qnΩ0pnΩ0)].

Next, write a = b+ B−1
0 c, where b = ζ + μ(1 − ρm0 )/(1 − ρ0) and c =

∑m−1
j=0 ρj0v−j . Then b and c are iid

and mutually independent. It follows that

E[(u′qnu)(a′rna)] = E(μ′Gqn,1μb
′rnb+ v′Gqn,2vc

′B′−1
0 rnB

−1
0 c+ μ′Gqn,1μc

′B′−1
0 rnB

−1
0 c

+v′Gqn,2vb
′rnb)

= κμ(1−ρm
0 )2

(1−ρ0)2
∑n

i=1Gqn,1iirn,ii + σ4
v[tr(rnω11)tr(qnΩ0) + 2tr(ω12qnω21pn)].

Similarly, we can prove the other claims.

Lemma B.5 Suppose that {P1n} and {P2n} are sequences of matrices with row and column sums uni-
formly bounded. Let a = (a1, · · · , an)′, where ai’s are independent random variables such that supiE|ai|2+ε0

< ∞ for some ε0 > 0. Let b = (b1, · · · , bn)′, where b
′
is are iid with mean zero and (4 + 2ε0)th finite mo-

ments, and {bi} is independent of {ai}. Let σ2
Qn

be the variance of Qn = a′P1nb + b′P2nb − σ2
vtr(P2n).

Assume that the elements of P1n, P2n are of uniform order O(1/
√
hn) and O(1/hn), respectively. If

limn→∞h
1+2/ε0
n /n = 0, then Qn/σQn

d−→ N(0, 1).

Proof. Note that Qn is a linear-quadratic form of b as in Theorem 1 of Kelejian and Prucha (2001).
The difference is that the coefficient a′P1n of the linear term is random. The proof proceeds by modifying
that of Theorem 1 in Kelejian and Prucha (2001) or Lemma A.13 of Lee (2002).

We now present lemmas needed in the proofs of the main theorems. For ease of exposition, we assume
that both xit and zi are scalar random variables (p = 1, q = 1) in this Appendix. For the proofs of
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Theorems 2 and 4 for the SDPD model with random effects, the following presentations are essential. By
continuous back substitutions, we have for t = 0, 1, 2, · · ·,

yt = Xtβ0 + cρ0,tzγ0 + cρ0,tμ+ Vt + Y0,t, (B.1)

where for fixed y0, Xt =
∑t−1
j=0 ρ

j
0xt−j, Vt =

∑t−1
j=0 ρ

j
0B

−1
0 vt−j, Y0,t = ρt0y0 and cρ,t = (1 − ρt)/(1 − ρ);

and for endogenous y0, Xt =
∑t+m−1

j=0 ρj0xt−j, Vt =
∑t+m−1

j=0 ρj0B
−1
0 vt−j, Y0,t = ρt+m0 y−m, and cρ,t =

(1 − ρt+m) /(1 − ρ). Now, define Y0 = (Y′
0,0,Y

′
0,1, · · · ,Y′

0,T−1)
′. Then

Y−1 = X(−1)β0 + (lρ0 ⊗ In)zγ0 + (lρ0 ⊗ In)μ+ V(−1) + Y0, (B.2)

where X(−1) = (0,X′
1, · · · ,X′

T−1)
′, V(−1) = (0,V′

1, · · · ,V′
T−1)

′, and lρ = (0, cρ,1, · · · , cρ,T−1)′ when y0 is
fixed, and X(−1) = (X′

0,X
′
1, · · · ,X′

T−1)
′, V(−1) = (V′

0,V
′
1, · · · ,V′

T−1)
′), and lρ = (cρ,0, cρ,1, · · · , cρ,T−1)′

when y0 is endogenous. Notice that when y0 is exogenous, Y−1 can also be expressed as

Y−1 = AxX
′β0 + (lρ0 ⊗ In)zγ0 + (lρ0 ⊗ In)μ+ Avv + Y0, (B.3)

where Ax = J ′
ρ0

⊗ In and Av = J ′
ρ0

⊗ B−1
0 with

Jρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 ρ · · · ρT−2

0 0 1 · · · ρT−3

...
...

...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (B.4)

Lemmas B.6-B.8 given below are used in the proof of Theorem 4.2.

Lemma B.6 Under the assumptions of Theorem 4.2, E(X̃′Ω−1
0 u) = 0.

Proof. Note that X̃ = (X,Z, Y−1). By the strict exogeneity of X and Z, we can readily show that
both X′Ω−1

0 u and Z′Ω−1
0 u have expectations zero. We are left to show E(Y ′

−1Ω
−1
0 u) = 0. By (B.3),

E(Y ′−1Ω
−1
0 u) = E

[
μ′(l′ρ0 ⊗ In)Ω−1

0 u
]

+ E
[
v′A′

vΩ
−1
0 u
]
. Using u = (ιT ⊗ In)μ + (IT ⊗ B−1

0 ) and (3.29),
we have

E
[
μ′(l′ρ0 ⊗ In)Ω−1

0 u
]

= E[μ′(l′ρ0 ⊗ In)Ω−1
0 (ιT ⊗ In)μ] = φμ0σ

2
υ0tr[Ω

−1
0 ((ιT l′ρ0 ) ⊗ In)]

= φμ0σ
2
υ0tr

{
(JTJρ0 ) ⊗ [(B′

0B0)−1 + φμ0TIn]−1
}
,

and

E
[
v′A′

vΩ
−1
0 u
]

= E[v′A′
vΩ

−1
0 (IT ⊗ B−1

0 )v]

= σ2
υ0tr[Ω

−1
0 (IT ⊗ B−1

0 )(Jρ0 ⊗ B′−1
0 )] = σ2

υ0tr[Ω
−1
0 (Jρ0 ⊗ (B′

0B0)−1)]

= σ2
υ0tr

{
(T−1JTJρ0 ) ⊗ [(B′

0B0)−1 + φμ0TIn]−1(B′
0B0)−1

}
+ σ2

υ0tr
[
(Jρ0 − T−1JTJρ0) ⊗ In

]
,

where we have used the fact that E(vv′A′
v) = Jρ0⊗B′−1

0 . It follows that E(Y ′−1Ω
−1
0 u) = σ2

v0tr(Jρ0 ⊗In) =
σ2
v0tr(Jρ0 )tr(In) = 0.
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Lemma B.7 Under the assumptions of Theorem 4.2, 1
nT

{
∂Lr(ψ0)
∂ψ∂ψ′ −E

[
∂Lr(ψ0)
∂ψ∂ψ′

]}
= oP (1).

Proof. By the expressions of the Hessian matrix ∂Lr(ψ0)
∂ψ∂ψ′ in Section 4.2, it suffices to prove (i)

n−1[X̃′Ω−1
0 X̃ − E(X̃′Ω−1

0 X̃)] = oP (1) ; (ii) n−1[X̃′Ru− E(X̃′Ru)] = oP (1) for R = Ω−1
0 and Pω0 with

ω = λ and φμ; (iii) n−1[u′Ru− σ2
v0tr(RΩ0)] = oP (1) for R = Ω−1

0 and Pω0 with ω = λ and φμ; and (iv)
n−1[qωω̄(u) −E(qωω̄(u))] = oP (1) for ω, ω̄ = λ and φμ.

Let Ωωω̄0 = ∂2

∂ω∂ω̄Ω (δ0) for ω, ω̄ = λ and φμ. Noting that Ω−1
0 , Ωω0, Pω0, and Ωωω̄0 with ω, ω̄ = λ and

φμ are uniformly bounded in both row and column sums by Lemmas B.1-B.2 and qωω̄(u) is quadratic in
u, we can readily show that (iii)-(iv) hold by straightforward moment calculations, Chebyshev inequality,
and Lemma B.4. For example, to show (iii), first note that E(u′Ru) = σ2

v0tr(RΩ0). By Lemma B.4,

Var(n−1u′Ru) = n−2{E(u′Ruu′Ru) − [E(u′Ru)]2}
= n−2κμ

∑n
i=1G

2
R,1ii + n−2κv

∑n
i=1G

2
R,2ii + 2n−2σ4

v0tr(RΩ0RΩ0) = O(n−1),

where the last equality follows from the fact that G2
R,1, G

2
R,2, and RΩ0RΩ0 are all uniformly bounded in

both row and column sums. Then (iii) follows by Chebyshev inequality.
To prove (i), let R = Ω−1

0 . Noticing that X̃ = (X,Z, Y−1), it is easy to show that the terms not
involving Y−1, such as n−1X′RX, n−1X′RZ, and n−1Z′RZ converge in probability to their expectations.
For the terms involving Y−1, we first have by (B.3),

n−1Y ′−1RY−1 = n−1[AxX′β0 + (lρ0 ⊗ In)zγ0 ]′R[AxX′β0 + (lρ0 ⊗ In)zγ0]
+n−1[(lρ0 ⊗ In)μ +Avv]′R[(lρ0 ⊗ In)μ+ Avv]
+n−1

Y
′
0RY0 + 2n−1[AxX′β0 + (lρ0 ⊗ In)zγ0 ]′R[(lρ0 ⊗ In)μ+ Avv]

+2n−1[AxX′β0 + (lρ0 ⊗ In)zγ0 ]′RY0 + 2n−1[(lρ0 ⊗ In)μ +Avv]′RY0

≡ ∑6
i=1 Ani, say.

It suffices to show that each Ani (i = 1, · · · , 6) converges in probability to its expectations. Take An6 as
an example. E(An6) = 0 because Y0 is kept fixed here. For the second moment,

Var(An6) = 4n−2{E[μ′(l′ρ0 ⊗ In)RY0Y
′
0R

′(lρ0 ⊗ In)μ] +E(v′AvRY0Y
′
0R

′Avv)}
= 4n−2{σ2

μ0tr[RY0Y
′
0R

′(lρ0 l
′
ρ0 ⊗ In)] + σ2

v0tr(AvRY0Y
′
0R

′Av)} = O(n−1),

where the last equality follows from the fact that both matrices in the two trace operators are uniformly
bounded in both row and column sums. Similarly, we can show that n−1X′RY−1 and n−1Z′RY−1

converge to their expectations in probability, and thus (i) follows. Analogously, we can show (ii) .

Lemma B.8 Under the assumptions of Theorem of 4.2, 1√
nT

∂Lr(ψ0)
∂ψ

d−→ N(0,Γr).

Proof. The key step of the proof is to show that 1√
nT
X̃′Ω−1

0 u
d−→ N(0,Γr,11) where Γr,11 =

plimn→∞(nT )−1X̃′Ω−1
0 X̃ . By Cramér-Wold device, it suffices to show that for any c = (c′1, c

′
2, c3)

′ ∈
R
p × R

q × R with ‖c‖ = 1, (nT )−1/2c′X̃′Ω−1
0 u

d−→ N(0, c′Γr,11c). Using (B.3) and u = (ιT ⊗ In)μ
+(IT ⊗ B−1

0 )v, we have c′X̃′Ω−1
0 u = c′1XΩ−1

0 u+ c′2ZΩ−1
0 u+ c3Y−1Ω−1

0 u =
∑3

i=1 Tni, where

Tn1 = [c′1X + c′2Z + c3β
′
0XA

′
x + c3γ

′
0z(l

′
ρ0

⊗ In) + c3Y
′
0]Ω

−1
0 (ιT ⊗ In)μ+ c3μ

′(l′ρ0 ⊗ In)Ω−1
0 (ιT ⊗ In)μ,

Tn2 = [c′1X + c′2Z + c3β
′
0XA

′
x + c3γ

′
0z(l

′
ρ0 ⊗ In) + c3Y

′
0]Ω

−1(IT ⊗ B−1
0 )v + c3v

′A′
vΩ

−1
0 (IT ⊗ B−1

0 )v,

Tn3 = c3μ
′[(l′ρ0 ⊗ In)Ω−1

0 (IT ⊗B−1
0 ) + (ι′T ⊗ In)Ω−1

0 Av]v.
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It is easy to verify that E(Tn3) = 0, E(Tn1) = c3φμ0σ
2
v0tr[Ω

−1
0 (ιT l′ρ0 ⊗ In)], and thus E(Tn2) = −E(Tn1)

by Lemma B.6. Also, we can verify that Cov(Tni, Tnj) = 0 for i 
= j. It suffices to show that each Tni

(after appropriately centered for Tn1 and Tn2) is asymptotically normal with mean zero.
Note that Tn1 and Tn2 are linear and quadratic functions of μ and v, respectively. For Tn3, it is a

special case of Lemma B.5 since it can be regarded as a linear function of either μ or υ, with μ and υ

independent of each other. So we can apply Lemma B.5 to Tni to obtain

{Tni − E(Tni)}/
√

Var(Tni)
d−→ N(0, 1) for i = 1, 2, 3.

Now by the independence of Tn1 and Tn2, and the asymptotic independence of Tn3 with Tn1 and Tn2, we
have

1√
nT

c′X̃′Ω−1
0 u =

1√
nT

3∑
i=1

Tni
d−→ N(0, lim

n→∞(nT )−1
3∑
i=1

Var(Tni)),

implying that (nT )−1/2X̃′Ω−1
0 u

d−→ N(0,Γr,11) because we can readily show that (nT )−1[X̃′Ω−1
0 X̃

−Var(X̃′Ω−1
0 u)] = oP (1).

Noticing that each component of ∂Lr(ψ0)/∂ψ can be written as linear and quadratic functions of μ
or v, the rest of the proof proceeds by following the above steps closely.

Lemmas B.9-B.13 are used in the proof of Theorem 4.4, for the SDPD model with random
effects and endogenous y0. Let Rts be an n×n symmetric and positive semidefinite (p.s.d.) nonstochastic
square matrix for t, s = 0, 1, · · · , T − 1. Assume that Rts are uniformly bounded in both row and column
sums. Recall for this case, Xt =

∑t+m−1
j=0 ρj0xt−j and Vt =

∑t+m−1
j=0 ρj0B

−1
0 vt−j.

Lemma B.9 Suppose that the conditions in Theorem 4.4 are satisfied. Then
(1) E(V′

tRtsVs) = σ2
vtr(B

′−1
0 RtsB

−1
0 )
∑t+m−1

i=max(0,t−s) ρ
s−t+2i
0 ,

(2) E(X′
tRtsXs) = tr(

∑s+m−1
j=0

∑t+m−1
k=0 ρj+k0 RtsE(xs−jx′t−k)),

(3) E(X′
tRtsVs) = 0.

Proof. Let Pj ≡ ρj0B
−1
0 . Then Vt =

∑t+m−1
j=0 Pjvt−j . Noting that E(v′tDvs) = σ2

v0tr(D) for any
nonstochastic conformable matrix D if t = s and 0 otherwise, we have

E(V′
tRtsVs) =

∑t+m−1
i=0

∑s+m−1
j=0 E(v′t−iP

′
iRtsPjvs−j) =

∑t+m−1
i=max(0,t−s)E(v′t−iP

′
iRtsPs−t+ivt−i)

= σ2
v0tr(

∑t+m−1
i=max(0,t−s)P

′
iRtsPs−t+i) = σ2

v0tr(B
′−1
0 RtsB

−1
0 )
∑t+m−1

i=max(0,t−s) ρ
s−t+2i
0 .

Next, noting that Xt =
∑t+m−1

j=0 ρj0xt−j, we have

E(X′
tRtsXs) =

∑s+m−1

j=0

∑t+m−1

k=0
ρj+k0 E(x′t−kRtsxs−j) = tr(

∑s+m−1

j=0

∑t+m−1

k=0
ρj+k0 RtsE(xs−jx′t−k)).

Lastly, E(X′
tRtsVs) =

∑s+m−1
j=0

∑t+m−1
k=0 ρj+k0 E(x′t−kRtsB

−1
0 vs−j) = 0.

Lemma B.10 Suppose that the conditions in Theorem 4.4 are satisfied. Then

(1) Cov(V′
tRtsVs,V

′
gRghVh) = ρtsgh,1{κv

∑n
i=1 Bts,iiBgh,ii + 2σ4

v0tr[Bts(Bgh + B
′
gh)]}

+ρtsgh,2σ4
v0tr[B

′−1
0 Rts(B′

0B0)−1RghB
−1
0 ]

+ρtsgh,3σ4
v0tr[B

′−1
0 Rts(B′

0B0)−1R′
ghB

−1
0 ],

(2) Cov(X′
tRtsVs,X

′
gRghVh) = σ2

v0tr[
∑t+m−1

i=0

∑g+m−1
k=0

∑s+m−1
j=max(0,s−h) ρ

i+k+h−s+2j
0 Rts

×(B′
0B0)−1R′

ghE(x′g−kxt−i)],
(3) Cov(X′

tRtsXs,X
′
gRghXh) = O(n),
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where Bts,ii denotes the (i, i)th element of Bts ≡ B′−1
0 RtsB

−1
0 , ρtsgh,1 =

∑t+m−1
j=max(0,t−s,t−g,t−h) ρ

(s+g+h−3t+4j)
0 ,

ρtsgh,2 =
∑t+m−1

i=max(0,t−g) ρ
g−t+2i
0

∑s+m−1
j=max(0,s−h) ρ

h−s+2j
0 1(j 
= i+s−t), and ρtsgh,3 =

∑t+m−1
i=max(0,t−h) ρ

h−t+2i
0∑s+m−1

j=max(0,s−g) ρ
g−s+2j
0 1(j 
= i+ s− t).

