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Testing Conditional Independence via Empirical Likelihood∗

Liangjun Sua and Halbert Whiteb

a School of Economics, Singapore Management University, Singapore
b Department of Economics, UCSD, La Jolla, CA 92093-0508

September 30, 2011

Abstract

We construct two classes of smoothed empirical likelihood ratio tests for the conditional inde-

pendence hypothesis by writing the null hypothesis as an infinite collection of conditional moment

restrictions indexed by a nuisance parameter. One class is based on the CDF; another is based

on smoother functions. We show that the test statistics are asymptotically normal under the null

hypothesis and a sequence of Pitman local alternatives. We also show that the tests possess an as-

ymptotic optimality property in terms of average power. Simulations suggest that the tests are well

behaved in finite samples. Applications to some economic and financial time series indicate that our

tests reveal some interesting nonlinear causal relations which the traditional linear Granger causality

test fails to detect.

Key words: Conditional independence, Empirical likelihood, Granger causality, Local bootstrap,

Nonlinear dependence, Nonparametric regression, U-statistics.

JEL Classification: C12, C14, C22.

1 Introduction

Recently there has been a growing interest in testing the conditional independence (CI) of two random

vectors Y and Z given a third random vector X : Y ⊥ Z | X. Linton and Gozalo (1997) propose two

nonparametric tests of CI for independent and identically distributed (IID) variables based on generalized

empirical distribution functions. Fernandes and Flores (1999) employ a generalized entropy measure to

test CI but rely heavily on the choice of suitable weighting functions to avoid distributional degeneracy.

Delgado and González-Manteiga (2001) propose an omnibus test of CI using the weighted difference

of the estimated conditional distributions under the null and the alternative. Su and White (2007,

2008) consider testing CI by comparing conditional densities and conditional-characteristic-function-based

moment conditions. de Maros and Fernandes (2007) and Chen and Hong (2010) propose nonparametric

tests for the Markov property (a special case of CI) based on the comparison of densities and generalized

∗We would like to express our appreciation to Qihui Chen for his outstanding research assistance. Address correspondence
to: Halbert White, Department of Economics, UCSD, La Jolla, CA 92093-0508, USA. Phone: +1 858 534-3502; e-mail:

hwhite@weber.ucsd.edu.
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cross spectrums, respectively. Song (2009) studies an asymptotically pivotal test of CI via the probability

integral transform. Huang (2010) proposes a test of CI based on the estimation of the maximal nonlinear

conditional correlation. Huang and White (2010) develop a flexible test for CI based on the generically

comprehensively revealing functions of Stinchcombe and White (1998). Spindler and Su (2010) consider

testing for asymmetric information (a special case of conditional dependence) by comparing conditional

distributions with both continuous and discrete variables. Bouezmarni, Rombouts and Taamouti (2010)

and Bouezmarni, Roy and Taamouti (2011) propose tests for CI by comparing Bernstein copulas using

the Hellinger distance and conditional distributions using the L2-distance, respectively. Bergsma (2011)

proposes a test for CI by means of the partial copula.1

In this paper, we propose two new classes of tests for CI based on empirical likelihood (EL). The

motivation is as follows. First, the equality of two conditional distributions can be expressed in terms of

an infinite sequence of conditional moment restrictions. Second, there are many powerful tests available

in the literature to test for conditional moment restrictions, including EL-based tests. Third, EL has

been shown to share some key properties with parametric likelihood such as Wilks’ theorem and Bartlett

correctability. Owen (1988, 1990, 1991) studies inference based on the nonparametric likelihood ratio,

which is particularly useful in testing moment restrictions. Kitamura (2001) investigates the asymptotic

efficiency of moment restriction tests for a finite number of unconditional moments in terms of large

deviations and demonstrates the optimality of EL for testing such unconditional moment restrictions.

Tripathi and Kitamura (2003, TK hereafter) extend the EL paradigm to test for a finite number of

conditional moment restrictions and show that their test possesses an optimality property in large samples

and behaves well in small samples. As yet, it remains unknown whether one can extend EL methods to

test for an infinite collection of conditional moment restrictions, and, if so, whether the test continues

to possess some optimality property and behaves reasonably well in finite samples. These issues are the

focus of this paper.

The contributions of this paper lie primarily in four directions. First, we show that a smoothed

empirical likelihood ratio (SELR) can be used to test hypotheses that can be expressed in terms of an

infinite collection of conditional moment restrictions, indexed by a nuisance parameter, τ , say. Corre-

sponding to each τ , one can construct a SELR. Then one obtains a test statistic by integrating τ out.

After being appropriately centered and rescaled, the resulting test statistic is shown to be asymptotically

distributed as N(0, 1) under the null. Second, we study the asymptotic distribution of the test statistic

under a sequence of local alternatives and show that our test is asymptotically optimal in that it attains

the maximum average local power with respect to a certain space of functions for the local alternatives.

Third, unlike most work in the EL literature, including that of TK, our tests allow for data depen-

dence and thus are applicable to time series data.2 Fourth, our paper offers a convenient approach to

testing distributional hypotheses via an infinite collection of conditional moment restrictions. It further

extends the applicability of the EL method. A variety of interesting and important hypotheses other than

CI in economics and finance, including conditional goodness-of-fit, conditional homogeneity, conditional

1Most of the aforementioned papers came out after the first version of this paper in 2003. Note that for categorical data,

the literature traces back to Rosenbaum (1984) and Yao and Tritchler (1993).
2Chen, Härdle, and Li (2003) consider an EL goodness-of-fit test for time series. They integrate out the conditioning

variable and employ only finite-dimensional parameter estimates in the constraints. This is quite different from our approach.
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quantile restrictions, and conditional symmetry, can also be studied using our approach.

It is well known that distributional Granger non-causality (Granger, 1980) is a particular case of CI.

Our tests can be directly applied to test for Granger non-causality with no need to specify a particular

linear or nonlinear model. Using the same techniques as in Su and White (2008), it is also easy to

show that our tests can be applied to the situation where not all variables of interest are continuously

valued and some have to be estimated from the data. In particular, our tests apply to situations where

limited dependent variables or discrete conditioning variables are involved, and to parametrically or

nonparametrically generated regressors/residuals. For brevity, however, we only focus on the case where

all random vectors are observed and continuously valued.

The remainder of this paper is organized as follows. In Section 2, we treat a simple version of our

tests based on CDF’s in order to lay out the basic framework for our SELR tests for CI. In Section 3, we

study the asymptotic distributions of the test statistics under both the null hypothesis and a sequence of

local alternatives, and show the asymptotic optimality of our tests in terms of average local power. We

discuss a version of our SELR tests based on smoother moment conditions that has better finite sample

power properties in Section 4. We examine the finite sample performance of our smoother SELR test via

Monte Carlo simulations in Section 5, and we apply it to some macroeconomic and financial time series

data in Section 6. Final remarks are contained in Section 7. All technical details are relegated to the

Appendix.

2 Test statistic based on the CDFs

In this paper, we are interested in testing whether Y and Z are independent conditional on X, where X,

Y and Z are vectors of dimension d1, d2 and d3, respectively. The data consist of n identically distributed

but weakly dependent observations {Xt, Yt, Zt}nt=1 . For notational simplicity, we assume that d2 = 1

throughout the paper.

2.1 Hypotheses

Let f (x, y, z) and F (x, y, z) denote the joint probability density function (PDF) and cumulative distrib-

ution function (CDF) of (Xt, Yt, Zt), respectively. Below we make reference to several marginal densities

of f which we denote simply using the list of their arguments — for example f(x, y) =
R
f(x, y, z)dz,

f(x, z) =
R
f(x, y, z)dy, and f(x) =

R R
f(x, y, z)dydz. This notation is compact, and, we hope, suffi-

ciently unambiguous. Let f(·|·) denote the conditional density of one random vector given another. We

assume that f(y|x, z) is smooth in (x, z). Let 1(·) be the usual indicator function, F (τ |x, z) ≡ E[1(Yt ≤
τ)|Xt = x,Zt = z] and F (τ |x) ≡ E[1(Yt ≤ τ)|Xt = x]. The null of interest is that conditional on X, the

random vectors Y and Z are independent, i.e.,

H0 : Pr [F (τ |Xt, Zt) = F (τ |Xt)] = 1 for all τ ∈ R. (2.1)

The alternative hypothesis is that for τ with a nontrivial volume of the support of Yt,

H1 : Pr [F (τ |Xt, Zt) = F (τ |Xt)] < 1. (2.2)
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In Section 4, we consider another approach based on a related condition involving the characteristic

function. We treat H0 first because of its intuitive appeal.

2.2 Test statistics

Noting that H0 specifies an infinite collection of conditional moment restrictions that are indexed by τ :
E [εt (τ) |Xt, Zt] = 0 a.s. for all τ ∈ R where εt (τ) = 1(Yt ≤ τ) − F (τ |Xt), we can test H0 by testing a
single conditional moment restriction for given τ ,

H0(τ) : Pr [F (τ |Xt, Zt) = F (τ |Xt)] = 1 (2.3)

based on the EL principle, and obtain the final test statistic by integrating out τ . Due to the use of

integration, it is computationally expensive to calculate the statistic. Therefore we also consider a weaker

version of the CI hypothesis:

H00 : Pr [F (Yt|Xt, Zt) = F (Yt|Xt)] = 1, (2.4)

which is implied by (2.1). Spindler and Su (2010) and Bouezmarni, Roy and Taamouti (2011) inde-

pendently propose a L2-distance-based test for (2.4) by comparing the weighted difference between the

nonparametric kernel estimates of F (Yt|Xt, Zt) and F (Yt|Xt).

To proceed, we first consider a SELR test statistic for H0(τ). Let pts ≡ p(Ys;Xt,Zt) denote the

probability mass placed at (Ys;Xt, Zt) by a discrete distribution with support {Ys}ns=1 × {(Xt, Zt)}nt=1 .
Let ε̂s (τ) ≡ 1(Ys ≤ τ)− F̂h2(τ |Xs), where

F̂h2(τ |x) ≡ n−1
nX
t=1

Lh2(x−Xt)1(Yt ≤ τ)/f̂h2(x), (2.5)

f̂h2(x) ≡ n−1
Pn

t=1 Lh2(x−Xt), Lh2(u) ≡ h−d12 L(u/h2), L is a kernel function defined on Rd2 , and h2 ≡
h2 (n) is a bandwidth sequence. We consider the following restricted (i.e., under H0(τ)) maximization
problem:

max
{pts,t,s=1,...,n}

nX
t=1

nX
s=1

wts log pts, s.t. pts ≥ 0,
nX
t=1

nX
s=1

pts = 1,
nX

s=1

ε̂s (τ) pts = 0, (2.6)

where wts ≡ Kh1(Xt−Xs, Zt−Zs)/
Pn

s=1Kh1(Xt−Xs, Zt−Zs) is a kernel weight such that
Pn

s=1 wts = 1

for each t, Kh1(u) ≡ h
−(d1+d3)
1 K(u/h1), and the last constraint in (2.6) imposes a sample analog of the

constraint in H0(τ). Note that we use different kernels and bandwidth sequences in (2.5) and (2.6).
Intuitively speaking, using a higher order kernel in (2.5) helps to reduce the bias in estimating F (τ |x),
whereas a second order positive kernel is needed in (2.6) to keep the estimator of pts nonnegative almost

surely when the sample size n goes to ∞. For future use, we denote the Nadaraya-Watson (NW) kernel

estimator of F (τ |x, z) by F̂h1(τ |x, z) ≡ n−1
Pn

t=1Kh1(x−Xt, z−Zt)1(Yt ≤ τ)/f̂h1(x, z), where f̂h1(x, z) ≡
n−1

Pn
t=1Kh1(x−Xt, z−Zt). (2.6) is solved by maximizing the Lagrangian L ≡

Pn
t=1

Pn
s=1wts log pts−

μ(
Pn

t=1

Pn
s=1 pts − 1)−

Pn
t=1 λt

Pn
s=1[1(Ys ≤ τ) − F̂h2(τ |Xs)]pts, where μ and {λt ∈ R, t = 1, ..., n}

are the Lagrange multipliers for the second and third constraints, respectively. One can verify that the

solution to this problem is given by p̂ts = wts/[n+ λt (τ) ε̂s(τ)], where λt (τ) solves
nX

s=1

wtsε̂s(τ)

n+ λt (τ) ε̂s(τ)
= 0, t = 1, ..., n. (2.7)
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Under H0(τ), we have the following restricted smoothed empirical likelihood (SEL)

SELr(τ) =
nX
t=1

nX
s=1

wts log p̂ts =
nX
t=1

nX
s=1

wts log

½
wts

n+ λt (τ) ε̂s(τ)

¾
.

For the unrestricted problem we solve

max
{pts,t,s=1,...,n}

nX
t=1

nX
s=1

wts log pts, s.t. pts ≥ 0,
nX
t=1

nX
s=1

pts = 1.

It is well known that the solution to this problem is p̃ts = wts/n, and the unrestricted SEL is SELu(τ) ≡Pn
t=1

Pn
s=1 wts log p̃ts =

Pn
t=1

Pn
s=1wts log

©
wts
n

ª
. Thus, we obtain a SELR test statistic

2[SELu(τ)− SELr(τ)] = 2
nX
t=1

nX
s=1

wts log {1 + λt (τ) ε̂s(τ)/n} . (2.8)

Clearly, SELu(τ) − SELr(τ) is small if H0(τ) holds and large otherwise, and one can test H0(τ) based
on (2.8). Nevertheless, for technical reasons, we follow TK and use a modified version of (2.8) for our

test to accommodate the fact that conditional distributions cannot be estimated as precisely in the tails

as desired. We thus define the SELR as

SELR(τ) = 2
nX
t=1

It

nX
s=1

wts log {1 + λt (τ) ε̂s(τ)/n} ,

where It ≡ 1{(Xt, Zt) ∈ S} and S is fixed subset of the support of (Xt, Zt). One rejects H0(τ) for large
values of SELR(τ).

To test H0, we integrate out τ using researcher-specified weights. Specifically, our test statistic is

ISELRn =

Z
SELR(τ)dG(τ) = 2

nX
t=1

It

nX
s=1

Z
wts log {1 + λt (τ) ε̂s(τ)/n} dG(τ), (2.9)

where G(·) is a CDF with support on R.
Remark 1. The idea for the above testing procedure is intuitively clear. Because we have an infinite

number of conditional moment conditions, it seems impossible to handle them once and for all in a

single maximization problem without resorting to some regularization techniques of the sort used by

Carrasco (2010). We thus consider one conditional moment restriction at a time to obtain the SELR,

and then aggregate them to obtain a single test statistics. As mentioned above, TK demonstrated

that the SELR-based test statistic possesses an asymptotic optimality when it is used in testing a finite

number of conditional moment restrictions. As we show, a similar property is inherited by our integrated

SELR-based test.

