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Abstract

This paper considers testing additive error structure in nonparametric structural models, against

the alternative hypothesis that the random error term enters the nonparametric model non-additively.

We propose a test statistic under a set of identification conditions considered by Hoderlein, Su and

White (2012), which require the existence of a control variable such that the regressor is independent

of the error term given the control variable. The test statistic is motivated from the observation that,

under the additive error structure, the partial derivative of the nonparametric structural function

with respect to the error term is one under identification. The asymptotic distribution of the test

is established and a bootstrap version is proposed to enhance its finite sample performance. Monte

Carlo simulations show that the test has proper size and reasonable power in finite samples.
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1 Introduction

Economic models that incorporate stochastic features usually proceed by specifying the relationship

between an observed dependent variable (or variable of interest), a set of observed independent variables

(or explanatory variables), and some unobservable random term represented by error (or shock). This

paper examines how to deal with this unobserved error in the econometric modeling process and whether

it enters the econometric model as a separable additive component or as a nonseparable element.

When the error term is nonadditive, the conventional identification and estimation approaches for ad-

ditive nonparametric models are not applicable anymore. Therefore, new approaches to identification and

estimation are called upon for nonseparable nonparametric models. A great deal of efforts was devoted to

progress in this direction in the past two decades or so. Some earlier work includes Roehrig (1988), Brown

and Matzkin (1998), Matzkin (1991), Olley and Pakes (1996), Heckman and Vytlacil (1999, 2001), and

Blundell and Powell (2003). Matzkin (2003) presents estimators for nonparametric nonadditive models

and shows their asymptotic characteristics under a set of assumptions that may be implied by economic

theory. Altonji and Matzkin (2005) adopt a conditional independence assumption to estimate the aver-

age derivative of a nonparametric function and the distribution of the unobservable random term, when

the unobservable is nonadditive and the regressors are endogenous. Briesch, Chintagunta and Matzkin

(2010) provide a method to estimate discrete choice models with unobserved heterogeneity that enters

the subutility function nonadditively. Heckman, Matzkin and Nesheim (2010) establish nonparamet-

ric identification of structural functions and distributions in general nonparametric nonadditive hedonic

models by relaxing the assumptions of additive marginal utility and additive marginal product function

adopted in Ekeland, Heckman and Nesheim (2004). Altonji, Ichimura and Otsu (2012) present a simple

method to estimate the marginal effects of observable variables on a limited dependent variable, when

the dependent variable is a nonseparable function of observables and unobservables.

Albeit the literature is flooded with approaches that are capable of tackling both separable and

nonseparable nonparametric models, there is no valid method available to distinguish which model is

more appropriate for the problem confronted by the researchers. We believe that there are at least four

reasons that amplify the urgent need for some convincing testing procedures to detect the way through

which the unobservable random term enters the economic structure. They are: (1) The economic meaning

of an unobservable random term varies from case to case; (2) The identification and statistical properties

of the estimated underlying economic structure depend on whether additive separability holds; (3) The

identification and estimation of other economic structures also relies on the separability properties; and

(4) There is a lack of consistent testing procedures to detect additive separability of unobservables in the

literature. These are described below.

Economic meaning of an unobservable. An additive unobservable takes on the traditional

explanation as measurement error of the variable of interest, or a level shift of the dependent variable

due to some random shocks to the economy, or some minor factors other than the included regressors

that may affect the dependent variable. A nonadditive unobservable random term, on the other hand,

may adopt explanations such as a heterogeneity parameter in a utility function, the productivity shock
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or utility value for some unobserved attributes, etc. See, for example, Heckman (1974), Heckman and

Willis (1977), McFadden (1974), and Lancaster (1979), among others. A clarification of the additivity

property of the unknown economic structure helps to identify the economic meaning of an unobservable,

which facilitates further evaluation of sources of heterogeneity, improvement of productivity for firms and

better economic policy proposals.

Identification and statistical properties of the estimators. Classical additive nonparametric

models can be identified under standard conditional moment restrictions, and estimated, for example, by

conventional nonparametric kernel or sieve methods. The consistency and asymptotic normality of these

nonparametric estimators have been well understood. In contrast, methods to identify and estimate

nonadditive nonparametric functions are relatively new in the literature and have not yet been fully

explored. Matzkin (2003) presents an estimator of the nonseparable nonparametric random function,

and shows that it is consistent and asymptotically normal under certain identification conditions. She

argues that her identification conditions are not very strong since they may be implied by some economic

theory and are rather straightforward to derive if certain parametric functional forms are tolerated.

Yet, one concern regarding these identification conditions is that the underlying economic theory itself be

subject to valid tests, not to mention its implications or the parametric functional forms that are implicitly

needed to facilitate the formulation of identification conditions. Therefore, there is a potentially high

cost of applying these conditions for identification purposes.

Estimation of other economic structure. Quite often it is also of interest to estimate other sensi-

ble economic structure. Examples are available in the policy evaluation literature. Heckman and Vytlacil

(2005) point out that the entire recent literature on instrumental variable estimators with heterogeneous

responses “relies critically on the assumption that the treatment choice equation has a representation in

the additive separable form.” Heckman and Vytlacil (2001) show that, even after some transformation,

the defined marginal treatment effect (MTE) is still not identified through linear instrumental variable

(LIV), and MTE defined in this way precludes getting treatment parameters via integration. Further-

more, Heckman and Vytlacil (2005) also notice that nonseparability will lead to failure of the index

sufficiency. In other words, additive separable assumption simplifies the estimation of some economic

structure. Yet, there is no convincing testing procedure to provide evidence that the economic structure

under investigation is indeed additive.

Lack of specification tests for separability. Since Hausman’s (1978) seminal work a large lit-

erature on testing for the correct specification of functional forms has developed; see Bierens (1982,

1990), Ruud (1984), Newey (1985), Tauchen (1985), White (1987), Robinson (1989), Wooldridge (1992),

Yatchew (1992), Härdle and Mammen (1993), Hong and White (1995), Zheng (1996), Andrews (1997),

Bierens and Ploberger (1997), Li and Wang (1998), Stinchcombe and White (1998), Hsiao, Li and Racine

(2007), Su and Ullah (2012), among others. Although much progress has been made towards econometric

model specification, almost all the literature has been confined to functional forms that only accommodate

additive random errors. Rare exceptions include Hoderlein, Su and White (2012, HSW hereafter) and

Lu and White (2012, LW hereafter). The former paper proposes a nonparametric test for monotonicity in

unobservables in nonparametric nonseparable structural models whereas the latter considers a nonpara-
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metric test for additive separability in structural models based on a test for conditional independence. As

LW argue, many important identification results in the econometrics literature depend on the separabil-

ity of structural equations, and when correctly imposed, separability helps achieve estimation efficiency

in various scenarios. Thus it is desirable to consider tests for separability.

In this paper we propose a consistent testing procedure that is able to differentiate an additively

separable model from a nonadditive one. Like LW, we consider testing the null hypothesis of additive

separability in a nonparametric structural model (see eq. (2.1) below) under a conditional exogeneity

condition (see Assumption I.3 below). Unlike LW, we follow HSW and also assume a monotonicity

condition to identify the structural equation without imposing additive separability because our testing

strategy requires the identification and estimation of the nonparametric structural function under both

the null and the alternative. Note that the monotonicity condition is naturally guaranteed under the

null but it may not be ensured under the alternative. LW do not need to impose such a condition

under the alternative because they transform their test of additive separability to a test of conditional

independence, which is implied by but in general does not imply the null. So they avoid the identification

and estimation of the nonparametric structural model under the alternative. The cost is that their test

is not consistent against all global alternatives because of the gap between the implied hypothesis and

the original null hypothesis.1 In contrast, our test is based on the estimate of the partial derivative

of the structural function with respect to the unobservable which is identically one under the null and

not otherwise. We shall study the asymptotic distributions of our test under the null hypothesis and a

sequence of Pitman local alternatives and establish the consistency of our test.