Proof. Let R1 and R2 be arbitrary n× n nonstochastic matrices. We can show that

E[(v′tR1vs)(v′gR2vh)] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

κv
∑n

i=1 R1,iiR2,ii + σ4
v0{tr(R1)tr(R2) + tr[R1(R2 + R′

2)]} if t = s = g = h

σ4
v0tr(R1)tr(R2) if t = s 
= g = h

σ4
v0tr(R1R2) if t = g 
= s = h

σ4
v0tr(R1R

′
2) if t = h 
= s = g

0 otherwise

.

Consequently,

E(V′
tRtsVsV

′
gRghVh)

= E(
∑t+m−1

i=0

∑s+m−1
j=0

∑g+m−1
k=0

∑h+m−1
l=0 ρi+j+k+l0 v′t−iB

′−1
0 RtsB

−1
0 vs−jv′g−kB

′−1
0 RghB

−1
0 vh−l)

=
∑t+m−1

j=max(0,t−s,t−g,t−h) ρ
(s+g+h−3t+4j)
0 {κv

∑n
i=1(B

′−1
0 RtsB

−1
0 )ii(B′−1

0 RghB
−1
0 )ii

+σ4
v0[tr(B

′−1
0 RtsB

−1
0 )tr(B′−1

0 RghB
−1
0 ) + 2tr(B′−1

0 RtsB
−1
0 (B′−1

0 RghB
−1
0 + B′−1

0 R′
ghB

−1
0 ))]}

+σ4
v0

∑t+m−1
i=max(0,t−s) ρ

s−t+2i
0 tr(B′−1

0 RtsB
−1
0 )
∑g+m−1

j=max(0,g−h) ρ
h−g+2j
0 tr(B′−1

0 RghB
−1
0 )1(j 
= i+ g − t)

+
∑t+m−1

i=max(0,t−g) ρ
g−t+2i
0

∑s+m−1
j=max(0,s−h) ρ

h−s+2j
0 σ4

v0tr(B
′−1
0 Rts(B′

0B0)−1RghB
−1
0 )1(j 
= i+ s− t)

+
∑t+m−1

i=max(0,t−h) ρ
h−t+2i
0

∑s+m−1
j=max(0,s−g) ρ

g−s+2j
0 σ4

v0tr(B
′−1
0 Rts(B′

0B0)−1R′
ghB

−1
0 )1(j 
= i+ s− t).

Then (1) follows by Lemma B.9. For (2), we have

Cov(X′
tRtsVs,X

′
gRghVh) = E(X′

tRtsVs(X
′
tRghVs)

′)

=
t+m−1∑
i=0

s+m−1∑
j=0

g+m−1∑
k=0

h+m−1∑
l=0

ρi+j+k+l0 E[x′t−iRtsB
−1
0 vs−j(x′g−kRghB

−1
0 vh−l)′]

= σ2
v0tr

⎡⎣t+m−1∑
i=0

g+m−1∑
k=0

s+m−1∑
j=max(0,s−h)

ρi+k+h−s+2j
0 Rts(B′

0B0)−1R′
ghE(x′g−kxt−i)

⎤⎦ .
The expression for Cov(X′

tRtsXt,X
′
gRghXh) is quite complicated, but we can use Lemmas B.1-B.2 to

show it is of order O(n), which suffices for our purpose.

Lemma B.11 Suppose that the conditions in Theorem 4.4 are satisfied. Then

(1) (nT )−1
∑T−1

t=0

∑T−1
s=0 [V′

tRtsVs −E(V′
tRtsVs)]

p−→ 0,

(2) (nT )−1
∑T−1

t=0

∑T−1
s=0 X

′
tRtsVs

p−→ 0,

(3) (nT )−1
∑T−1

t=0

∑T−1
s=0 [X′

tRtsXs −E(X′
tRtsXs)]

p−→ 0.

Proof. By Lemmas B.1, B.2, B.9, and B.10, we can show that (nT )−1
∑T−1
t=0

∑T−1
s=0 E(V′

tRtsVs) =
O(1), and Var(n−1

∑T−1
t=0

∑T−1
s=0 V

′
tRtsVs) = n−2

∑T−1
t=0

∑T−1
s=0

∑T−1
g=0

∑T−1
h=0 Cov(V′

tRtsVs,V
′
gRghVh) =

O(n−1). Then (1) follows from Chebyshev inequality. For (2), we have E[ 1
nT

∑T−1
t=0

∑T−1
s=0 X

′
tRtsVs] = 0,
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and

Var

(
n−1

T−1∑
t=0

T−1∑
s=0

X
′
tRtsVs

)
= n−2

T−1∑
t=0

T−1∑
s=0

T−1∑
g=0

T−1∑
h=0

Cov(X′
tRtsVs,X

′
gRtsVh)

= n−2
T−1∑
t=0

T−1∑
s=0

T−1∑
g=0

T−1∑
h=0

σ2
v0

t+m−1∑
i=0

g+m−1∑
k=0

s+m−1∑
j=max(0,s−h)

tr[ρi+k+h−s+2j
0 Rts

×(B′
0B0)−1R′

ghE(xg−kx′t−i)]

= O(n−1),

where the last equality follows because (i) xit are independent across i with second moments uniformly
bounded in i, (ii) Rts(B′

0B0)−1R′
gh are uniformly bounded in both row and column sums by Lemmas

B.1-B.2, and (iii) elements of Rts(B′
0B0)−1R′

ghE(xg−kx′t−i) are uniformly bounded by the same lemmas.
Hence the conclusion follows from Chebyshev inequality. (3) follows from Lemma B.10 and Chebyshev
inequality.

Lemma B.12 Under the assumptions of Theorem 4.4, 1
n(T+1)

{
∂Lrr(ψ0)
∂ψ∂ψ′ − E

[
∂Lrr(ψ0)
∂ψ∂ψ′

]}
= oP (1).

Proof. Let u∗ = u∗(θ0, ρ0) and u∗ρ = u∗ρ(θ0, ρ0) = ∂
∂ρu

∗(θ0, ρ0). Noting that E (X∗′Ru∗) = 0 for any
n(T +1)×n(T +1) nonstochastic matrix R and X∗

ρ is free of ρ, by the expressions of the Hessian matrix
∂Lrr(ψ0)
∂ψ∂ψ′ in Section 4.2, it suffices to prove

(i) n−1
[
X∗′Ω∗−1

0 X∗ − E
(
X∗′Ω∗−1

0 X∗)] = oP (1) ;
(ii) n−1X∗′Ru∗ = oP (1) for R = Ω∗−1

0 and P ∗
ω0 with ω = ρ, λ, φμ, and φζ ;

(iii) n−1 [u∗′Ru∗ −E (u∗′Ru∗)] = oP (1) for R = Ω∗−1
0 and P ∗

ω0 with ω = ρ, λ, φμ, and φζ ;
(iv) n−1

[
X∗′
ρ Ω∗−1

0 u∗ −E
(
X∗′
ρ Ω∗−1

0 u∗
)]

= oP (1) ;
(v) n−1

[
X∗′Ω∗−1

0 u∗ρ −E
(
X∗′Ω∗−1

0 u∗ρ
)]

= oP (1) ;
(vi) n−1

[
u∗′ρ Ru∗ − E

(
u∗′ρ Ru∗

)]
= oP (1) for R = Ω∗−1

0 and P ∗
ω0 with ω = ρ, λ, φμ, and φζ ;

(vii) n−1
[
u∗′ρρΩ

∗−1
0 u∗ − E

(
u∗′ρρΩ

∗−1
0 u∗

)]
= oP (1) ;

(viii) n−1
[
u∗′ρ Ω∗−1

0 u∗ρ −E
(
u∗′ρ Ω∗−1

0 u∗ρ
)]

= oP (1);
(ix) n−1 [q∗ωω̄(u∗) − E (q∗ωω̄(u∗))] = oP (1) for ω, ω̄ = ρ, λ, φμ, and φζ .

Let Ω∗
ωω̄0 = ∂2

∂ω∂ω̄
Ω∗ (δ0) for ρ, λ, φμ, and φζ . Noting that Ω∗−1

0 , Ω∗
ω0, P

∗
ω0 and Ω∗

ωω̄0 with ω, ω̄ = ρ,

λ, φμ, and φζ are uniformly bounded in both row and column sums and q∗ωω̄(u∗) is quadratic in u∗,
we can readily show that (i)-(iv) and (ix) hold by straightforward moment calculations and Chebyshev

inequality. Noting that u∗ρ = −
(
ȧm0zγ0

Y−1

)
and u∗ρρ = −

(
äm0zγ0

0nT×1

)
with ȧm0 = d

dρam (ρ0) and

äm0 = d2

dρ2
am (ρ0) , we can readily prove (v)-(vii) by Chebyshev inequality. In fact, E

(
u∗′ρρΩ

∗−1
0 u∗

)
= 0

in (vii) .

32



We are left to prove (viii) . Write Ω∗−1
0 =

(
ω11∗ ω12∗
ω12′
∗ ω22

∗

)
where ω11∗ , ω12∗ , and ω22∗ are n× n, n× nT,

and nT × nT matrices, respectively.

n−1u∗′ρ Ω∗−1
0 u∗ρ = n−1

(
ȧm0zγ0

Y−1

)′(
ω11
∗ ω12

∗
ω12′
∗ ω22

∗

)(
ȧm0zγ0

Y−1

)
= n−1

(
(ȧm0)

2
γ′

0
z′ω11

∗ zγ0 + 2ȧm0γ
′
0
z′ω12

∗ Y−1 + Y ′
−1ω

22
∗ Y−1

)
.

To show the convergence of n−1u∗′ρ Ω∗−1
0 u∗ρ to its expectation, it suffices show each term in the last

expression converges to its expectation. We only show n−1[Y ′−1ω
22∗ Y−1 −E

(
Y ′−1ω

22∗ Y−1

)
] = oP (1) since

the proof that n−1[(ȧm0)2γ′0z
′ω11∗ zγ0 −E ((ȧm0)2γ′0z

′ω11∗ zγ0

)
] = oP (1) and that n−1[ȧm0γ

′
0
z′ω12∗ Y−1 −(

ȧm0γ
′
0
z′ω12

∗ Y−1

)
] = oP (1) is similar and simpler. By (B.2)

n−1Y ′
−1ω

22
∗ Y−1 = n−1

(
X(−1)β0 + (lρ0 ⊗ In) zγ0 + (lρ0 ⊗ In)μ + V(−1) + Y0

)′
ω22
∗

× (X(−1)β0 + (lρ0 ⊗ In) zγ0 + (lρ0 ⊗ In)μ+ V(−1) + Y0

)
.

After expressing out the right hand side of the last expression, it has 25 terms, most of which can
easily be shown to converge to their respective expectations. The exceptions are terms involving X(−1)

and V(−1), namely: n−1β′
0X

′
(−1)ω

22
∗ X(−1)β0, n

−1β′
0V

′
(−1)ω

22
∗ V(−1), n

−1β′
0X

′
(−1)ω

22
∗ V(−1), n

−1β′
0X

′
(−1)ω

22
∗

(lρ0 ⊗ In) zγ0, n
−1β′

0X
′
(−1)ω

22∗ (lρ0 ⊗ In) μ, n−1
V

′
(−1)ω

22∗ (lρ0 ⊗ In) zγ0, n
−1

V
′
(−1) ω

22∗ (lρ0 ⊗ In)μ, n−1β′
0

X
′
(−1)ω

22∗ Y0, and n−1
V

′
(−1)ω

22∗ Y0. The first three terms converge in probability to their expectations by
Lemma B.11. We can show the other terms converge in probability to their expectations by similar
arguments to those used in proving Lemmas B.9-B.11.

Lemma B.13 Under the assumptions of Theorem 4.4, 1√
nT

∂Lrr(ψ0)
∂ψ

d−→ N(0,Γrr).

Proof. By Cramér-Wold device, it suffices to show that for any c = (c′1, c2, c3, c4, c5, c6)′ ∈ R
p+q+k ×

R×R×R×R×R with ‖c‖ = 1, S∗
n ≡ 1√

nT
c′ ∂L

rr(ψ0)
∂ψ

d−→ N(0, c′Γrrc). Using the expression for elements

of ∂Lrr(ψ)
∂ψ defined in Section 4.2, we can readily obtain

S∗
n =

1√
nT

[
c′1
∂Lrr(ψ0)
∂θ′

+ c2
∂Lrr(ψ0)
∂σ2

v

+ c3
∂Lrr(ψ0)

∂ρ
+ c4

∂Lrr(ψ0)
∂λ

+ c5
∂Lrr(ψ0)
∂φμ

+ c6
∂Lrr(ψ0)
∂φφζ

]
=

1√
nT

{
1
σ2
v0

c′1X
∗′Ω∗−1

0 u∗ − c3
σ2
v0

u∗′ρ Ω∗−1
0 u∗ +

c2
2σ2

v0

[
σ−2
v0 u

∗′Ω∗−1
0 u∗ − n(T + 1)

]
+

c3
2σ2

v0

[
u∗′P ∗

ρ0u
∗ − σ2

v0tr(P
∗
ρ0Ω

∗
0)
]
+

c4
2σ2

v0

[
u∗′P ∗

λ0u
∗ − σ2

v0tr(P
∗
λ0Ω

∗
0)
]

+
c5

2σ2
v0

[
u∗′P ∗

φμ0u
∗ − σ2

v0tr(P
∗
φμ0Ω

∗
0)
]

+
c6

2σ2
v0

[
u∗′P ∗

φζ0u
∗ − σ2

v0tr(Ω
∗
φζ0Ω

∗
0)
]}

= S∗
n1 + S∗

n2 + [S∗
n3 − E (S∗

n3)]
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where S∗
n1 = 1√

nT
1
σ2

v0
c′1X∗′Ω∗−1

0 u∗, S∗
n2 = −1√

nT

c3
σ2

v0
u∗′ρ Ω∗−1

0 u∗, S∗
n3 = 1√

nT
1

2σ2
v0
u∗′Ω̄∗

0u
∗ and Ω̄∗

0 = c2
σ2

v0
Ω∗−1

0

+c3P ∗
ρ0 + c4P

∗
λ0 + c5P

∗
φμ0 + c6P

∗
φζ0. Note that

S∗
n1 =

1√
nT

1
σ2
v0

c′1X
∗′
(
ω11∗ ω12∗
ω21
∗ ω22

∗

)(
ζ + am0μ+

∑m−1
j=0 ρj0B

−1
0 v−j

(ιT ⊗ In)μ+ (IT ⊗B−1
0 )v

)

=
1√
nT

1
σ2
v0

c′1X
∗′
(
ω11
∗
ω21∗

)
ζ +

1√
nT

1
σ2
v0

c′1X
∗′
(
ω11
∗ am0 + ω12

∗ (ιT ⊗ In)
ω21∗ am0 + ω22∗ (ιT ⊗ In)

)
μ

+
1√
nT

1
σ2
v0

c′1X
∗′
(
ω12
∗
ω22∗

)
(IT ⊗ B−1

0 )v +
1√
nT

1
σ2
v0

c′1X
∗′
(
ω11
∗
ω21∗

)
m−1∑
j=0

ρj0B
−1
0 v−j

≡ S∗
n1,1 + S∗

n1,2 + S∗
n1,3 + S∗

n1,4, say,

where S∗
n1,1, S

∗
n1,2, S

∗
n1,3, and S∗

n1,4 are linear in ζ, μ, v and v−j ’s, respectively. Similarly

S∗
n3 =

1√
nT

1
2σ2

v0

{
ζ′ω̄11

∗ ζ + μ′ [am0ω̄
11
∗ + (ι′T ⊗ In)ω̄22

∗ (ιT ⊗ In) + 2am0(ι′T ⊗ In)ω̄21
∗
]
μ

+v′(IT ⊗ B′−1)ω̄22
∗ (IT ⊗B−1

0 )v +
(∑m−1

j=0
ρj0B

−1
0 v−j

)′
ω̄11
∗

(∑m−1

j=0
ρj0B

−1
0 v−j

)
+2
[(
a2
m0μ +

∑m−1

j=0
ρj0B

−1
0 v−j

)
+ (ιT ⊗ In)μ+ (IT ⊗ B−1

0 )v
]′
ω̄21
∗ ζ

+2am0μ
′ω̄11

∗
∑m−1

j=0
ρj0B

−1
0 v−j + 2μ′(ι′T ⊗ In)ω̄22

∗ (IT ⊗B−1
0 )v

+2v′(IT ⊗B′−1
0 )ω̄21

∗

(
am0μ +

∑m−1

j=0
ρj0B

−1
0 v−j

)
+ 2μ′(ι′T ⊗ In)ω̄21

∗
∑m−1

j=0
ρj0B

−1
0 v−j

}
.

where Ω̄∗−1
0 =

(
ω̄11
∗ ω̄21′

∗
ω̄21∗ ω̄22∗

)
with ω̄11

∗ , ω̄
12
∗ , and ω̄22

∗ being n × n, nT × n, and nT × nT matrices.