Remark 2. Because of the computational burden of the ISELRn test, we also consider a SELR-

based test for H00 in (2.4). Simulations in Spindler and Su (2010) and Bouezmarni, Roy and Taamouti
(2011) demonstrate that their L2-distance-based tests for H00 possess reasonable asymptotic power in
finite samples. In this case, the restricted (i.e., under H00) maximization problem becomes

max
{pts,t,s=1,...,n}

nX
t=1

nX
s=1

wts log pts, s.t. pts ≥ 0,
nX
t=1

nX
s=1

pts = 1,
nX
s=1

ε̂s (Yt) pts = 0. (2.10)
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Using the notation defined above, we define the following SELR test statistic

SELRn1 = 2
nX
t=1

ItI1t

nX
s=1

wts log {1 + λt (Yt) ε̂s(Yt)/n} , (2.11)

where I1t ≡ 1 {Yt ∈ SY } , and SY is a fixed set contained in the interior of the support of Yt. The use of

I1t in (2.11) helps to trim out some extreme values Yt such that F (Yt|x, z) is close to 0 or 1 for certain
(x, z) ∈ S. See Remark 5 below for more detail. We will study the asymptotic properties of SELRn1 and

demonstrate that it also possesses an asymptotic optimality property for testing H00.

3 The asymptotic distributions of the test statistics

3.1 Assumptions

To derive the asymptotic distribution of our test statistic, we impose the following assumptions.

Assumption A1 (Stochastic Process). (i) {Wt ≡ (X 0
t, Yt, Z

0
t)
0 ∈ Rd1+1+d3 , t ≥ 0} is a strictly stationary

strong mixing process with mixing coefficients α (·) such that P∞s=0 s4α (s)δ/(1+δ) ≤ C for some δ > 0

with δ/ (1 + δ) ≤ 1/2, and α (s)(2+δ̃)/[3(4+δ̃)] = O
¡
s−1

¢
and α (s)δ̃/(2+δ̃) = O

¡
s−2+�

¢
for some δ̃ ∈ (0, δ)

and sufficiently small � > 0.

(ii) The PDF f of Wt has continuous partial derivatives up to order r ≥ 2 which are bounded and
integrable on Rd. f satisfies a Lipschitz condition: |f(w + u) − f(w)| ≤ D(w)||u|| where D has finite

(2+η)th moment for some η > 0 and || · || is the usual Euclidean norm. inf(x,z)∈S� f(x, z) = b > 0, where

S� ≡ {u ∈ Rd1+d3 : ku− vk ≤ � for some v ∈ S} for some small positive �.
(iii) The joint PDF ft1,...,tj of (W0,Wt1 , ...,Wtj ) (1 ≤ j ≤ 5) is uniformly bounded.
(iv) F (τ |x) is (r+1) times partially continuously differentiable with respect to x for each τ ∈ R and the

partial derivatives up to the (r + 1)th are bounded on S�1 ≡ S� ∩Rd1 . Furthermore, |F (τ |x0)−F (τ |x)| ≤
α(τ) ||x0 − x|| , where R α2(τ)dG(τ) <∞.

Assumption A2 (Kernels). (i) The kernel K is a product kernel of k : K(u1, .., ud1+d3) = Π
d1+d3
i=1 k(ui),

where k : R → R is a twice continuously differentiable PDF that is symmetric about the origin and has
compact support [−1, 1].
(ii) The kernel L is a product kernel of l : L(u1, .., ud1) = Π

d1
i=1l(ui), where l : R → R is r times

continuously differentiable such that
R
R u

il(u)du = δi0 (i = 0, 1, ..., r − 1), C0 ≡
R
R u

rl(u)du < ∞,R
R u

2l(u)2du <∞, and l(u) = O((1 + |u|r+1+η)−1) for some η > 0, where δij is Kronecker’s delta.
Assumption A3 (Bandwidths). (i) The bandwidth sequences h1 = O(n−1/α1) and h2 = O(n−1/α2) are
such that α1 > 2(d1+ d3), max{2α1(d1− 2)/(2α1+d1+d3), α1d1/(d1+ d3)} < α2 < α1rmax{1, 4/(d1+
d3)}, (d1 + d3)/α1 + d1/α2 < 1, and (d1 + d3)/(2α1) + 2r/α2 > 1.

(ii) (n1+4γ0+3δ1 + n2+δ1)α(nδ2)δ0/(4+δ0) = o (1) for some δ0, δ1 and δ2 such that 0 < δ2 < δ1 <

(1 + δ0/6)/(4 + δ0) where γ0 = (2 + δ0)/(16 + 4δ0) and δ0 > 0.

(iii) There exists a diverging sequence {ιn} such that as n → ∞, ι3nn
−1 → 0, ιnh

(d1+d3)/2
1 → 0 and

max{nh−(1−3δ)(d1+d3)/[2(1+δ)]1 , n2}h(1−3δ)(d1+d3)/(1+δ)1 h
−2d1δ/(1+δ)
2 α (ιn)

δ/(1+δ) → 0.
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Assumption A4 (Weight function). The CDF G satisfies
R
S

R
V (x, z; τ)−1f (x, z) dG (τ) d (x, z) < ∞,

where V (x, z; τ) ≡ F (τ |x, z)[1− F (τ |x, z)].
Assumption A1(i) requires that {Wt} be a strong mixing process with algebraic decay rate. It is

weaker than the absolute regularity assumed in Su and White (2007, 2008), Bouezmarni, Rombouts and

Taamouti (2010), and Bouezmarni, Roy and Taamouti (2011), who further assume a geometric decay

rate. Assumptions A1(ii)-(iv) are primarily smoothness conditions, some of which can be relaxed at the

cost of additional technicalities. Assumption A2(i) requires that the kernel K be of second order and

compactly supported, whereas Assumption A2(ii) requires that the kernel L be of r-th order. The compact

support of K can be relaxed with some additional technicalities. Assumption A3 specifies conditions on

the choice of bandwidth sequences. Under A3(i), we have in particular that nh2(d1+d3)1 / (lnn)3 → ∞,

nhd1+d31 hd12 → ∞, nh
−(d1+d3)/2
1 hd1−22 → ∞, h

−(d1+d3)/2
1 h2r2 → 0, h1h

−1
2 → 0, and nh

(d1+d3)
1 h2r2 → 0.

When the dimension of (Xt, Zt) is low, e.g., d1 + d3 ≤ 4, r = 2 will suffice for well chosen α1 and α2.

The conditions in A3(ii)-(iii) are automatically satisfied if one assumes that the mixing coefficient α (·)
has geometric or faster decay rate. Assumption A4 can be met if one restricts the density of G to have

compact support, or its tails to decay to zero sufficiently fast.

3.2 Asymptotic null distribution

Let V (x, z; τ , τ 0) ≡ F (τ ∧ τ 0|x, z) −F (τ |x, z)F (τ 0|x, z) where τ ∧ τ 0 = min(τ , τ 0). Let V̂ (x, z; τ , τ 0) ≡
F̂h1(τ∧τ 0|x, z)−F̂h1(τ |x, z)F̂h1(τ 0|x, z), V̂ (x, z; τ) ≡ F̂h1(τ |x, z)[1−F̂h1(τ |x, z)], V̂1 (Xt, Zt; τ) =

Pn
s=1wts

×[ε̂s(τ)]2, and f̂1t = f̂h1(Xt, Zt). Define

B̂n ≡
nX
t=1

It

nX
s=1

Z
V̂1 (Xt, Zt; τ)

−1
[wtsε̂s(τ)]

2dG(τ),

σ̂2n ≡ 2n−1Cd1+d3
3

nX
t=1

It

Z Z
V̂ (Xt, Zt; τ)

−1
V̂ (Xt, Zt; τ

0)−1 V̂ (Xt, Zt; τ , τ
0)2f̂−11t dG(τ)dG(τ

0),

T̂n ≡ h
(d1+d3)/2
1 {ISELRn − B̂n}/σ̂n,

where C3 ≡
R £R

k(u+ v)k(u)du
¤2
dv. For any given univariate kernel satisfying Assumption A2(i), C3

can be calculated explicitly. If we use the Gaussian kernel for k(·),3 then C3 = 1/(2
√
2π). If we use the

Epanechnikov kernel instead, i.e., k(u) = 0.75(1− u2)1(|u| ≤ 1), then C3 = 0.4338.

We can now state our first main result.

Theorem 3.1 Under Assumptions A1-A4 and H0, T̂n
d→ N(0, 1).

Remark 3. Theorem 3.1 relies on a central limit theorem (CLT) for second order U-statistics

with strong mixing observations; this is adapted from Tenreiro (1997), who proved a CLT for second

order U-statistics with β-mixing observations. When proving the CLT, Tenreiro (1997) relies on certain

inequalities for β-mixing processes. It turns out that similar inequalities also hold for α-mixing processes.

See Lemma A.3 in the appendix. Noting that the T̂n test is one-sided, we reject the null for large values

of T̂n.
3While the Gaussian kernel does not have compact support, it can be approximated arbitrarily well by kernels that

satisfy all the conditions in Assumption A2(i). See Ahn (1997, p.13).
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Remark 4. DefineB ≡ Cd1+d3
1

R
S
1d(x, z) = Cd1+d3

1 vol(S) and σ2 ≡ 2Cd1+d3
3

R
S

R R
V (x, z; τ)−1 V (x,

z; τ)−1V 2(x, z; τ , τ 0)dG(τ)dG(τ 0)d(x, z), where C1 ≡
R
k(u)2du. The dominant term of B̂n is h

−(d1+d3)
1 B,

which implies that the asymptotic bias of ISELRn shares the same structure as that in TK. But sim-
ilar structure is not shared by the asymptotic variance, because we cannot write σ2 as something like

2Cd1+d3
3 vol(S) , as in TK, due to the presence of an infinite number of moment conditions in (2.1).
Next, let

B̂n1 ≡
nX
t=1

ItI1tV̂
−1
1t

nX
s=1

[wtsε̂s(Yt)]
2,

σ̂2n1 ≡ 2n−2Cd1+d3
3

nX
t=1

nX
s=1

KtsItI1tI1sV̂
−1
t V̂ −1s V̂ (Xt, Zt;Yt, Ys)

2f̂−11t f̂
−1
1s ,

T̂n1 ≡ h
(d1+d3)/2
1 {SELRn1 − B̂n1}/σ̂n1,

where V̂1t ≡ V̂1 (Xt, Zt;Yt) , V̂t ≡ V̂ (Xt, Zt;Yt) , and Kts ≡ Kh1(Xs − Xt, Zs − Zt). The next result

provides the asymptotic null distribution of T̂n1 for testing H00 in (2.4).

Theorem 3.2 Suppose that
R
S

R
SY

V (x, z; y)−1f (x, z) dF (y|x, z) d (x, z) < ∞. Then under Assump-

tions A1-A3 and H00, T̂n1
d→ N(0, 1).

Remark 5. Note that Assumption A4 is now replaced by the requirement that
R
S

R
SY

V (x, z; y)−1

×f (x, z) dF (y|x, z) d (x, z) < ∞ in Theorem 3.2, and one cannot take SY = R. To see why, using a
change of variable givesZ

S

Z
R
V (x, z; y)−1f (x, z) dF (y|x, z) d (x, z) =

Z
S

Z 1

0

1

u (1− u)
duf (x, z) d (x, z)

= cf

Z 1

0

1

u (1− u)
du =∞

where cf ≡
R
S
f (x, z) d (x, z) and the last line follows from the fact that the antiderivative of 1/[u(1−u)]

is given by ln[u/ (1− u)].

Remark 6. Like ISELRn, Theorem 3.2 indicates that SELRn1 shares the same bias structure as

the test statistic in TK. The leading term in the asymptotic expansion of B̂n1 is given by h
−(d1+d3)
1 B1

where B1 = Cd1+d3
1 vol(S)vol(SY ) , compared to Cd1+d3

1 vol(S) in TK. If we could take SY = R, then
Theorem 3.2 also implies that SELRn1 shares the same asymptotic variance structure as in TK. It is
easy to see that the probability limit of σ̂2n1 is given by

σ21 ≡ 2Cd1+d3
3

Z
S

Z
SY

Z
SY

V (x, z; y)−1V (x, z; y0)−1V (x, z; y, y0)2dF (y|x, z) dF (y0|x, z) d(x, z).
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In the case where SY = R, we have by the change of variables that

σ21 = 4Cd1+d3
3

Z
S

Z Z
y>y0

[1− F (y|x, z)]F (y0|x, z)
F (y|x, z)[1− F (y0|x, z)] dF (y|x, z) dF (y

0|x, z) d(x, z)

= 4Cd1+d3
3

Z
S

Z 1

0

u0

1− u0

Z 1

u0

1− u

u
dudu0d(x, z)

= 4Cd1+d3
3 vol (S)

Z 1

0

u0

1− u0
(u0 − 1− lnu0) du0

= 4Cd1+d3
3 vol (S)

∙
−1
2
−
Z 1

0

u lnu

1− u
du

¸
= 2Cd1+d3

3 vol (S)
µ
π2

3
− 3
¶

where the last equality follows from the fact that
R 1
0

u lnu
1−u du = 1 − π2

6 . Thus, σ
2
1 is distinct from TK’s

asymptotic variance only in the scaling factor (π
2

3 − 3).

3.3 Asymptotic local power properties

To derive the asymptotic power function of T̂n under a sequence of local alternatives, we consider the

triangular array process {Wnt ≡ (X 0
nt, Ynt, Z

0
nt)

0 ∈ Rd1+1+d3 , t = 1, ..., n, n = 1, 2, ...}. Let f [n](x, y, z)
and F [n](x, y, z) denote the PDF and CDF of (Xnt, Ynt, Znt), respectively. Let En denote expectation

under the probability law associated with f [n]. Define F [n](τ |x, z) ≡ En[1(Ynt ≤ τ)|Xnt = x,Znt = z] and

F [n](τ |x) ≡ En[1(Ynt ≤ τ) |Xnt = x]. We consider the following sequence of Pitman local alternatives:

H1(γn) : sup
τ∈R

sup
(x,z)∈Rd1+d3

n
|F [n](τ |x, z)− F [n](τ |x)− γn∆(x, z; τ)|

o
= o(γn), (3.1)

where γn → 0 as n→∞,∆(x, z; τ) satisfies μ ≡ limn→∞
R
S

R
V [n] (x, z; τ)−1∆(x, z; τ)2dG(τ)dF [n](x, z) <

∞ for the test of H0 in (2.1), and μ1 ≡ limn→∞
R
S

R
V [n] (x, z; y)−1∆(x, z; y)2dF [n](y|x, z)dF [n](x, z) <

∞ for the test of H00 in (2.4); V [n] (x, z; τ) ≡ F [n](τ |x, z)[1−F [n](τ |x, z)]; and F [n](x, z) = F [n](x,∞, z).

For simplicity, we assume that limn→∞ F [n](x, y, z) = F (x, y, z) for all (x, y, z) .

Following Su and White (2010), we define the mixing coefficients: αn (j) = sup1≤l≤n−j{P (A ∩B)
−P (A)P (B)|A ∈ σ (Wnt : 1 ≤ t ≤ l) , B ∈ σ (Wnt : l + j ≤ t ≤ n)} if j ≤ n− 1, and αn (j) = 0 if j ≥ n.

Define the coefficient of strong mixing as α (j) = supn∈N αn (j) for j ∈ N and α (0) = 1. We modify

Assumption 1 as follows.

Assumption A1∗. The triangular process {Wnt} is a strictly stationary strong mixing process with
mixing coefficients α (·) satisfying the condition in Assumption A1 (i). Assumptions A1(ii)-(iv) are

satisfied for {Wnt} with the obvious modifications, e.g., with f [n] and F [n] replacing f and F, respectively.

The following two propositions study the asymptotic local power properties of T̂n and T̂n1 for the

tests of H0 and H00, respectively.

Proposition 3.3 Let Assumptions A1∗ and A2-A4 hold. Let γn = n−1/2h−(d1+d3)/41 in H1(γn). Then
Pr(T̂n ≥ z|H1(γn))→ 1− Φ(z − μ/σ).

