
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2011

Case Study on Using a Programming Practice Tool for Evaluating Case Study on Using a Programming Practice Tool for Evaluating

University Applicants University Applicants

Shannon Christopher BOESCH
Singapore Management University, cboesch@smu.edu.sg

Kevin STEPPE
Singapore Management University, kevinsteppe@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Higher Education Commons, and the Software Engineering Commons

Citation Citation
Boesch, Chris and Kevin Steppe. 2011. "Case Study on Using a Programming Practice Tool for Evaluating
University Applicants." Conference Proceedings of 2nd International Conference on Computer Science
Education: Innovation and Technology, Singapore, December 5-6. doi:10.5176/2251-2195_CSEIT37

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1448&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Case Study on Using a Programming Practice Tool
for Evaluating University Applicants

Chris Boesch & Kevin Steppe
School of Information Systems (SIS)

Singapore Management University (SMU)
Singapore

Abstract—We used a programming practice tool to test basic
programming skills of prospective students. A live competition
was used to test those skills. Students who did well were asked
for further interviews. Most students had no prior background
and reported learning the basics of two programming languages
within two weeks of self-study.

Keywords-education, programming, programming aptitude,

I. INTRODUCTION
Teachers of programming have long noted that many

students have difficulty in learning programming. It has even
been reported that many computer science students never really
learn to program[1]. For schools and departments in which
programming has a significant place in the curriculum and
which have the luxury of selecting students from many
applicants, a method to identify early those who are likely to
succeed is desirable.

Many tests for programming aptitude without requiring
actual programming have been proposed. These started with
the IBM Programmer Aptitude Test (PAT) and have been
followed up with Wolfe’s tests. More recent attempts come
from Winrow’s PAAT/I-PAT [2] and Tukiainen’s test [3].
Despite the early popularity of the PAT, its actual prediction of
performance was often poor [4]. While Tukiainen’s test first
appears to have statistical correlation with exam scores, after
selecting only those with no prior programming experience, the
test shows no predictive power. More recently, Bornat [5]
attempted to create an aptitude test based on the ‘mental
models’ work of Johnson-Laird [6]. This work is particularly
interesting first because it attempts to determine if the students’
mental models match the models of simple program operations,
and secondly because it focuses on areas Bornat had observed
to be significant hurdles for first-time learners. Despite
initially promising results, Bornat too did not find consistent
predictive power.

Further, in much of the world, pre-tertiary instruction in
programming continues to be the exception rather than the rule,
even in science-oriented curriculums. In Singapore for
example, despite thousands of students taking a heavily
science-dominated secondary curriculum, only about two
hundred take any programming instruction. At Singapore
Management University we do not require prior programming
experience for admissions to the School of Information

Systems program. The admissions process goes to great lengths
not to bias the selection process in favor of those with prior
programming experience. Our first round of admissions is
based on prior academic results and problem-solving skills
demonstrated during a live interview. While the concept of
programming aptitude has been discussed as a desirable
criterion, the lack of effective methods for determining aptitude
has prevented inclusion of this criterion.

Our experience with both first-year programming courses
and advanced courses which require programming are similar
to those reported elsewhere. Like Bornat we observe a
bimodal distribution of performance early programming
courses. Roughly speaking, students with stronger academic
backgrounds show up at the top of the results more often.
However there are enough exceptions, both in unexpectedly
good and unexpectedly bad performances, to resist making any
strong claims. In fact, in a case studies of seven universities
from seven countries, Alexander et. al. report that none of the
studies produced convincing evidence that high school
achievements identify programming success[7].

In 2011, we decided to pilot an attempt to identify
applicants who were not accepted after the usual interview, but
may have had significant technical aptitude which was not
evaluated during the interview process and was not obvious
from their previous academic results. Approximately one
hundred and eighty students that had interviewed with the
university but had not been accepted were invited to work with
an online programming practice tool called SingPath in order
to qualify for a live competition and a chance at a second
interview.