The rest of the paper is structured as follows. Section 2 states our testing problem and presents the

test statistic. Section 3 provides asymptotic properties of our proposed test. We perform a small set of

Monte Carlo experiments in Section 4 to investigate the finite sample size and power behavior of our test.

In Section 5, we conclude and remark on future research. All proofs are relegated to the appendix.

Notation: Throughout the paper we use upper case letters (e.g.,  ) to denote random variables

and their corresponding lower case letters (e.g.,    ) to indicate the realizations.

2 Testing Additive Separability

The model of interest can be formulated as

 = ( ) (2.1)

where  and  are observables,  is an unobserved random shock, and  (· ·) is an unknown but smooth
function defined on X ×E, where X⊂ R and E⊂ R. (· ·) is termed as “nonadditive random function”
by Matzkin (2003). We are interested in testing whether the random error  enters the model as an

additive term.

1 Interestingly, LW show that by imposing monotonicity in unobservables for the nonparametric structural function,

they can establish the equivalence between the conditional independence and additive separability hypotheses. In this case,

their test is also consistent.
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2.1 Identification

The model specified in (2.1) is generally not identified without further restriction. For testing purpose, we

only consider the situation in which  (· ·) is identified. Matzkin (2003, 2007) studies the identification
issue extensively. HSW revisit the identification issue and give a set of identification conditions that are

analogous to Specification I in Matzkin (2003) but much easier to use. The identification conditions in

HSW require the existence of a control variable  such that  is independent of  given  or in short,

 ⊥  | We shall use Z to denote the support of  and  (·| ) to denote the conditional cumulative
distribution function (CDF) of  given () = ( ) 

Following HSW, we make the following identification assumptions.

Assumption I.1 For all  ∈ X  ( ·) is strictly increasing.

Assumption I.2 There exists ̄ ∈ X such that (̄ ) =  for all  ∈ E.
Assumption I.3  ⊥  |  where  is not measurable−()

Assumption I.4 For each ( ) ∈ X ×Z,  (·| ) is invertible.

Remark 1. I.1-I.4 parallels Assumptions A.2, A.3, B.1, B.2, respectively, in HSW. I.1 and I.3 are

also analogous to Assumptions I.2 and I.3 in Matzkin (2003) and I.2 corresponds to their Specification I

discussed in their Section 3.1 where an assumption similar to I.4 is also implicitly made.

Remark 2. As HSW remark, given I.1 and the structural functional relationship in (2.1), for any

̄ ∈ X there exists a function, say ̄ for which I.1 and I.2 hold. This implies that under I.1, any point

in X can play the role of ̄ in I.2. Given this ̄ we can replace  with ̄ such that ̄ ( ·) is strictly
increasing for all  ∈ X  and ̄(̄ ) =  a.s. With this normalization in mind, we can drop the reference

to ̄ and simply work with  as what is stated in I.2. In what follows, we simply choose a particular

value ̄ such as the vector of sample medians of  2 and adopt the normalization rule  (̄ ) = .

The following lemma summarizes some of the identification results in HSW.

Lemma 2.1 Suppose (2.1) and Assumptions I.1-I.4 hold. Then

( ) = −1((|̄ ) |  ) ∀(  ) ∈ E × X ×Z and
 = −1(( | ) | ̄ ) ∀ ∈ Z

The above identification result lays down the foundation for our test of additive separability. It

says that under I.1-I.4, the structural response function  (· ·) and the unobserved error term  can be

identified. Note that we do not need the existence of the conditional probability density function (PDF),

say,  (·|  )  of  given () = ( ) in Lemma 2.1. If  (·|  ) exists, the first result in the above
lemma implies that

 ( ) ≡ ( )


=

( | ̄ )
 (( ) |  ) (2.2)

2The sample median is random but converges to the population median at the parametric rate. Noting that our test

is of nonparametric nature and has power against local alternatives converging to the null at the nonparametric rate, this

implies that one can treat the sample median as the population median without affecting the asymptotic theory studied

below.
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where  (· ·) denotes the partial derivative of  (· ·) with respect to its second argument. Note that
the partial derivative ( ) is also identified provided  is well defined. Note also that  appears

only on the right hand side of (2.2).

2.2 Hypotheses

Given the model specified in (2.1) we are interested in testing whether  (· ·) is additively separable, that
is, whether there exist some measurable functions 1 (·) and 2 (·) such that ( ) = 1 ()+2 ()

almost surely (a.s.). Therefore the null hypotheses is

H0 : ( ) = 1 () +2 () a.s. (2.3)

for some measurable functions 1 (·) and 2 (·)  and the alternative hypothesis is the negation of H0 :

H1 :  [( ) = 1 () +2 ()]  1 (2.4)

for all measurable functions 1 (·) defined on X and 2 (·) on E .
The simulation experiment in Matzkin (2003) shows that the nonparametric estimate of an additive

model without imposing the additive restriction is significantly worse than that with the additive restric-

tion correctly imposed. This highlights the importance of testing the additivity structure of the unknown

relationship between the observables and unobservables.

Under I.1, 2 (·) is strictly increasing in (2.3). Given I.2 and H0 in (2.3), we have

(̄ ) = 1 (̄) +2 () =  a.s.,

implying that 2 () −  is a constant with probability one. Therefore we observe that under H0 and
I.1-I.2,

 ( ) ≡  ( )


=

( )



¯̄̄̄
=

= 1 a.s. (2.5)

This observation is very important because it motivates us to propose a test based on the derivative of

 (· ·) with respect to its second argument. In particular, we will consider a test for H0 based on the
following weighted 2-distance measure between ( ) and 1:

 =

Z
[ ( )− 1]2 0 ( )  ( ) (2.6)

where  (·) is the joint CDF of  and  and 0 (· ·) is a nonnegative weight function defined on X0×E0,
where X0 and E0 are a compact subset of X and E , respectively.3

3Here and below we restrict (  ) to X0 ×Z0 × E0 because we need to estimate (| ) and its inverse −1(· |  )
which can not be estimated sufficiently well if (| ) is close to either 0 or 1, say, when (  ) lies at the boundary of
its support X ×Z × E
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2.3 Estimation and test statistic

Let {( )   = 1  } denote a random sample for () that has support Y × X × Z Let
 ≡ ( 0

 
0
)
0
 Let  ≡ (0 0)0 be a × 1 vector,  ≡  +   where  is  × 1 and  is  × 1 Let

 ≡ (  0)0 and  ≡ ( 0)0.
To propose a feasible test statistic, we need to estimate  (·|)  −1 (·|)   (·|)  and  Throughout,

we rely on local constant estimates.4 First, we estimate  (|) by

̂ (|) ≡ 1



X
=1

 ( − ) 1 { ≤ } ̂ ()

where ̂ () ≡ 1


P
=1 ( − )   (·) ≡  (·)   (·) a kernel function defined on R,  ≡  () is

a bandwidth parameter, and 1 {·} is the usual indicator function. Then we estimate −1 (·|) by inverting
̂ (·|) to obtain

̂−1 (· |) = inf
n
 ∈ R : ̂ (|) ≥ ·

o


which is well defined if  is always nonnegative such that ̂ (|) is always between zero and one and
monotone in  Nevertheless, to reduce the bias of these kernel estimates, we permit the use of a higher

order kernel for  when  is large (e.g.,  ≥ 4) In this case, we may only consider the estimates ̂ and

̂−1 on a subset of the observations for which ̂ lies on a compact subset of (0 1) for large  which

is also required in our asymptotic analysis. Alternatively, as a referee kindly suggests, one can consider

some sort of rearrangement technique to ensure the monotonicity of ̂ (·|) in finite samples in the
case of higher order kernel. Chernozhukov, Fernández-Val and Galichon (2010) address the longstanding

problem of lack of monotonicity in the estimation of conditional and structural quantile functions by

rearrangement. We conjecture that similar technique can be used to yield monotone estimate of the CDF

but leave this for future study.