Proposition 3.4 Suppose that
R
S

R
SY

V (x, z; y)−1f (x, z) dF (y|x, z) d (x, z) <∞, and Assumptions A1∗,
A2 and A3 hold. Let γn = n−1/2h−(d1+d3)/41 in H1(γn). Then Pr(T̂n1 ≥ z|H1(γn))→ 1− Φ(z − μ1/σ1).
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3.4 An asymptotic optimality property

Motivated by TK, we now consider an asymptotic optimality property associated with the SELR tests.
Following the approaches of Su and White (2007) and Bouezmarni, Roy and Taamouti (2011), one can

consider two sequences of test statistics that are respectively based upon

Γ̂(a) ≡ 1

n

nX
s=1

Z
[F̂h1(τ |Xs, Zs)− F̂h2(τ |Xs)]

2a(Xs, Zs; τ)dG(τ), (3.2)

and

Γ̂1(a) ≡ 1

n

nX
s=1

[F̂h1(Ys|Xs, Zs)− F̂h2(Ys|Xs)]
2a(Xs, Zs;Ys), (3.3)

indexed by the weight function a defined on S × R.4 Let η(a) and η1(a) denote the corresponding

normalized test statistics that are asymptotically N (0, 1) under H0 and H00, respectively. Then we can
show that their asymptotic local power functions under H1(γn) are given respectively by

Π(a,∆) = lim
n→∞Pr (η(a) > z | H1(γn)) = 1− Φ(z −M(a,∆)),

Π1(a,∆) = lim
n→∞Pr (η1(a) > z | H1(γn)) = 1− Φ(z −M1(a,∆)),

where γn = n−1/2h−(d1+d3)/41 ,

M(a,∆) ≡
R
S

R
∆(x, z; τ)2f(x, z)a(x, z; τ)dG(τ)d(x, z)q

2Cd1+d3
3

R
S

R R
V (x, z; τ , τ 0)2a(x, z; τ)a(x, z; τ 0)dG(τ)dG(τ 0)d(x, z)

, and (3.4)

M1(a,∆) ≡
R
S

R
∆(x, z; y)2f(x, z)a(x, z; y)dF (y|x, z)d(x, z)q

2Cd1+d3
3

R
S

R R
V (x, z; y, y0)2a(x, z; y)a(x, z; y0)dF (y|x, z)dF (y0|x, z)d(x, z)

. (3.5)

Comparing the above power functions with Propositions 3.3 and 3.4, we can show that T̂n is asymptotically

equivalent to the η(a) test with the weighting function a(x, z; τ) = 1{(x, z) ∈ S}V (x, z; τ)−1 , and
T̂n1 is asymptotically equivalent to the η1(a) test with the weighting function a1(x, z; y) = 1{(x, z) ∈
S}V (x, z; y)−1 1 (y ∈ SY ) . We will show that these choices of weighting functions, which are implicitly

achieved by our SELR tests, are asymptotically optimal in a certain sense.

If ∆ were known, it would be easy to derive the optimal weighting function a that maximizes Π or

Π1. Clearly, such a weighting function would depend on the unknown object ∆, and no uniformly (in

∆) optimal test exists. This resembles the multi-parameter optimal testing problem considered by Wald

(1943), who shows that the likelihood ratio test for a hypothesis about finite-dimensional parameters

is optimal in terms of an average power criterion. Similarly, Andrews and Ploberger (1994) consider

optimal inference in a nonstandard testing problem where a nuisance parameter is present only under

the alternative. Our testing problem is a nonparametric analogue of Andrews and Ploberger’s (1994). In

their case, the parameter of interest in the sequence of local alternatives is of finite dimension (h in their

notation), whereas the parameter of interest in our local alternatives is an unknown function (i.e., ∆(·, ·; ·)
in the above notation). A natural extension of Wald’s approach is to consider a probability measure on an

4Note that both Su and White (2007) and Bouezmarni, Roy and Taamouti (2011) only allow the weight function a to

depend on (x, z) .
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appropriate space of functions and let the measure mimic the distribution of the estimator F̃b1(τ |x, z).5
Therefore, we follow the lead of TK and propose to use a probability measure that approximates the

asymptotic distribution of the sample path of F̃b1(τ |x, z).
Let {Ω,F ,P} be a probability space. Let ∆̃(x, z, τ ) ≡ ∆((x, z); τ ;ω) : S × R × Ω → R be a random

function,6 i.e., for arbitrary and fixed (x, z, τ), ∆((x, z); τ ; ·) is a measurable mapping of {Ω,F} into
{R,B} where B is the Borel sigma-field on R and for fixed ω, ∆(·; ·;ω) is a function. Next let ∆̃(x, z, τ) =
f−1/2(x, z)V 1/2(x, z; τ)Ψ(x, z), where for v ≡ (x, z) ∈ Rd1+d3 , Ψ(v) ≡ Πd1+d3i=1

R 1/γi
0

κi(vi/γi − z)dUi(z),

the κi are arbitrary cyclical univariate kernel functions on R with period 1/γi, and the Ui are mutually
independent Brownian motions on [0, 1/γi] starting at the origin such that E[Ui(1/γi)]

2 <∞ for each i.

Let li be the diameter of S restricted in the direction of vi.7 We further require 0 < 1/γi ≤ li. As in TK,
this implies that the joint distribution of the bivariate vector (

R
S
s(Ψ(v))dv, Ψ(v0)) does not depend on

the location v0 ∈ S for any function s such that
R
S
s(Ψ(v))dv is well defined, the Gaussianity of ∆̃ is not

important, and our optimality result does not depend on the choice of vi and γi.

For simplicity, we now explicitly study Π1. To define our average power, let Q be the probability

measure induced by ∆̃ on continuous functions defined on S × R. Noting that Π1(a, ∆̃) = Π1(ca, ∆̃) for
any c > 0, we choose a such thatZ

S

Z Z
V 2(x, z; y, y0)a(x, z; y)a(x, z; y0)dF (y|x, z)dF (y0|x, z)d(x, z) = 1. (3.6)

Using the definition of ∆̃, we can then rewrite the random variable M1(a, ∆̃) as

M1(a, ∆̃) =
³
2Cd1+d3

3

´−1/2 Z
S

V (x, z; y) a(x, z; y)Ψ2(x, z)dF (y|x, z)d(x, z). (3.7)

Let Fa be the CDF of M1(a, ∆̃). The average asymptotic power of η1 is then given by

Π̄1(a) =

Z
Π1(a, ∆̃)dQ(∆̃) =

Z ∞
0

[1− Φ(z − e)]Fa(de). (3.8)

Observe that the integrand in (3.8) is strictly increasing in e. So if there exists a smooth, bounded, square

integrable function a∗ : S × R → R+ such that (3.6) is satisfied for a∗ and for all a the CDF Fa∗ first

order stochastically dominates Fa, then a∗ maximizes Π̄1 (a) . Following TK, we have:

Proposition 3.5 Let a∗1 (x, z; y) ≡ 1{(x, z) ∈ S}V (x, z; y)−1 [vol(S) (π2/3−3)]−1/2. Then a∗1 = arg max
a∈Cb(S×R)

Π̄1 (a) , where Cb(S ×R) is the space of continuously bounded functions on S ×R.
Remark 7. Proposition 3.5 shows that the T̂n1 test attains the maximum average local power when

the sequence of alternatives are restricted to the space of functions generated by ∆̃, provided one ignores

the restriction that y ∈ SY . The last restriction seems necessary in order for V (x, z; y)
−1 to be well

defined for all (x, z) ∈ S. An alternative way of achieving this optimality is to use a(x, z; y) = 1{(x, z) ∈
S}V (x, z; y)−1 1 {y ∈ SY } in (3.3), and in practice one has to replace V (x, z; y) by its consistent estimate.
Similarly, we can establish the asymptotic optimality of the T̂n test for testing H0.

5 It is unnecessary to mimic the distribution of F̃b2(τ |x) because this has no impact on the asymptotic power function.
6Alternatively, a random function can be defined by specifying a suitable measure on a certain function space whose

elements are functions on S × R. See, for example, Gihman and Skorohod (1974, p.44).
7Without loss of generality, one can assume S = [−e, e]d1+d3 , where e is a positive real number. In this case, li = 2e for

each i.

11



4 Smoother moment conditions

In this section we extend our testing procedure to permit a smoother family of conditional moment

restrictions.

4.1 Characteristic function-based conditional moment restrictions

Above, we considered a SELR test for CI based on the infinite sequence of conditional moment restric-

tions: E[1 (Yt ≤ τ)− F (τ |Xt)|Xt, Zt] = 0 a.s., indexed by the nuisance parameter τ . This choice for the

conditional moment restrictions is intuitive but typically delivers poor power in finite samples because of

the discrete nature of the indicator functions. Motivated by the equivalence of conditional distributions

and conditional characteristic functions, we now follow Bierens (1982) and Su and White (2007) and

consider a smoother class of conditional moment restrictions. For this, let H(y) ≡ R eiu0ydG0(u), the
characteristic function of a well-chosen probability measure dG0(u). For example, if G0 (·) is the standard
normal CDF, then H (y) = e−y

2/2. Let ψ(u;x, z) ≡ E[exp(iu0Yt)|Xt = x,Zt = z] −E[exp(iu0Yt)|Xt = x].

Then
R
ψ(u;x, z)eiτ

0udG0(u) = E[H(Yt+τ)|Xt = x,Zt = z] −E[H(Yt+τ)|Xt = x] ≡ m(x, z; τ)−m(x; τ).
Under a mild assumption, H0 and H00 can be respectively expressed as

H0,chf : Pr [m(Xt, Zt; τ) = m(Xt; τ)] = 1 for all τ ∈ R, and
H00,chf : Pr [m(Xt, Zt;Yt) = m(Xt;Yt)] = 1.

Therefore we can formulate a variant of our preceding test statistics based upon

^ISELRn = 2
nX
t=1

It

nX
s=1

Z
wts log

n
1 + λ̃t (τ) ε̃s(τ)/n

o
dG(τ), (4.1)

ŜELRn1 = 2
nX
t=1

ItI1t

nX
s=1

wts log
n
1 + λ̃t (Yt) ε̃s(Yt)/n

o
, (4.2)

where ε̃s(τ) ≡ H(Ys + τ) − m̃(Xs; τ), m̃(x; τ) ≡
Pn

s=1 Lh2(x −Xs)H(Ys + τ)/
Pn

s=1 Lh2(x −Xs), and

each λ̃t(τ) solves
nX

s=1

wtsε̃s(τ)

n+ λ̃t (τ) ε̃s(τ)
= 0, t = 1, ..., n. (4.3)

Let Ṽ1(Xt, Zt; τ) ≡ n−1
Pn

s=1 wts[ε̃s(τ)]
2, Ṽ1t ≡ Ṽ1(Xt, Zt;Yt), and K(x,z),t ≡ Kh1(x − Xt, z − Zt).

Let Ṽ (x, z; τ) ≡ n−1
Pn

s=1K(x,z),sH(Ys + τ)2/f̂h1 (x, z)− Ĥ(x, z; τ)2, Ṽt ≡ Ṽ (Xt, Zt;Yt), Ṽ (x, z; τ , τ
0) ≡

Ĥ(x, z; τ , τ 0)−Ĥ(x, z; τ)Ĥ(x, z; τ 0), Ĥ(x, z; τ) = n−1
Pn

s=1K(x,z),sH(Ys+τ)/f̂h1 (x, z) , and Ĥ(x, z; τ , τ
0)

= n−1
Pn

s=1K(x,z),sH(Ys + τ)H(Ys + τ 0)/f̂h1 (x, z) . Define

B̃n ≡
nX
t=1

It

nX
s=1

Z
Ṽ1(Xt, Zt; τ)

−1[wtsε̃s(τ)]
2dG(τ), B̃n1 ≡

nX
t=1

ItI1t

nX
s=1

Ṽ −11t [wtsε̃s(Yt)]
2,

σ̃2n ≡ 2n−1Cd1+d3
3

nX
t=1

It

Z Z
Ṽ (Xt, Zt; τ)

−1Ṽ (Xt, Zt; τ
0)−1Ṽ 2(Xt, Zt, τ , τ

0)f̂−11t dG(τ)dG(τ
0),

σ̃2n1 ≡ 2n−2Cd1+d3
3

nX
t=1

nX
s=1

ItI1tI1sKtsṼ
−1
t Ṽ −1s Ṽ (Xt, Zt;Yt, Ys)

2f̂−11t f̂
−1
1s .
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Further, define

T̃n ≡ h
(d1+d3)/2
1 { ^ISELRn − B̃n}/σ̃n and T̃n1 ≡ h

(d1+d3)/2
1 {ŜELRn1 − B̃n1}/σ̃n1. (4.4)

We add the following assumptions.

Assumption A5 (Fourier transform) Suppose dG0(u) = g0(u)du. g0(u) is a symmetric and uniformly

bounded PDF on R.

Assumption A1(iv∗) The function m(x; τ) is (r + 1) times partially continuously differentiable with

respect to x for each τ ∈ R, and the partial derivatives up to the (r + 1)th order are bounded on
S�1 ≡ S� ∩Rd1 . Furthermore, |m(x0; τ)−m(x; τ)| ≤ D(τ) ||x0 − x|| , where R D(τ)2dG(τ) <∞.

The following two theorems establish the asymptotic distributions of T̃n and T̃n,1 under H0,chf and
H00,chf, respectively.

Theorem 4.1 Suppose Assumption A4 holds with V being replaced by V̄ (x, z; τ) ≡Var[H (Yt + τ) | (Xt, Zt)

= (x, z)]. Then under Assumptions A1(i)-(iii), A1(iv*), A2, A3 and A5, and H0,chf , T̃n
d→ N(0, 1).

Theorem 4.2 Suppose that
R
S

R
SY

V̄ (x, z; y)−1f (x, z) dF (y|x, z) d (x, z) <∞. Then under Assumptions

A1(i)-(iii), A1(iv*), A2, A3 and A5, and H00,chf , T̃n1
d→ N(0, 1) .

Remark 8. Our simulations indicate that the above smoother SELR tests generally outperform the

CDF-based SELR tests studied in Section 3 for a variety of data generating processes (DGPs), and the

T̃n1 test is much easier to implement than T̃n. So we will report simulation and application results based

on T̃n1. In addition, as in Sections 3.3 and 3.4, we can also derive the asymptotic local power properties

of T̃n and T̃n1, and establish their asymptotic optimality for testing H0,chf and H00,chf, respectively. The
procedure is analogous and thus omitted.

4.2 Remarks

The above results apply when all variables in (Xt, Yt, Zt) are continuously valued. While this is sufficient

for many empirical applications, it is worth mentioning that our testing procedure can be easily modified

to allow a much wider range of situations. Also, it is well known many nonparametric tests based

on asymptotic normal critical values behave poorly in finite samples, and a bootstrap approximation

improves matters. We now discuss these issues.

1. Limited dependent variables and discrete conditioning variables : As mentioned in the introduction,

our tests are also applicable to situations in which not all variables in (Xt, Yt, Zt) are continuously valued.

For example, when Yt is discretely valued, T̂n and T̃n can be easily modified by replacing the integration

with summation over the possible values of Yt;there is no need to modify either T̂n1 or T̃n1. Also, one

can allow a mixture of continuous and discrete conditioning variables. The modification can be done by

following the approaches in Li and Racine (2008) and Spindler and Su (2010).