Apparently, S∗
n3 can be written as the summation of five asymptotically independent terms, i.e., S∗

n3 =∑5
j=1 S

∗
n3,j, where S∗

n3,1, S
∗
n3,2, S

∗
n3,3, and S∗

n3,4 are quadratic functions of ζ, μ, v, and v−j’s, respectively,
and S∗

n3,5 is the summation of terms that are bilinear in any two of ζ, μ, v, and v−j ’s. Analogous to the
proof of Lemma B.8, we can use u∗ρ = − (ȧm0 (zγ0)

′
, Y ′−1

)
and the expression of Y−1 in (B.2) to write

S∗
n2 =

∑5
j=1 S

∗
n2,j, where S∗

n2,1, S
∗
n2,2, and S∗

n2,3 are quadratic functions of μ, v, and v−j’s, respectively,
S∗
n2,4 is a bilinear function that contains summation of terms which are linear in any two of ζ, μ, v, and
v−j ’s, and S∗

n2,5 is the summation of terms that are linear in one of ς, μ, v, and v−j ’s. Consequently,
we can write S∗

n =
∑6
j=1 s

∗
nj, where s∗n1, ..., s

∗
n4 are quadratic functions of ζ, μ, v, and v−j ’s, respectively,

s∗n5 is a summation of terms tat are bilinear in any two of ζ, μ, v, and v−j’s, and s∗n6 is summation of
terms that are linear in ζ, μ, v, and v−j’s. By the mutual independence of ζ, μ, v, and v−j ’s and their
zero mean property, these six terms are either independent or asymptotically independent. By Lemma
B.5,

{s∗nj − E(s∗nj)}/
√

Var(s∗nj)
d−→ N(0, 1).

It follows that S∗
n

d−→ N(0, limn→∞
∑6

j=1Var(s∗nj)), implying that S∗
n

d−→ N(0, c′Γrrc).

Lemmas B.14-B.15 are used in the proof of Theorem 4.6 for the fixed effects model.

Lemma B.14 Under the assumptions of Theorem 4.6, 1
nT

{
∂Lf(ψ0)
∂ψ∂ψ′ − E

[
∂Lf(ψ0)
∂ψ∂ψ′

]}
= oP (1).
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Proof. Noting that E
(
ΔX†′RΔu

)
= 0 for any nT × nT nonstochastic matrix R, by the expressions

of the Hessian matrix ∂Lf (ψ0)
∂ψ∂ψ′ in Section 4.3, it suffices to prove

(i) n−1[ΔX†′Ω†−1
0 ΔX† − E(ΔX†′Ω†−1

0 ΔX†)] = oP (1) ;
(ii) n−1ΔX†′RΔu = oP (1) for R = Ω†−1

0 and P †
ω0 with ω = ρ, λ,and φζ ;

(iii) n−1[Δu′RΔu− σ2
v0tr(RΩ†

0)] = oP (1) for R = Ω†−1
0 and P †

ω0 with ω = ρ, λ, and φζ ;
(iv) n−1[ΔX†′Ω†−1

0 Δuρ − E(ΔX†′Ω†−1
0 Δuρ)] = oP (1) ;

(v) n−1
[
Δu′ρRΔu−E

(
Δu′ρRΔu

)]
= oP (1) for R = Ω†−1

0 and P †
ω0 with ω = ρ, λ, and φζ ;

(vi) n−1[Δu′ρΩ
†−1
0 Δuρ −E

(
Δu′ρΩ

†−1
0 Δuρ

)
] = oP (1) ;

(vii) n−1[q†ωω̄(Δu) − E(q†ωω̄(Δu))] = oP (1) for ω, ω̄ = ρ, λ, and φζ.

Let Ω†
ωω̄0 = ∂2

∂ω∂ω̄Ω† (δ0) for ρ, λ, and φζ . Noting that Ω†−1
0 , Ω†

ω0, P
†
ω0 and Ω†

ωω̄0 with ω, ω̄ = ρ, λ,

and φζ are uniformly bounded in both row and column sums and q†ωω̄(Δu) is quadratic in Δu, we can
show that (i)-(vii) hold by straightforward moment calculations and Chebyshev inequality. Below we
only demonstrate the proof of (iii) and (vi) since the proof of the other claims is similar or simpler.

Since E(Δu′RΔu) = σ2
v0tr(RΩ†

0), by Chebyshev inequality (iii) follows provided Var(n−1Δu′RΔu) =
o(1). Let Δv(0) = B0ζ + ρm0 v−m+1 +

∑m−1
j=0 ρj0Δv1−j, Δv(1) = (Δv′2, ....Δv′T)′, and Δv = (Δv′(0),Δv

′
(1))

′.

Then Δu = (In ⊗ B−1
0 )Δv and Δu′RΔu = Δv′(In ⊗ B

′−1
0 )R(In ⊗ B−1

0 )Δv = Δv′R̃Δv, where R̃ ≡
(In ⊗ B

′−1
0 )R(In ⊗ B−1

0 ). Now, write

R =

⎛⎜⎝ R00
n×n

R01
n×n(T−1)

R10
n(T−1)×n

R11
n(T−1)×n(T−1)

⎞⎟⎠
and partition R̃ similarly. Let C be a (T − 1) × T matrix with Cij = −1 if i = j, Cij = 1 if j = i+ 1,
and Cij = 0 otherwise. Then Δv(1) = (C ⊗ In)v, where v = (v′1, · · · , v′T )′. So

Δv′R̃Δv = Δv′(0)R̃00Δv(0) + Δv′(1)R̃11Δv(1) + Δv′(0)(R01 + R′
10)Δv(1)

= Δv′(0)R̃00Δv(0) + v′(C ′ ⊗ In)R̃11(C ⊗ In)v + Δv′(0)(R01 + R′
10)(C ⊗ In)v

Then by Cauchy-Schwarz inequality

Var(Δu′RΔu) ≤ 3Var(Δv′(0)R̃00Δv(0))+3Var(v′(C ′⊗In)R̃11(C⊗In)v)+3Var(Δv′(0)(R01+R′
10)(C⊗In)v).

Write Δv(0) = B0ζ + v1 + ρm−1
0 (ρ0 − 1) v−m+1 +

∑m−2
j=0 ρj0 (ρ0 − 1) v−j. Since B′

0R̃00B0 is uniformly
bounded in both row and column sums, by Lemma B.3(1)

Var(ζ′B′
0R̃00B0ζ) = κζ

n∑
i=1

[(B′
0R̃00B0)ii]2 + σ4

ζ0tr(B
′
0R̃00B0B

′
0(R̃00 + R̃′

00)B0) = O(n).

Similarly, we can show that Var(v′1R̃00v1) = O(n), Var(v′−m+1R̃00v−m+1) = O(n), and Var(
∑m−2
j=0 ρj0v

′
−jR̃00

×∑m−2
j=0 ρj0v−j) = O(n). It follows from Cauchy-Schwarz inequality that Var(Δv′(0)R̃00Δv(0)) = O(n).

By the same token, we can show that Var(v′(C ′⊗In)R̃11(C⊗In)v) = O(n), and Var(Δv′(0)(R01+R′
10)(C⊗

In)v) = O(n). This completes the proof of (iii).
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Now, we show (vi) . Let ΔY ∗ = (01×n,Δy′1, · · · ,Δy′T−1)
′. Then Δuρ = −ΔY ∗. Let kρ = (0, 1, ρ, · · · ,

ρT−2)′, X =(01×n, 01×n, (Δx2β0)′, · · · ,
∑T−3
j=0 ρ

j
0(ΔxT−1−jβ0)′), and V = (01×n, 01×n, (Δv2)′, · · · ,

∑T−3
j=0

ρj0(ΔvT−1−j)′). Since Δy1 = Δ̃xπ0 + Δx1β0 + Δ̃u1 and

Δyt = ρt−1
0 Δy1 +

t−2∑
j=0

ρj0Δxt−jβ0 +
t−2∑
j=0

ρj0B
−1
0 Δvt−j for t = 2, 3, · · · , (B.5)

we have ΔY ∗ = kρ0 ⊗ Δy1 + X + (IT ⊗B−1
0 )V. It follows that

Var
(
Δu′ρΩ

†−1
0 Δuρ

)
≤ 3Var

((
k′ρ0 ⊗ Δy1

)
Ω†−1

0 (kρ0 ⊗ Δy1)
)

+ 3Var
(
X ′Ω†−1

0 X
)

+3Var
(
V′(IT ⊗B′−1

0 )Ω†−1
0 (IT ⊗B−1

0 )V
)

We can show that each term on the right hand side of the last expression is O (n) . Then (vi) follows
by Chebyshev inequality.

Lemma B.15 Suppose that the conditions in Theorem 4.6 are satisfied. Then 1√
nT

∂Lf(ψ0)
∂ψ

d−→ N(0,Γf).

Proof. By Cramér-Wold device, it suffices to show that for any c = (c′1, c2, c3, c4, c5)
′ ∈ R

p+k ×
R × R × R × R with ‖c‖ = 1, S†

n ≡ 1√
nT
c′ ∂L

f(ψ0)
∂ψ

d−→ N(0, c′Γfc). Recall Δu = Δu(θ0, ρ0). Let Δuρ =

−(0′n×1,Δy′1, · · · ,Δy′T−1)
′, and P †

ω0 = P †
ω (δ0) for ω = ρ, λ, and φζ. Using the expression for elements of

∂Lf(ψ)
∂ψ defined in Section 4.3, we can readily obtain

S†
n =

1√
nT

[
c′1
∂Lf (ψ0)
∂θ′

+ c2
∂Lf (ψ0)
∂σ2

v

+ c3
∂Lf(ψ0)
∂ρ

+ c4
∂Lf(ψ0)
∂λ

+ c5
∂Lf (ψ0)
∂φφζ

]
=

1√
nT

{
1
σ2
v0

c′1ΔX
†′Ω†−1

0 Δu− c3
σ2
v0

Δu′ρΩ
†−1
0 Δu

+
c2

2σ2
v0

[
1

2σ2
v0

Δu′Ω†−1
0 Δu− nT

]
+

c3
2σ2

v0

[
Δu′P †

ρ0Δu− σ2
v0tr(P

†
ρ0Ω

†
0)
]

+
c4

2σ2
v0

[
Δu′P †

λ0Δu− σ2
v0tr(P

†
λ0Ω

†
0)
]

+
c5

2σ2
v0

[
Δu′P †

φζ0
Δu− σ2

v0tr(P
†
φζ0

Ω†
0)
]}

= S†
n1 + S†

n2 +
[
S†
n3 − E

(
S†
n3

)]
where S†

n1 = 1√
nT

1
σ2

v0
c′1ΔX†′Ω†−1

0 Δu, S†
n2 = −1√

nT

c3
σ2

v0
Δu′ρΩ

†−1
0 Δu, S†

n3 = 1√
nT

1
2σ2

v0
Δu′Ω̄†

0Δu and Ω̄†
0 =

c2
σ2

v0
Ω†−1

0 + c3P
†
ρ0 + c4P

†
λ0 + c5P

†
φζ0. Analogous to the proof of Lemma B.13, one can write S†

n =
∑5
j=1 s

†
nj,

where s†n1, ..., s
†
n3 are quadratic functions of ζ, v, and v−j ’s, respectively, s†n4 is a summation of terms

tat are bilinear in any two of ζ, v, and v−j’s, and s†n5 is summation of terms that are linear in ς, v, and
v−j ’s. By the mutual independence of ζ, v, and v−j’s and their zero mean property, these five terms are
either independent or asymptotically independent. By Lemma B.5,

{s†nj − E(s†nj)}/
√

Var(s†nj)
d−→ N(0, 1).

It follows that S†
n

d−→ N(0, limn→∞
∑5

j=1Var(s†nj)), implying that S†
n

d−→ N(0, c′Γrrc).
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Appendix C: Proofs of the Theorems

Let λmin(A) and λmax(A) be, respectively, the smallest and the largest eigenvalues of the matrix A.

Proof of Theorem 4.1. By Theorem 3.4 of White (1994), it suffices to show that: (i) 1
nT [Lr∗c (δ) −

Lrc(δ)] p−→ 0 uniformly in δ ∈ Δ, and (ii) limsupn→∞ maxδ∈Nc
ε (δ0)

1
nT

[Lr∗c (δ) − Lr∗c (δ0)] < 0 for any
ε > 0, where N c

ε (δ0) is the complement of an open neighborhood of δ0 on Δ of radius ε. By (3.5) and
(4.3), 2

nT [Lr∗c (δ) − Lrc(δ)] = − ln σ̃2
v(δ) + ln σ̂2

v(δ). To show (i), it is sufficient to show

σ̂2
v(δ) − σ̃2

v(δ) = oP (1) uniformly in δ ∈ Δ. (C.1)

By the definition of ũ(δ) below (3.4), we have ũ(δ) = Y − X̃(X̃′Ω−1X̃)−1X̃′Ω−1Y = Ω1/2MΩ−1/2Y

where M = InT − Ω−1/2X̃(X̃′Ω−1X̃)−1X̃′Ω−1/2 is a projection matrix. This, in conjunction with the
fact that MΩ−1/2X̃ = 0, implies that

σ̂2
v(δ) =

1
nT

ũ(δ)′Ω−1ũ(δ) =
1
nT

Y ′Ω−1/2MΩ−1/2Y =
1
nT

u′Ω−1/2MΩ−1/2u. (C.2)

By (4.1) and the fact that Y = X̃θ0 + u, θ̃(δ) = θ0 + θ∗ (δ) where θ∗ (δ) = [E(X̃′Ω−1X̃)]−1E(X̃′Ω−1u).
Then u(θ̃(δ)) = Y − X̃θ̃(δ) = u− X̃θ∗ (δ) . By (4.2) and using the expression for θ∗ (δ), we have

σ̃2
v(δ) =

1
nT

E

{[
u− X̃θ∗ (δ)

]′
Ω−1

[
u− X̃θ∗ (δ)

]}
=

1
nT

E
(
u′Ω−1u

)
+

1
nT

θ∗ (δ)′ E(X̃′Ω−1X̃)θ∗ (δ) − 2
nT

θ∗ (δ)′E(X̃′Ω−1u)

=
σ2
v0

nT
tr
(
Ω−1Ω0

)− 1
nT

[E(X̃′Ω−1u)]′[E(X̃′Ω−1X̃)]−1E(X̃′Ω−1u), (C.3)

where recall Ω0 ≡ Ω(δ0) and Ω(δ) is defined in (3.2). Combining (C.2)-(C.3) yields

σ̂2
v(δ) − σ̃2

v(δ) =
1
nT

[u′Ω−1u− σ2
v0tr

(
Ω−1Ω0

)
] − 1

nT
u′Ω−1/2PΩ−1/2u

+
1
nT

[E(X̃′Ω−1u)]′[E(X̃′Ω−1X̃)]−1E(X̃′Ω−1u)

=
1
nT

tr[Ω−1(uu′ − σ2
v0Ω0)]

−
{
Qxu (δ)′Qxx (δ)−1Qxu (δ) − {E [Qxu (δ)]}′ {E [Qxx (δ)]}−1 E [Qxu (δ)]

}
≡ Πn1(δ) − Πn2(δ), say,

where P = Ω−1/2X̃(X̃′Ω−1X̃)−1X̃′Ω−1/2, Qxx (δ) = 1
nT
X̃′Ω−1X̃, and Qxu (δ) = 1

nT
X̃′Ω−1u.

