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Abstract

Lossy trapdoor functions enable black-box construction of public key encryption (PKE) schemes
secure against chosen-ciphertext attack [18]. Recently, a more efficient black-box construction of
public key encryption was given in [13] with the help of chameleon all-but-one trapdoor functions
(ABO-TDFs). In this paper, we propose a black-box construction for transforming any ABO-TDFs
into chameleon ABO-TDFs with the help of chameleon hash functions. Instantiating the proposed
general black-box construction of chameleon ABO-TDFs, we obtain the first chameleon ABO-TDFs
based on the Decisional Diffie-Hellman (DDH) assumption.

Keywords: Lossy trapdoor functions, chameleon ABO-TDFs, Decisional Diffie-Hellman (DDH)
assumption

1 Introduction

Lossy trapdoor functions (LTDFs) were first introduced by Peikert and Waters [18] and further studied
in [6, 8, 7, 11, 19, 15]. LTDFs imply lots of fundamental cryptographic primitives, such as collision-
resistant hash functions, oblivious transfer. LTDFs can be used to construct many cryptographic schemes,
such as deterministic public-key encryption [2], encryption and commitments secure against selective
opening attacks [1], non-interactive string commitments [17]. Most important of all, LTDFs enable
black-box construction of public key encryption (PKE) schemes secure against chosen-ciphertext attack
(CCA-secure PKE in short) [18].

A lossy trapdoor function is a public function f which works in two computationally indistinguish-
able modes, i.e., there is no efficient adversary who can tell which working mode f is in, given only
the function description. In the first mode, it behaves like an injective trapdoor function and the input x
can be recovered from f (x) with the help of a trapdoor. In the second mode, f turns into a many-to-one
function and it loses a significant amount of information about the input x. Hence, f in the latter mode is
called a lossy function.

LTDFs were further extended to a richer abstraction called all-but-one trapdoor functions (ABO-
TDFs), which can be constructed from LTDFs [18]. A collection of ABO-TDFs is associated with a
branch set B, and an ABO trapdoor function gb(·) is uniquely determined by a function index g and a
branch b ∈B. There exists a unique branch b∗ ∈B such that gb∗(·) is a lossy function, while all gb(·),
b ̸= b∗, are injective ones. However, the lossy branch b∗ is computationally hidden by description of the
function g. Freeman et al. [6] generalized the definition of ABO trapdoor functions by allowing possibly
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many lossy branches instead of one. Let B∗ be the set of lossy branches. Then, an ABO trapdoor
function gb(·) is injective if b ∈B∗ and lossy if b ∈B \B∗.

The black-box construction of CCA-secure PKE from LTDFs in [18] needs a collection of LTDFs, a
collection of ABO-TDFs, a pair-wise independent family of hash functions, and a strongly unforgeable
one-time signature scheme, where the set of verification keys is a subset of the branch set of the ABO
collection.

The black-box construction of CCA-secure PKE from LTDFs was further improved in [13]. The
improved construction is free of the strongly unforgeable one-time signature scheme, and employs a
collision-resistant hash function instead. This results in ciphertexts of shorter length and encryption/de-
cryption of greater efficiency. The price is that the collection of ABO-TDFs is replaced by a special kind
of ABO-TDFs, namely chameleon ABO-TDFs. The notion of chameleon ABO-TDFs was first proposed
in [13]. Chameleon ABO-TDFs behave just like ABO-TDFs except the following specific properties.
Chameleon ABO-TDFs have two variables (u,v) to represent a branch. The chameleon property re-
quires that given any half branch u, there exists an efficient algorithm to compute the other half branch v
with a trapdoor such that (u,v) is a lossy branch.

Lai et al. [13] proposed a general construction of chameleon ABO-TDFs based on any CPA-secure
homomorphic PKE scheme with some additional property, like the Damgård-Jurik encryption scheme
[5]. This paper will further explore a more general construction of chameleon ABO-TDFs, which com-
bines ABO-TDFs with chameleon hash functions.

1.1 Related Works

Since this paper focuses on the general construction of chameleon ABO-TDFs, we review here the ex-
isting constructions of LTDFs in the literature.