This method differs from the previously mentioned aptitude
tests by requiring actual programming as a criterion. Because
we were looking at students after the main admissions process,
we were willing to evaluate early actual programming
performance rather than aptitude. Of course success in
university requires much more than programming skill, so we
only invited those who had met the standards for prior
academic performance. Therefore we had reason to believe
they would do well in areas such as math and economics where
they have prior background and results. With the additional
process we hoped to find a few applicants who also had
demonstrable programming skills and be more likely to pass
first year programming courses.

We originally expected a large percentage of students who
signed up for the competition would have had prior
programming knowledge. However, we found that the
majority of those who signed up and passed the practice
portion to qualify for the live tournament had no programming
experience prior to the competition. Eight of the top ten in the
live tournament had taught themselves programming in the two
weeks preceding the tournament.

The rest of the paper is organized as follows: part II) the
competition process; part III) the SingPath tool; part IV) results
and findings; part V) discussion and conclusions

II. THE COMPETITION PROCESS
All students not accepted for admissions to the School of

Information Systems at Singapore Management University are
informed by letter and email. In 2011 at the end of the letter an
explanation of the second chance admissions tournament and
interview were included. Each letter contained a link to the
online practice tool SingPath where applicants were invited to
register for the challenge. This challenge required applicants to
solve sixty small programming problems in order to be invited
to a live programming tournament. All applicants were free to
use the tool before registering for the tournament.

On the day that the notification letters were delivered to
applicants, a few applicants registered for the admissions
challenge and began to solve simple problems. By the end of
the first week following the notification letter, thirty-four
students had registered for the challenge and were solving
problems online. Students were given two weeks to complete
the problems to get an invitation to the live competition.

The admission challenge that was constructed required
students to solve thirty problems using the Python
programming language and thirty problems using the Java
programming language. These thirty problems covered the
basics of each language syntax and required the applicants to
learn how to write basic programming functions in each
language. The idea behind this approach was that students who
were able to learn to program in more than one language in a
short period of time would be capable of learning and applying
other new technical subjects in the future. Most of the students
chose to start solving Python problems first and then moved on
to solving Java problems.

After the two week ‘practice’ period was over, twelve
students had solved at least the minimum sixty problems and
had submitted all of the requested information. These twelve
qualifying students were then notified of the time and place for
the live admissions tournament which would be held on the
school campus.

On the day of the tournament, all twelve students that had
been invited showed up for the tournament. Applicants brought
their own notebook computer to use in the tournament. The
tournament consisted of one round of ten Python problems and
one round of ten Java problems. Because the number of
applicants at the tournament was small, our focus was to
determine whether the applicant could repeat their performance
from the practice phrase, and thus filter out anyone who had
asked a friend to complete the initial phase for them. Therefore

nine of the ten problems in each round to come from the
problems that students should have already solved. We
included one new problem, that was more challenging, to
provide differentiation among the applicants.

At the live tournament all the students logged into
SingPath.com and the rules of the tournament were explained.
The tournament itself was conducted as an open book test.
Applicants were allowed to access the Internet to research
solutions to their problems. The only restriction was that
applicants were not allowed to use any personal notes that they
may have created when solving the problems at home. Two
faculty members observed to ensure that applicants were not
accessing restricted material or communicating with anyone
online. No inappropriate behavior was observed.

Each round lasted for approximately forty-five minutes. In
the Python round, the first applicant to solve all ten problems
completed in approximately thirteen and a half minutes. It
took thirty-nine minutes for the eighth player to complete all
ten problems before the round was halted. Four players were
unable to complete the Python round in the allotted forty-five
minutes. In the second round, the first applicant solved all ten
Java problems in approximately nine and a half minutes. The
sixth player in the second round then solved all ten problems in
approximately thirty-five minutes. In the Java round six
applicants were unable to solve all ten problem within the
forty-five minute time limit.