For Πn1(δ), we can show that E[Πn1(δ)] = 0 and E[Πn1(δ)]2 = O(n−1) as in the proof of Lemma B.7.
So the pointwise convergence of Πn1(δ) to 0 follows by Chebyshev inequality. The uniform convergence
holds if we can show that Πn1(δ) is stochastic equicontinuous. To achieve this, we first show that
infδ∈Δ λmin(Ω(δ)) is bounded away from 0:

inf
δ∈Δ

λmin(Ω(δ)) ≥ inf
δ∈Δ

λmin{φμ(JT ⊗ In) + IT ⊗ [B(λ)′B(λ)]−1}
≥ inf

λ∈Λ
λmin(IT ⊗ [B(λ)′B(λ)]−1) ≥ inf

λ∈Λ
λmin([B(λ)′B(λ)]−1)

≥ inf
λ∈Λ

{λmin[B(λ)−1]}2 = {sup
λ∈Λ

λmax[B(λ)]}−2 ≥ c̄−2
λ > 0 (C.4)
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by Facts 8.16.20 and B.14.20 in Bernstein (2005) and Assumption G2(v). Now, let δ, δ̄ ∈ Δ. By
Cauchy-Schwarz inequality,

|Πn1(δ) − Πn1(δ̄)| =
∣∣∣∣ 1
nT

tr{Ω(δ)−1[Ω(δ) − Ω(δ̄)]Ω(δ̄)−1(uu′ − σ2
v0Ω0)}

∣∣∣∣
≤ 1

nT
[tr{Ω(δ)−1[Ω(δ) − Ω(δ̄)]Ω(δ̄)−2[Ω(δ) − Ω(δ̄)]Ω(δ)−1}]1/2 ∥∥uu′ − σ2

v0Ω0

∥∥
≤ [λmin(Ω(δ̄))]−2 1√

nT

∥∥Ω(δ) − Ω(δ̄)
∥∥ 1√

nT

∥∥uu′ − σ2
v0Ω0

∥∥ .
Straightforward moment calculations and Chebyshev inequality lead to

∥∥uu′ − σ2
v0Ω0

∥∥ /√nT = OP (1).
In addition,

∥∥Ω(δ) − Ω(δ̄)
∥∥ /√nT → 0 as

∥∥δ − δ̄
∥∥ → 0. Thus, {Πn1(δ)} is stochastically equicontinuous

by Theorem 21.10 in Davidson (1994).
For Πn2(δ), we decompose it as follows

Πn2(δ) = {Qxu (δ) −E [Qxu (δ)]}′Qxx (δ)−1Qxu (δ)

+ {E [Qxu (δ)]}′Qxx (δ)−1 {E [Qxx (δ)] −Qxx (δ)} {E [Qxx (δ)]}−1
Qxu (δ)

+ {E [Qxu (δ)]}′ {E [Qxx (δ)]}−1 {Qxu (δ) − E [Qxu (δ)]}
≡ Πn2,1(δ) + Πn2,2(δ) + Πn2,3(δ), say.

By Assumption G1(v) , sup |φμ| ≤ cφ for some cφ <∞. Noting that by G2(v)

sup
δ∈Δ

λmax (Ω(δ)) ≤ sup
δ∈Δ

λmax{φμ(JT ⊗ In) + IT ⊗ [B(λ)′B(λ)]−1}

≤ sup
φμ

{
φμλmax(JT ⊗ In) + λmax{[B(λ)′B(λ)]−1}}

≤ cφT + { inf
λ∈Λ

λmin[B(λ)]}−2 ≤ cφT + c−2
λ <∞, (C.5)

we have

inf
δ∈Δ

λmin (Qxx (δ)) ≥
[
sup
δ∈Δ

λmax (Ω(δ))
]−1

λmin

(
1
nT

X̃′X̃
)

≥ (
cφT + c−2

λ

)−1
λmin

(
1
nT

X̃′X̃
)
.

This implies that supδ∈Δ

∥∥∥Qxx (δ)−1
∥∥∥ = OP (1) by Assumption R(iv). It is straightforward to show that

Qxu (δ) − E [Qxu (δ)] = oP (1) uniformly in δ by Chebyshev inequality and the arguments for stochastic
equicontinuity. In addition, E [Qxu (δ)] = O (1) uniformly in δ. So Qxu (δ) = OP (1) uniformly in δ.

Consequently,

|Πn2,1(δ)| ≤ ‖Qxu (δ) − E [Qxu (δ)]‖
∥∥∥Qxx (δ)−1

∥∥∥ ‖Qxu (δ)‖
= oP (1)OP (1)OP (1) = oP (1) uniformly in δ.

By the same token, we can show that Πn2,s(δ) = oP (1) uniformly in δ for s = 2, 3. It follows that
Πn2(δ) = oP (1) uniformly in δ. Hence supδ∈Δ |σ̂2

v(δ) − σ̃2
v(δ)| = oP (1) as desired.

To show (ii), we can define an auxiliary process {UnT } such that (3.1) is now satisfied with u replaced
by UnT and UnT ∼ N(0, σ2

vΩ) with Ω = Ω(δ) and is independent of (X,Z) . [If u is normally distributed,
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one just sets UnT = u.] The true value of (θ, σ2
v, δ) is given by (θ0, σ2

v0, δ0). Now the quasi-log-likelihood
function Lr(ψ) in (3.3) becomes the exact log-likelihood function. By the principle of maximum likelihood
and Jensen inequality, one can readily show that Lr∗c (δ) ≤ Lr∗c (δ0) for any δ ∈ Δ. Observing that
σ̃2
v (δ0) = σ2

v0
nT tr

(
Ω−1

0 Ω0

)
= σ2

v0 by (C.3) and Lemma B.6, we have

1
nT

[Lr∗c (δ) −Lr∗c (δ0)] =
1

2nT
{log |Ω0| − log |Ω (δ) |}+

1
2
{
log
[
σ̃2
v (δ0)

]− log
[
σ̃2
v (δ)

]}
=

1
2nT

{
log |σ2

v0Ω0| − log |σ̃2
v (δ) Ω (δ) |} .

Then (ii) follows from Assumption R(iv) . This completes the proof of the theorem. �

Proof of Theorem 4.2. By Taylor series expansion,

0 =
1√
nT

∂Lr(ψ̂)
∂ψ

=
1√
nT

∂Lr(ψ0)
∂ψ

+
1
nT

∂2Lr(ψ̄)
∂ψ∂ψ′

√
nT (ψ̂ − ψ0),

where elements of ψ̄ = (θ̄′, σ̄2
v, δ̄)′ lie in the segment joining the corresponding elements of ψ̂ and ψ0 and

δ̄ = (λ̄, φ̄μ)′. Thus
√
nT (ψ̂ − ψ0) = −

[
1
nT

∂2Lr(ψ̄)
∂ψ∂ψ′

]−1 1√
nT

∂Lr(ψ0)
∂ψ

.

By Theorem 4.1, ψ̂
p−→ ψ0. Consequently, ψ̄

p−→ ψ0, and it suffices to show that: (i) 1
nT

∂2Lr(ψ̄)
∂ψ∂ψ′ −

1
nT

∂2Lr(ψ0)
∂ψ∂ψ′ = oP (1), (ii) 1

nT
∂2Lr(ψ0)
∂ψ∂ψ′

p−→ Hr, and (iii) 1√
nT

∂Lr(ψ0)
∂ψ

d−→ N(0,Γr). (ii) and (iii) follow
from Lemmas B.7 and B.8, respectively. We are left to show (i).

With the expression of ∂2

∂ψ∂ψ′Lr(ψ) given in Section 4.2, it suffices to show that 1
nT

∂2Lr(ψ̄)
∂ω∂
′ − 1

nT
∂2Lr(ψ0
∂ω∂
′

= oP (1) for ω, � = θ, σ2
v, λ, and φμ. We do this only for the cases of (ω,�) = (θ, θ), (θ, σ2

v), and (σ2
v, σ

2
v)

as the other cases can be shown analogously. First, write

− 1
nT

[
∂2Lr(ψ̄)
∂θ∂θ′

− ∂2Lr(ψ0)
∂θ∂θ′

]
=
(

1
σ̄2
v

− 1
σ2
v0

)
X̃′Ω(δ̄)−1X̃

nT
+

1
nTσ2

v0

X̃′[Ω(δ̄)−1 − Ω−1
0 ]X̃. (C.6)

Noting that σ̄2
v − σ2

v0 = oP (1) by Theorem 4.1 and (nT )−1X̃′Ω(δ̄)−1X̃ = OP (1), the first term on the
right hand side of the last expression is oP (1). For the second term, we first show that

λmax[Ω0 − Ω(δ̄)] = Op(
∥∥δ̄ − δ0

∥∥). (C.7)

To see this, write Ω0 − Ω(δ̄) = (φμ0 − φ̄μ)(JT ⊗ In) + rn(λ̄), where rn(λ) = IT ⊗ {[B(λ0)′B(λ0)]−1 −
[B(λ)′B(λ)]−1} is a symmetric matrix. By the repeated use of the fact that

λmax(A⊗ C) ≤ λmax(A)λmax(C) (C.8)

for any two real symmetric matrices [see, e.g., Fact 8.16.20 of Bernstein (2005)], we have

λmax[rn(λ̄)] ≤ λmax{[B(λ0)′B(λ0)]−1 − [B(λ̄)′B(λ̄)]−1}
= λmax([B(λ0)′B(λ0)]−1[B(λ̄)′B(λ̄) −B(λ0)′B(λ0)][B(λ̄)′B(λ̄)]−1)

≤ { inf
λ∈Λ

λmin [B(λ)′B(λ)]}−2λmax[B(λ̄)′B(λ̄) − B(λ0)′B(λ0)] = OP (λ̄− λ0)
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where the last equality follows from Assumption G2 and the fact that

λmax[B(λ̄)′B(λ̄) − B(λ0)′B(λ0)] = λmax[(λ0 − λ̄)(W ′ +W ) + (λ̄2 − λ2
0)W

′W ]

≤ |λ̄− λ0|λmax(W ′ +W ) + (λ̄2 − λ2
0)λmax(W ′W )

= OP (λ̄ − λ0)

under Assumption G2. Noting that λmax(JT ⊗ In) = T , we can apply the fact that

λmax(A + C) ≤ λmax(A) + λmax(C) (C.9)

to obtain λmax[Ω0 −Ω(δ̄)] ≤ T |φμ0 − φ̄μ|+ λmax(rn(λ̄)) = Op(
∥∥δ̄ − δ0

∥∥). Thus (C.7) follows. Let c be an
arbitrary column vector in R

p+q+1 . Then by Cauchy-Schwarz inequality, (C.4), and (C.7)

1
n
|c′X̃′[Ω(δ̄)−1 − Ω−1

0 ]X̃c|

=
1
n
|c′X̃′Ω(δ̄)−1[Ω0 − Ω(δ̄)]Ω−1

0 X̃c|

≤ 1
n
{c′X̃′Ω(δ̄)−1[Ω0 − Ω(δ̄)][Ω0 − Ω(δ̄)]Ω(δ̄)−1X̃c}1/2[c′X̃′Ω−1

0 Ω−1
0 X̃c]1/2

≤ λmax[Ω0 − Ω(δ̄)][λmin(Ω(δ̄))]−1[λmin(Ω0)]−1 1
n

∥∥∥X̃c∥∥∥2 = OP (
∥∥δ̄ − δ0

∥∥) = oP (1). (C.10)

It follows that the second term on the right hand side of (C.6) is oP (1). Consequently, 1
nT

∂2Lr(ψ̄)
∂θ∂θ′ −

1
nT

∂2Lr(ψ0)
∂θ∂θ′ = oP (1).

Next we consider − 1
nT

∂2Lr(ψ̄)
∂θ∂σ2

v
+ 1

nT
∂2Lr(ψ0)
∂θ∂σ2

v
. This term is equal to

1
nT σ̃4

v

X̃′Ω(δ̄)−1u(θ̄) − 1
nTσ4

v0

X̃′Ω−1
0 u

=
(

1
σ̄4
v

− 1
σ4
v0

)
X̃′Ω(δ̄)−1u(θ̄)

nT
+

1
σ4
v0

X̃′[Ω(δ̄)−1 − Ω−1
0 ]u(θ̄)

nT
+

1
σ4
v0

X̃′Ω−1
0 [u(θ̄) − u]
nT

.

Using u(θ̄) = Y −X̃θ̄ = u+X̃(θ0− θ̄), we can readily show that 1
nT X̃

′Ω(δ̄)−1u(θ̄) = OP (1), which implies
that the first term in the last expression is oP (1) by Theorem 4.1. The second term is oP (1) by arguments
analogous to those used above. The third term is σ−4

v0 (nT )−1X̃′Ω(δ̄)−1X̃(θ0−θ̄) = OP (1)||θ0−θ̄|| = oP (1).
It follows that 1

nT
∂2Lr(ψ̄)
∂θ∂σ2

v
− 1

nT
∂2Lr(ψ0)
∂θ∂σ2

v
= oP (1). Now, write

− 1
nT

[
∂2Lr(ψ̄)
∂σ2

v∂σ
2
v

− ∂2Lr(ψ0)
∂σ2

v∂σ
2
v

]
=
(

1
σ̄6
v

u(θ̄)′Ω(δ̄)−1u(θ̄)− 1
σ2
v

u′Ω−1
0 u

)
+

1
2

(
1
σ4
v0

− 1
σ̄4
v

)
.

Clearly, the second term is oP (1) by Theorem 4.1. We can use the decomposition u(θ̄) = u+ X̃(θ0 − θ̄)
and the consistency of ψ̄ to show the first term is also oP (1). This completes the proof. �

Proof of Theorem 4.3
Let T1 = T+1. As in the proof of Theorem 4.1, we prove the theorem by showing that (i) 1

nT1
[Lrr∗c (δ)−

Lrrc (δ)] p−→ 0 uniformly in δ ∈ Δ, and (ii) lim supn→∞ maxρ∈Nc
ε (ρ0)

1
nT1

[Lrr∗c (δ) − Lrr∗c (δ0)] < 0 for any
ε > 0. The proof of (ii) is almost identical to that of (ii) in the proof of Theorem 4.1 and thus omitted.

By (3.14) and (4.6), 2
nT1

[Lrr∗c (δ) − Lrrc (δ)] = ln σ̂2
v(δ) − ln σ̃2

v(δ). To show (i), it suffices to show

σ̂2
v(δ) − σ̃2

v(δ) = oP (1) uniformly on Δ. (C.11)
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By the definition of ũ∗(δ) below (3.13), we have ũ∗(δ) = Y ∗ (ρ) − X∗(X∗′Ω∗−1X∗)−1X∗′Ω∗−1Y ∗ (ρ) =
Ω∗1/2M∗Ω∗−1/2Y ∗ (ρ) where M∗ = InT1 − Ω∗−1/2X∗(X∗′Ω∗−1X∗)−1X∗′Ω∗−1/2 is a projection matrix.
Observe that Y ∗ (ρ) = Y ∗ (ρ0)+[Y ∗ (ρ) − Y ∗ (ρ0)] = X∗θ0 +u∗ +(ρ0 − ρ) Y ∗−1 where Y ∗−1 = (01×n, Y ′−1)′.
This, in conjunction with the fact that M∗Ω∗−1/2X∗ = 0, implies that

σ̂2
v(δ) =

1
nT1

ũ∗(δ)′Ω∗−1ũ∗(δ) =
1
nT1

Y ∗ (ρ)′ Ω∗−1/2M∗Ω∗−1/2Y ∗ (ρ)

=
1
nT1

[
u∗ + (ρ0 − ρ) Y ∗

−1

]′ Ω∗−1/2M∗Ω∗−1/2
[
u∗ + (ρ0 − ρ) Y ∗

−1

]
. (C.12)

By (4.4) and the above expression for Y ∗ (ρ) , we have

θ̃(δ) =
[
E
(
X∗′Ω∗−1X∗)]−1

E
[
X∗′Ω∗−1Y ∗(ρ)

]
= θ0 − θ∗ (δ) ,

where θ∗ (δ) = (ρ− ρ0)
[
E
(
X∗′Ω∗−1X∗)]−1

E
(
X∗′Ω∗−1Y ∗−1

)
. Then by the definition of u∗(θ, ρ) after

(3.12),
u∗(θ̃(δ), ρ) = Y ∗ (ρ) −X∗ θ̃(δ) = X∗θ∗ (δ) + u∗ + (ρ0 − ρ) Y ∗

−1.