Peikert and Waters [18] showed how to construct LTDFs and ABO-TDFs based on the Decisional
Diffie-Hellman (DDH) assumption and the worst-case hardness of lattice problem. Freeman et al. [6]
presented LTDFs and ABO-TDFs based on the Quadratic Residuosity (QR) assumption, the Decisional
Composite Residuosity (DCR) assumption and the d-Linear assumption. Hemenway and Ostrovsky [8]
showed that smooth homomorphic hash proof systems imply LTDFs, and homomorphic encryption over
cyclic groups also imply LTDFs [7]. Kiltz et al. [10] showed that the RSA trapdoor function is lossy
under the ϕ -Hiding assumption of Cachin et al. [4]. Recently, Boyen and Waters [9] proposed two new
discrete-log-type LTDFs based on the Decisional Bilinear Diffie-Hellman (DBDH) assumption.

Rosen and Segev [19] showed that any collection of injective trapdoor functions that is secure under
very natural correlated products can be used to construct a CCA-secure PKE scheme, and demonstrated
that any collection of LTDFs with sufficient lossiness yields a collection of injective trapdoor functions
that is secure under natural correlated products.

Mol and Yilek [15] extended the results of [18] and [19] and showed that only a non-negligible
fraction of a single bit of lossiness is sufficient for building CCA-secure PKE schemes.

Recently, Kiltz et al. [11] introduced the notion of adaptive trapdoor functions (ATDFs) and tag-
based adaptive trapdoor functions (TB-ATDFs). They showed that ATDFs and TB-ATDFs can be con-
structed directly by combining LTDFs and ABO-TDFs.

Lai et al. [13] introduced the notion of chameleon ABO-TDFs, presented a construction using CPA-
secure homomorphic PKE schemes with some additional property and instantiated it with the Damgård-
Jurik encryption scheme [5].

Our work is also related to chameleon hash functions, which are randomized collision-resistant hash
functions with the additional property that given a trapdoor, one can efficiently generate collisions.
Chameleon hash functions found various applications in chameleon signatures [12], online/offline signa-
tures [20], transformations for strongly unforgeable signatures [21], etc. Recently, Mohassel presented a
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general construction of one-time signatures from chameleon hash functions [14].

1.2 Our Contribution

We design a black-box construction of chameleon ABO-TDFs and give some instantiations. Specifically,

1. We propose a black-box construction of chameleon ABO-TDFs by combining chameleon hash func-
tions with ABO-TDFs with the help of a collision-resistant hash function family [16]. Let Y be
the range of a collection of chameleon ABO-TDFs and B be the branch set of a collection of
ABO-TDFs. With the help of a family T of collision-resistant hash functions from Y to B, a
collection of chameleon hash functions can be integrated into a collection of ABO-TDFs to result
in a collection of chameleon ABO-TDFs.

2. Following our black-box construction of chameleon ABO-TDFs, we present the first chameleon
ABO-TDFs based on the DDH assumption, which is the integration of the DL-based chameleon
hash function [12] proposed by Krawczyk and Rabin and the ABO-TDFs [6] based on the DDH
assumption. Recall that Lai et al. [13] instantiated their black-box construction of chameleon
ABO-TDFs with the Damgård-Jurik (DJ) encryption scheme [5] to only obtain a collection of
almost-always chameleon ABO-TDFs, based on the Decisional Composite Residuosity (DCR)
problem. In the mean time, we can also get chameleon hash functions from the Damgård-Jurik
encryption, which can convert the ABO-TDFs based on the DJ scheme into an almost-always
chameleon ABO-TDFs, and the security of chameleon ABO-TDFs is also based on the DCR
problem.