2. Testing for independence: It is possible to extend our procedure to the case where d1 = 0, i.e., testing

for independence between Y and Z. In this case, the null hypothesis reduces to H∗0 : Pr [F (τ |Zt) = F (τ)] =

1, where F (τ |z) and F (τ) denote the conditional and unconditional CDFs of Yt given Zt = z, respectively.
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One can modify our previous procedure by replacing F̂h2(τ |Xs) in the definition of ε̂s (τ) by m(τ) ≡
n−1

Pn
t=1 1(Yt ≤ τ) or m̃(Xs; τ) in the definition of ε̃s (Yt) by m̃(τ) ≡ n−1

Pn
t=1H(Yt + τ) and making

corresponding changes. For brevity, we don’t repeat the argument.

3. Smoothed local bootstrap: The key issue for the bootstrap is how to impose the null hypoth-

esis of CI in the resampling scheme. Motivated by Paparoditis and Politis (2000), Su and White

(2008) propose a smoothed local bootstrap procedure for testing CI. Simply put, we obtain the boot-

strap resamples {X∗t , Y
∗
t , Z

∗
t }

n
t=1 in two steps: (i) Draw a bootstrap sample {X∗t }nt=1 from the es-

timated kernel density f̃b (x) = n−1b−d1
Pn

t=1 κ ((Xt − x)/b), where κ is kernel function defined on

Rd1 (R, or Rd3 below as indicated by its argument) and b = b (n) is a bandwidth; (ii) For t =

1, ..., n, given X∗t , draw Y ∗t and Z∗t independently from the estimated conditional density f̃ (y|X∗t ) =
n−1b−d1−1

Pn
s=1 κ ((Ys − y)/b)κ ((Xs −X∗t )/b) /f̃b (X∗t ) and f̃ (z|X∗t ) = n−1b−d1−d3

Pn
s=1 κ ((Zs − z)/b)

κ ((Xs −X∗t )/b) /f̃b (X∗t ) , respectively. Let W ∗t ≡ (X∗0t , Y ∗t , Z∗0t )
0
. Then we can calculate the bootstrap

statistic T̃ ∗n1 in analogous fashion to T̃n1, with {W ∗t }nt=1 replacing {Wt}nt=1 and reject the null when the
bootstrap p-value is smaller than the prescribed level of significance α. One can follow Su and White

(2008) to establish the asymptotic validity of this bootstrap procedure.

5 Simulations

In this section we conduct some Monte Carlo simulations to examine the finite sample performance of

our nonparametric test based on T̃n1 in (4.4). We consider three cases, where d2 = d3 = 1, and d1 = 1, 2,

3 in the first, second and third cases, respectively. For each data generating process (DGP) under study,

we standardize the data {(X 0
t, Yt, Z

0
t)
0, t = 1, ..., n} before implementing our test, so that each variable

has mean zero and variance one. Throughout, we take S ≡ {u = (x0, z0)0 : |ui| ≤ 2.33, i = 1, ..., d1 + d3}
and SY ≡ {y : |y| ≤ 2.33}, where ui denotes the ith element of u. For each variable, this trims out about
2% of the tail observations, given a normal distribution.

We use the following DGPs for the first case:

DGP1: Wt = (ε1,t, ε2,t, ε3,t)
0, where {ε1,t, ε2,t, ε3,t} are IID N(0, I3).

For DGP2 through DGP8, Wt = (Yt−1, Yt, Zt−1)0, with
DGP2: Yt = 0.5Yt−1 + ε1,t;

DGP3: Yt = 0.5Yt−1 + 0.5Zt−1 + ε1,t;

DGP4: Yt = 0.5Yt−1 + 0.5Z2t−1 + ε1,t;

DGP5: Yt = 0.5Yt−1Zt−1 + ε1,t;

DGP6: Yt = 0.5Yt−1 + 0.55Zt−1ε1,t;
DGP7: Yt =

√
htε1,t, ht = 0.01 + 0.5Y

2
t−1 + 0.25Z

2
t−1; and

DGP8: Yt =
p
h1,tε1,t, h1,t = 0.01 + 0.1h1,t−1 + 0.4Y 2

t−1 + 0.5Z
2
t−1;

where Zt = 0.5Zt−1+ ε2,t in DGPs 2-7, Zt =
p
h2,tε2,t with h2,t = 0.01+ 0.9h2,t−1+0.05Z2t−1 in DGP8,

and {ε1,t, ε2,t} are IID N(0, I2) in DGPs 2-8.

DGP1 and DGP2 allow us to examine the level of the test. DGPs 3-8 cover a variety of linear and

nonlinear time series processes commonly used in time series analysis. Of these, DGPs 3-5 (resp. DGPs

6-8) are alternatives that allow us to study the power properties of our test for Granger-causality in
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the mean (resp. variance). DGP3 studies Granger linear causality in the mean, whereas DGPs 4-5

study Granger nonlinear causality in the mean. In DGPs 6-8, {Zt} Granger-causes {Yt} only through
the variance. A conditional mean-based Granger causality test, linear or nonlinear, may fail to detect

such causality. Note that DGP7 is an ARCH-type specification, and DGP8 specifies a bivariate GARCH

process. Consequently, the study of such processes indicates whether our test may be applicable to

financial time series.

To implement our test, we also need to choose the kernels, weight functions, and bandwidths. We

follow Theorem 4.2 and use a fourth order kernel in estimating f(x) and m(x; τ): l(u) = (3− u2)ϕ(u)/2,

where ϕ(u) is the standard normal PDF. We choose both the second order kernel k(·) and weighting
function g0(·) to be ϕ(u). For the two bandwidth sequences, h1 and h2, we follow Su and White (2007),

set h1 = c1n
−1/(4+d1+d3) and h2 = c2n

−1/(8+d1) and choose c1 and c2 by using the leave-one-out least

squares cross validation (LSCV) for estimating the conditional expectations of Yt given (Xt, Zt) and Xt

respectively. We denote our test statistic as SELn below.

We compare our test with some previous tests proposed by Linton and Gozalo (1997, LG hereafter)

and by Su and White (2007, 2008). LG base their nonparametric tests of CI on the functional An(w) =

{n−1Pn
t=1 1(Wt ≤ w)}{n−1Pn

t=1 1(Xt ≤ x)} − {n−1Pn
t=1 1(Xt ≤ x)1(Yt ≤ y)}{n−1Pn

t=1 1(Xt ≤
x)1(Zt ≤ z)}, where w = (x0, y, z0)0. Specifically, their test statistics are of the Cramér von-Mises and
Kolmogorov-Smirnov types: CMn = n−1

Pn
t=1A

2
n(Wt), KSn = max1≤t≤n |An(Wt)|. The asymptotic

null distributions of both test statistics are non-standard, so that one needs to use bootstrap to obtain

the critical values. Su and White (2008) base a test for CI on the Hellinger distance between the two

conditional densities f(y|x, z) and f(y|x). They use the same bandwidth sequence h in estimating all
the required densities, namely, f(x, y, z), f(x, y), f(x, z) and f(x), by f̂h(x, y, z), f̂h(x, y), f̂h(x, z) and

f̂h(x). Define Γ1 ≡ 1
n

Pn
t=1[1 −

q
f̂h(Xt, Yt)f̂h(Xt, Zt)/f̂h(Xt, Yt, Zt)f̂h(Xt)]

2a(Xt, Yt, Zt), where a is a

weighting function that is compactly supported. Their test statistic, HELn, is a normalized version

of Γ1 and is asymptotically normally distributed under the null. Following Su and White (2008), we

set h = n−1/8.5. Su and White’s (2007) test is based upon a property of the conditional characteristic
function. Let m̂b1(x, z; τ) and m̂b2(x; τ) be nonparametric kernel estimates for m(x, z; τ) ≡ E[H(Y +

τ)|X = x,Z = z] and m(x; τ) ≡ E[H(Y + τ)|X = x] with bandwidth sequences b1 and b2, respectively.

Let Γ2 = 1
n

Pn
t=1

R |m̂b1(Xt, Zt; τ)− m̂b2(Xt; τ)|2ItdG(τ). Their test statistic, CHFn, is based on Γ2 and

is also asymptotically normally distributed under the null. Here we use b1 = h1 and b2 = h2.

Table 1 reports the empirical rejection frequency of the five tests, namely, CMn, KSn, HELn, CHFn

and SELn, for nominal size 5%. Given the computational burden, we consider three sample sizes:

n = 100, 200 and 400. We use 500 replications for all tests when the null is true and 250 replications

when the null is false. We apply 200 bootstrap resamples in each replication. From Table 1, we see that

the sizes of all five tests are reasonably well-behaved, despite the fact that the HELn test is moderately

oversized for small sample sizes. In terms of power, we observe that the three kernel-based tests HELn,

CHFn and SELn tend to be more powerful than LG’s tests CMn and KSn. Interestingly, HELn has

the largest power in detecting alternatives in DGPs 7-8. SELn outperforms the other tests in terms of

power in DGPs 3-6 but is slightly outperformed by CHFn and HELn in DGPs 7-8.

For the second case (d1 = 2, d2 = d3 = 1), we use the following DGPs:
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Table 1: Comparison of tests for causality (d1 = d2 = d3 = 1), nominal level: 0.05
n Tests DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8
100 CMn 0.042 0.036 0.872 0.440 0.444 0.468 0.216 0.172

KSn 0.036 0.042 0.692 0.276 0.356 0.348 0.152 0.140
HELn 0.094 0.090 0.624 0.752 0.400 0.908 0.836 0.608
CHFn 0.034 0.058 0.780 0.792 0.520 0.780 0.728 0.580
SELn 0.054 0.038 0.840 0.856 0.760 0.904 0.716 0.556

200 CMn 0.052 0.050 1.000 0.716 0.744 0.700 0.428 0.332
KSn 0.048 0.048 0.956 0.572 0.608 0.580 0.268 0.204
HELn 0.074 0.060 0.928 0.964 0.572 0.992 0.992 0.940
CHFn 0.046 0.042 0.976 0.988 0.820 0.952 0.944 0.864
SELn 0.052 0.032 0.992 1.000 0.972 1.000 0.884 0.864

400 CMn 0.054 0.042 1.000 0.936 0.972 0.904 0.728 0.592
KSn 0.064 0.044 1.000 0.784 0.892 0.860 0.592 0.460
HELn 0.054 0.052 1.000 1.000 0.848 1.000 0.988 0.992
CHFn 0.044 0.044 1.000 1.000 0.984 1.000 0.988 0.984
SELn 0.056 0.032 1.000 1.000 1.000 1.000 0.940 0.948

DGP10: Wt = (ε
0
1,t, ε2,t, ε3,t)

0, where both {ε1,t} and {ε2,t, ε3,t} are IID N(0, I2).

For DGP20 through DGP80, Wt = ((Yt−1, Yt−2), Yt, Zt−1)0,
DGP20: Yt = 0.5Yt−1 + 0.25Yt−2 + ε1,t;

DGP30: Yt = 0.5Yt−1 + 0.25Yt−2 + 0.5Zt−1 + ε1,t;

DGP40: Yt = 0.5Yt−1 + 0.25Yt−2 + αZ2t−1 + ε1,t;

DGP50: Yt = αYt−1Zt−1 + 0.25Yt−2 + ε1,t;

DGP60: Yt = 0.5Yt−1 + 0.25Yt−2 + 0.55Zt−1ε1,t;
DGP70: Yt =

√
htε1,t, ht = 0.01 + 0.5Y

2
t−1 + 0.25Y

2
t−2 + 0.25Z

2
t−1;

DGP80: same as DGP8;
where Zt = 0.5Zt−1 + ε2,t and {ε1,t, ε2,t} is IID N(0, I2) in DGPs 20-70.

In view of the difficulty in implementing the HELn test because of bandwidth selection, we only

study the finite sample behavior of the other four tests. We use the same kernels, weighting functions,

number of replications, and number of bootstrap resamples as before. The bandwidth selection rule for

the CHFn and SELn tests is also the same as in case 1.

Table 2 reports the empirical size and power properties of the four tests. As in the first case, the sizes

are reasonably well behaved for all tests and the SELn and CHFn tests tend to dominate the LG tests

in terms of power. The CHFn test dominates CMn and KSn for all nonlinear DGPs under investigation,

SELn exhibits significantly greater empirical power than CHFn in DGPs 30-60, but it is the other way
around in DGPs 70-80. As expected, in comparison with DGP8, DGP80 suggests that the power of our
tests would be adversely affected as the dimension of the conditioning variable increases.

For the third case (d1 = 3, d2 = d3 = 1), we use the following DGPs:

DGP100: Wt = (ε1,t, ε2,t, ε3,t)
0,where {ε1,t} is IID N(0, I3) and {ε2,t, ε3,t} is IID N(0, I2).

For DGP200 through DGP700, Wt = ((Yt−1, Yt−2, Yt−3), Yt, Zt−1)0,
DGP200: Yt = 0.5Yt−1 + 0.25Yt−2 + 0.125Yt−3 + ε1,t;

DGP300: Yt = 0.5Yt−1 + 0.25Yt−2 + 0.125Yt−3 + 0.5Zt−1 + ε1,t;
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Table 2: Comparison of tests for causality (d1 = 2, d2 = d3 = 1), nominal level: 0.05
n Tests DGP10 DGP20 DGP30 DGP40 DGP50 DGP60 DGP70 DGP80
100 CMn 0.028 0.016 0.656 0.360 0.108 0.512 0.164 0.208

KSn 0.040 0.020 0.400 0.284 0.056 0.380 0.124 0.176
CHFn 0.028 0.042 0.720 0.704 0.412 0.564 0.460 0.556
SELn 0.052 0.040 0.844 0.828 0.620 0.568 0.440 0.528

200 CMn 0.050 0.032 0.940 0.588 0.304 0.792 0.304 0.364
KSn 0.046 0.024 0.776 0.432 0.168 0.696 0.216 0.284
CHFn 0.030 0.040 0.948 0.944 0.748 0.828 0.724 0.860
SELn 0.058 0.028 0.972 0.988 0.932 0.832 0.684 0.832

400 CMn 0.056 0.024 1.000 0.884 0.552 0.980 0.556 0.668
KSn 0.060 0.024 1.000 0.732 0.324 0.952 0.384 0.524
CHFn 0.040 0.036 1.000 0.984 0.972 0.996 0.920 0.984
SELn 0.040 0.030 1.000 1.000 1.000 1.000 0.836 0.884

DGP400: Yt = 0.5Yt−1 + 0.25Yt−2 + 0.125Yt−3 + 0.5Z2t−1 + ε1,t;

DGP500: Yt = 0.5Yt−1Zt−1 + 0.25Yt−2 + 0.125Yt−3 + ε1,t;

DGP600: Yt = 0.5Yt−1 + 0.25Yt−2 + 0.125Yt−3 + 0.55Zt−1ε1,t;
DGP700: Yt =

√
htε1,t, ht = 0.01 + 0.5Y

2
t−1 + 0.25Y

2
t−2 + 0.125Y

2
t−3 + 0.5Z

2
t−1;

DGP800: same as DGP8;
where Zt = 0.5Zt−1 + ε2,t, and {ε1,t, ε2,t} is IID N(0, I2) in DGPs 200-700.