By (4.5),

σ̃2
v(δ) =

1
nT1

E
{[
X∗θ∗ (δ) + u∗ + (ρ0 − ρ) Y ∗

−1

]′ Ω∗−1
[
X∗θ∗ (δ) + u∗ + (ρ0 − ρ)Y ∗

−1

]}
=

1
nT1

E
{[
u∗ + (ρ0 − ρ)Y ∗

−1

]′ Ω∗−1
[
u∗ + (ρ0 − ρ)Y ∗

−1

]}
+

1
nT1

θ∗ (δ)′ E
(
X∗′Ω∗−1X∗) θ∗ (δ) +

2 (ρ0 − ρ)
nT1

θ∗ (δ)′ E
(
X∗′Ω∗−1Y ∗

−1

)
=

1
nT1

E
{[
u∗ + (ρ0 − ρ)Y ∗

−1

]′ Ω∗−1
[
u∗ + (ρ0 − ρ)Y ∗

−1

]}
+

(ρ0 − ρ)
nT1

θ∗ (δ)′ E
(
X∗′Ω∗−1Y ∗

−1

)
. (C.13)

Using (C.12)-(C.13) and Ω∗−1/2M∗Ω∗−1/2 = Ω∗−1 − Ω∗−1X∗(X∗′Ω∗−1X∗)−1X∗′Ω∗−1, we have

σ̂2
v(δ) − σ̃2

v(δ)

=
1
nT1

[
u∗ + (ρ0 − ρ)Y ∗

−1

]′ Ω∗−1/2M∗Ω∗−1/2 [u∗ + (ρ0 − ρ)Y ]∗−1 − σ̃2
v(δ)

=
1
nT1

{[
u∗ + (ρ0 − ρ)Y ∗

−1

]′ Ω∗−1
[
u∗ + (ρ0 − ρ)Y ∗

−1

]−E
[
u∗ + (ρ0 − ρ)Y ∗

−1

]′ Ω∗−1
[
u∗ + (ρ0 − ρ) Y ∗

−1

]}
+Q∗

xu (δ)′Q∗
xx (δ)−1

Q∗
xu (δ)′ + 2 (ρ0 − ρ)Q∗

xu (δ)′Q∗
xx(δ)

−1Q∗
xy−1

(δ)

+ (ρ0 − ρ)2
{
Q∗
xy−1

(δ)′Q∗
xx (δ)−1

Q∗
xy−1

(δ) − E[Q∗
xy−1

(δ)′] {E [Q∗
xx (δ)]}−1

E[Q∗
xy−1

(δ)]
}

≡ Π∗
n1(δ) + Π∗

n2(δ) + 2 (ρ0 − ρ)Π∗
n3(δ) + (ρ0 − ρ)2 Π∗

n4(δ), say,

where Q∗
xx (δ) = 1

nT1
X∗′Ω∗−1X∗, Q∗

xu (δ) = 1
nT1

X∗′Ω∗−1u∗, and Q∗
xy−1

(δ) = 1
nT1

X∗′Ω∗−1Y ∗
−1. We prove

(i) by showing that Π∗
ns(δ) = oP (1) uniformly in δ for s = 1, 2, 3, and 4.

We can decompose Π∗
n1(δ) as follows

Π∗
n1(δ) =

1
nT1

[
u∗′Ω∗−1u∗ −E

(
u∗′Ω∗−1u∗

)]
+

(ρ0 − ρ)2

nT1

[
Y ∗′
−1Ω

∗−1Y ∗
−1 − E

(
Y ∗′
−1Ω

∗−1Y ∗
−1

)]
+

2 (ρ0 − ρ)
nT1

[
u∗′Ω∗−1Y ∗

−1 − E
(
u∗′Ω∗−1Y ∗

−1

)]
≡ Π∗

n1,1(δ) + Π∗
n1,2(δ) + Π∗

n1,3(δ), say.
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For Π∗
n1,1(δ), we can show that E[Π∗

n1,1(δ)] = 0 and E[Π∗
n1,1(δ)]2 = O(n−1) as in the proof of Lemma B.7.

So the pointwise convergence of Π∗
n1,1(δ) to 0 follows by Chebyshev inequality. The uniform convergence

holds if we can show that Π∗
n1,1(δ) is stochastic equicontinuous. Let δ, δ̄ ∈ Δ. By Cauchy-Schwarz

inequality,

|Π∗
n1,1(δ) − Π∗

n1,1(δ̄)| =
∣∣∣∣ 1
nT1

tr
{

Ω∗ (δ)−1 [Ω∗ (δ̄)− Ω∗ (δ)
]
Ω∗ (δ̄)−1 [u∗u∗′ −E (u∗u∗′)]

}∣∣∣∣
≤ 1

nT1
[tr{Ω∗ (δ)−1 [Ω∗ (δ̄)− Ω∗ (δ)

]
Ω∗ (δ̄)−2 [Ω∗ (δ̄)− Ω∗ (δ)

]
Ω∗ (δ)−1}]1/2

×‖u∗u∗′ −E (u∗u∗′)‖
≤ [λmin(Ω∗(δ̄))]−2 1√

nT1

∥∥Ω∗ (δ̄)− Ω∗ (δ)
∥∥ 1√

nT1

‖u∗u∗′ −E (u∗u∗′)‖ .

Straightforward moment calculations and Chebyshev inequality lead to ‖u∗u∗′ −E (u∗u∗′)‖ /√nT1 =
OP (1). In addition,

∥∥Ω∗ (δ̄)− Ω∗ (δ)
∥∥ /√nT1 → 0 as

∥∥δ − δ̄
∥∥ → 0. Thus, {Π∗

n1,1(δ)} is stochastically
equicontinuous by Theorem 21.10 in Davidson (1994). Consequently, Π∗

n1,1(δ) = oP (1) uniformly in δ.

By the same token, Π∗
n1,s(δ) = oP (1) uniformly in δ for s = 2, 3. It follows that Π∗

n1(δ) = oP (1) uniformly
in δ.

To show Π∗
n2(δ) = oP (1) uniformly in δ, we first argue that Ω∗(δ) is positive definite uniformly in δ, i.e.,

infδ∈Δ λmin(Ω∗(δ)) ≥ c∗ for some c∗ > 0. Let ū∗ = (amμ′, u′)′ and Ω̄∗(δ) =

(
φμa

2
mIn φμam(ι′T ⊗ In)

φμam(ιT ⊗ In) Ω

)
.

Noting that Ω̄∗(δ) = E(ū∗ū∗′), it is positive semidefinite uniformly in δ. By Theorem 8.4.11 in Bernstein
(2005) and (C.4), λmin

(
φζIn + bm(B′B)−1

) ≥ φζ + bmλmin

(
(B′B)−1

) ≥ φζ + bmc̄
−2
λ > 0 uniformly in

δ as φζ is positive and bounded away from 0 and bm > 0, implying that φζIn + bm(B′B)−1 is positive
definite uniformly in δ. Noting Ω∗(δ) is equal to Ω̄∗(δ) with its upper-left (n, n)-submatrix added by a
uniformly positive definite matrix φζIn + bm(B′B)−1, we can apply Fact 8.9.19 in Bernstein (2005) to
conclude that Ω∗(δ) is positive definite uniformly in δ. Similarly, we can readily show that

sup
δ∈Δ

λmax(Ω∗(δ)) ≤ sup
δ∈Δ

λmax(Ω̄∗(δ)) + sup
δ∈Δ

λmax(φζIn + bm(B′B)−1))

≤ sup
δ∈Δ

λmax(Ω̄∗(δ)) + sup
δ∈Δ

(
φζ + bmλmin

(
(B′B)−1

))
≤ c̄∗, say.

Next, write

1
nT1

X∗′X∗ =
1
nT1

⎛⎜⎝ X′X X′Z 0p×k
Z′X Z′Z 0q×k
x̃′x0 x̃′zm (ρ) x̃′x̃

⎞⎟⎠+
1
nT1

⎛⎜⎝ x′0x0 x′0zm (ρ) x′0x̃

zm (ρ)′ x0 zm (ρ)′ zm (ρ) zm (ρ) x̃
0k×p 0k×q 0k×k

⎞⎟⎠
≡ A1 (ρ) + A2 (ρ) , say.

Noting that A1 (ρ) is a block triangular matrix. Its eigenvalues are given by those of 1
nT1

(
X′X X′Z
Z′X Z′Z

)
and those of 1

nT1
x̃′x̃. By Assumption R∗ (iv), the minimum of these eigenvalues are bounded away from

0, say by cxx, uniformly in ρ. Similarly, the minimum eigenvalues of A2 (ρ) is 0 uniformly in ρ. It follows
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that infρ λmin

(
1
nT1

X∗′X∗
)
≥ infρ [λmin (A1 (ρ)) + λmin (A2 (ρ))] ≥ cxx > 0. Consequently,

inf
δ∈Δ

λmin (Q∗
xx (δ)) = inf

δ∈Δ
λmin

(
1
nT1

X∗′Ω∗−1X∗
)

≥ c̄∗−1 inf
ρ
λmin

(
1
nT1

X∗′X∗
)

≥ c̄∗−1cxx > 0. (C.14)

Next, noting that E[Q∗
xu (δ)] = 0 and Var(Q∗

xu (δ)) = O(n−1), we have Q∗
xu (δ) = oP (1) by Chebyshev

inequality. In addition, it is straightforward to show that Q∗
xu (δ) is stochastic equicontinuous. So

Q∗
xu (δ) = oP (1) uniformly in δ. We have

|Π∗
n2(δ)| ≤

[
inf
δ∈Δ

λmin (Q∗
xx (δ))

]−1

‖Q∗
xu (δ)‖2 = oP (1) uniformly in δ.

For Π∗
n3(δ), we have Π∗

n3(δ) ≤ ‖Q∗
xu (δ)‖

∥∥∥Q∗
xx (δ)−1

∥∥∥∥∥∥Q∗
xy−1

(δ)
∥∥∥ = oP (1) uniformly in δ as one can

readily show that Q∗
xy−1

(δ) = OP (1) uniformly in δ.
For Π∗

n4(δ), we have

Π∗
n4(δ) =

{
Q∗
xy−1

(δ) −E[Q∗
xy−1

(δ)]
}′
Q∗
xx (δ)−1

Q∗
xy−1

(δ)

+E[Q∗
xy−1

(δ)]′Q∗
xx (δ)−1 {E[Q∗

xx (δ)] −Q∗
xx (δ)} {E[Q∗

xx (δ)]}−1Q∗
xy−1

(δ)

+E[Q∗
xy−1

(δ)]′E [Q∗
xx (δ)]

{
Q∗
xy−1

(δ) − E[Q∗
xy−1

(δ)]
}

≡ Π∗
n4,1(δ) + Π∗

n4,2(δ) + Π∗
n4,3(δ), say.

We can readily show that Q∗
xy−1

(δ) − E[Q∗
xy−1

(δ)] = oP (1) uniformly in δ by Chebyshev inequality
and the arguments of stochastic equicontinuity. This, in conjunction with (C.14) and the fact that
Q∗
xy−1

(δ) = OP (1) uniformly in δ, implies that Π∗
n4,1(δ) = oP (1) uniformly in δ. Similarly, we can show

that Π∗
n4,s(δ) = oP (1) uniformly in δ for s = 2, 3. Thus Π∗

n4(δ) = oP (1) uniformly in δ. This completes
the proof of (i) . �

Proof of Theorem 4.4

The proof is analogous to that of Theorem 4.2, but follows mainly from Lemmas B.12-B.13. �

Proof of Theorem 4.5
The proof is almost identical to that of Theorem 4.3 and thus omitted. �

Proof of Theorem 4.6

The proof is analogous to that of Theorem 4.2, but follows mainly from Lemmas B.14-B.15. �
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Table 1a. Monte Carlo Mean[RMSE] for the QMLEs, Random Effects Model with Normal Errors

true m = 0 true m = 6

ψ m = 0 m = 6 m = 200 m = 0 m = 6 m = 200

n = 50, T = 3

5.0 5.0266[0.334] 4.9604[0.338] 5.0030[0.328] 4.5591[0.378] 4.9940[0.411] 5.0988[0.411]

1.0 1.0011[0.040] 0.9917[0.045] 0.9981[0.045] 0.9626[0.041] 0.9980[0.040] 1.0057[0.039]

1.0 0.9951[0.345] 0.9852[0.350] 0.9927[0.352] 0.7418[0.365] 0.9384[0.391] 0.9790[0.395]

0.8 0.7991[0.023] 0.8071[0.024] 0.8018[0.022] 0.8238[0.015] 0.8015[0.017] 0.7963[0.016]

0.5 0.4827[0.099] 0.3023[0.115] 0.2868[0.114] 0.4732[0.101] 0.4886[0.098] 0.4868[0.098]

1.0 0.9681[0.147] 0.1469[0.116] 0.0214[0.055] 0.8648[0.145] 0.9528[0.158] 0.9280[0.161]

1.0 0.9834[0.072] 1.2563[0.087] 1.2805[0.088] 1.0056[0.076] 0.9880[0.073] 1.0019[0.076]

5.0 4.9785[0.357] 4.9683[0.400] 4.9719[0.400] 4.7922[0.353] 5.0164[0.352] 5.0162[0.352]

1.0 1.0003[0.040] 0.9964[0.045] 0.9967[0.045] 0.9780[0.041] 0.9981[0.039] 0.9981[0.039]

1.0 0.9937[0.323] 1.0022[0.328] 1.0028[0.328] 0.8910[0.352] 0.9374[0.360] 0.9370[0.361]

0.4 0.4015[0.034] 0.4025[0.044] 0.4019[0.044] 0.4271[0.032] 0.4009[0.030] 0.4009[0.030]

0.5 0.4799[0.103] 0.3694[0.141] 0.3690[0.142] 0.4765[0.104] 0.4912[0.093] 0.4911[0.093]

1.0 0.9609[0.146] 0.6380[0.229] 0.6364[0.231] 0.9141[0.155] 0.9725[0.148] 0.9712[0.149]

1.0 0.9838[0.074] 1.1272[0.137] 1.1280[0.138] 1.0056[0.080] 0.9960[0.074] 0.9964[0.074]

5.0 5.0096[0.337] 4.9719[0.352] 4.9719[0.352] 4.9061[0.328] 5.0103[0.328] 5.0103[0.328]

1.0 0.9987[0.040] 0.9947[0.042] 0.9947[0.042] 0.9872[0.040] 0.9991[0.039] 0.9991[0.039]

1.0 0.9944[0.336] 0.9805[0.337] 0.9805[0.337] 0.9481[0.356] 0.9897[0.361] 0.9897[0.361]

0.0 -0.0014[0.041] 0.0069[0.047] 0.0069[0.047] 0.0199[0.043] -0.0021[0.042] -0.0021[0.042]

0.5 0.4783[0.106] 0.3977[0.114] 0.3977[0.114] 0.4815[0.102] 0.4929[0.091] 0.4929[0.091]

1.0 0.9659[0.151] 0.7313[0.178] 0.7313[0.178] 0.9342[0.157] 0.9691[0.148] 0.9691[0.148]

1.0 0.9808[0.076] 1.0741[0.102] 1.0741[0.102] 0.9945[0.079] 0.9624[0.066] 0.9624[0.066]

n = 100, T = 3

5.0 4.9921[0.252] 4.9129[0.258] 4.9423[0.248] 4.5604[0.270] 5.0174[0.299] 5.1460[0.300]

1.0 0.9995[0.029] 0.9892[0.034] 0.9932[0.033] 0.9655[0.029] 0.9997[0.029] 1.0090[0.029]

1.0 1.0019[0.243] 0.9822[0.242] 0.9916[0.242] 0.9112[0.227] 1.0126[0.240] 1.0414[0.244]

0.8 0.8003[0.017] 0.8092[0.018] 0.8058[0.016] 0.8200[0.009] 0.7993[0.010] 0.7935[0.010]

0.5 0.4852[0.074] 0.2674[0.086] 0.2500[0.085] 0.4857[0.068] 0.4872[0.067] 0.4865[0.067]

1.0 0.9788[0.101] 0.1828[0.094] 0.0279[0.056] 0.9083[0.101] 0.9806[0.115] 0.9719[0.120]

1.0 0.9941[0.052] 1.2885[0.062] 1.3150[0.060] 1.0075[0.053] 0.9940[0.052] 1.0025[0.053]

5.0 4.9941[0.247] 4.9271[0.305] 4.9318[0.306] 4.7258[0.277] 4.9982[0.273] 4.9982[0.273]

1.0 0.9991[0.031] 0.9899[0.040] 0.9904[0.040] 0.9730[0.031] 1.0012[0.030] 1.0012[0.030]