Similarly, we estimate the conditional PDF  (|) of  given  =  by

̂(|) =
X
=1

 ( − ) 
X
=1

 ( − )

where  (·) ≡  (·)   (·) a kernel function defined on R or R+1, and  ≡  () is a bandwidth

parameter.5

With ̂ and ̂−1 on hand, Lemma 2.1 motivates us to estimate ( ) = −1((|̄ ) |  ) by

̂( ) =

Z
̂−1 (̂(|̄ )| ) () (2.7)

and  = −1((| ) | ̄ ) by

̂ =

Z
̂−1 (̂(| ) | ̄ )() (2.8)

4Alternatively one can follow HSW and apply the local polynomial method to obtain all necessary estimates. But we

find that the local constant method is less computational expensive than the latter.
5We abuse the notation a little bit. The multivariate kernel function  can be defined either on R for  or R+1 for

 which is self evident from its argument.
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where (·) is a CDF that has a PDF  (·) with compact support Z0 ⊂ Z. Note that here we suppress
the dependence of ̂ and ̂ on  and that of ̂ on . Like HSW, the use of  helps to eliminate the

variability of estimators of ( ) and  based on an arbitrary choice of  In view of the fact that the

left hand side of (2.2) does not depend on  we propose to estimate ( ) by
6

[( ) =

Z
̂(|̄ )

̂(̂( ) |  )() (2.9)

Based on (2.6), we might consider

̆ = −1
X
=1

∙Z
̂(̂|̄ )
̂(| )

()− 1
¸2

0 ( ̂)  (2.10)

which can be regarded as a sample analogue of  defined in (2.6). To simplify the analysis, in view

of  = −1 ( ) where −1 ( ·) denotes the inverse of  ( ·) ∀ ∈ X  we define  ( ) =

0
¡


−1 ( )
¢
and consider the following simpler test statistic

̂ = −1
X
=1

∙Z
̂(̂|̄ )
̂(| )

()− 1
¸2

 ( )  (2.11)

Apparently, the support of 0 and that of  are closely related to each other, and the nonnegativity

of  is inherited from that of 0 We will make assumptions on the support of  directly so that ̂

is well defined. Let Z0 denote the compact support of  (·) ≡  (·)  that is a proper subset of
Z. Let X0 × Y0 denote the compact support of  (· ·) where X0 and Y0 are a proper subset of X and

Y, respectively. Let E0 denote the support of  =
R
−1((| ) | ̄ )() when ( ) is

constrained to lie in X0 × Y0 ̂(| ) will be bounded away below from 0 and above from 1 for all

(  ) ∈ Y0 × X0 × Z0 for sufficiently large sample size  by the consistency of ̂. This will ensure

̂ =
R
̂−1 (̂(| ) | ̄ )() to be well defined for observations with nonzero value of  ( ) 

We study the asymptotic distribution of ̂ in the next section.

3 Asymptotic Distribution

In this section we first present assumptions that are used in deriving the asymptotic distribution of our

test statistic ̂. Then we study its asymptotic distribution under the null hypothesis and a sequence of

Pitman local alternatives. We also prove the consistency of the test and propose a bootstrap method to

obtain the bootstrap -value.

3.1 Assumptions

Let j ≡ (1  ) be a -vector of non-negative integers and |j| ≡
P

=1  To study asymptotic distri-

bution of our test statistic, we use the following assumptions.

6When  and −1 are estimated by the local polynomial regressions, the asymptotic distributions of ̂( ) ̂ and

[( ) are quite complicated and studied in HSW.
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Assumption A.1 Let  ≡ ( 0
 

0
)
0
  = 1 2   be IID random variables with  distributed

identically to ( 0 0).

Let  ()   ()  and  (|) denote the PDF of  that of  and the conditional PDF of  given

 =  respectively. Let U ≡ X ×Z and U0 ≡ X0 ×Z0 Let Y0 ≡ [ ̄] denote a proper subset of Y

Assumption A.2 ()  () is continuous in  ∈ U , and  (|) is continuously differentiable in  ∈ Y for
all  ∈ U .
() There exist 1 2 ∈ (0∞) such that 1 ≤ inf∈U0  () ≤ sup∈U0  () ≤ 2 and 1 ≤

inf()∈Y0×U0  (|) ≤ sup()∈Y0×U0  (|) ≤ 2

Assumption A.3 () There exist   ̄ ∈ (0 1) such that  ≤ inf∈U0 
¡
|¢ ≤ sup∈U0  (̄|) ≤ ̄ and

 ≤ inf∈Z0 
¡
|̄ ¢ ≤ sup∈Z0  (̄|̄ ) ≤ ̄ 

()  (·|) admits the PDF  (·|) and is equicontinuous: ∀  0 ∃  0 : | − ̃|   ⇒ sup∈U0 |(|)
−(̃|)|   For each  ∈ Y0 ( | ·) has all partial derivatives up to order 1 where 1 ≥ 2 is an even
integer.

() Let j (|) ≡ |j| (|) 11 where  = (1  )0  For each  ∈ Y0  ( | ·)
with |j| = 1 is uniformly bounded and Lipschitz continuous on U0 : for all  ̃ ∈ U0, | ( | ) −
 ( | ̃) | ≤ 3||− ̃|| for some 3 ∈ (0∞) where k·k is the Euclidean norm.
() For each  ∈ U0 and for all  ̃ ∈ Y0 | ( | )− (̃ | ) | ≤ 4 |−̃| for some 4 ∈ (0∞)

where |j| = 1

Assumption A.4 The joint PDF  () of has all 2th partial derivatives that are uniformly continuous

on Y0 × U0 where 2 ≥ 2 is an even integer.
Assumption A.5 () The distribution function  () admits a PDF  () that is continuous on Z0
() The weight function  (· ·) is a nonnegative function that is uniformly bounded on its compact

support X0 × Y0

Assumption A.6 () For some even integer 1 ≥ 2 the kernel  is a product kernel of the bounded

symmetric kernel  : R → R satisfying
R
R 

() = 0 ( = 0 1  1 − 1)
R
R 

1()  ∞ and

() = 
¡
(1 + ||1+1+)−1¢ for some   0 where  is Kronecker’s delta.