Two of the twelve applicants ranked at the bottom of the
group in both rounds and were dismissed. The remaining ten
students were interviewed immediately after the tournament in
order of their ranking. The interview was used to find out
more about the applicants’ technical background, interests, and
ability to communicate. Singapore Management University
places an emphasis on communication and presentation skills
so it was necessary to ensure we did not recommend admission
for anyone who did not meet our standards in those areas. Of
the ten students interviewed after the tournament, eight were
recommended for admission and informed of their admissions
the following week.

III. SINGPATH
SingPath is a free online programming practice tool

structured as a game, which enables players (users) to practice
software development by solving short problems. Most players
solve the easier problems in one or two attempts within a
minute. More difficult problems will take several attempts and
several minutes. SingPath offers problems in programming
languages such as Java, Python, Ruby, Javascript, and
Objective-C. The problems are arranged in levels which focus
on specific topics such as how to create functions or how to
work with strings in a particular language. Players progress by
solving enough problems in a level to ‘unlock’ the following
level. Levels are organized into paths. Players are expected to
unlock levels in a particular order along a path to ensure that
they have mastered basic language concepts that will be needed
to solve problems in later levels. In addition to the provided
problems, players are able to create their own problems for
other users to solve.

Problems consist of a problem name, a problem description,
examples and public tests. Problems may include private tests
in addition to the public tests. Problems can also include starter
code which will be provided to players. Public and private tests
are simple unit tests which will be familiar to any developers
who have worked with unit test frameworks like JUnit. Tests
are simple assertions used to determine if the code provided by
players meets the criteria specified for solving the problem.
Public tests are intended to test most cases for the problem and
are used to provide detailed feedback to players when their
solutions are not correct. Often players will solve the majority
of tests but fail a few corner cases which require extra code or
alternate logic. Private tests are used to ensure that players do
not overfit their solutions to the provided public tests. For
example, players might be tempted to add a simple if-then
statement to their solution to make a final failing test case pass
rather than modify their solution to properly handle all test
cases in a general manner. When players fail private tests, they
are only asked to generalize their solution further rather than
being provided with detailed test failure information as they are
for public tests. The core features of SingPath provide players
with clear goals and objectives, timely feedback, and ample
time to practice.

SingPath also provides support for live tournaments where
players can demonstrate their new skills in a timed, competitive
environment. The tournament feature is used in both classroom
settings and technology conferences to provide users with an
opportunity to demonstrate their skills in a proctored
environment. When used for tournaments, SingPath provides a
live ranking based on how many problems each participant has
solved. SingPath also displays the time at which each
participant last solved a problem, a feature which can be useful
in deciding whether to extend or shorten the tournament.

IV. FINDINGS & RESULTS
One of the most unexpected findings from the competition

was how few applicants with prior programming skills
qualified for the tournament. In Singapore, there are several
polytechnics that provide diplomas in technical subjects were
programming courses are taught. We originally expected that
the tournament would provide students from these institutions
with an enhanced opportunity for admission. However, eight
of the twelve qualifying for the tournament were not from one
of these programs and had in fact taught themselves
programming in the two weeks they had been given to
complete the sixty problems on SingPath. Further, of the eight
who completed at least one of the two rounds in the live
tournament, only one had taken programming courses
previously. Three of the four students in the tournament who
had taken programming courses previously failed to finish
either round in the time allocated.

Those who had taught themselves to program during the
practice phase all reported having spent from twenty to eighty
hours on the challenge. Most reported getting some help from
friends or family, though all of those stated that they eventually
had to learn on their own. Equally interesting, all reported that
they found programming to be “frustrating and fun”. Thus,
while they found the experience challenging they also, overall,
found it enjoyable and worth further pursuit. These reports

suggest that for these students the process of learning to
program put them in “flow” – a psychological state correlated
with motivation and future ability[8].

Of the top ten from the tournament, eight were eventually
offered admissions to the School of Information Systems. All
eight accepted the admissions offer and enrolled in August
2011.

V. DISCUSSION & CONCLUSIONS
We originally conceived the challenge and tournament as a

way to identify applicants with programming talent not
recognized in the usual interview. We feel that the challenge
succeeded in this – eight applicants capable of solving basic
programming problems in two different languages were
identified. This is considerably more programming skill than
required for most of our applicants.