1.0 1.0055[0.242] 0.9888[0.245] 0.9897[0.245] 0.9384[0.240] 1.0127[0.250] 1.0128[0.250]

0.4 0.4004[0.025] 0.4104[0.037] 0.4098[0.037] 0.4316[0.023] 0.3996[0.022] 0.3996[0.022]

0.5 0.4916[0.069] 0.3706[0.099] 0.3701[0.100] 0.4885[0.074] 0.4859[0.069] 0.4858[0.069]

1.0 0.9885[0.103] 0.6050[0.175] 0.6033[0.177] 0.9141[0.104] 0.9808[0.101] 0.9798[0.101]

1.0 0.9926[0.053] 1.1742[0.118] 1.1752[0.118] 1.0120[0.054] 0.9948[0.051] 0.9951[0.051]

5.0 5.0098[0.265] 5.0200[0.271] 5.0200[0.271] 4.8775[0.257] 5.0054[0.254] 5.0054[0.254]

1.0 1.0011[0.032] 1.0023[0.033] 1.0023[0.033] 0.9845[0.032] 0.9997[0.030] 0.9997[0.030]

1.0 0.9923[0.232] 0.9930[0.233] 0.9930[0.233] 0.9819[0.240] 1.0086[0.244] 1.0086[0.244]

0.0 0.0000[0.031] -0.0021[0.033] -0.0021[0.033] 0.0236[0.033] -0.0010[0.031] -0.0010[0.031]

0.5 0.4860[0.069] 0.4257[0.073] 0.4258[0.073] 0.4866[0.072] 0.4942[0.063] 0.4942[0.063]

1.0 0.9771[0.107] 0.8260[0.117] 0.8261[0.117] 0.9505[0.109] 0.9851[0.101] 0.9851[0.101]

1.0 0.9957[0.054] 1.0535[0.068] 1.0535[0.068] 1.0015[0.054] 0.9778[0.045] 0.9778[0.045]

Note: ψ = (γ0, β, γ1, ρ, λ, σμ, σv)′. Parameters values for generating xt: θx = (.01, .5, .5,2, 1) (see Footnote 7).
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Table 1b. Monte Carlo Mean[RMSE] for the QMLEs, Random Effects Model with Normal Mixture

true m = 0 true m = 6

ψ m = 0 m = 6 m = 200 m = 0 m = 6 m = 200

n = 50, T = 3

5.0 5.0194[0.342] 4.9734[0.350] 5.0140[0.340] 4.5754[0.416] 4.9935[0.429] 5.0941[0.430]

1.0 1.0005[0.039] 0.9948[0.047] 1.0006[0.047] 0.9656[0.041] 0.9984[0.039] 1.0057[0.039]

1.0 0.9874[0.335] 0.9778[0.339] 0.9858[0.340] 0.7650[0.383] 0.9558[0.405] 0.9981[0.410]

0.8 0.7992[0.022] 0.8047[0.024] 0.7998[0.022] 0.8225[0.017] 0.8011[0.016] 0.7960[0.016]

0.5 0.4788[0.100] 0.2652[0.130] 0.2489[0.129] 0.4766[0.099] 0.4916[0.097] 0.4902[0.096]

1.0 0.9544[0.249] 0.1551[0.120] 0.0283[0.061] 0.8470[0.228] 0.9330[0.259] 0.9101[0.260]

1.0 0.9792[0.145] 1.2519[0.163] 1.2776[0.167] 0.9984[0.147] 0.9821[0.143] 0.9954[0.147]

5.0 4.9914[0.340] 4.9151[0.373] 4.9190[0.374] 4.8085[0.368] 5.0216[0.361] 5.0215[0.361]

1.0 0.9990[0.042] 0.9887[0.047] 0.9891[0.047] 0.9814[0.040] 1.0002[0.038] 1.0002[0.038]

1.0 1.0152[0.332] 1.0061[0.333] 1.0067[0.333] 0.8921[0.357] 0.9384[0.361] 0.9381[0.361]

0.4 0.4003[0.033] 0.4120[0.041] 0.4114[0.041] 0.4265[0.033] 0.4016[0.030] 0.4016[0.030]

0.5 0.4784[0.099] 0.3775[0.115] 0.3770[0.116] 0.4804[0.097] 0.4914[0.090] 0.4913[0.090]

1.0 0.9488[0.256] 0.5328[0.299] 0.5307[0.302] 0.8779[0.250] 0.9387[0.249] 0.9375[0.249]

1.0 0.9799[0.144] 1.1476[0.183] 1.1485[0.184] 0.9895[0.148] 0.9770[0.138] 0.9774[0.138]

5.0 5.0179[0.343] 5.0602[0.344] 5.0602[0.344] 4.9083[0.343] 5.0085[0.339] 5.0085[0.339]

1.0 0.9990[0.044] 1.0016[0.044] 1.0016[0.044] 0.9884[0.040] 1.0000[0.038] 1.0000[0.038]

1.0 0.9981[0.343] 1.0043[0.344] 1.0043[0.344] 0.9497[0.346] 0.9928[0.349] 0.9929[0.349]

0.0 -0.0009[0.043] -0.0094[0.043] -0.0094[0.043] 0.0197[0.045] -0.0017[0.042] -0.0017[0.042]

0.5 0.4822[0.097] 0.4484[0.096] 0.4484[0.096] 0.4808[0.100] 0.4926[0.089] 0.4926[0.089]

1.0 0.9469[0.259] 0.8501[0.259] 0.8500[0.259] 0.9081[0.247] 0.9435[0.246] 0.9434[0.246]

1.0 0.9784[0.144] 1.0170[0.162] 1.0170[0.162] 0.9871[0.145] 0.9475[0.124] 0.9475[0.124]

n = 100, T = 3

5.0 4.9975[0.265] 4.9224[0.276] 4.9695[0.262] 4.6100[0.278] 5.0438[0.335] 5.1446[0.290]

1.0 1.0003[0.029] 0.9916[0.034] 0.9974[0.033] 0.9662[0.029] 1.0024[0.029] 1.0118[0.029]

1.0 1.0089[0.239] 0.9960[0.239] 1.0040[0.240] 0.9023[0.226] 0.9941[0.242] 1.0155[0.245]

0.8 0.8005[0.017] 0.8086[0.019] 0.8035[0.016] 0.8197[0.010] 0.7981[0.013] 0.7931[0.010]

0.5 0.4880[0.072] 0.2826[0.083] 0.2658[0.084] 0.4787[0.072] 0.4749[0.072] 0.4735[0.072]

1.0 0.9621[0.180] 0.1625[0.098] 0.0201[0.048] 0.8933[0.157] 0.9873[0.248] 0.9648[0.190]

1.0 0.9945[0.107] 1.2741[0.115] 1.2990[0.118] 1.0052[0.107] 0.9896[0.104] 0.9969[0.105]

5.0 4.9962[0.258] 4.8481[0.297] 4.8535[0.298] 4.7778[0.262] 5.0177[0.259] 5.0181[0.259]

1.0 1.0009[0.031] 0.9813[0.038] 0.9820[0.038] 0.9755[0.032] 1.0003[0.030] 1.0003[0.030]

1.0 1.0026[0.239] 0.9616[0.240] 0.9630[0.240] 0.9453[0.225] 0.9933[0.231] 0.9934[0.231]

0.4 0.4002[0.026] 0.4229[0.034] 0.4221[0.035] 0.4277[0.023] 0.3989[0.022] 0.3989[0.022]

0.5 0.4878[0.073] 0.3309[0.089] 0.3308[0.090] 0.4867[0.072] 0.4825[0.069] 0.4824[0.069]

1.0 0.9746[0.183] 0.4723[0.195] 0.4706[0.197] 0.9108[0.178] 0.9695[0.188] 0.9687[0.188]

1.0 0.9943[0.103] 1.1997[0.125] 1.2001[0.126] 1.0052[0.100] 0.9887[0.096] 0.9890[0.096]

5.0 4.9946[0.270] 5.0102[0.279] 5.0103[0.279] 4.9119[0.266] 5.0339[0.264] 5.0339[0.264]

1.0 0.9998[0.032] 0.9996[0.034] 0.9996[0.034] 0.9865[0.032] 1.0016[0.031] 1.0016[0.031]

1.0 1.0004[0.249] 0.9802[0.249] 0.9802[0.249] 0.9565[0.238] 0.9816[0.242] 0.9816[0.242]

0.0 0.0001[0.033] -0.0008[0.036] -0.0008[0.036] 0.0208[0.033] -0.0032[0.031] -0.0032[0.031]

0.5 0.4877[0.071] 0.4050[0.090] 0.4050[0.090] 0.4912[0.072] 0.5024[0.062] 0.5024[0.062]

1.0 0.9638[0.186] 0.8049[0.194] 0.8050[0.194] 0.9518[0.182] 0.9871[0.182] 0.9872[0.182]

1.0 0.9864[0.105] 1.0428[0.128] 1.0427[0.128] 0.9942[0.108] 0.9641[0.092] 0.9641[0.092]

Note: ψ = (γ0, β, γ1, ρ, λ, σμ, σv)′. Parameters values for generating xt: θx = (.01, .5, .5,2, 1) (see Footnote 7).
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Table 2a. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 0

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T + 1 = 4 T + 1 = 8

Normal Errors

50 5.0 5.0155 0.3595 0.3257 0.3428 0.3759 5.0040 0.2736 0.2436 0.2695 0.3149

1.0 1.0003 0.0422 0.0373 0.0403 0.0443 0.9999 0.0229 0.0203 0.0222 0.0246

1.0 0.9949 0.3462 0.3321 0.3291 0.3288 0.9996 0.3017 0.2981 0.2978 0.2988

0.5 0.4987 0.0332 0.0312 0.0321 0.0342 0.4995 0.0150 0.0140 0.0149 0.0162

0.5 0.4775 0.1035 0.1037 0.1003 0.1104 0.4973 0.0608 0.0632 0.0588 0.0631

1.0 0.9998 0.3622 0.3885 0.3543 0.3692 0.9734 0.2657 0.2727 0.2543 0.2621

1.0 0.9775 0.1441 0.1416 0.1455 0.1686 0.9883 0.0822 0.0821 0.0837 0.0981

100 5.0 5.0021 0.2634 0.2421 0.2571 0.2797 5.0014 0.1860 0.1591 0.1806 0.2145

1.0 1.0000 0.0287 0.0270 0.0285 0.0305 1.0000 0.0155 0.0148 0.0160 0.0175

1.0 0.9949 0.2412 0.2360 0.2350 0.2351 1.0109 0.2168 0.2141 0.2161 0.2190

0.5 0.5000 0.0223 0.0211 0.0216 0.0226 0.4999 0.0105 0.0098 0.0105 0.0113

0.5 0.4896 0.0726 0.0750 0.0715 0.0766 0.4976 0.0398 0.0466 0.0425 0.0444

1.0 1.0040 0.2540 0.2636 0.2495 0.2589 0.9866 0.1889 0.1871 0.1815 0.1885

1.0 0.9899 0.1027 0.0964 0.1038 0.1227 0.9966 0.0602 0.0560 0.0596 0.0710

Normal Mixture Errors

50 5.0 5.0105 0.3450 0.3340 0.3389 0.3735 4.9986 0.2828 0.2555 0.2685 0.3100

1.0 1.0005 0.0394 0.0368 0.0398 0.0441 1.0001 0.0208 0.0190 0.0205 0.0224

1.0 0.9972 0.3300 0.3244 0.3215 0.3220 1.0029 0.3045 0.2977 0.2945 0.2928

0.5 0.4997 0.0331 0.0308 0.0316 0.0345 0.4998 0.0159 0.0143 0.0149 0.0161

0.5 0.4887 0.1011 0.0984 0.0985 0.1178 0.4928 0.0575 0.0584 0.0590 0.0719

1.0 1.0376 0.6779 0.3104 0.3636 0.5621 1.0135 0.5932 0.1917 0.2625 0.4643

1.0 0.9813 0.2916 0.0897 0.1464 0.2867 0.9964 0.1770 0.0413 0.0844 0.1923

100 5.0 5.0098 0.2541 0.2313 0.2420 0.2676 4.9899 0.1900 0.1671 0.1842 0.2175

1.0 1.0002 0.0293 0.0272 0.0290 0.0316 0.9997 0.0154 0.0139 0.0151 0.0164

1.0 0.9842 0.2397 0.2344 0.2310 0.2290 1.0070 0.2189 0.2115 0.2151 0.2197

0.5 0.5004 0.0240 0.0208 0.0218 0.0236 0.5002 0.0106 0.0101 0.0106 0.0114

0.5 0.4900 0.0696 0.0730 0.0713 0.0834 0.4972 0.0421 0.0440 0.0425 0.0502

1.0 1.0239 0.4462 0.1898 0.2532 0.4188 1.0078 0.3683 0.1162 0.1850 0.3578

1.0 0.9927 0.2081 0.0569 0.1042 0.2177 0.9901 0.1289 0.0265 0.0592 0.1416

Chi-Square Errors, df=5

50 5.0 4.9959 0.3544 0.3414 0.3420 0.3756 5.0178 0.3216 0.3135 0.3190 0.3535

1.0 0.9994 0.0408 0.0373 0.0403 0.0443 1.0006 0.0236 0.0220 0.0231 0.0246

1.0 0.9942 0.3366 0.3318 0.3287 0.3285 0.9943 0.3363 0.3330 0.3286 0.3258

0.5 0.5017 0.0334 0.0307 0.0320 0.0350 0.4982 0.0154 0.0148 0.0153 0.0163

0.5 0.4758 0.1012 0.1026 0.1005 0.1133 0.4959 0.0582 0.0615 0.0588 0.0651

1.0 1.0195 0.4533 0.3659 0.3601 0.4293 0.9649 0.3417 0.2488 0.2527 0.3186

1.0 0.9806 0.1876 0.1208 0.1460 0.2072 0.9895 0.1166 0.0631 0.0838 0.1273

100 5.0 4.9997 0.2478 0.2430 0.2455 0.2691 4.9919 0.1903 0.1788 0.1885 0.2209

1.0 0.9997 0.0286 0.0262 0.0282 0.0308 0.9993 0.0156 0.0143 0.0155 0.0169

1.0 0.9981 0.2343 0.2359 0.2352 0.2357 1.0062 0.2157 0.2116 0.2126 0.2143

0.5 0.5002 0.0216 0.0204 0.0214 0.0229 0.5002 0.0110 0.0104 0.0110 0.0118

0.5 0.4889 0.0673 0.0744 0.0716 0.0787 0.4974 0.0426 0.0455 0.0425 0.0458

1.0 1.0103 0.3043 0.2381 0.2501 0.3066 0.9824 0.2466 0.1653 0.1810 0.2397

1.0 0.9917 0.1391 0.0799 0.1040 0.1536 0.9946 0.0838 0.0421 0.0595 0.0934

Note: ψ = (γ0, β, γ1, ρ, λ, φμ, σ2
v)′. Parameters values for generating xt: θx = (.01, .5, .5,2,1) (see Footnote 7).
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Table 2b. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 6