() For some even integer 2 ≥ 2 the kernel  is a product kernel of the bounded symmetric kernel  :
R→ R satisfying

R
R 

() = 0 ( = 0 1  2−1)
R
R 

2 () ∞ and () = 
¡
(1 + ||2+1+)−1¢

for some   0

Assumption A.7 As →∞ → 0 → 0 and the following conditions are satisfied:

() +1 log→∞ 22++
1
2 → 0 21+

1
2 → 0

() (log)2 →∞ 2(+)−−
1
2 (log)2 →∞

() 
1
2 ()

£
1 + 22 log

¤→ 0 and 21−
1
2 log→ 0

A.1-A.3 parallel Assumptions C.1-C.3 in HSW. As in HSW, the IID requirement in A.1 is standard

in cross-section studies but can be relaxed to allow for weakly dependent time series observations. A.2-A.4

and A.6 are standard for nonparametric local constant estimation of conditional CDF and PDF when a

higher order kernel may be called upon. Note that we permit the use of higher order kernel for either
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 and  but neither is necessary if  =  +  is small, see the discussions below. A.5 specifies the

weak conditions on the probability weight  and the weight function  (· ·)  In the simulations we simply
choose  to be a scaled beta distribution that has a compact support Z0 and specify  as an indicator

function with compact support X0 × Y0 A.7 appropriately restricts the choices of bandwidth sequences
and the orders of kernel functions.

Note that if we choose  =  ∝ −1 for some   0, then A.7() is automatically satis-

fied and A.7()-() would require +1 (log)2 → ∞ 22++
1
2 → 0 21++

1
2 → 0 and

+2−
1
2 (log)2 →∞ The last set of conditions are met provided

 + 2 − 1
2
    +

1

2
+ 2min (1 2)  (3.1)

Apparently, (3.1) requires min (1 2)  − 1
2  In the case where  = 1 or 2, we can choose 1 = 2 = 2

and  ∈ ( + 2 − 1
2   +

9
2) such that (3.1) is satisfied. In this case, there is no need to use higher

order kernels for either  or 

More generally, we can consider choosing  ∝ −1 and  ∝ − Then A.7 would require

max

½
( + 1)  +  2 ( + )− ( + 1

2
)

¾
   min

½
 +

1

2
+ 22 ( +

1

2
)+ 21

¾
where 

¡
 +

1
2

¢
   41 Due to the “curse of dimensionality” in nonparametric estimation, we

expect that typical values of  and  are 1, 2, or 3 such that  +  ≤ 4 for realistic applications, in
which case we can verify that the above conditions can be satisfied for a variety of combinations for  

1 and 2 In particular, to ensure the conditional CDF estimate ̂ (| ) to lie between zero and 1 and
to be monotone in  it is always possible to restrict our attention to the use of a second order kernel for

 (i.e., 1 = 2) for properly chosen   and 2 In particular, if  ≤ 2 we recommend using the same
second order kernel for  and  (implying that 1 = 2 = 2) and setting  =  ∝ −1 So one only

needs to choose a single bandwidth.

3.2 Asymptotic null distribution

In this section, we study the asymptotic behavior of the test statistic in (2.11). To state the next result,

we write ̃ ≡ (̃ ̃0 ̃0)0 and introduce the following notation:

0 () ≡
Z

(| )
−1
h
 (̄ )−1 ̄(̄) −  ( )

−1
̄()

i
() (3.2)

and

 ( ̃) ≡  [0 ( ) 0 ( ̃)  ( )]  (3.3)

where ̄ =  − () and  =  ( − ) 7 We define the asymptotic bias and variance

respectively by

B ≡ −1+
1
2

X
=1

 () and 2 = 2
2+1[ (12)

2
]

7Even though    and  all enter the definition of 0 we can still use  =



0
 

0


0
to summarize these

variables because  = −1 ( ) is measurable under Assumption I.1 and the continuity of  (· ·).
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The following theorem establishes the asymptotic null distribution of the ̂ test statistic.

Theorem 3.1 Suppose Assumptions I.1-I.4 and A.1-A.7 hold. Then under H0 we have +
1
2 ̂ −

B
→ 

¡
0 20

¢
 where 20 ≡ lim→∞ 2.

The proof of the above theorem is quite involved. In fact, we prove it as a special case of Theorem

3.2 studied below. After a long and arduous effort, we can demonstrate that the key building block

in obtaining the asymptotic bias and variance of the test statistic ̂ is 0() The first term,

(| )
−1 (̄ )−1 ̄(̄) in the definition of 0 reflects the influence of the numerator estimator

̂(|̄ ) in the definition of ̂ in (2.11), whereas the second term (| )
−1 ( )

−1
̄()

embodies the effect of the denominator estimator ̂(| ) Like the test statistic in HSW, these two

terms contribute to the asymptotic bias of ̂ symmetrically but to the asymptotic variance asymmet-

rically due to different roles played by ̄ (the normalization point) and  (data). A careful analysis

of B indicates that both terms contribute to the asymptotic bias of ̂ to the order of 
¡
−12

¢
 On

the other hand, a detailed study of 2 shows that they contribute asymmetrically to the asymptotic

variance: the asymptotic variance of ̂ is mainly determined by the numerator estimator, whereas the

role played by the denominator estimator is asymptotically negligible. See HSW for further discussion

of similar phenomena in a different context. They also explain why we need +
1
2 instead of the usual

term (+1)2 as the normalization constant in the front of ̂ which unavoidably reduces the size of

the class of local alternatives that this test has power to detect.

To implement, we need consistent estimates of the asymptotic bias and variance. Let

̂0 () ≡
Z

̂(| )
−1
h
̂ (̄ )

−1
̂(̂̄) − ̂ ( )

−1
̂()

i
 ()

where ̂ = − 1


P
=1  and ̂ ( ) is a kernel estimator of the PDF  ( ) by using kernel

 and bandwidth  We propose estimating the asymptotic bias B by

B̂ = −2+
1
2

X
=1

X
=1

h
̂0 ()

i2
 ( )

and the asymptotic variance 2 by

̂2 =
22+1

2

X
=1

X
=1

"
1



X
=1

̂0 () ̂0 ()  ( )

#2


It is tedious but straightforward to show B̂ − B =  (1) and ̂2 − 2 =  (1)  Then the following

feasible test statistic

 ≡
³
+

1
2 ̂ − B̂

´


q
̂2 (3.4)

is asymptotically distributed as  (0 1) and we reject the null for large value of 

11



3.3 Local power property and consistency

To study the local power of the  test, consider the sequence of Pitman local alternatives:

H1 () :  ( ) = 1 +  ( )  (3.5)

where  → 0 as  → ∞ and  is a non-constant measurable function with 0 ≡ lim→∞[

(1 1)
2
 (1 1)] ∞.

Theorem 3.2 Suppose Assumptions I.1-I.4 and A.1-A.7 hold. Then under H1 () with  = −12−2−14


→  (00 1)  That is, the asymptotic local power function of  is given by  (  |H1 ()) =

1−Φ ( − 00)  where Φ is the standard normal CDF.

Theorem 3.2 implies that the  test has non-trivial power against Pitman local alternatives that

converge to zero at rate −12−2−14 provided 0  0  ∞ As remarked above, this rate is

different from the usual nonparametric rate −12−(+1)4 or −12−(++1)4 when ( + 1) or

( +  + 1) dimensional nonparametric objects need to be estimated.

The following theorem shows that the test is consistent.

Theorem 3.3 Suppose Assumptions I.1-I.4 and A.1-A.7 hold. Suppose that  ≡ {[ ( ) −
1]2 ( )}  0 Then  (  ) → 1 as →∞ for any nonstochastic sequence  = (+12).

3.4 A bootstrap version of the test

It is well known that nonparametric tests based on their asymptotic normal null distributions may perform

poorly in finite samples. As an alternative, we can rely on bootstrap to obtain the bootstrap -value.