In designing the usual interview, we have long sought for a
way to identify students who are interested in computing and
eager to meet our work load expectations. Both of these are
hard to determine from an interview or even from past results.
In the usual interview we commonly hear that students are
interested in computing because they enjoy using a computer at
home – a rational that often ceases during the first
programming course. Willingness to work hard is similarly
impossible to measure when the applicant is trying to give a
favorable impression. Usually the best we can do is to warn
them that computing projects can take a lot of work.

The process discussed in this paper seems to highly select
for students who in their initial exposure to learning
programming are sufficiently interested to put in a lot of work.
While it is possible that the students were more interested in
admission to university than in programming, the challenge did
find the twelve who were interested enough to solve sixty
problems, as compared to the other hundred and sixty-eight
who were only interested enough to come to the first interview.
It is also possible that some of those who did not participate
accepted offers from other universities. If it is the case that
those who registered for the challenge were primarily students
with no other offers, they showed a high level of desire to gain
admissions to our university.

The challenge also appears to select students willing to
work harder than their peers. The applicants put in a
remarkable effort to learn to program. While we cannot
guarantee that they will maintain that level of effort, we have
more direct evidence of their willingness to work hard than we
have for other applicants.

Third, the challenge – especially the practice phase – is
highly scalable. With no effort on the part of the faculty or
staff, the number of applicants was reduced from one hundred
and eighty to twelve. An increase in the number of applicants
registering for the challenge would require no additional effort.

We still need to pursue a longitudinal study on the success
of the students selected through this process. While our
experience with the tournament and interviews suggests that
the process selects for characteristics we want, we still need to
verify that the students do well in actual courses over the long

term. These data will only be available as the students progress
through the degree program.

Given the success of the process in our pilot, we are
looking to use it to select a larger portion of the next cohort.
Despite the desire to expand this process, we still feel that we
cannot use it as the principal criterion for the majority of our
admissions. We will need to analyze the long term success of
these students compared to the usual interview process to find
the right balance.

ACKNOWLEDGMENTS
We are grateful to the admissions department at Singapore

Management University and the staff in the School of
Information Systems for their efforts in ensuring the smooth
operation of the tournament and admissions process.

REFERENCES

[1] McCracken, e.a. A multi-national, multi-institutional
study of assessment of programming skills of first-
year CS students. in Working group reports from
ITiCSE on Innovation and tchnology in computer
science education. 2001. Canterbury, UK.

[2] Winrow, B., The Walden programmer analyst aptitude
test. Dr. Dobb's Journal. Fall (1999).

[3] Tukiainen M, M.E., Programming aptitude testing as a
prediction of learning to program, in 14th Workshop
of the Psychology of Programming Interest Group.
2002: Brunel University.

[4] Mayer D. B., S.A.W. Selection and evaluation of
computer personnel - the history of SIG/CPR. in 1968
ACM National Converence. 1968.

[5] Bornat R, S.D., Simon, Mental models, Consistency and
Programming Aptitude, in Tenth Australasian
Computing Education Conference. 2008:
Wollongong, Australia.

[6] Johnson-Laird P, B.V. A model theory of modal
reasoning. in Nineteenth Annual Conference of the
Cognitive Science Society. 1997.

[7] Alexander S, A.J., Boyle R, Clark M, Daniels M, Laxer
C, Loose K, Shinners-Kennedy D. Case Studies in
Admissions to and Early Performance in Computer
Science Degrees. in Working Group at ITiCSE. 2003.
Thessaloniki.

[8] Shernoff, D.J.C., Mihaly; Shneider, Barbara; Shernoff,
Elisa Steele Student engagement in high school
classrooms from the perspective of flow theory.
School Psychology Quarterly, 2003. 18(2): p. 158-
176.

	Case Study on Using a Programming Practice Tool for Evaluating University Applicants
	Citation

	ProgrammingPracticeForEvaluatingApplicants