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T + 1 = 4 T + 1 = 8

Normal Errors

50 5.0 5.0006 0.3692 0.3683 0.3677 0.3947 5.0104 0.2857 0.2931 0.2770 0.3033

1.0 0.9989 0.0371 0.0364 0.0378 0.0408 1.0014 0.0247 0.0253 0.0251 0.0264

1.0 0.9489 0.3510 0.3637 0.3626 0.3732 0.9917 0.3106 0.3047 0.2986 0.3001

0.5 0.5014 0.0275 0.0289 0.0277 0.0281 0.4990 0.0151 0.0206 0.0153 0.0121

0.5 0.4972 0.0907 0.0953 0.0906 0.1004 0.4832 0.0601 0.0616 0.0583 0.0637

1.0 0.9905 0.3505 0.3737 0.3424 0.3635 0.9678 0.2583 0.2832 0.2534 0.2584

1.0 0.9805 0.1439 0.1381 0.1425 0.1687 0.9900 0.0872 0.0828 0.0835 0.0989

100 5.0 5.0276 0.2902 0.2687 0.2739 0.2910 5.0036 0.2046 0.2037 0.1966 0.2126

1.0 1.0017 0.0297 0.0285 0.0296 0.0314 1.0005 0.0163 0.0163 0.0163 0.0170

1.0 1.0203 0.2406 0.2402 0.2351 0.2331 0.9996 0.2197 0.2158 0.2128 0.2130

0.5 0.4973 0.0212 0.0209 0.0203 0.0203 0.4997 0.0109 0.0140 0.0112 0.0094

0.5 0.4898 0.0681 0.0714 0.0676 0.0718 0.4966 0.0412 0.0451 0.0414 0.0436

1.0 1.0103 0.2643 0.2666 0.2537 0.2649 0.9836 0.1796 0.1915 0.1816 0.1877

1.0 0.9879 0.1020 0.0946 0.1015 0.1203 0.9948 0.0579 0.0559 0.0594 0.0710

Normal Mixture Errors

50 5.0 5.0188 0.3582 0.3763 0.3684 0.4236 5.0123 0.2804 0.3036 0.2777 0.3024

1.0 1.0003 0.0383 0.0364 0.0378 0.0434 1.0013 0.0259 0.0252 0.0250 0.0263

1.0 0.9170 0.3839 0.3591 0.3579 0.3835 0.9963 0.2960 0.3064 0.2996 0.3004

0.5 0.5010 0.0282 0.0287 0.0281 0.0324 0.4991 0.0155 0.0205 0.0152 0.0121

0.5 0.4941 0.0903 0.0922 0.0907 0.1096 0.4856 0.0567 0.0571 0.0581 0.0732

1.0 1.0256 0.6788 0.3003 0.3543 0.5729 1.0370 0.5664 0.2124 0.2691 0.4816

1.0 0.9938 0.2765 0.0843 0.1461 0.3087 0.9911 0.1791 0.0416 0.0836 0.1925

100 5.0 5.0199 0.2863 0.2722 0.2734 0.2941 4.9971 0.1975 0.2075 0.1960 0.2116

1.0 1.0014 0.0295 0.0283 0.0294 0.0316 1.0003 0.0161 0.0163 0.0162 0.0170

1.0 1.0066 0.2531 0.2387 0.2336 0.2319 1.0082 0.2109 0.2147 0.2116 0.2116

0.5 0.4983 0.0206 0.0207 0.0202 0.0208 0.4997 0.0113 0.0139 0.0111 0.0094

0.5 0.4905 0.0672 0.0695 0.0675 0.0795 0.4969 0.0397 0.0428 0.0415 0.0496

1.0 1.0475 0.4597 0.2037 0.2626 0.4341 1.0091 0.4092 0.1281 0.1855 0.3568

1.0 0.9837 0.2014 0.0537 0.1014 0.2178 0.9943 0.1302 0.0270 0.0593 0.1416

Chi-Square Errors, df=5

50 5.0 5.0165 0.3750 0.3859 0.3697 0.3991 5.0351 0.2870 0.3065 0.2770 0.3015

1.0 0.9984 0.0383 0.0365 0.0378 0.0411 1.0013 0.0255 0.0251 0.0250 0.0263

1.0 0.9227 0.3595 0.3633 0.3621 0.3754 0.9583 0.3014 0.3049 0.2985 0.2996

0.5 0.5008 0.0277 0.0289 0.0278 0.0288 0.4992 0.0148 0.0205 0.0152 0.0120

0.5 0.5031 0.0877 0.0938 0.0900 0.1028 0.4849 0.0584 0.0601 0.0582 0.0662

1.0 0.9992 0.4431 0.3510 0.3446 0.4179 0.9925 0.3520 0.2700 0.2590 0.3251

1.0 0.9906 0.1940 0.1202 0.1441 0.2107 0.9833 0.1181 0.0638 0.0829 0.1281

100 5.0 5.0307 0.2801 0.2807 0.2744 0.2908 5.0081 0.1999 0.2133 0.1967 0.2119

1.0 1.0016 0.0296 0.0285 0.0296 0.0315 1.0004 0.0169 0.0163 0.0163 0.0170

1.0 1.0172 0.2419 0.2405 0.2358 0.2343 0.9989 0.2137 0.2157 0.2128 0.2130

0.5 0.4969 0.0203 0.0208 0.0203 0.0205 0.4996 0.0112 0.0140 0.0112 0.0094

0.5 0.4888 0.0689 0.0709 0.0677 0.0741 0.4960 0.0426 0.0443 0.0415 0.0452

1.0 1.0304 0.3157 0.2479 0.2584 0.3169 0.9949 0.2548 0.1757 0.1833 0.2396

1.0 0.9867 0.1323 0.0791 0.1015 0.1512 0.9932 0.0810 0.0430 0.0593 0.0931

Note: ψ = (γ0, β, γ1, ρ, λ, φμ, σ2
v)′. Parameters values for generating xt: θx = (.01, .5, .5,2,1) (see Footnote 7).
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Table 2c. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 200

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T + 1 = 4 T + 1 = 8

Normal Errors

50 5.0 5.0283 0.3738 0.3745 0.3731 0.3958 5.0117 0.2852 0.2966 0.2834 0.3117

1.0 1.0012 0.0392 0.0387 0.0397 0.0423 1.0003 0.0250 0.0248 0.0237 0.0243

1.0 0.9720 0.3411 0.3339 0.3321 0.3369 1.0028 0.3041 0.3033 0.3046 0.3130

0.5 0.4970 0.0275 0.0280 0.0265 0.0263 0.4993 0.0157 0.0217 0.0162 0.0129

0.5 0.4778 0.0907 0.0981 0.0934 0.1017 0.4922 0.0599 0.0611 0.0575 0.0627

1.0 1.0255 0.3967 0.3912 0.3602 0.3833 0.9842 0.2643 0.2863 0.2576 0.2646

1.0 0.9742 0.1484 0.1380 0.1424 0.1685 0.9898 0.0817 0.0825 0.0835 0.0991

100 5.0 5.0121 0.2733 0.2740 0.2727 0.2849 5.0113 0.2131 0.2116 0.2059 0.2254

1.0 1.0001 0.0305 0.0287 0.0298 0.0316 1.0006 0.0177 0.0176 0.0176 0.0185

1.0 1.0020 0.2423 0.2421 0.2418 0.2448 0.9853 0.2247 0.2155 0.2137 0.2149

0.5 0.4988 0.0213 0.0218 0.0205 0.0199 0.5000 0.0120 0.0150 0.0117 0.0095

0.5 0.4963 0.0663 0.0707 0.0667 0.0707 0.4989 0.0408 0.0452 0.0417 0.0438

1.0 1.0026 0.2702 0.2679 0.2535 0.2638 0.9747 0.1845 0.1934 0.1813 0.1854

1.0 0.9865 0.1024 0.0938 0.1015 0.1212 0.9985 0.0605 0.0564 0.0597 0.0711

Normal Mixture Errors

50 5.0 5.0122 0.3683 0.3803 0.3677 0.4082 5.0039 0.2902 0.3019 0.2799 0.3079

1.0 0.9986 0.0412 0.0385 0.0395 0.0437 1.0001 0.0238 0.0247 0.0235 0.0241

1.0 0.9767 0.3368 0.3274 0.3248 0.3312 1.0178 0.3164 0.2979 0.2987 0.3066

0.5 0.4993 0.0263 0.0275 0.0263 0.0285 0.4995 0.0161 0.0214 0.0160 0.0130

0.5 0.4707 0.0960 0.0948 0.0938 0.1130 0.4945 0.0585 0.0566 0.0573 0.0711

1.0 1.0508 0.7028 0.3138 0.3660 0.5834 1.0052 0.5478 0.2101 0.2621 0.4621

1.0 0.9808 0.2897 0.0855 0.1438 0.2965 0.9855 0.1855 0.0417 0.0832 0.1900

100 5.0 4.9976 0.2751 0.2757 0.2705 0.2861 5.0239 0.2076 0.2165 0.2058 0.2248

1.0 1.0018 0.0304 0.0286 0.0296 0.0316 1.0000 0.0178 0.0176 0.0176 0.0185

1.0 0.9985 0.2392 0.2392 0.2390 0.2422 0.9823 0.2159 0.2151 0.2127 0.2136

0.5 0.5004 0.0208 0.0216 0.0204 0.0203 0.4992 0.0118 0.0150 0.0117 0.0096

0.5 0.4933 0.0670 0.0690 0.0669 0.0781 0.5003 0.0408 0.0429 0.0416 0.0495

1.0 1.0146 0.4514 0.2034 0.2555 0.4149 0.9902 0.3572 0.1302 0.1840 0.3490

1.0 0.9863 0.1955 0.0547 0.1017 0.2159 1.0014 0.1294 0.0272 0.0599 0.1440

Chi-Square Errors, df=5

50 5.0 5.0403 0.3978 0.3932 0.3732 0.3927 5.0213 0.2890 0.3071 0.2811 0.3075

1.0 0.9996 0.0405 0.0386 0.0396 0.0423 1.0007 0.0238 0.0247 0.0236 0.0242

1.0 0.9744 0.3420 0.3345 0.3317 0.3358 1.0090 0.3283 0.2997 0.3014 0.3098

0.5 0.4972 0.0264 0.0280 0.0264 0.0263 0.4983 0.0162 0.0216 0.0161 0.0128

0.5 0.4766 0.0912 0.0976 0.0935 0.1041 0.4931 0.0586 0.0595 0.0574 0.0648

1.0 1.0448 0.4633 0.3701 0.3627 0.4375 0.9824 0.3657 0.2678 0.2568 0.3208

1.0 0.9703 0.1867 0.1194 0.1414 0.2023 0.9853 0.1162 0.0651 0.0831 0.1257

100 5.0 4.9983 0.2807 0.2860 0.2728 0.2836 5.0051 0.2098 0.2210 0.2059 0.2244

1.0 1.0023 0.0299 0.0287 0.0298 0.0316 1.0001 0.0178 0.0176 0.0176 0.0185

1.0 1.0055 0.2416 0.2425 0.2418 0.2443 0.9941 0.2150 0.2161 0.2139 0.2147

0.5 0.4996 0.0212 0.0218 0.0205 0.0200 0.4998 0.0119 0.0150 0.0117 0.0095

0.5 0.4995 0.0647 0.0700 0.0666 0.0725 0.4989 0.0400 0.0444 0.0417 0.0454

1.0 1.0081 0.3351 0.2480 0.2542 0.3083 0.9862 0.2441 0.1769 0.1835 0.2393

1.0 0.9921 0.1389 0.0798 0.1021 0.1514 0.9965 0.0805 0.0429 0.0596 0.0942

Note: ψ = (γ0, β, γ1, ρ, λ, φμ, σ2
v)′. Parameters values for generating xt: θx = (.01, .5, .5,2,1) (see Footnote 7).
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Table 3a. Monte Carlo Mean[RMSE] for the QMLEs, Fixed Effects Model, Normal Errors

true m = 0 true m = 6

ψ m = 0 m = 6 m = 200 m = 0 m = 6 m = 200

n = 50, T = 3

1.0 0.9957[.090] 0.9702[.088] 0.9589[.087] 1.0006[.127] 0.9983[.126] 0.9891[.125]

-0.9 -0.8966[.045] -0.8390[.038] -0.8139[.029] -0.8976[.037] -0.8934[.034] -0.8744[.026]

0.5 0.4764[.105] 0.4471[.100] 0.4584[.100] 0.4912[.104] 0.4889[.088] 0.4837[.088]

1.0 0.9775[.141] 0.8568[.113] 0.8747[.116] 0.9934[.132] 0.9632[.131] 0.9521[.131]

1.0 0.9989[.089] 0.9969[.089] 0.9969[.089] 0.9934[.135] 0.9926[.133] 0.9926[.133]

-0.5 -0.4996[.048] -0.4926[.048] -0.4925[.048] -0.4943[.074] -0.4924[.068] -0.4923[.068]

0.5 0.4852[.102] 0.4092[.117] 0.4091[.117] 0.5149[.114] 0.4893[.095] 0.4893[.095]

1.0 0.9662[.142] 0.9493[.142] 0.9493[.142] 0.9734[.153] 0.9410[.136] 0.9410[.136]

1.0 0.9991[.090] 0.9990[.090] 0.9990[.090] 0.9904[.139] 1.0012[.136] 1.0012[.136]

0.0 0.0004[.055] -0.0004[.055] -0.0004[.055] 0.0280[.103] -0.0059[.087] -0.0059[.087]

0.5 0.4925[.100] 0.4780[.097] 0.4780[.097] 0.5281[.101] 0.4903[.089] 0.4903[.089]

1.0 0.9673[.149] 0.9619[.147] 0.9619[.147] 1.0134[.176] 0.9340[.130] 0.9340[.130]

1.0 0.9988[.095] 0.9989[.095] 0.9988[.095] 1.0031[.135] 1.0049[.134] 1.0050[.134]

0.5 0.4976[.040] 0.4977[.040] 0.4977[.040] 0.5155[.096] 0.4983[.089] 0.4982[.089]

0.5 0.4772[.108] 0.4675[.107] 0.4675[.107] 0.5081[.102] 0.4826[.098] 0.4826[.098]

1.0 0.9610[.144] 0.9586[.144] 0.9586[.144] 0.9973[.174] 0.9703[.156] 0.9702[.156]

1.0 1.0035[.089] 1.0037[.089] 1.0037[.089] 0.9977[.133] 0.9976[.133] 0.9976[.133]

0.9 0.8991[.025] 0.8993[.025] 0.8993[.025] 0.9004[.044] 0.9002[.044] 0.9002[.044]

0.5 0.4704[.112] 0.4695[.112] 0.4692[.112] 0.4862[.104] 0.4859[.103] 0.4858[.103]

1.0 0.9682[.149] 0.9682[.149] 0.9681[.149] 0.9803[.151] 0.9803[.151] 0.9803[.151]

n = 100, T = 3

1.0 1.0025[.074] 0.9882[.074] 0.9750[.073] 0.9986[.071] 0.9985[.071] 0.9935[.071]

-0.9 -0.8996[.026] -0.8753[.023] -0.8528[.017] -0.8996[.026] -0.8994[.024] -0.8858[.019]

0.5 0.4937[.077] 0.3917[.075] 0.4014[.073] 0.5001[.076] 0.4876[.068] 0.4753[.068]

1.0 0.9848[.104] 0.9411[.089] 0.9410[.091] 1.0177[.093] 0.9847[.102] 0.9765[.098]

1.0 0.9972[.075] 0.9951[.075] 0.9950[.075] 0.9994[.071] 1.0007[.070] 1.0006[.070]

-0.5 -0.5026[.038] -0.4977[.037] -0.4976[.037] -0.4951[.050] -0.4983[.047] -0.4983[.047]

0.5 0.4892[.076] 0.4289[.078] 0.4289[.078] 0.5302[.081] 0.4977[.065] 0.4977[.065]

1.0 0.9790[.107] 0.9696[.106] 0.9696[.106] 0.9984[.107] 0.9792[.098] 0.9792[.098]

1.0 0.9992[.076] 0.9997[.075] 0.9997[.075] 0.9941[.072] 1.0022[.071] 1.0022[.071]

0.0 0.0022[.041] 0.0011[.041] 0.0011[.041] 0.0223[.064] -0.0072[.056] -0.0072[.056]

0.5 0.4989[.073] 0.4848[.068] 0.4848[.068] 0.5472[.075] 0.4977[.063] 0.4977[.063]

1.0 0.9944[.106] 0.9916[.105] 0.9916[.105] 1.0225[.119] 0.9584[.091] 0.9584[.091]

1.0 0.9989[.075] 0.9989[.075] 0.9989[.075] 0.9997[.069] 1.0001[.069] 1.0001[.069]

0.5 0.5014[.031] 0.5012[.030] 0.5012[.030] 0.5188[.062] 0.5036[.057] 0.5036[.057]

0.5 0.5001[.077] 0.4969[.076] 0.4969[.076] 0.5193[.070] 0.4957[.067] 0.4957[.067]

1.0 0.9829[.106] 0.9827[.106] 0.9827[.106] 1.0224[.122] 1.0056[.113] 1.0056[.113]

1.0 0.9952[.071] 0.9952[.071] 0.9952[.071] 0.9990[.068] 0.9991[.068] 0.9991[.068]

0.9 0.9003[.021] 0.9001[.021] 0.9002[.021] 0.9018[.028] 0.9020[.028] 0.9020[.028]

0.5 0.4952[.077] 0.4954[.077] 0.4954[.077] 0.4864[.076] 0.4857[.075] 0.4855[.075]

1.0 0.9844[.108] 0.9843[.108] 0.9843[.108] 0.9834[.104] 0.9836[.104] 0.9835[.104]

Note: ψ = (β, ρ, λ, σv)′. Parameters values for generating xt: θx = (.01, .5, .5, 1, .5) (see Footnote 7).
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Table 3b. Monte Carlo Mean[RMSE] for the QMLEs, Fixed Effects Model, Normal Mixture

true m = 0 true m = 6

ψ m = 0 m = 6 m = 200 m = 0 m = 6 m = 200

n = 50, T = 3

1.0 1.0021[.092] 0.9906[.091] 0.9826[.090] 0.9981[.126] 0.9980[.125] 0.9954[.125]