We use the same kernels, weighting functions, number of replications, and number of bootstrap

resamples as in the first case. The main difference is that we need to adjust the LSCV bandwidths

slightly to meet the conditions in Assumption A2(iii). We first set h1 = c1n
−1/(4+d1+d3) and h2 =

c2n
−1/(8+d1) and choose c1 and c2 by using the LSCV. Then we adjust h1 to be h∗1n

1/(4+d1+d3)n−1/8.5

where h∗1 is the LSCV bandwidth for h1. Consequently, the resulting bandwidths satisfy h1 ∝ n−1/8.5

and h2 ∝ n−1/(8+d1). In view of d1 + d3 = 4, n = 100 is too small for any nonparametric test to be well

behaved. Thus, we only consider n = 200 and 400 in Table 3. Table 3 reports the empirical size and

power behavior of our tests. Apparently, the results are similar to the second case above.

Table 3: Comparison of tests for causality (d1 = 3, d2 = d3 = 1), nominal level: 0.05
n Tests DGP100 DGP200 DGP300 DGP400 DGP500 DGP600 DGP700 DGP800
200 CMn 0.050 0.028 0.756 0.484 0.192 0.788 0.260 0.448

KSn 0.048 0.032 0.500 0.380 0.096 0.660 0.212 0.372
CHFn 0.028 0.022 0.964 0.952 0.668 0.852 0.552 0.856
SELn 0.056 0.026 0.996 0.980 0.860 0.816 0.344 0.680

400 CMn 0.050 0.032 0.992 0.728 0.400 0.912 0.390 0.620
KSn 0.044 0.036 0.840 0.552 0.220 0.880 0.306 0.568
CHFn 0.032 0.034 1.000 0.972 0.928 0.884 0.792 0.972
SELn 0.056 0.038 1.000 1.000 1.000 0.888 0.616 0.876
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6 Applications to macroeconomic and financial time series

Although many studies conducted during the 1980s and 1990s report that economic and financial time

series, such as exchange rates and stock prices, exhibit nonlinear dependence (e.g., Hsieh 1989, 1991;

Sheedy, 1998), researchers often neglect this when they test for Granger causal relationships. In this

section, we first study the dynamic linkage between pairwise daily exchange rates across some industri-

alized countries by using both our SELR test (T̃n1) for CI and the traditional linear Granger causality

test. Then with the same techniques, we study the dynamic linkage between three US stock market price

indices and their trading volumes. Finally, we investigate the relationship between money supply, output,

and prices for the U.S. economy.

6.1 Application 1: exchange rates

Over the last two decades much research has focused on the nonlinear dependence exhibited by foreign

exchange rates, but few studies have examined nonlinear Granger causal links between intra-market

exchange rates. One exception is Hong (2001) who proposes a test for volatility spillover and applies it to

study the volatility spillover between two weekly nominal U.S. dollar exchange rates, the Deutschemark

and the Japanese Yen. He finds a change in past Deutschemark volatility Granger-causes a change in

current Japanese Yen volatility but a change in past Japanese Yen volatility does not Granger-cause a

change in current Deutschemark volatility.

In this application, we apply our nonparametric test to data for the daily exchange rates for three

industrialized countries (Canada, Japan, and the UK) and the European Union (EU), and compare the

results to those using a conventional linear test for Granger causality. The data are from Datastream,

with the sample period running from January 2nd, 2002 to April 5th, 2011, a total of 2415 observations.

The exchange rates are the local currency against the US dollar. Nevertheless, due to national holidays

or certain other reasons, some observations for exchange rates are missing. Also, different nations have

different national holidays and thus different missing observations. Because we do causality tests with

exchange rates from countries pairwise , if the observation for one country is missing, we also delete that

for the other country of the pair. Following the literature, we let Et stand for the natural logarithm of

exchange rates multiplied by 100. Since both the linear Granger causality test and our nonparametric

test require that the time series be stationary and we are interested in the relation between the changes

in the exchange rates, we first employ the augmented Dickey-Fuller test to check for stationarity for all

four exchange rates. The test results indicate that there is a unit root in all level series Et but not in

the first differenced series ∆Et. Therefore, both Granger causality tests will be conducted on the first

differenced data.

Let DX be the first differenced exchange rate in Country X and DY the first differenced exchange

rate in Country Y. The time series {DXt} does not linearly Granger cause the time series {DYt} if the
null hypothesis H0,L : β1 = · · · = βLx = 0 holds in

DYt = α0 + α1DYt−1 + · · ·+ αLyDYt−Ly + β1DXt−1 + · · ·+ βLxDXt−Lx + �t, (6.1)

where �t is a white noise under H0,L. An F -statistic can be constructed to check whether the null H0,L is
true or not. Nevertheless, in order to make a direct comparison with our nonparametric test for nonlinear
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Granger causality in the next subsection, we focus on testing H∗0,L : β = 0 in

DYt = α0 + α1DYt−1 + · · ·+ αLyDYt−Ly + βDXt−i + �t, i = 1, ..., Lx. (6.2)

Apparently, H∗0,L is nested in H0,NL. The rejection of H∗0,NL indicates the rejection of H0,NL but not the

other way around.

To implement our test, we set all parameters according to those used in our simulations. The null of

interest is now

H0,NL : Pr
£
F (DYt|DYt−1, ...,DYt−Ly ;DXt−1, ...,DXt−Lx) = F (DYt|DYt−1, ...,DYt−Ly)

¤
= 1. (6.3)

Due to the “curse of dimensionality,” we allow only Ly =1, 2, or 3. Further, for each test we only include

one lagged DXt in the conditioning set. Thus, we actually test a variant of H0,NL :

H∗0,NL : Pr
£
F (DYt|DYt−1, ...,DYt−Ly ;DXt−i, ) = F (DYt|DYt−1, ...,DYt−Ly)

¤
= 1, i = 1, ..., Lx. (6.4)

Again, H∗0,NL is nested in H0,NL. The rejection of H∗0,NL indicates the rejection of H0,NL but not the

other way around. In this sense, our test is conservative.

For both tests, when Ly is 1, we also choose Lx to be 1 so that we only check whether DXt−1 should
enter (6.2) or (6.4) or not. When Ly is 2, we choose Lx to be 2. In this case, we check whether DXt−1 or
DXt−2 (but not both) should enter (6.2) or (6.4) or not. The case for Ly = 3 is analogous. Consequently,
for each test, we have six possible results. If any of these results suggest that we should reject the null

at the 1% nominal level,8 then we indicate that there is linear or nonlinear Granger causality from DX

to DY .

Table 4: Bivariate linear Granger causality test between exchange rates (nominal level: 1%)

Linear Granger causality Nonlinear Granger causality
Canada EU Japan UK Canada EU Japan UK

Canada - ; ; ; - ; ⇒ ⇒
EU ; - ; ; ; - ; ⇒
Japan ⇒ ⇒ - ; ⇒ ; - ;
UK ; ; ; - ; ; ; -

We summarize the results in Table 4, where ⇒ and ; signify the presence and absence of Granger-

causality from the column variable to the row variable, respectively, and the nonlinear tests are based

on the bootstrap p-values obtained from 400 bootstrap resamples. First, the linear Granger test reveals

only two unidirectional Granger causal links among the four exchange rate series: the exchange rate for

Japan Granger-causes that for Canada and EU. Second, our nonparametric test fails to detect the linear

Granger-causality from Japan’s exchange rate to the EU’s but can reveal another three more causal links

among the four exchange rate series, some of which are bidirectional (Canada ⇔ Japan). One obvious

reason for the failure of the linear Granger causality test to detect any bidirectional causal linkages is

8This gives the Bonferroni bound 6%, comparable with the widely used nominal significance level 5%. Such a multiple
procedure also applies to Applications 2 and 3 below.
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that exchange rates exhibit unambiguously nonlinear dependence across markets. The volatility spillover

between exchange rates (see Hong (2001) and the reference there) is a special case of such nonlinear

dependence. Third and interestingly, neither test suggests a Granger-causal relationship between the

exchanges rates of Canada or Japan and the EU.

6.2 Application 2: stock price and trading volume

There are several explanations for the presence of a bidirectional Granger causal relation between stock

prices and trading volume. For brevity, we only mention two of them. The first one is the sequential

information arrival model (e.g., Copeland, 1976) in which new information flows into the market and

is disseminated to investors one at a time. This pattern of information arrival produces a sequence

of momentary equilibria consisting of various stock price-volume combinations before a final, complete

information equilibrium is achieved. Due to the sequential information flow, lagged trading volume could

have predictive power for current absolute stock returns and lagged absolute stock returns could have

predictive power for current trading volume. The other is the noise trader model (e.g., DeLong, 1990)

that reconciles the difference between the short- and long-run autocorrelation properties of aggregate

stock returns. Aggregate stock returns are positively autocorrelated in the short run, but negatively

autocorrelated in the long run. Since noise traders do not trade on the basis of economic fundamentals,

they impart a transitory mispricing component to stock prices in the short run. The temporary component

disappears in the long run, producing mean reversion in stock returns. A positive causal relation from

volume to stock returns is consistent with the assumption made in these models that the trading strategies

pursued by noise traders cause stock prices to move. A positive predictive relation from stock returns to

volume is consistent with the positive-feedback trading strategies of noise traders, for which the decision

to trade is conditioned on past stock price movements.

Gallant et al. (1992) argue that more can be learned about the stock market by studying the joint

dynamics of stock prices and trading volume than by focusing on the univariate dynamics of stock returns.

Using daily data for the Dow Jones price index for the periods 1915-1990, Hiemstra and Jones (1994)

study the dynamic relation between stock prices and trading volume and find significant bidirectional

nonlinear predictability between them. Here we reinvestigate this issue using the latest daily data for

the three major U.S. stock market price indices, i.e., the Dow Jones, the Nasdaq, and the S&P 500, and

their associated trading volumes in the NYSE, Nasdaq and NYSE markets, respectively. The data are

obtained from Yahoo Finance with the sample period running from January 2nd, 2002 to January 4th,

2011. Following the literature, we let Pt and Vt stand for the natural logarithm of stock price index

and volume multiplied by 100, respectively. Both Granger causality tests will be conducted on the first

differenced data ∆Pt and ∆Vt.

The implementation of both tests is similar to the previous application. As for the case of exchange

rates, we conduct both tests for the three major market indices and summarize the results in Table 5,

where ⇔ signifies the presence of bidirectional Granger causality and < its absence in both directions,

and the nonlinear tests are based on the bootstrap p-values obtained from 400 bootstrap resamples. First,

the linear Granger causality test suggests there is no Granger causal link between trading volumes and

stock prices for all three datasets. Second, our nonparametric test reveals bidirectional Granger causal
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links between stock prices and trading volumes for all three datasets at the 1% level, in strong support of

the results of Hiemstra and Jones (1994), who find bidirectional links for the Dow Jones stock price and

trading volume up to a 7-day lag. So, unlike the linear Granger causality test results, our nonparametric

test results lend some partial support to the two theories articulated above. One obvious reason for the

failure of the linear Granger causality test in detecting such causal links is that stock prices may only

have nonlinear predictive power for trading volumes.

Table 5: Granger causality tests between stock prices and trading volumes (nominal level: 1% )

Linear Granger Causality Nonlinear Granger Causality
∆P ⇔ ∆V - Dow Jones, Nasdaq, S&P 500
∆P < ∆V Dow Jones, Nasdaq, S&P 500 -

6.3 Application 3: money, income, and prices

There has been a long debate in macroeconomics regarding the role of money in an economy, particularly

in the determination of income and prices. Monetarists claim that money plays an active role and leads

to changes in income and prices. In other words, changes in income and prices in an economy are

mainly caused by changes in money stocks. Hence, the direction of causation runs from money to income

and prices without any feedback, i.e., unidirectional causation. Keynesians, on the other hand, argue

that money does not play an active role in changing income and prices. In fact, changes in income cause

changes in money stocks via demand for money implying that the direction of causation runs from income

to money without any feedback. Similarly, changes in prices are mainly caused by structural factors.

The empirical race took an interesting turn with the famous tests of Sims (1972). Specifically, Sims

developed a test for linear Granger causality and applied it to U.S. data to examine the relationship

between money and income, finding the evidence of unidirectional Granger causality from money to

income, as claimed by the Monetarists. However, his results were not supported by subsequent studies,

indicating that the empirical evidence regarding links between money and the other two variables, income

and price, remain elusive. Here we re-examine the Granger causal relationships using a longer horizon of

U.S. data.

Seasonally adjusted monthly data for monetary aggregates M1 and M2, disposable personal income

(DPI), real disposable personal income (RDPI), industrial output (IP), consumer price index (CPI), and

producer price index (PPI) were obtained from the Federal Reserve Bank of St. Louis with a sample

period running from January, 1959 to February, 2011. The total number of observations is 626. As in

Friedman and Kuttner (1992, 1993), Swanson (1998), and Black et al. (2000), the analysis below uses

log-differences of all the series. Dickey-Fuller tests suggest that the transformed series are stationary.

The implementation of both the linear and nonparametric Granger causality is similar to Application

1. The results are summarized in Table 6 where the nonlinear tests are based on the bootstrap p-values

obtained from 400 bootstrap resamples. First, the linear Granger causality test indicates that there is

mixed evidence of uni- or bi-directional causality between the three income variables (DPI, RDPI and
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IP) and money (M1 or M2); there is uni- (bi-) directional causality between M1 (M2) and CPI and no

causal relationship between M1 (M2) and PPI. Second, the nonparametric Granger causality test results

show strong evidence of uni- or bi- directional causality between money and income, and between money

and prices. We thus conclude that monetary aggregates still provide predictive information for income

and prices, which is largely consistent with the findings of Swanson (1998), who uses a rolling window

approach to study the predictive power of monetary aggregates on output.

Table 6: Granger causality test between money, output and prices (nominal level: 1%)

Linear Granger Causality Nonlinear Granger Causality
DPI RDPI IP CPI PPI DPI RDPI IP CPI PPI

M1 < ⇐ < ⇐ < ⇔ ⇐ ⇐ ⇒ ⇔
M2 ⇔ ⇐ < ⇔ < ⇔ ⇐ ⇔ ⇒ ⇔
Note: At the 5% nominal level, the nonlinear tests suggest CPI ⇒ M1 and M2.

7 Concluding remarks

We construct two classes of SELR tests for conditional independence and extend the applicability of EL

from testing a finite number of moment or conditional moment restrictions to testing an infinite collection

of conditional moment restrictions. Writing the null hypothesis in terms of CDF-based conditional

moment restrictions and employing the SELR approach, we construct some intuitively appealing test

statistics and show that they are asymptotically normal under the null and a sequence of local alternatives.

Although these test statistics have intuitive appeal, they tend to deliver poor power in small samples,

due to the discrete nature of the indicator functions. Thus we build on Su and White (2007) and consider

a class of smoother moment conditions to construct a new class of SELR tests. We show that in large

samples both tests are asymptotically optimal in that they attain maximum average local power with

respect to different spaces of functions for the corresponding local alternatives. Simulations suggest that

the smoother SELR test performs well in finite samples. We apply this latter test to some economic and

financial time series and find that the test reveals some interesting nonlinear Granger causal relations

that traditional linear Granger causality tests fail to detect.
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Appendix

A Some useful lemmas

In this appendix, we introduce some lemmas that are used in the proofs of the main results in the text.