To obtain the bootstrap replicates of = (
0
 

0
)
0
 we need to impose various restrictions. First,

we need to impose the identification conditions given in Assumptions I.1 and I.3. Simple resampling

bootstrap does not impose these conditions and is thus not applicable. Fortunately, we can follow the

local smooth bootstrap procedure of HSW (see also Su and White (2008)) to impose these identification

conditions. Second, we need to impose the null of additive separability. In view of the discussion in

Section 2.2, under H0 and Assumption I.2, we have

 ( ) = ̄1 () + 

for some measurable function ̄1 whose exact structure depend on the choice of the normalization point

̄ This motivates us to estimate ̄1 () by

̂1 () =

Z
̂( ) ()

where  (·) is a proper CDF on R. Then ̂1 () is consistent for ̄1 () +
R
 () provided ̂( )

is consistent for  ( )  The last claim can be established as in HSW and the term
R
 () is

constant, which does not affect the asymptotic distribution of our bootstrap test statistic if we generate

the bootstrap data  ∗ through this relationship. See Step 3 below.

Let W ≡ {}=1 Following Su and White (2008) and HSW, we draw bootstrap resamples

{∗  
∗
  

∗
 }


=1 based on the following smoothed local bootstrap procedure:

12



1. For  = 1   obtain a preliminary estimate of  as ̂ =
R
̂−1 (̂(| ) | ̄ )()

2. Draw a bootstrap sample {∗ }=1 from the smoothed kernel density ̃ () = −1
P

=1Φ

( − ), where Φ () = −Φ () where Φ (·) is a product kernel formed from the standard

normal PDF  (·), and   0 is a bandwidth parameter.

3. For  = 1   given ∗  draw ∗ and ∗ independently from the smoothed conditional density

̃| (|∗ ) =
P

=1Φ ( − )Φ ( − ∗ ) 
P

=1Φ ( − ∗ ) and ̃| (|∗ ) =
P

=1Φ

(̂ − )Φ ( − ∗ ) 
P

=1Φ ( − ∗ )  respectively, where   and  are given band-

widths.8

4. For  = 1   generate the bootstrap analogue of  as 
∗
 = ̂1 (

∗
 ) + ∗ 

5. Compute a bootstrap statistic  ∗ in the same way as  with {( ∗ ∗  ∗ )}=1 replacing W.

6. Repeat Steps 2-5  times to obtain bootstrap test statistics
©
 ∗
ª
=1

 Calculate the bootstrap -

values ∗ ≡ −1
P

=1 1
¡
 ∗ ≥ 

¢
and reject the null hypothesis if ∗ is smaller than the prescribed

nominal level of significance.

4 Monte Carlo Simulations

In this section, we conduct a small set of Monte Carlo simulations to examine the finite sample perfor-

mance of our test. We first consider the following two data generating processes (DGPs) for the level

study:

DGP 1:  =  + ,

DGP 2:  = Φ ()− 1
2 + 

where  = 1      Φ (·) is the standard normal CDF,  = 025 +  − 0252 + 1,  = 05+ 2

and  1 and 2 are IID  (0 1) and mutually independent. Clearly, the error terms in DGPs 1-2 are

additively separable and we use the above two DGPs to evaluate the finite sample level behavior of our

test. Note that

 ( ) =

(
+  in DGP 1,

Φ ()− 1
2 +  in DGP 2.

In both designs,  ( ·) is strictly monotone for each  and  (̄ ) =  for ̄ = 0. The other two

identification conditions used throughout the paper are easily verified.

To study the finite sample power behavior of our test, we consider the following four DGPs:

DGP 3:  = (05 + 01
2
 )

DGP 4:  = Φ (( + 1) 4) ( + 1) 

DGP 5:  =  +  − 2


01+exp()


DGP 6:  = Φ ()− 1
2 +  − (sin)

2

01+3


8We abuse the notation Φ a little bit here: Φ () = −Φ () and Φ () = −Φ ()  So the argument of Φ
can be of dimension  or   The bandwidths here are all set according to the Silverman’s rule of thumb in our simulations

below.
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DGP 7:  =  +  +


01+exp()
,

DGP 8:  = Φ ()− 1
2 +  +

 sin

01+2


where  = 1        and the instrument  are generated as in DGPs 1-2, and  is a parameter that

adapts the corresponding DGP for different simulation purposes.

DGPs 3 and 4 are used by HSW to test for the monotonicity in the unobservable ( here). It is easy

to verify that the identification conditions specified in Assumptions I.1-I.4 are all satisfied for DGPs 3-4.

But these two DGPs do not satisfy the additive separability condition.

When  = 0, DGPs 5 and 7 (resp. DGPs 6 and 8) reduce to DGP 1 (resp. DGP 2). For other values

of , the structural function  ( ) implied by DGPs 5-8 is not additively separable in error terms. In

addition, DGPs 5 and 6 satisfy all the identification conditions specified in Assumptions I.1-I.4; DGPs 7

and 8 violate Assumption I.1 but satisfies the other identification conditions (e.g.,  (0 ) =  regardless

of the value of  in DGPs 7-8). It is worth mentioning that when monotonicity is violated as in DGPs 7

and 8, the structural function (· ·) is generally not identified so that Lemma 2.1 in this paper does not
apply and our test is not applicable either.9 The inclusion of these two DGPs aims to investigate whether

our test still has some power in the case where the maintained key identifying assumption (monotonicity)

is not satisfied.

To construct our standardized test statistic  in (3.4), we need to compute sequentially ̂, B̂ and
̂. We first obtain local constant estimates ̂ (|), ̂−1 ( |), ̂(|) and ̂ =

R
̂−1 (̂(| ) |

̄ )() by using standard normal kernel function and Silverman’s rule of thumb for bandwidth choice,

i.e.,  =  =
¡
106

−15 106−15
¢
with  and  being the sample standard deviation of {}

and {}, respectively. We choose  () to be a scaled beta(3,3) distribution on
£
 1−

¤
, where 

denotes the -th sample quantile of {} and  = 005.  = 30 evenly-spaced points are chosen for

numerical integration. We set  ( ) = 1
©
 ≤  ≤ 1−

ª × 1© ≤  ≤ 1−
ª
, where,

e.g.,  is the -th sample quantile of {} and  = 00125 Note that we only establish the asymptotic
theory for the case where the trimming function  (· ·) has a fixed support X0 × Y0. But since the
sample quantiles converge to their population analogue at the parametric rate, we conjecture that the

asymptotic theories established above continue to be valid for our data-driven choice of the weighting

function. For the computation of B̂ and ̂, we need to further compute ̂ ( ) with a standard normal
kernel function and bandwidth  chosen as before. The same trimming function  ( ) and weight

function  () are utilized everywhere.

To obtain the bootstrap -values, we follow the procedure stated in Section 3.4 to compute the

rejection probabilities. We consider two sample sizes ( = 100 and 200) with 250 replications. Due to

the high computational burden, we only use  = 100 bootstrap resamples in each replication. Before

conducting the bootstrap with  = 100, we study the sensitivity of the test to the bandwidth  as

suggested by Giacomini, Politis and White (2007), using the warp-speed bootstrap procedure based

on a single bootstrap resample. We find that the our test is not very sensitive to the choice of  =¡
1

−15 1−15
¢
as long as 1 is between 1 and 2. We report the results for 1 = 106. In

9Hoderlein and Mammen (2007) show that an average over the marginal effects can be identified without the monotonicity

assumption.
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Table 1: Empirical level for DGPs 1-2

DGP  1% 5% 10%

1 100 0.008 0.044 0.116

200 0.012 0.048 0.112

2 100 0.004 0.040 0.088

200 0.008 0.052 0.108

Table 2: Empirical power for DGPs 3-8

DGP  1% 5% 10%

3 100 0.908 0.992 0.996

200 0.980 0.996 1

4 100 0.996 1 1

200 1 1 1

5 100 0.896 0.912 0.984

200 0.924 0.952 0.992

6 100 0.872 0.904 0.952

200 0.916 0.936 0.988

7 100 0.440 0.468 0.492

200 0.484 0.524 0.572

8 100 0.476 0.544 0.648

200 0.504 0.584 0.692

addition, we consider  = 1 in DGPs 5-8.