-0.9 -0.8987[.041] -0.8648[.040] -0.8416[.033] -0.8956[.038] -0.8924[.038] -0.8770[.033]

0.5 0.4862[.103] 0.4035[.098] 0.4113[.097] 0.4829[.105] 0.4850[.092] 0.4770[.091]

1.0 0.9822[.300] 0.9147[.252] 0.9238[.262] 1.0121[.264] 0.9540[.268] 0.9473[.271]

1.0 1.0026[.091] 1.0013[.091] 1.0013[.091] 0.9923[.128] 0.9905[.127] 0.9905[.127]

-0.5 -0.5009[.050] -0.4969[.049] -0.4969[.049] -0.4926[.079] -0.4881[.072] -0.4880[.072]

0.5 0.4894[.103] 0.4415[.103] 0.4415[.103] 0.5164[.103] 0.4934[.089] 0.4934[.089]

1.0 0.9802[.285] 0.9687[.278] 0.9687[.278] 0.9807[.291] 0.9301[.247] 0.9301[.247]

1.0 0.9986[.089] 0.9986[.089] 0.9986[.089] 0.9936[.139] 1.0045[.134] 1.0045[.134]

0.0 0.0017[.062] 0.0005[.062] 0.0005[.062] 0.0254[.106] -0.0110[.091] -0.0110[.091]

0.5 0.4917[.102] 0.4733[.098] 0.4733[.098] 0.5371[.099] 0.5045[.088] 0.5045[.088]

1.0 0.9761[.305] 0.9731[.302] 0.9731[.302] 1.0100[.309] 0.9057[.235] 0.9057[.235]

1.0 1.0004[.090] 1.0004[.090] 1.0004[.090] 1.0033[.129] 1.0051[.128] 1.0051[.128]

0.5 0.5001[.041] 0.5000[.041] 0.5000[.041] 0.5068[.100] 0.4911[.094] 0.4911[.094]

0.5 0.4826[.105] 0.4761[.104] 0.4761[.104] 0.5054[.097] 0.4809[.094] 0.4808[.094]

1.0 0.9865[.303] 0.9844[.301] 0.9844[.301] 0.9824[.313] 0.9551[.287] 0.9550[.286]

1.0 0.9968[.094] 0.9970[.094] 0.9970[.094] 0.9971[.128] 0.9970[.128] 0.9970[.128]

0.9 0.8991[.026] 0.8993[.026] 0.8993[.026] 0.9006[.049] 0.9004[.049] 0.9004[.049]

0.5 0.4797[.107] 0.4789[.107] 0.4786[.107] 0.4884[.106] 0.4881[.105] 0.4880[.105]

1.0 0.9760[.279] 0.9760[.279] 0.9759[.279] 0.9649[.285] 0.9648[.284] 0.9649[.284]

n = 100, T = 3

1.0 0.9986[.076] 0.9712[.075] 0.9564[.074] 1.0022[.072] 1.0028[.072] 0.9979[.072]

-0.9 -0.9005[.030] -0.8549[.029] -0.8303[.023] -0.8964[.026] -0.8972[.025] -0.8853[.021]

0.5 0.4909[.078] 0.4299[.071] 0.4398[.072] 0.4938[.074] 0.4864[.068] 0.4744[.068]

1.0 0.9833[.205] 0.8850[.164] 0.8978[.173] 1.0367[.177] 0.9845[.200] 0.9779[.198]

1.0 0.9976[.074] 0.9964[.074] 0.9964[.074] 0.9971[.073] 0.9971[.072] 0.9971[.072]

-0.5 -0.4987[.039] -0.4963[.039] -0.4963[.039] -0.4922[.055] -0.4926[.052] -0.4925[.052]

0.5 0.5002[.080] 0.4672[.074] 0.4672[.074] 0.5262[.076] 0.4967[.062] 0.4967[.062]

1.0 0.9862[.204] 0.9742[.200] 0.9742[.200] 0.9994[.219] 0.9641[.188] 0.9641[.188]

1.0 1.0016[.077] 1.0017[.077] 1.0017[.077] 0.9930[.073] 1.0011[.072] 1.0011[.072]

0.0 -0.0014[.038] -0.0015[.038] -0.0015[.038] 0.0229[.067] -0.0072[.059] -0.0072[.059]

0.5 0.4921[.073] 0.4694[.071] 0.4694[.071] 0.5428[.074] 0.4998[.064] 0.4998[.064]

1.0 0.9892[.208] 0.9864[.207] 0.9864[.207] 1.0143[.224] 0.9344[.175] 0.9344[.175]

1.0 1.0003[.074] 1.0005[.074] 1.0005[.074] 1.0005[.070] 1.0010[.069] 1.0010[.069]

0.5 0.5012[.033] 0.5005[.032] 0.5005[.032] 0.5201[.067] 0.5050[.062] 0.5050[.062]

0.5 0.5131[.076] 0.5162[.073] 0.5162[.073] 0.5174[.067] 0.4941[.063] 0.4941[.063]

1.0 0.9912[.218] 0.9912[.218] 0.9912[.218] 1.0245[.222] 1.0047[.204] 1.0047[.204]

1.0 1.0019[.073] 1.0019[.073] 1.0019[.073] 0.9976[.076] 0.9977[.076] 0.9977[.076]

0.9 0.9005[.021] 0.9003[.021] 0.9003[.021] 0.9011[.028] 0.9013[.028] 0.9013[.028]

0.5 0.4976[.079] 0.4979[.079] 0.4980[.079] 0.4853[.076] 0.4846[.075] 0.4843[.075]

1.0 0.9816[.205] 0.9814[.204] 0.9815[.204] 0.9801[.202] 0.9803[.202] 0.9802[.202]

Note: ψ = (β, ρ, λ, σv)′. Parameters values for generating xt: θx = (.01, .5, .5, 1, .5) (see Footnote 7).
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Table 4a. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 0

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T = 3 T = 7

Normal Errors

50 1.0 0.9986 0.0971 0.1001 0.0981 0.0982 1.0003 0.0559 0.0545 0.0532 0.0549

0.5 0.4988 0.0348 0.0380 0.0326 0.0437 0.4995 0.0241 0.0259 0.0241 0.0363

0.5 0.4888 0.1055 0.1016 0.1044 0.1127 0.4917 0.0612 0.0571 0.0597 0.0639

1.0 0.9650 0.1489 0.1713 0.1411 0.1339 0.9861 0.0806 0.0990 0.0841 0.0794

100 1.0 1.0024 0.0720 0.0744 0.0737 0.0790 1.0005 0.0340 0.0343 0.0337 0.0342

0.5 0.5012 0.0266 0.0288 0.0273 0.0417 0.5005 0.0167 0.0173 0.0170 0.0266

0.5 0.4922 0.0759 0.0742 0.0749 0.0782 0.4986 0.0408 0.0419 0.0428 0.0443

1.0 0.9889 0.1044 0.1219 0.1022 0.0980 0.9948 0.0592 0.0673 0.0600 0.0576

Normal Mixture Errors

50 1.0 0.9979 0.0967 0.0996 0.0971 0.0973 1.0016 0.0530 0.0550 0.0533 0.0563

0.5 0.4976 0.0338 0.0385 0.0320 0.0461 0.4994 0.0252 0.0278 0.0249 0.0408

0.5 0.4847 0.1017 0.1001 0.1046 0.1153 0.4953 0.0585 0.0542 0.0595 0.0671

1.0 0.9586 0.2841 0.1207 0.1401 0.2372 0.9881 0.1855 0.0637 0.0844 0.1610

100 1.0 1.0027 0.0733 0.0742 0.0733 0.0791 0.9971 0.0328 0.0342 0.0336 0.0341

0.5 0.5000 0.0269 0.0287 0.0262 0.0431 0.4994 0.0168 0.0173 0.0169 0.0275

0.5 0.4933 0.0718 0.0731 0.0748 0.0794 0.4995 0.0435 0.0406 0.0428 0.0457

1.0 0.9860 0.2121 0.0833 0.1019 0.1860 0.9894 0.1291 0.0408 0.0596 0.1198

Chi-Square, df=3

50 1.0 0.9942 0.1022 0.1001 0.0983 0.0995 1.0034 0.0544 0.0549 0.0534 0.0557

0.5 0.4999 0.0361 0.0376 0.0333 0.0471 0.4991 0.0251 0.0265 0.0242 0.0369

0.5 0.4785 0.1046 0.1015 0.1060 0.1171 0.4966 0.0588 0.0554 0.0595 0.0654

1.0 0.9646 0.2141 0.1377 0.1409 0.1860 0.9908 0.1365 0.0741 0.0845 0.1218

100 1.0 1.0012 0.0734 0.0744 0.0737 0.0792 1.0010 0.0328 0.0344 0.0338 0.0345

0.5 0.4999 0.0312 0.0290 0.0284 0.0487 0.5003 0.0175 0.0168 0.0169 0.0263

0.5 0.4935 0.0771 0.0735 0.0755 0.0804 0.4976 0.0441 0.0414 0.0428 0.0449

1.0 0.9918 0.1604 0.0971 0.1024 0.1425 0.9962 0.0971 0.0486 0.0600 0.0897

Note: ψ = (β, ρ, λ, σ2
v)′. Parameters values for generating xt: θx = (.1, .5, .5, 5,1) (see Footnote 7).
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Table 4b. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 6

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T = 3 T = 7

Normal Errors

50 1.0 1.0000 0.0182 0.0189 0.0184 0.0183 1.0004 0.0095 0.0098 0.0096 0.0117

0.5 0.5010 0.0198 0.0188 0.0190 0.0229 0.5001 0.0070 0.0073 0.0070 0.0089

0.5 0.5000 0.1037 0.0999 0.1016 0.1058 0.4956 0.0603 0.0565 0.0594 0.0633

1.0 0.9744 0.1450 0.1602 0.1427 0.1358 0.9914 0.0814 0.0907 0.0836 0.0809

100 1.0 0.9998 0.0150 0.0151 0.0149 0.0148 0.9999 0.0064 0.0068 0.0066 0.0075

0.5 0.4992 0.0108 0.0117 0.0112 0.0121 0.5000 0.0052 0.0051 0.0051 0.0060

0.5 0.4954 0.0701 0.0735 0.0728 0.0730 0.4991 0.0433 0.0418 0.0425 0.0437

1.0 0.9805 0.1040 0.1082 0.1013 0.0990 0.9916 0.0638 0.0619 0.0591 0.0581

Normal Mixture Errors

50 1.0 1.0004 0.0186 0.0187 0.0180 0.0179 0.9996 0.0093 0.0098 0.0095 0.0117

0.5 0.4999 0.0196 0.0185 0.0187 0.0235 0.4999 0.0067 0.0073 0.0069 0.0089

0.5 0.4993 0.1029 0.0978 0.1019 0.1090 0.4977 0.0572 0.0537 0.0592 0.0662

1.0 0.9558 0.2840 0.0986 0.1400 0.2405 0.9857 0.1872 0.0471 0.0832 0.1677

100 1.0 0.9993 0.0156 0.0151 0.0149 0.0149 1.0000 0.0067 0.0067 0.0066 0.0074

0.5 0.4997 0.0119 0.0117 0.0112 0.0128 0.4998 0.0049 0.0051 0.0051 0.0060

0.5 0.4948 0.0719 0.0726 0.0729 0.0741 0.4976 0.0438 0.0407 0.0426 0.0451

1.0 0.9906 0.2015 0.0647 0.1024 0.1908 0.9897 0.1301 0.0317 0.0590 0.1243

Chi-Square, df=3

50 1.0 0.9991 0.0187 0.0189 0.0183 0.0182 1.0001 0.0100 0.0099 0.0096 0.0118

0.5 0.4994 0.0195 0.0186 0.0189 0.0232 0.4998 0.0072 0.0074 0.0070 0.0089

0.5 0.4958 0.0998 0.0997 0.1022 0.1071 0.4981 0.0569 0.0552 0.0593 0.0646

1.0 0.9691 0.2161 0.1221 0.1418 0.1884 0.9995 0.1353 0.0615 0.0844 0.1269

100 1.0 1.0007 0.0146 0.0151 0.0149 0.0148 1.0000 0.0067 0.0068 0.0066 0.0075

0.5 0.4999 0.0115 0.0117 0.0112 0.0124 0.4998 0.0049 0.0051 0.0051 0.0060

0.5 0.4919 0.0704 0.0734 0.0732 0.0740 0.4977 0.0425 0.0414 0.0426 0.0443

1.0 0.9811 0.1476 0.0803 0.1014 0.1418 0.9959 0.0955 0.0415 0.0594 0.0912

Note: ψ = (β, ρ, λ, σ2
v)′. Parameters values for generating xt: θx = (.1, .5, .5, 5,1) (see Footnote 7)
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Table 4c. Monte Carlo Mean and SD, and Bootstrap Standard Errors, m = 200

Mean SD seSCb seHS seHSb Mean SD seSCb seHS seHSb

n ψ T = 3 T = 7

Normal Errors

50 1.0 1.0004 0.0210 0.0213 0.0208 0.0210 1.0000 0.0097 0.0096 0.0093 0.0100

0.5 0.4999 0.0197 0.0199 0.0197 0.0231 0.5000 0.0070 0.0072 0.0069 0.0081

0.5 0.4866 0.0974 0.1011 0.1009 0.1027 0.4991 0.0626 0.0562 0.0588 0.0622

1.0 0.9624 0.1422 0.1573 0.1406 0.1349 0.9909 0.0881 0.0914 0.0837 0.0800

100 1.0 1.0001 0.0139 0.0140 0.0138 0.0154 0.9990 0.0337 0.0339 0.0333 0.0358

0.5 0.5001 0.0117 0.0117 0.0116 0.0144 0.4986 0.0201 0.0195 0.0206 0.0370

0.5 0.4977 0.0736 0.0726 0.0745 0.0775 0.4991 0.0409 0.0397 0.0409 0.0430

1.0 0.9886 0.1064 0.1091 0.1019 0.0993 0.9938 0.0585 0.0673 0.0601 0.0582

Normal Mixture Errors

50 1.0 1.0005 0.0208 0.0213 0.0207 0.0210 0.9996 0.0092 0.0095 0.0092 0.0100

0.5 0.4999 0.0204 0.0200 0.0196 0.0244 0.4997 0.0069 0.0072 0.0069 0.0082

0.5 0.4796 0.1010 0.0994 0.1017 0.1064 0.5014 0.0566 0.0534 0.0586 0.0653

1.0 0.9685 0.2847 0.1000 0.1414 0.2444 0.9937 0.1837 0.0474 0.0840 0.1685

100 1.0 1.0001 0.0138 0.0139 0.0137 0.0153 0.9994 0.0328 0.0339 0.0333 0.0360

0.5 0.5000 0.0117 0.0117 0.0115 0.0148 0.5006 0.0209 0.0194 0.0205 0.0403

0.5 0.4988 0.0743 0.0714 0.0743 0.0785 0.4967 0.0408 0.0387 0.0410 0.0445

1.0 0.9835 0.2065 0.0642 0.1013 0.1879 0.9933 0.1339 0.0430 0.0600 0.1200

Chi-Square, df=3

50 1.0 1.0002 0.0214 0.0213 0.0208 0.0211 1.0000 0.0094 0.0096 0.0093 0.0099

0.5 0.4995 0.0203 0.0199 0.0197 0.0238 0.5001 0.0069 0.0072 0.0070 0.0081

0.5 0.4835 0.1009 0.1003 0.1014 0.1048 0.4990 0.0549 0.0550 0.0587 0.0634

1.0 0.9662 0.2116 0.1220 0.1411 0.1879 0.9944 0.1367 0.0614 0.0840 0.1255

100 1.0 1.0002 0.0144 0.0139 0.0137 0.0153 1.0009 0.0335 0.0338 0.0333 0.0359

0.5 0.5005 0.0113 0.0117 0.0115 0.0145 0.4999 0.0207 0.0193 0.0205 0.0375

0.5 0.4987 0.0732 0.0721 0.0744 0.0780 0.5004 0.0407 0.0392 0.0408 0.0435

1.0 0.9807 0.1505 0.0796 0.1011 0.1432 0.9922 0.0961 0.0508 0.0600 0.0894

Note: ψ = (β, ρ, λ, σ2
v)′. Parameters values for generating xt: θx = (.1, .5, .5,5,1) (see Footnote 7)
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