Lemma A.1 Let {ξt, t ≥ 0} be a d-dimensional strong mixing process with mixing coefficient α (·) . Let
Fi1,...,ik denote the distribution function of

¡
ξi1 , ..., ξik

¢
. For any integer k > 1 and integers i1, ..., ik

such that 1 ≤ i1 < i2 < · · · < ik ≤ n, let ϕn be a Borel measurable function on Rkd such thatR ¯̄
ϕn
¡
ξi1 , ..., ξik

¢¯̄1+δ̃
dP (ξi1 , ..., ξij ) (v1, ..., vj) dP (ξij+1 , ..., ξik) ≤Mn for some δ̃ > 0. Then |

R
ϕn(ξi1 , ...,

ξik)dP
¡
ξi1 , ..., ξik

¢ − R ϕn ¡ξi1 , ..., ξik¢ dP (ξi1 , ..., ξij )dP (ξij+1 , ..., ξik)| ≤ 4M
1/(1+δ̃)
n α (ij+1 − ij)

δ̃/(1+δ̃)
,

where, e.g., P
¡
ξi1 , ..., ξik

¢
denotes the probability measure of

¡
ξi1 , ..., ξik

¢
.

Proof. See Lemma 2.1 of Sun and Chiang (1997).

Lemma A.2 Let ϕn andMn be defined as in Lemma A.1. Let V1 ≡ (ξi1 , ..., ξij ), and V2 ≡ (ξij+1 , ..., ξik).
Then E |E[ϕn(V1, V2)|V1]−EV1ϕn(V1, V2)| ≤ 4M1/(1+δ̃)

n α (ij+1 − ij)
δ̃/(1+δ̃)

, where EV1ϕn(V1, V2) ≡ Φn(V1)
with Φn(v1) ≡ E[ϕn(v1, V2)].

Proof. Yoshihara (1989) proved the above lemma for the β-mixing case. A close examination of his
proof reveals that the lemma also holds for the α-mixing case by an application of Lemma A.1.

Let {ξt, t ≥ 0} be as defined in Lemma A.1. Let gn(·, ·) be Borel measurable functions on Rd×Rd such
thatE[gn(ξ0,u)] = 0 and gn(u, v) = gn(v, u) for all (u, v) ∈Rd×Rd.Define Gn ≡ n−1

P
1≤t<s≤n[gn(ξt, ξs)−

Egn(ξt, ξs)]. Let {ξt, t ≥ 0} be an IID sequence where ξ0 is an independent copy of ξ0. Further, define

un(p) ≡ max{ max
1≤t≤n

||gn(ξt, ξ0)||p, ||gn(ξ0, ξ0)||p}, vn(p) ≡ max{ max
1≤t≤n

||Gn0(ξt, ξ0)||p, ||Gn0(ξ0, ξ0)||p},
wn(p) ≡ ||Gn0(ξ0, ξ0)||p, zn(p) ≡ max

1≤t≤n
max
1≤s≤n

max
©||Gns(ξt, ξ0)||p, ||Gns(ξ0, ξt)||p, ||Gns(ξ0, ξ0)||p

ª
,

where Gns(u, v) ≡ E[gn(ξs, u)gn(ξ0, v)] and || · ||p ≡ {E| · |p}1/p for p ≥ 1.

Lemma A.3 Let {ξt, t ≥ 0} be a d-dimensional strictly stationary strong mixing process with mixing
coefficient α (·) . Given the above notation, suppose there exists δ0 > 0, γ0 < 1/2, and γ1 > 0 such that

(i) un(4 + δ0) = O(nγ0); (ii) vn(2) = o(1); (iii) wn(2 + δ0/2) = o(n1/2); (iv) zn(2)n
γ1 = O(1); (v)

E[gn(ξ0, ξ0)]
2 = 2σ̃2+o(1); (vi) (n1+4γ0+3δ1+n2+δ1)α(nδ2)δ0/(4+δ0) = o (1) for some δ1 and δ2 such that

0 < δ2 < δ1 < min (γ1/2, (1− 2γ0)/3) . Then Gn d→ N(0, σ̃2).

Proof. Tenreiro (1997) proved the above lemma under conditions (i)-(v) and the assumption that
{ξt, t ≥ 0} is a strictly stationary absolutely regular process with geometric mixing coefficient β (n) (i.e.,
β (n) ≤ Cρn for some C > 0 and ρ ∈ (0, 1)). By examining his proof closely, we find that the assumption
of absolute regularity is only used for applying two inequalities of Yoshihara (1976) and another one of

Yoshihara (1989) (see Corollaries 1 and 2 and Lemma 1 in Tenreiro, 1997). The first two inequalities

can be replaced by the Davydov inequality for strong mixing processes (e.g., Bosq, 1996, p.19; Hall and

Heyde, 1980, p.278) and the inequality in Lemma A.1. The third inequality also has a strong mixing
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analog, as detailed in Lemma A.2. The geometric mixing rate was assumed only for the convenience of the

determination of asymptotically negligible terms. A close read of the proof of Lemma 3 in Tenreiro (1997)

shows that under conditions (i)-(v), the requirements on the strong mixing rate are given in condition

(vi).

Remark. Fan and Li (1999) prove a CLT for second-order degenerate U-statistics of absolutely

regular processes under different sets of regularity conditions. One can also relax their assumption of

absolute regularity to that of strong mixing. Gao (2007, Theorem A.1) also proves a CLT for second-order

degenerate U-statistics of strong mixing processes with geometric decay rate.

Lemma A.4 Under Assumptions A1-A3, (i) supτ∈R sup(x,z)∈S |F̂h1(τ |x, z)− F (τ |x, z)| = Op(μ1n), (ii)

supτ∈R supx∈S1 |F̂h2(τ |x) − F (τ |x)| = Op(μ2n), where S1 ≡ S ∩ Rd1 , μ1n ≡ n−1/2h−(d1+d3)/21

√
lnn + h21

and μ2n ≡ n−1/2h−d1/22

√
lnn+ hr2.

Proof. The proof is a modification of the proof of Lemma B.3 in Newey (1994).
Remark. For part (i) of the above lemma, Boente and Fraiman (1991) prove a slightly different

result: supτ∈R sup(x,z)∈S |F̂h1(τ |x, z) − F (τ |x, z)| = Oa.s.(n
−1/2h−(d1+d3+�)/21 (lnn)2 + h21), where � is an

arbitrarily small positive number. The above lemma continues to hold if we replace the compact set S

by its �-extension: S� ≡ {u ∈ Rd1+d3 : ku− vk ≤ � for some v ∈ S}.
To proceed, let f1t = f(Xt, Zt), f̂1t = f̂h1(Xt, Zt), f2t = f(Xt), f̂2t = f̂h2(Xt), Kts = Kh1(Xt −

Xs, Zt − Zs), Lts = Lh2(Xt −Xs), K(x,z),t = Kh1(x−Xt, z − Zt), and Lx,t = Lh1(x−Xt).

Lemma A.5 Under Assumptions A1-A3 and H0, (i) supτ∈Rmax1≤t≤n |It
Pn

s=1wtsε̂s(τ)| = Op (μn) ,

(ii) supτ∈Rmax1≤t≤n |It[V̂1(Xt, Zt; τ) − V (Xt, Zt; τ)]| = Op

¡
μ1,n + μ2,n

¢
, where μn ≡ μ0n + μ2n, and

μ0n ≡ n−1/2h−(d1+d3)/21

√
lnn.

Proof. (i) Under H0, supτ∈Rmax1≤t≤n |It
Pn

s=1wtsε̂s(τ)| ≤ supτ∈Rmax1≤t≤n |It
Pn

s=1wts[1(Ys ≤
τ)− F (τ |Xs, Zs)]|+ supτ∈Rmax1≤t≤n |It

Pn
s=1wts[F (τ |Xs)− F̂h2(τ |Xs)]| ≡ A1n+A2n. By Newey (1994,

Lemma B.1), max1≤t≤n It|f̂1t − E(f̂1t)| = Op (μn) and supτ∈Rmax1≤t≤n |n−1It
Pn

s=1Kts[1(Ys ≤ τ) −
F (τ |Xs, Zs)]| = Op (μ0n) . Therefore, A1n = Op (μn). Noting that

Pn
s=1wts = 1, A2n ≤ supτ∈R supx∈S1 |F̂h2

(τ |x)− F (τ |x)| = Op(μ2n) by Assumption A.3(i). The desired result follows.

(ii) Note that V̂1(Xt, Zt; τ) =
Pn

s=1wts[ε̂s(τ)]
2 = f̂−11t n

−1Pn
s=1Kts[1(Ys ≤ τ)− F̂h2(τ |Xs)]

2. By the
triangle inequality, we have supτ∈Rmax1≤t≤n |It[V̂1(Xt, Zt; τ)−V (Xt, Zt; τ)]| ≤ ξ1,n+2ξ2,n+ ξ3,n under

H0, where

ξ1,n = sup
τ∈R

max
1≤t≤n

¯̄̄̄
¯Itf̂−11t n−1

nX
s=1

Kts[1(Ys ≤ τ)− F (τ |Xs, Zs)]
2 − V (Xt, Zt; τ)

¯̄̄̄
¯ ,

ξ2,n = sup
τ∈R

max
1≤t≤n

¯̄̄̄
¯Itf̂−11t n−1

nX
s=1

Kts [1(Ys ≤ τ)− F (τ |Xs, Zs)]
h
F (τ |Xs)− F̂h2(τ |Xs)

i¯̄̄̄¯ , and
ξ3,n = sup

τ∈R
max
1≤t≤n

¯̄̄̄
¯Itf̂−11t n−1

nX
s=1

Kts

h
F (τ |Xs)|− F̂h2(τ |Xs)

i2 ¯̄̄̄¯ .
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First,

ξ1,n ≤ sup
τ∈R

sup
(x,z)∈S

¯̄̄̄
¯f̂−1h1

(x, z)n−1
nX
s=1

K(x,z),s{[1(Ys ≤ τ)− F (τ |Xs, Zs)]
2 − V (Xs, Zs; τ)]}

¯̄̄̄
¯

+sup
τ∈R

sup
(x,z)∈S

¯̄̄̄
¯f̂−1h1

(x, z)n−1
nX
s=1

K(x,z),s[V (Xs, Zs; τ)− V (x, z; τ)]

¯̄̄̄
¯

= Op

³
n−1/2h−(d1+d3)/21

√
lnn

´
+Op

¡
h21
¢
= Op

¡
μ1,n

¢
.

Let � = h1. Since K has compact support on [-1,1]d1+d3 by Assumption A2(i), we have, by Assump-

tion A3(i) and for sufficiently large n, ξ2,n ≤ supτ∈R supx∈S�1 |F (τ |x)− F̂h2(τ |x)| = Op

¡
μ2,n

¢
, ξ3,n ≤

supτ∈R supx∈S�1 |F (τ |x)− F̂h2(τ |x)|2 = Op((μ2,n)
2), where S�1 = S� ∩ Rd1 . This completes the proof.

B Proof of Theorem 3.1

Let C denote a generic constant which may vary from case to case. Let {W̄t =
¡
X̄ 0
t, Ȳt, Z̄

0
t

¢0
, t ≥ 0}

denote an IID sequence where W̄t is an independent copy of Wt.

Lemma B.1 Let Assumptions A1-A4 hold. Then under H0, ISELRn = B̂n+R̂n+op(h
−(d1+d3)/2
1 ), where

B̂n =
Pn

t=1 It
R
V̂1t(τ)

−1Pn
s=1w

2
tsε̂s(τ)

2dG(τ), R̂n =
Pn

t=1 It
Pn

s=1

Pn
j=1,j 6=s

R
V̂1t(τ)

−1wtsε̂s(τ)wtj ε̂j(τ)

dG(τ), and V̂1t(τ) ≡ V̂1(Xt, Zt; τ) ≡
Pn

s=1 wtsε̂s(τ)
2.

Proof. From (2.7), we have

0 =
nX
s=1

wtsε̂s(τ)

n+ λt (τ) ε̂s(τ)
=
1

n

nX
s=1

wtsε̂s(τ)

½
1− λt (τ) ε̂s(τ)

n
+
[λt (τ) ε̂s(τ)/n]

2

1 + λt (τ) ε̂s(τ)/n

¾

=
1

n

nX
s=1

wtsε̂s(τ)− 1

n2
V̂1t(τ)λt (τ) +

r1t(τ)

n2
,

where r1t(τ) =
Pn

s=1
wtsε̂s(τ)[λt(τ)ε̂s(τ)]

2

n+λt(τ)ε̂s(τ)
. Consequently

ItV̂1t(τ)λt(τ) = nIt

nX
s=1

wtsε̂s(τ) + Itr1t(τ). (B.1)

Eq.(2.7) also implies
Pn

s=1
wts[λt(τ)ε̂s(τ)]

2

n+λt(τ)ε̂s(τ)
=
Pn

s=1wtsε̂s(τ)λt (τ) . Hence, as n + λt (τ) ε̂s(τ) > 0

(because p̂ts ≥ 0, wts ≥ 0 and p̂ts = wts/[n+ λt (τ) ε̂s(τ)]),

sup
τ∈R

max
1≤t≤n

|r1t(τ)| ≤ sup
τ∈R

max
1≤s≤n

|ε̂s(τ)| sup
τ∈R

max
1≤t≤n

¯̄̄̄
¯
nX

s=1

wts[λt (τ) ε̂s(τ)]
2

n+ λt (τ) ε̂s(τ)

¯̄̄̄
¯

= sup
τ∈R

max
1≤s≤n

|ε̂s(τ)| sup
τ∈R

max
1≤t≤n

¯̄̄̄
¯
nX

s=1

wtsε̂s(τ)λt (τ)

¯̄̄̄
¯

≤ Csup
τ∈R

max
1≤t≤n

¯̄̄̄
¯
nX

s=1

wtsε̂s(τ)

¯̄̄̄
¯ supτ∈R

max
1≤t≤n

|λt (τ)| .
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Thus by Lemma A.5(i), supτ∈Rmax1≤t≤n It|r1t(τ)| = Op(μn) supτ∈Rmax1≤t≤n It|λt (τ) | and ItV̂1t(τ)

λt(τ) = Op(nμn)+Op(μn)It|λt(τ)|. Consequently, supτ∈Rmax1≤t≤n It|λt(τ)| = Op(nμn) and supτ∈Rmax1≤t≤n
It|r1t(τ)| = Op(nμ

2
n).

Now by a second order Taylor expansion, with probability approaching 1 as n→∞ (w.p.a.1),

It log

µ
1 +

λt (τ) ε̂s(τ)

n

¶
= It

(
λt (τ) ε̂s(τ)

n
− 1
2

∙
λt (τ) ε̂s(τ)

n

¸2
+ η̄ts(τ)

)
, (B.2)

where the remainder term |Itη̄ts(τ)| ≤ C |Itλt (τ) ε̂s(τ)/n|3 = Op(μ
3
n) uniformly in (t, s, τ). By (2.9),

(B.1) and (B.2), we can show that w.p.a.1,

ISELRn =
nX
t=1

It

Z
V̂1t(τ)

−1
nX
s=1

w2tsε̂s(τ)
2dG(τ) +

nX
t=1

It

nX
s=1

nX
j=1,j 6=s

Z
V̂1t(τ)

−1wtsε̂s(τ)wtj ε̂j(τ)dG(τ)

−n−2
nX
t=1

Z
ItV̂1t(τ)

−1r21t(τ)dG(τ) + 2
nX
t=1

It

Z nX
s=1

wtsη̄ts(τ)dG(τ).