Table 1 reports the empirical level of our bootstrapped test for DGPs 1-2 where the nominal levels

are 1%, 5% and 10%. We see that the level of our test is fairly well behaved and it gets closer to the

nominal level as the sample size increases. Table 2 presents the empirical power of our bootstrapped

test at various nominal levels. Surprisingly our test has fantastic power to reject additive separability

for DGPs 3-4. The power is also reasonably good and increases as the sample size doubles in DGPs

5-8. Comparing the results for DGPs 7-8 with DGPs 5-6, we observe that the power performance of

our test is adversely affected by the violation of the monotonicity assumption. This is interesting as

our test is designed to test for additivity by maintaining the monotonicity hypothesis - a key identifying

assumption in the literature on nonparametric nonseparable models. In the general case, if one rejects

the null hypothesis, one may argue that either the null hypothesis or the monotonicity hypothesis may

be violated. Our limited simulation results here suggest that the violation of both may not enhance the

power of our test. An obvious reason for this is that our test, by construction, is only designed to test

for the violation of additivity, and it has no power against the violation of monotonicity.
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5 Concluding Remarks

The prevalent additive error structure has been an important assumption in many economic and econo-

metric models. This paper develops a simple consistent test to detect whether this critical assumption

holds in the presence of economic data. The test is motivated from the simple observation that the partial

derivative of the unknown structural function with respect to the unobserved error term is one under the

null hypothesis of additive separability and certain identification conditions. We derive the asymptotic

distributions of our test statistic under the null and a sequence of Pitman local alternatives and prove

its consistency. We also propose a bootstrap version of the test. Monte Carlo simulations are conducted

to examine the finite sample performance of the bootstrapped test. The test enjoys appropriate size and

reasonable power in finite samples.

There are some interesting topics for further research. First, under the same set of identification

conditions considered in this paper, one can develop other tests for additive separability. For example,

one may consider a test based on the observation that the cross derivatives with respect to the regressor

and the error term is zero under additivity. But this would need consistent estimate of cross derivatives

and thus is expected to be less powerful. For another example, we can consider the estimation of the

structural function under both the null and the alternative, and base a test on the weighted 2 distance

between these estimates. To this goal, one needs to develop an estimate of the structural function

under the additive separability condition. Under Assumption I.3 and the null: ( ) = ̄1 () + ,

 ( |) = ̄1 () +  (|)  This motivates us to obtain a consistent estimate ̃1 () of ̄1 () by

using either the marginal integration or backfitting technique. Then we can compare this estimate with

̂1 () used in Section 3.4. The theoretical study of this test is left for future research.

Second, one may consider relaxing some of the identification conditions used to identify and estimate

the nonparametric structural function under the alternative. For example, one may follow LW and relax

the monotonicity assumption. The problem is that without monotonicity, one cannot identify  ( ) or

its partial derivative with respect to  under the alternative without further assumptions. It is interesting

to know whether it is possible to develop a consistent test in this case. Alternatively, one may consider

relaxing the conditional exogeneity condition:  ⊥  |  Again, without this assumption, one cannot
identify  ( ) or its partial derivative as in this paper. Some other assumptions have to be in place.
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Appendix

A Proof of Some Technical Lemmas

In this appendix, we prove some technical lemmas that are used in the establishment of the main results

in Section 3.

Recall that U0 ≡ X0 × Z0  ≡ ( 0
 

0
)
0
  ≡ (0 0)0   ≡ ( 

0
)
0 and  ≡ ( 0)0  Let

1 ≡ 1{ ∈ X0  ∈ Y0} Define

 (;) ≡ 1



X
=1

 ( − ) [1 { ≤ }− (|)] = 1



X
=1

1̄ () 

V (;) ≡ 1



X
=1

{ ( − )− [ ( − )]} = 1



X
=1

̄

where  ≡  ( − )   =  ( − )  ̄ =  − () and 1̄ () = 1 { ≤ } −
 (|)  Let

1 ≡ −12−2
p
log 2 ≡ −12−(+)2

p
log and 3 ≡ −12−(++1)2

p
log

1 2 and 3 are similarly defined.

Lemma A.1 Suppose that Assumptions A.1-A.3, A.6(i) and A.7 hold. Let T0 = [  ̄ ] denote a closed
interval of (0 1)  Then

(a) ̂ (|)− (|) =  ()
−1

 (;) + (
2
2 + 1) uniformly in ( ) ∈ R× U0

(b) ̂−1 ( |)−−1( |) =  (2 + 1) uniformly in (  ) ∈ T0 × U0
(c) ̂−1 ( |)−−1( |) = −(

−1( |);){1+(1)}
(−1( |)|)() + (

2
2 + 1) uniformly in (  ) ∈ T0 × U0

Proof. For (), we make the following bias-variance decomposition:

̂ (|)− (|) = ̂ ()
−1 1



X
=1

 ( − ) [ (|)− (|)] + ̂ ()
−1

 (;)

By Assumptions A.1-A.3 and A.6(i) and the standard arguments in kernel estimation (e.g., Masry

(1996a, 1996b), Hansen (2008)), sup∈U0 |̂ () − () | =  (2 + 1)  sup∈U0 | 1
P

=1 ( − )

[ (|)− (|)] | =  (
1)  and sup∈U0 | (;)| =  (2)  It follows that uniformly in  ∈ U0

̂ (|)− (|) =  ()
−1

 (;) +

¡
1 + 22

¢


By the same argument as used in the proof of Theorem 4.1 of Boente and Fraiman (1991), we can show

that the last result also holds uniformly in  ∈ R under Assumption A.3.
For (), noting that ̂

³
̂−1 ( |)|

´
=  = 

¡
−1( |)|¢  we have¯̄̄


³
̂−1 ( |)|

´
−

¡
−1( |)|¢¯̄̄ = ¯̄̄³̂−1 ( |)|

´
− ̂

³
̂−1 ( |)|

´¯̄̄
≤ sup

∈R

¯̄̄
 (|)− ̂ (|)

¯̄̄
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So the pointwise consistency of ̂−1 ( |) follows from that of ̂ (|) and the continuity of  (·|)  By
Assumption A.3() and the first order Taylor expansion,


³
̂−1 ( |)|

´
−

¡
−1( |)|¢ = ĥ−1 ( |)−−1( |)

i

³
̃−1( |)|

´
where ̃−1( |) lies between ̂−1 ( |) and −1( |) Therefore by () and Assumption A.2()

sup
()∈T0×U0

¯̄̄
̂−1 ( |)−−1( |)

¯̄̄
≤

sup()∈T0×U0

¯̄̄

³
̂−1 ( |)|

´
−

¡
−1( |)|¢¯̄̄

inf()∈T0×U0 
³
̃−1( |)|

´
≤

sup∈U0 sup∈R
¯̄̄
 (|)− ̂ (|)

¯̄̄
inf()∈T0×U0 

³
̃−1( |)|

´ =  (2 + 1)

To obtain the uniform Bahadur representation for ̂−1 ( |) we apply the Hadamard differentiability
of the (conditional) quantile operator (see e.g., Doss and Gill (1992, Theorem 1)) to obtain

̂−1 ( |)−−1( |) = ̂(
−1( |)|)− 

 (−1( |)|) {1 +  (1)} 

This together with () implies that ̂−1 ( |)−−1( |) = −(
−1( |);){1+(1)}

(−1( |)|)() + (
2
2 + 1)

If  (| ) ∈ T0 = [  ̄ ] ⊂ (0 1) for (  ) ∈ Y0 ×X0 ×Z0 by Lemma A.1() ̂(| ) ∈ T 
0 with

probability approaching 1 (w.p.a.1) as  → ∞ where T 
0 ≡ [ −  ̄ + ] ⊂ (0 1) for some   0 Note

that the result in Lemma A.1() also holds uniformly in (  ) ∈ T 
0 × U0 w.p.a.1.

Lemma A.2 Suppose that Assumptions A.1-A.4, A.6 and A.7 hold. Then

(a) sup̃∈Y0|̃−|≤(2+1 )
sup∈U0

√
+12 k (̃;)−  (;)k =  (1);

(b) sup̃∈Y0|̃−|≤(2+1 )
sup∈U0

√
+12 kV (̃;)−V (;)k =  (1) 

Proof. The proof is analogous to that of Lemma A.3 in HSW and thus omitted.

Lemma A.3 Suppose that Assumptions A.1-A.4, A.6 and A.7 hold. Then for any  = (2 + 1)

we have

(a) ̂(+ |)− ̂(|) = (|) + 
¡
−12−2−14

¢
uniformly in  ∈ U0

(b) ̂−1 (+ |)− ̂−1 (|) = (−1(|)|)−1 + 
¡
−12−2−14

¢
uniformly in  ∈ U0

Proof. By Lemma A.1(), ̂(+|)−̂(|) = [(+ |)−(|)]+ ()
−1
[ (+ ;)

− (;)] +  (
2
2 + 1) By Assumption A.4 and Taylor expansions, the first term on the right

hand side of the last expression is (|) + (2) By Lemma A.2(),  (+ ;) −  (;) =

 (
−12−4−14) uniformly in  ∈ U0 Thus () follows by Assumption A.7. The proof of () is

analogous and thus omitted.

Lemma A.4 Suppose Assumptions A.1-A.4, A.6 and A.7 hold. Then uniformly in ( ) ∈ Y0 × U0
(a) ̂(|)− (|) =  ()

−1
V (;) + (

2 + 23)

(b) V (;) =  (3)

(c) ̂( + |)− ̂(|) = (|) + 
¡
−12−2−14

¢
for any  = (2 + 1)

where  (|) ≡ ( (|))
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Proof. Recall  ≡ (  0)0 and  ≡ ( 0)0  We make the following bias-variance decomposition:

̂(|)− (|) = ̂ ()
−1 1



X
=1

{ ( )− [ ( − )]}+ ̂ ()
−1V (;)

By Assumptions A.1, A.4 and A.6() and the standard arguments in kernel estimation, sup∈U0 |̂ ()−
 () |=  (2 + 2)  sup∈W0

| 1
P

=1 [ ( − )]− ( ) | =  (
2)  and sup∈W0

|V (;) |
=  (3)  Thus () and () follow. Furthermore, ̂( + |) − ̂(|) = [( + |)− (|)] +
 ()−1 [V ( + ;) −V (;)]+ (

2+23) Then () follows from Taylor expansions and Lemma

A.2().

Lemma A.5 Suppose that Assumptions A.1-A.4, A.6 and A.7 hold. Then uniformly in 

(a) (̂ − ) 1 = 1 {1 +  (1)}+  (
−12−2−14),

(b) (̂ − ) 1 =  (1 + 1)

where  =
R

1
(−1(|̄)|̄) [−

(−1(|̄);̄)
(̄) +

(;)
()

]() and   ≡ (| )

Proof. Let ̂  ≡ ̂(| ) Then (̂ − ) 1 = 1 + 2 where

1 ≡
∙Z

̂−1 (̂ |̄ )()−
Z

−1(̂ |̄ )()
¸
1 and

2 ≡
∙Z

−1(̂ |̄ )()−
Z

−1( |̄ )()
¸
1

By Lemmas A.1 and A.2,

1 = −
Z


¡
−1(̂ |̄ ); ̄ 

¢ {1 +  (1)}
 (−1(̂ |̄ )|̄ )  (̄ ) ()1 + (

2
2 + 1)

= −
Z


¡
−1( |̄ ); ̄ 

¢ {1 +  (1)}
 (−1( |̄ )|̄ )  (̄ ) ()1 +  (

−12−2−14)

and

2 =

Z
(−1( |̄ )|̄ )−1 (̂  −  ) ()1 +

¡
21 + 42

¢
=

Z
(−1( |̄ )|̄ )−1 ( )

−1
 (; ) ()1 +  (

−12−2−14)

Combining these results yields (). () follows from () and the standard arguments as used in showing

sup∈U0 | (;)| =  (2) 

Lemma A.6 Suppose that Assumptions A.1-A.4, A.6 and A.7 hold. Then

(a) 1 ( ) ≡
R h ̂(|̄)

̂(|) −
(|̄)
(|)

i
() = 1 ( ) +  (

2 + −1−(+1) log) uniformly in

( ) ∈ E0 ×X0
(b) 2 ≡

R ̂(̂|̄)−̂(|̄)
̂(|)

()1 = 21 +  (
−12−2−14) uniformly in 

where  =  ( )  1 ( ) =
R

1
(|)

h
V(;̄)

(̄) − ( )
V(;)

()

i
() and 2 =

R (|̄)
(|)

()
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Proof. First, observe that 1 ( ) = 11 ( )+12 ( )  where 11 ( ) =
R
̂(| )−1[̂(|̄ )

−(|̄ )]() and 12 ( ) =
R
(|̄ )[̂(| )−1−(| )−1]() By Lemma A.4(), we can

show thatZ
[̂(| )− (| )]2 () =

Z
 ( )−2V (; )

2
() + (

22 + 43)

=  (
2
1
−1 + 22) uniformly in ( ) ∈ Y0 ×X0 (A.1)

By Lemma A.4(), equation (A.1) and the Cauchy-Schwarz inequality, we have that uniformly in ( ) ∈
E0 ×X0

11 ( ) =

Z
(| )−1 [̂(|̄ )− (|̄ )] ()

−
Z

̂(| )−1(| ) [̂(| )− (| )] [̂(|̄ )− (|̄ )] ()

=

Z
(| )−1 [̂(|̄ )− (|̄ )] () + (

−1−(+1) log+ 22)

=

Z
(| )−1 (̄ )−1V (; ̄ ) () + (

2 + 23)

and

12 ( ) = −
Z

(|̄ )̂(| )−1(| )−1[̂(| )− (| )]()

= −
Z

(|̄ )(| )−2[̂(| )− (| )]() + (
−1−(+1) log+ 22)

= −
Z

(|̄ )(| )−2 ( )−1V (; ) () + (
−1−(+1) log+ 2)

Then by equation (2.2) we have that uniformly in ( ) ∈ E0 ×X0

1 ( ) =

Z
1

(| )
∙
V (; ̄ )

 (̄ )
− ( )

V (; )

 ( )

¸
() + (

2 + −1−(+1) log)

= 1 ( ) + (
2 + −1−(+1) log)