Noting that n−1
Pn

t=1 It
R
V̂1t(τ)

−1dG (τ) = n−1
Pn

t=1 It
R
V (Xt, Zt; τ)

−1dG (τ) + op (1) = Op (1) by

Lemma A.5, Assumption A4 and the Markov inequality, we have n−2
Pn

t=1

R
ItV̂1t(τ)

−1r21t(τ)dG(τ) ≤
Op (1)n supτ∈R max1≤s,t≤n [r1t(τ)/n]

2 = Op

¡
nμ4n

¢
= op(h

−(d1+d3)/2
1 ), and

Pn
t=1 It

R Pn
s=1wtsη̄ts(τ)dG(τ)

≤ n supτ∈Rmax1≤s,t≤n |η̄ts(τ)| = Op(nμ
3
n) = op(h

−(d1+d3)/2
1 ) by Assumption A3(i), the conclusion of the

lemma follows.

Lemma B.2 Let Assumptions A1-A4 hold. Then h
(d1+d3)/2
1 R̂n

d→ N(0, σ2) under H0.

Proof. Under H0, write R̂n = n−2
Pn

t=1 Itf̂
−2
1t

Pn
s=1

Pn
j=1,j 6=s

R
V̂1t(τ)

−1KtsKtj ε̂s(τ)ε̂j(τ)dG(τ) =

Rn,1 +Rn,2 + 2Rn,3, where

Rn,1 ≡ n−2
nX
t=1

It
X
j 6=s

f̂−21t

Z
V̂1t(τ)

−1rn(Ws;Xt, Zt, τ)rn(Wj ;Xt, Zt, τ)dG(τ), (B.3)

Rn,2 ≡ n−2
nX
t=1

It
X
j 6=s

f̂−21t KtsKtj

Z
V̂1t(τ)

−1[F (τ |Xs)− F̂h2(τ |Xs)][F (τ |Xj)− F̂h2(τ |Xj)]dG(τ), (B.4)

Rn,3 ≡ n−2
nX
t=1

It
X
j 6=s

f̂−21t KtsKtj

Z
V̂1t(τ)

−1εs(τ)[F (τ |Xj)− F̂h2(τ |Xj)]dG(τ), (B.5)

P
j 6=s ≡

Pn
s=1

Pn
j=1,j 6=s, and rn(Wt;x, z, τ) ≡ K(x,z),t[1(Yt ≤ τ)− F (τ |Xt, Zt)]. Let

R̃n,1 ≡ n−1
nX

s=1

nX
t=1,t6=s

Z Z
S

f̂−2h1
(x, z)V̂1(x, z; τ)

−1rn(Wt;x, z, τ)rn(Ws;x, z, τ )dF (x, z)dG(τ). (B.6)

By Lemmas B.3 and B.4 below, h(d1+d3)/21 Rn,1 = h
(d1+d3)/2
1 R̃n,1 + op(1)

d→ N(0, σ2). By Lemmas B.5

and B.6, h(d1+d3)/21 Rn,l = op(1) for l = 2, 3. Consequently h
(d1+d3)/2
1 R̂n

d→ N(0, σ2) under H0.

Lemma B.3 Let Assumptions A1-A4 hold. Then h
(d1+d3)/2
1 Rn,1 = h

(d1+d3)/2
1 R̃n,1 + op(1), where Rn,1

and R̃n,1 are defined in (B.3) and (B.6), respectively.
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Proof. Let F̂ (x, z) denote the empirical distribution function of {(Xt, Zt)}nt=1 . Then h(d1+d3)/21 (Rn,1−
R̃n,1) = h

(d1+d3)/2
1 n−1

Pn
s=1

Pn
t=1,t6=s

R
S

R
rn(Ws;x, z, τ)rn(Wt;x, z, τ)f̂

−2
h1
(x, z)V̂ (x, z; τ)−1dG(τ)d[F̂ (x, z)

−F (x, z)] = ∆̃n,1 + 2∆̃n,2 − 2∆̃n,3, where

∆̃n,1 ≡ n−2h(d1+d3)/21

X
t6=s6=j

½Z
Ijrn(Ws;Xj , Zj , τ)rn(Wt;Xj , Zj , τ)f̂

−2
h1
(Xj , Zj)V̂1(Xj , Zj ; τ)

−1dG(τ)

−
Z
S

Z
rn(Ws;x, z, τ)rn(Wt;x, z, τ)f̂

−2
h1
(x, z)V̂1(x, z; τ)

−1dG(τ)dF (x, z)
¾
,

∆̃n,2 ≡ n−2h(d1+d3)/21

X
t6=s

Z
Isrn(Ws;Xs, Zs, τ)rn(Wt;Xs, Zs, τ)f̂

−2
h1
(Xs, Zs)V̂1(Xs, Zs; τ)

−1dG(τ),

∆̃n,3 ≡ n−2h(d1+d3)/21

X
t6=s

Z
S

Z
rn(Ws;x, z, τ)rn(Wt;x, z, τ)f̂

−2
h1
(x, z)V̂1(x, z; τ)

−1dG(τ)dF (x, z),

where
P

t6=s ≡
Pn

t=1

Pn
s=1,s 6=t and

P
t6=s6=j ≡

Pn
t=1

Pn
s=1,s6=t

Pn
j=1,j 6=s,t . Dispensing with the simplest

term first, we have ∆̃n,3 = 2n
−1{h(d1+d3)/21 R̃n,1} = n−1Op(1) = op(1) by Lemma B.4 below.

For ∆̃n,2, we have ∆̃n,2 = ∆n,2 {1 + op(1)} where∆n,2 = n−2h(d1+d3)/21

P
t6=s ϑ

0 (Wt,Ws) , ϑ
0 (Wt,Ws)

≡ R Isrn(Ws;Xs, Zs, τ)rn(Wt;Xs, Zs, τ) f
−2
1s Vs(τ)

−1dG(τ), and Vs(τ) ≡ V (Xs, Zs; τ) . We want to show

∆n,2 = op(1). Define the symmetric version of ϑ
0 as ϑ (Wt,Ws) = [ϑ

0 (Wt,Ws)+ϑ0 (Ws,Wt)]/2. Then we

have ∆n,2 = n−2h(d1+d3)/21

P
1≤t<s≤n ϑ (Wt,Ws) . By construction, ϑ (u, v) = ϑ (v, u) . By the fact that

E[rn(Ws;Xs, Zs, τ)| Xs, Zs] = 0 and E[rn(W̄t; X̄s, Z̄s, τ)|X̄t, Z̄t] = 0 for t 6= s, we have E[ϑ (Wt, v)] = 0.

Further, it is easy to verify that

max
1<t≤n

E |ϑ (W1,Wt)|2(1+δ) ≤ Ch
−(3+4δ)(d1+d3)
1 and max

1<t≤n
E
¯̄
ϑ
¡
W̄1, W̄t

¢¯̄2(1+δ) ≤ Ch
−(3+4δ)(d1+d3)
1 .

Then by Lemma A.2(ii) of Gao (2007), E (∆n,2)
2 = n−4hd1+d31 O(n2h

−(3+4δ)(d1+d3)/(1+δ)
1 ) = O(n−2

h
−(2+3δ)(d1+d3)/(1+δ)
1 ) = o (1) . Hence ∆n,2 = oP (1) by the Chebyshev inequality.

Now, we show ∆̃n,1 = op(1). Note that ∆̃n,1 = ∆n,1{1+op(1)} where ∆n,1 = n−2h(d1+d3)/21

P
t6=s6=j φ

0

(Wt,Ws,Wj), and φ
0 (Wt,Ws,Wj) ≡

R
Ijrn(Ws;Xj , Zj , τ)rn(Wt;Xj , Zj , τ)f

−2
1j Vj(τ)

−1dG(τ)−R
S

R
rn(Ws;

x, z, τ)rn(Wt;x, z, τ)f
−2(x, z)V (x, z; τ)−1dG(τ)dF (x, z). Define the symmetric version of φ0 as φ(Wt,Ws,

Wj) = [φ
0(Wt, Ws,Wj)+φ

0 (Wt,Wj ,Ws)+φ
0 (Ws,Wj ,Wt)]/3. Then∆n,1 = n−2h(d1+d3)/21

P
1≤t<s<j≤n φ

(Wt,Ws, Wj). By construction, φ (u, v, w) is symmetric in its arguments and E[ϑ (Wt, u, v)] = 0. Further,

it is easy to verify that

max
1<t<s≤n

max{E |φ (W1,Wt,Ws)|2(1+δ) , E
¯̄
φ
¡
W̄1, W̄t,Ws

¢¯̄2(1+δ)} ≤ Ch
−(2+4δ)(d1+d3)
1 .

andmax1<t<s≤nmax{
R |φ (W1,Wt,Ws)| dF (W1) dF (Wt,Ws)

2(1+δ) ,
R |φ (W1,Wt,Ws)|2(1+δ) dF (Ws) dF

(W1,Wt)} ≤ Ch
−(2+4δ)(d1+d3)
1 , where F (Wt,Ws) denotes the joint CDF of Wt and Ws. Then by Lemma

A.2(i) of Gao (2007),9

E (∆n,1)
2 = n−4hd1+d31 O(n3h

−(2+4δ)(d1+d3)/(1+δ)
1 ) = O(n−1h−(1+3δ)(d1+d3)/(1+δ)1 ) = o (1) .

Hence ∆n,1 = oP (1) by the Chebyshev inequality. It follows that ∆̃n,1 = op(1).

9Lemma A.2 in Gao (2007) implicitly requires that ∞
s=1 s

4α (s)δ/(1+δ) ≤ C <∞.
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Lemma B.4 Let Assumptions A1-A3 hold. Then h
(d1+d3)/2
1 R̃n,1

d→ N(0, σ2) under H0, where R̃n,1 is
defined in (B.6) and σ2 ≡ 2Cd1+d3

3

R
S

R R
V (x, z; τ)

−1
V (x, z; τ 0)−1V (x, z; τ , τ 0)2dG(τ)dG(τ 0)d(x, z).

Proof.

h
(d1+d3)/2
1 R̃n,1

= h
(d1+d3)/2
1 n−1

X
t6=s

Z Z
S

rn(Ws;x, z, τ )rn(Wt;x, z, τ )f
−2(x, z)V (x, z; τ)−1dF (x, z)dG(τ) {1 + op(1)}

=

⎧⎨⎩2n−1 X
1≤s<t≤n

{Hn(Ws,Wt)−E[Hn(Ws,Wt)]}+ 2n−1
X

1≤s<t≤n
E[Hn(Ws,Wt)]

⎫⎬⎭ {1 + op(1)}

≡ {Sn,1 + Sn,2} {1 + op(1)} ,

where Hn(Ws,Wt) = h
(d1+d3)/2
1

R R
S
rn(Ws;x, z, τ)rn(Wt;x, z, τ)f

−2(x, z)V (x, z; τ)−1dF (x, z)dG(τ). We
now verify the conditions in Lemma A.3 hold for Sn,1 withHn(u, v) replacing gn(u, v) in the lemma. First,

by construction, Hn(u, v) = Hn(v, u) and EHn(W0, v) = 0. Then

E |Hn(Wt,W0)|p = h
p(d1+d3)/2
1

Z Z ¯̄̄̄Z Z
S

Kh1(x− xt, z − zt)[1(yt ≤ τ)− F (τ |xt, zt)]Kh1(x− x0, z − z0)

×[1(Y0 ≤ τ)− F (τ |z0, z0)]f−2(x, z)V (x, z; τ)−1dF (x, z)dG(τ)
¯̄̄p
ft(w0, wt)dw0dwt

≤ Ch
p(d1+d3)/2
1 h

−(d1+d3)(p−1)
1

Z
Rd1+d3

Z
Rd1+d3

|K(u1)K(u1 + u2)|pdu1du2

= O
³
h
(d1+d3)(1−p/2)
1

´
by Assumptions A1(ii)-(iii), A2(i) and A4.

Hence ||Hn(Wt,W0)||p ≤ Ch
(d1+d3)(1/p−1/2)
1 . Analogously, we have ||Hn(W0, W̄0)||p ≤ h

(d1+d3)(1/p−1/2)
1 .

Consequently, one obtains un(p) ≤ Ch
(d1+d3)(1/p−1/2)
1 for some C > 0.

Now we show vn(p) ≤ Ch
(d1+d3)/p
1 . By Assumptions A1(ii)-(iii), A2(i) and A4, we have

Gn0(wt, w0) ≡ E[Hn(W0, wt)Hn(W0, w0)]

= hd1+d3
Z Z Z

S

Z
S

E {rn(W0;x, z, τ)rn(wt;x, z, τ)rn(W0;x
0, z0, τ 0)rn(w0;x0, z0, τ 0)

×V (x, z; τ)−1V (x0, z0; τ 0)−1dF (x, z)dF (x0, z0)dG(τ)dG(τ 0)ª
≤ C

Z
Rd1+d3

Z
Rd1+d3

Z
Rd1+d3

K(u)K(u+ u0)K(ũ)K(ũ+ u0 + (wt − w0)/h1)dudu
0dũ

≤ C

Z
Rd1+d3

K(u+ (wt − w0)/h1)du,

so ||Gn0(Wt,W0)||p ≤ Ch
(d1+d3)/p
1 . Similarly, one can show ||Gn0(W0, W̄0)||p ≤ Ch

(d1+d3)/p
1 and thus

vn(p) ≤ Ch
(d1+d3)/p
1 . By the same argument, we can show that wn(p) ≡ ||Gn0(W0,W0)||p ≤ C and

zn(p) ≤ Chd1+d31 . It follows that vn(2) = o (1) and wn(2 + δ0) = o(n1/2) for any δ0 > 0. That is,

Conditions (ii)-(iii) in Lemma A.3 are satisfied. Fix δ0 > 0. Take γ0 = (2+ δ0)/(16+ 4δ0) ∈ (0, 1/4) and
γ
1
= 1/2 − �1 for some �1 ≤ δ0/(24 + 6δ0). Then Conditions (i) and (iv) in Lemma A.3 are satisfied.

Then min (γ1/2, (1− 2γ0)/3) = (6 + δ0)/(24 + 6δ0), and Condition (vi) in Lemma A.3 is ensured by
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Assumption A3(ii). Finally, straightforward calculations yield

E[Hn(W0, W̄0)
2] = hd1+d31

Z Z Z
S

Z
S

E
©
rn(W0;x, z, τ)rn(W̄0;x.z, τ)rn(W0;x

0, z0, τ 0)rn(W̄0;x
0, z0, τ 0)

×V (x, z; τ)−1V (x0, z0; τ 0)−1dF (x, z)dF (x0, z0)dG(τ)dG(τ 0)ª = σ2/2 + o(1).

It follows that Sn,1
d→ N(0, σ2).

Now we show that Sn,2 = o(1). By the triangle inequality, Lemma A.1, and using the bound un(p) ≤
Ch

(d1+d3)(1/p−1/2)
1 with p = 1 + δ, we have

Sn,2 ≤ 2n−1
n−1X
s=1

nX
t=s+1

|E[Hn(Ws,Wt)]| ≤ Cn−1
n−1X
s=1

nX
t=s+1

h
(d1+d3)[1/(1+δ)−1/2]
1 α (t− s)δ/(1+δ)

≤ Ch
(1−δ)(d1+d3)/[2(1+δ)]
1

∞X
s=1

α (s)δ/(1+δ) = O
³
h
(1−δ)(d1+d3)/[2(1+δ)]
1

´
= o (1) .

This completes the proof.

Lemma B.5 Let Assumptions A1-A3 and the null hypothesis hold. Then h
(d1+d3)/2
1 Rn,2 = op(1), where

Rn,2 is defined in (B.4).