For (), note that 2 = 21 − 22 where 21 =
R ̂(̂|̄)−̂(|̄)

(|)
() 1 and 22 =R [̂(|)−(|)][̂(̂|̄)−̂(|̄)]

̂(|)(|)
() 1 By Lemmas A.4() and A.5(),

21 =

Z
(|̄ )
(| )

() (̂ − ) 1 +  (
−12−2−14) = 21 +  (

−12−2−14)

where  (
−12−2−14) holds uniformly in  By Assumption A.2, Lemmas A.4()-() and A.5(),

and equation (A.1), we have that uniformly in 

22 =

Z
[̂(| )− (| )] [̂(̂|̄ )− ̂(|̄ )]

(| )(| )
() 1 {1 +  (1)}

=

Z
|̂(| )− (| )| () (1 + 1)

=

∙Z
{[̂(| )− (| )]}2 ()

¸12
1 (1 + 1)

=  (
−12−(+1)2

p
log+ 2) (1 + 1) =  (

−12−2−14)

It follows that 2 = 21 +  (
−12−2−14) uniformly in 
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B Proof of the Main Results

Proofs of Theorem 3.1 and 3.2

We only prove Theorem 3.2 as the proof of Theorem 3.1 is a special case. To conserve space, let

 ≡  ( )  We first make the following decomposition:

+
1
2 ̂ = +

1
2

X
=1

½Z
̂(̂|̄ )− ̂(|̄ )

̂(| )
() +

Z ∙
̂(|̄ )
̂(| )

− 1
¸
()

¾2


= +
1
2

X
=1

½Z ∙
̂(|̄ )
̂(| )

− 1
¸
()

¾2


++
1
2

X
=1

∙Z
̂(̂|̄ )− ̂(|̄ )

̂(| )
()

¸2


+2+
1
2

X
=1

Z
̂(̂|̄ )− ̂(|̄ )

̂(| )
()

Z ∙
̂(|̄ )
̂(| )

− 1
¸
()

≡ ̂1 + ̂2 + 2̂3 say.

Propositions B.1, B.2, and B.3 study ̂1 ̂2 and ̂3 respectively. Combining the results in these

propositions yields +
1
2 ̂ =  + 0 +  (1)  where  = +

1
2
P

=1 
2


 =

Z
−11

∙
V (; ̄ )

 (̄ )
− V (; )

 ( )

¸
() = −1

X
=1

0 ()  (B.1)

1 = (| ) and 0 () =
R
−11

h
 (̄ )

−1
̄(̄) −  ( )

−1
̄()

i
() is as

defined in (3.2). The rest of the proof follows that of HSW closely.

First, using 0 we can write  as a third order  -statistic:

 = +
1
2

X
=1

⎡⎣−1 X
=1

0 ()

⎤⎦2  = −2+
1
2

X
1=1

X
2=1

X
3=1

 (1 2 3) 

where  (1 2 3) ≡ 0 (1 2) 0 (1 3) 1  To study the asymptotic distribution of 

we need to use the  -statistic theory (e.g., Lee (1990)). Let  (1  2) ≡  [ (1 1  2)]  and

̄(1  2  3) ≡  (1  2  3)−  (2  3)  Then we can decompose  as follows

 = −1+
1
2

X
1=1

X
2=1

 (1 2) + −2+
1
2

X
1=1

X
2=1

X
3=1

̄ (1 2 3)

≡ 1 + 2 say.

Consider 2 first. Write (22) = −42+1
P

16=1

£
̄ (1 2 3) ̄ (4 5 6)

¤


Observing that 
£
̄ (1  2  3)

¤
= 

£
̄ (1 2  3)

¤
= [̄(1  2 3)] = 0 [̄(1 2 

3)̄(4  5 6)] = 0 if there are more than three distinct elements in {1     6}  In view of this,
we can show that

(22) = (−1−−1 + −2−2−1 + −3−2−2) =  (1) 
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Then 2 =  (1) by the Chebyshev inequality.

For 1 let  () =
R
0 (̃) 0 (̃) 

¡
̃−1(̃ ̃)

¢
 (̃)  where  (·) is the CDF of

Then 1 = B+V where B = −1
P

=1  () and V = 2−1+
1
2
P
1≤≤  ()

contribute to the asymptotic bias and variance of our test statistic, respectively. Observing that V is
a second-order degenerate  -statistic, we can easily verify that all the conditions of Theorem 1 of Hall

(1984) are satisfied and a central limit theorem applies to it: V
→ 

¡
0 2

¢
 where 2 = lim→∞ 2

and 2 = 2
2+1 [ (12)]

2
.10 ¥

Proposition B.1 ̂1 = +
1
2

P
=1 

2
 + 0 +  (1) under H1 () 

Proof. To begin with, we decompose ̂1 as follows:
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Using Lemma A.6 and the fact that  ( ) = 1 +  ( ) under H1 () (see (3.5)), we can show
that
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1
2

X
=1

21 + +
1
2 ((

2 + −1−(+1) log)2)

= +
1
2

X
=1

2 +  (1)

where 1 = 1 ( ) and  is defined in (B.1). By (2.2), (3.5), and the weak law of large numbers

(WLLN), we have
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1
2
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X
=1

( )
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For 13 by Lemma A.6 and (3.5), we have
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¸
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10Write 0 () =

−11 (̄ )

−1 ̄(̄)() −

−11 ( )

−1 ̄()() ≡ 1 − 2  say. A

careful calculation suggests that both 1 and 2 contribute to the asymptotic bias of 1 but only 1 contributes to

the asymptotic variance of 1
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where ̄13 ≡ 
+

1
2
P

=1 ( ) Note that ̄13 = ̄131+ ̄132 where ̄13 = −1
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14) by moment calculations. It follows
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Combining the above results yields the desired result: ̂1 = +
1
2
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=1 
2
 + 0 +  (1) 

Proposition B.2 ̂2 =  (1) under H1 () 

Proof. By Lemma A.6() and the Cauchy-Schwarz inequality, we have
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In view of  (211) = 0 
¡
2211
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= 

¡
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¢
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1
2 − )

|213| = (+
1
2 − ) and |214| = (−1+

1
2 −2 ) we have 21 =  (

+
1
2 − +

−1+
1
2 −2 ) =  (1) by the Chebyshev and Markov inequalities. By the same token, we can

show that 22 =  (1)  Then 23 =  (1) by the Cauchy-Schwarz inequality. Consequently, we have

shown that 2 =  (1) 

Proposition B.3 ̂3 =  (1) under H1 () 
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Proof. Following the proof of Propositions B.1 and B.2, we can show that

̂3 = +
1
2

X
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= +
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X
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21 + 
+
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≡ 31 + 32 +  (1)  say.

We prove the lemma by demonstrating that 31 =  (1) and 32 =  (1)  Recall 1 ≡
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As in the analysis of 211 we can readily demonstrate that 31 =  (1) by straightforward moment

calculations and the Chebyshev/Markov inequalities. Thus 31 =  (1)  Note that 32 = 321 +

322 where 32 = −1
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1
2
P

=1

P
=1 ( ) for  = 1 2 We further write 321 =
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the first term is  (
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214) by moment calculations. It

follows that 321 =  (1)  Similarly, 321 =  (1)  Thus we have shown that 32 =  (1) 

Proof of Theorem 3.3

The proof is simpler than that of Theorem 3.2. Under H1 we can readily apply Lemmas A.6, A.5,
and the WLLN to obtain
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X
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The result follows by noticing that ̂2 =  (1) and ̂ = 
¡
+12

¢
under H1. ¥
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