Proof. Note that Rn,2 = Rn,21 − Rn,22, where Rn,21 =
Pn

t=1 It
R
V̂1t(τ)

−1{Pn
s=1wts[F̂h2(τ |Xs) −

F (τ |Xs)]}2dG(τ), and Rn,22 =
Pn

t=1 It
Pn

s=1 w
2
ts

R
V̂1t(τ)

−1[F̂h2(τ |Xs)−F (τ |Xs)]
2dG(τ). Using Lemma

A.4, we can readily show that h(d1+d3)/21 Rn,22 = Op(h
−(d1+d3)/2
1 μ22n) = op(1) by Assumption A2(iii). It

suffices to show that h(d1+d3)/21 Rn,22 = op(1).

Let ĝs (τ) ≡ [F̂h2(τ |Xs) − F (τ |Xs)]f̂2s. By the Cauchy-Schwarz inequality, Rn,21 = n−2
Pn

t=1 Itf̂
−2
1tR

[
Pn

s=1Ktsf̂
−1
2s ĝs (τ)]

2dG(τ)≤ 2Rn,211+2Rn,212, whereRn,211 = n−2
Pn

t=1 Itf̂
−2
1t

R
V̂1t(τ)

−1[
Pn

s=1Ktsf
−1
2s

ĝs (τ)]
2dG(τ) and Rn,212 = n−2

Pn
t=1 Itf̂

−2
1t

R
V̂1t(τ)

−1[
Pn

s=1Kts(f̂
−1
2s − f−12s ) ĝs (τ)]

2dG(τ). By Lemma

A.4, it is easy to show that h(d1+d3)/21 Rn,212 = nh
(d1+d3)/2
1 (μ2n)

4 = op(1) and h
(d1+d3)/2
1 Rn,211 = R̄n,2 +

nh
(d1+d3)/2
1 Op

¡
(μ2n)

3
¢
= R̄n,2+op (1) , where R̄n,2 = n−2h(d1+d3)/21

Pn
t=1 Itf

−2
1t Vt(τ)

−1 R [Pn
s=1Ktsf

−1
2s ĝs (τ)]

2

dG(τ) and Vt(τ) ≡ V (Xt, Zt; τ) . Let ςjs(τ) ≡ F (τ |Xj) −F (τ |Xs). Then ĝs (τ) = n−1
Pn

j=1 Ljs[εj(τ) +

ςjs(τ)] and

R̄n,2 = n−4h(d1+d3)/21

X
t0,t1,t2,t3,t4

Z
It0Vt0(τ)

−1f−21t0f
−1
2t1

f−12t3Kt0t1Kt0t3Lt1t2Lt3t4 [εt2(τ) + ςt2t1(τ)]

×[εt4(τ) + ςt4t3(τ)]dG(τ)

= n−4h(d1+d3)/21

X
t0,t1,t2,t3,t4

Z
It0Vt0(τ)

−1f−21t0f
−1
2t1

f−12t3Kt0t1Kt0t3Lt1t2Lt3t4εt2(τ)εt4(τ)dG(τ)

+n−4h(d1+d3)/21

X
t0,t1,t2,t3,t4

Z
It0Vt0(τ)

−1f−21t0f
−1
2t1

f−12t3Kt0t1Kt0t3Lt1t2Lt3t4ςt2t1(τ)ςt4t3(τ)dG(τ)

+2n−4h(d1+d3)/21

X
t0,t1,t2,t3,t4

Z
It0Vt0(τ)

−1f−21t0f
−1
2t1

f−12t3Kt0t1Kt0t3Lt1t2Lt3t4εt2(τ)ςt4t3(τ)dG(τ)

≡ Gn1 +Gn2 + 2Gn3, say.

Noting that Gn1+Gn2+Gn3 is nonnegative, by the Markov inequality it suffices to show that E (Gni) =

o(1) for i = 1, 2, and 3.
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To show EGn,1 ≡ E (Gn1) = o(1), let S(1)t0,t1,t2,t3,t4 ≡ E[
R
It0Vt0(τ)

−1f−21t0f
−1
2t1

f−12t3Kt0t1Kt0t3Lt1t2Lt3t4
εt2(τ)εt4(τ)dG(τ)]. Let ιn be as defined in Assumption A3(iii) . We consider three different cases for

EGn,1: (a) for each i ∈ {0, 1, 2, 3, 4}, |ti − tj | > ιn for all j 6= i; (b) all time indices are distinct and for

exactly three different i0s, |ti − tj | > ιn for all j 6= i; (c) all the other remaining cases. We use EGn,1s

to denote these cases (s = a, b, c). For case (a), noting that E[εt(τ)|Xt, Zt] = 0 under H0, we can apply
Lemma A.1 directly to obtain EGn,1a ≤ Cn−4h(d1+d3)/21 n5h

−2(d1+d3)δ/(1+δ)
1 h

−2d1δ/(1+δ)
2 α (ιn)

δ/(1+δ) =

O(nh
(1−3δ)(d1+d3)/[2(1+δ)]
1 h

−2d1δ/(1+δ)
2 α (ιn)

δ/(1+δ)) = o(1) by Assumption A3(iii). For case (b), if either

t2 or t4 is among the three elements that lie at least at ιn-distance from all the other elements, one can

bound the term S
(1)
t0,t1,t2,t3,t4 as in case (a). Otherwise, bound it by C and the total number of such

terms is O
¡
n4ιn

¢
. Consequently, EGn,1b = o (1) + n−4h(d1+d3)/21 O(n4ιn) = o(1) by Assumption A3(iii).

For case (c), the total number of terms in the summation is of order O(n3ι2n) and one can readily obtain

EGn,1c = n−4h(d1+d3)/21 O(n3ι2n+n
3ιnh

−(d1+d3)
1 +n3h

−2(d1+d3)
1 +n2h

−2(d1+d3)
1 h−d12 +nh

−2(d1+d3)
1 h−2d12 ) =

o(1). It follows that EGn,1 = o(1).

Next, let S(2)t0,t1,t2,t3,t4 ≡ E[
R
It0Vt0(τ)

−1f−21t0f
−1
2t1

f−12t3Kt0t1Kt0t3Lt1t2Lt3t4ςt2t1(τ)ςt4t3(τ)dG(τ)]. By As-

sumption A1 and dominated convergence arguments, for t1 6= t2 and t3 6= t4, this term is bounded by

Ch2r2 if {t1, t2} ∩ {t3, t4} 6= {t1, t2} and t1 6= t0 6= t3, by Ch2−d12 if {t1, t2} ∩ {t3, t4} = {t1, t2} and
t1 6= t0 6= t3, by Ch

−(d1+d3)
1 h2r2 if {t1, t2}∩ {t3, t4} 6= {t1, t2} and either t1 or t3 (but not both) equals t0.

The other cases are of smaller orders after summation. Consequently, E (Gn2) = n−4h(d1+d3)/21 O(n5h2r2 +

n3h2−d12 + n4h
−(d1+d3)
1 h2r2 ) = o(1). Similarly, we have E(Gn3) = o(1) and the proof is complete.

Lemma B.6 Let Assumptions A1-A3 hold. Then h(d1+d3)/21 Rn,3 = op(1), where Rn,3 is defined in (B.5).

Proof. As in the proof of Lemma B.5, we can show that−h(d1+d3)/21 Rn,3 = n−3h(d1+d3)/21

P
t1,t2,t3,t4;t2 6=t3R

It1 V̂t1(τ)
−1f̂−11t1 f̂

−1
2t3

Kt1t2Kt1t3Lt3t4εt2(τ)[εt4(τ) +Mt4t3(τ)]dG(τ) = R̄n,31 + R̄n,32 + op (1) , where

R̄n,31 = n−3h(d1+d3)/21

X
t1,t2,t3,t4;t2 6=t3

Z
It1Vt1(τ)

−1f−21t1f
−1
2t3

Kt1t2Kt1t3Lt3t4εt2(τ)εt4(τ)dG(τ), and

R̄n,32 = n−3h(d1+d3)/21

X
t1,t2,t3,t4;t2 6=t3

Z
It1 V̂t1(τ)

−1f̂−11t1 f̂
−1
2t3

Kt1t2Kt1t3Lt3t4εt2(τ)Mt4t3(τ)dG(τ).

Let T (1)t1,t2,t3,t4 (τ) ≡ E[It1Vt1(τ)
−1f−21t1f

−1
2t3

Kt1t2Kt1t3Lt3t4εt2(τ)εt4(τ)] and consider three different cases

for ERn,1 ≡ E
¡
R̄n,31

¢
: (a) for each i ∈ {1, 2, 3, 4}, |ti − tj | > ιn for all j 6= i; (b) all time indices are dis-

tinct and for exactly two different i0s, |ti− tj | > ιn for all j 6= i; (c) all the other remaining cases. We use

ERn,1s to denote these cases (s = a, b, c). For case (a), we apply Lemma A.1 immediately to get ERn,1a ≤
Ch

(d1+d3)/2
1 n−3n4h−2(d1+d3)δ/(1+δ)1 h

−d1δ/(1+δ)
2 α (ιn)

δ/(1+δ)
= O(nh

(1−3δ)(d1+d3)/(1+δ)
1 h

−d1δ/(1+δ)
2 α (ιn)

δ/(1+δ)
)

= o(1) by Assumption A3(iii). For case (b), if either t2 or t4 is among the two elements that lie at least

at ιn-distance from all the other elements, one can bound the term T
(1)
t1,t2,t3,t4(τ) as in case (a). Oth-

erwise, bound it by C and the total number of such terms is O
¡
n3ιn

¢
. Consequently, EG1b = o (1) +

n−3h(d1+d3)/21 O(n3ιn) = o(1). For case (c), the total number of terms in the summation is of order n2ι2n
and one can readily obtain ERn,1c = n−3h(d1+d3)/21 O(n2ι2n + n2mh

−(d1+d3)
1 + n2h

−(d1+d3)
1 h−d12 ) = o(1).

So EIn,1 = o(1).

Next, we want to showERn,2 ≡ E(R̄n,31)
2 = n−6hd1+d31

P
t1,t2,t3,t4;t2 6=t3

P
t5,t6,t7,t8;t6 6=t7 E[

R R
T
(1)
t1,t2,t3,t4 (τ)

T
(1)
t5,t6,t7,t8 (τ

0) dG(τ)G(τ 0)] = o(1). We consider three different cases for ERn,2 : (a) for at least five i0s in
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{1, 2, 3, 4, 6, 7, 8}, |ti−tj | > ιn for all j 6= i; (b) all time indices are distinct and for exactly four different i0s,
|ti−tj | > ιn for all j 6= i; (c) all the other remaining cases. We use EIn,2s to denote these cases (s = a, b, c).

For case (a), we apply Lemma A.1 to obtain EIn,2a ≤ Cn−6hd1+d31 n8h
−4(d1+d3)δ/(1+δ)
1 h

−2d1δ/(1+δ)
2

α (ιn)
δ/(1+δ)

= O(n2h
(1−3δ)(d1+d3)/(1+δ)
1 h

−2d1δ/(1+δ)
2 α (ιn)

δ/(1+δ)
) = o(1) by Assumption A3(iii). For

case (b), the number of terms in the summation is of order O(n5ι3n). If either t2, t4, t6, or t8, is

among the four elements that lie at least at ιn-distance from all the other elements, one can bound

the term T
(1)
t1,t2,t3,t4(τ) as in case (a). Otherwise, bound the term by Ch

−(d1+d3)
1 and the total num-

ber of such terms is O(n5ι3n). Consequently, EIn,2b = o (1) + n−6hd1+d31 O(n5ι3nh
−(d1+d3)
1 ) = o(1). For

case (c), the total number of terms in the summation is of order O(n4ι4n) and one can readily obtain

EIn,2c = n−6hd1+d31 O(n4ι4n + n4ι3nh
−(d1+d3)
1 ) = o(1). Thus In1 = op(1) by the Chebyshev inequality.

Similarly, one can show that E
¡
R̄n,32

¢
= o (1) + n−3h(d1+d3)/21 O(n3ιnh

r
2) = o(1) and E

¡
R̄n,32

¢2
=

o (1) +n−6hd1+d31 O(n7h2r2 ) = o(1). Hence R̄n,32 = op(1) by the Chebyshev inequality.

Putting Lemmas B.1-B.6 together with the fact that σ̂2n = σ2 + op (1), we have proved Theorem 3.1.

C Proof of other results

Proof of Theorem 3.2. The proof is similar to that of Theorem 3.1 and thus omitted.

Proof of Proposition 3.3. The analysis is similar to the proof of Theorem 3.1, now keeping the

additional terms in the expansion of h(d1+d3)/21 ISELRn that were not present under the null, among

which only one term is asymptotically non-negligible under H1(γn) :

h
(d1+d3)/2
1

nX
t=1

Itf̂
−2
1t

Z
V̂1t (τ)

−1
(
n−1

nX
s=1

Kts

h
F [n](τ |Xs, Zs)− F [n](τ |Xs)

i)2
dG(τ)

= n−1
nX
t=1

It

Z
V [n] (Xt, Zt; τ)

−14(Xt, Zt; τ)
2dG(τ) {1 + op(1)}

=

Z
S

Z
V [n] (x, z; τ)−14(x, z; τ)2dG(τ)dF [n](x, z) + op(1) = μ+ op (1) .

Consequently, Pr(T̂n ≥ z|H1(γn)) → 1− Φ(z − μ/σ).

Proof of Proposition 3.4. The proof is analogous to that of Proposition 3.3 and thus omitted.

Proof of Proposition 3.5. The proof follows closely from TK. The problem is equivalent to

the following variational problem over all piecewise smooth, bounded, square integrable functions from

S ×R→ R+ :

min
a

Fa(e) s.t.
Z
S

Z Z
V 2(x, z; y, y0)a(x, z; y)a(x, z; y0)dF (y|x, z)dF (y0|x, z)d(x, z) = 1, (C.1)

where e ∈ R is arbitrarily chosen. Following TK, we can show that the Euler-Lagrange equation for the
variational problem (C.1) is

EΨ(x0,z0)[Ψ(x0, z0)
2fa(e|Ψ(x0, z0))]V (x0, z0; y0)

= λ

Z
[V 2(x0, z0; y0, y) + V 2(x0, z0; y, y0)]a

∗(x0, z0; y0)dF (y|x0, z0)
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for any (x0, z0, y0) ∈ S × R, where EΨ(x0,z0) indicates the expectation is over Ψ(x0, z0), λ is the La-

grange multiplier for the constraint in (C.1), and a∗ is the solution. Then one can guess and verify that
a∗(x, z; y) = 1{(x, z) ∈ S}V (x, z; y)−1 [vol(S) (π2/3− 3)]−1/2 solves the variational problem.
Proof of Theorem 4.1. Note that the characteristic function supy∈R |H (y)| ≤ 1, and the proof

is analogous to that of Theorem 3.1. The main difference is that we need the following results in

place of Lemma A.5: supτ∈R sup(x,z)∈S |m̂h1(x, z; τ)−m(x, z; τ)| = Op(n
−1/2h−(d1+d3)/21

√
lnn + h21),

and supτ∈R supx∈S1 |m̂h2(x; τ)−m(x; τ)| = Op(n
−1/2h−d1/22

√
lnn+hr2). The above uniform consistency

results can be established in the exact same fashion as done in Lemma A.4.

Proof of Theorem 4.2. The argument is identical to the proof of Theorem 3.2.
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