1.3 Organization of the Paper

The paper is organized as follows. In Section 2, we review the notion of chameleon hash functions and
introduce the DL-based construction of chameleon hash functions proposed by Krawczyk and Rabin
[12]. In Section 3, we review the notions of LTDFs, ABO-TDFs and chameleon ABO-TDFs. In Section
4, we present a black-box construction of chameleon ABO-TDFs by combining any chameleon hash
function with ABO-TDFs with the help of a collision-resistant hash function family. In Section 5, we
instantiate our black-box construction of chameleon ABO-TDFs to obtain the first chameleon ABO-
TDFs based on the DDH assumption. Finally, Section 6 concludes the paper. Appendix shows how
instantiate our black-box construction to obtain chameleon ABO-TDFs based on the DCR assumption.

1.4 Notation

Let H denote a set, |H | denote the cardinality of the set H , and h $←−H denote sampling uniformly

from the uniform distribution on set H . If A(·) is an algorithm, then a $←− A(·) denotes running the
algorithm and obtaining a as an output, which is distributed according to the internal randomness of
A(·). A function f (λ ) is negligible if for every c > 0 there exists an λc such that f (λ ) < 1/λ c for all
λ > λc.

2 Chameleon Hash Functions

A family of chameleon hash functions is a set of randomized collision-resistant (CR) hash functions with
an additional property that one can efficiently generate collisions with the help of a trapdoor.
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Let H be a set of hash functions, with each function mapping X to Y . Let k $←−Hindex(1κ) denote
the index generation algorithm. Each index k ∈ {1,2, · · · , |H |} determines a hash function Hk ∈H .
Then, H is collision-resistant if for any polynomial-time adversary A , its advantage AdvCR

H ,A (1κ),
defined as

AdvCR
H ,A (1κ) = Pr

[
Hk(x1) = Hk(x2) : k $←−Hindex(1κ);x1,x2

$←−A (Hk)
]
,

is negligible.
A family H of chameleon hash functions [14], mapping U ×V to Y consists of three (probabilistic)

polynomial-time algorithms: the index generating algorithm, the evaluation algorithm and the inversion
algorithm, satisfying chameleon, uniformity and collision resistance properties.

Index generation Hgen(1κ): On input a security parameter 1κ , the key generation algorithm outputs an
index k of H and a trapdoor td. The index k determines a specific hash function Hk : U ×V →Y .

Evaluation Hk(u,v): Each hash function Hk ∈H , takes u ∈U and v ∈ V as inputs, and outputs a hash
value in Y .

Inversion H−1
k (u,v, td,u′): On input (u,v) ∈ U × V , the trapdoor td and u′ ∈ U , where (k, td) $←−

Hgen(1κ), the algorithm H−1
k outputs v′ ∈ V .

Chameleon property: Given a hash input (u,v) of Hk, the trapdoor td of Hk, and u′ ∈U , the algorithm
H−1

k computes v′ ∈ V such that Hk(u,v) = Hk(u′,v′). More precisely,

Pr
[
Hk(u,v) = Hk(u′,v′) : (k, td) $←−Hgen(1κ),u,u′ ∈U ,v ∈ V ,v′ $←− H−1

k (u,v, td,u′)
]
= 1. (1)

Uniformity property: There exists a distribution Dv over V , such that for all u ∈U , the distributions
(k,Hk(u,v)) and (k,b) are computationally indistinguishable, where (k, td) $←−Hgen(1κ), v is cho-

sen from V according to distribution Dv, and b $←− Y .

Collision resistance property: For all Hk ∈H , without the knowledge of the corresponding trapdoor,
it is hard to find a collision, i.e., it is hard to compute two different pairs (u,v) and (u′,v′) such
that Hk(u,v) = Hk(u′,v′). More precisely, for any polynomial-time adversary A , its advantage
AdvCR

A ,H (1κ), defined as

AdvCR
A ,H (1κ) = Pr

[
Hk(u,v) = Hk(u′,v′) : (k, td) $←−Hgen(1κ);(u,v,u′,v′) $←−A (Hk)

]
,

is negligible.

We generalize the definition of chameleon hash functions by allowing that Eq.(1) holds with over-
whelming probability. Then, H is called a family of almost-always chameleon hash functions.

Below we introduce the Krawczyk and Rabin’s construction [12] of chameleon hash functions based
on the Discrete Logarithm (DL) assumption, which followed the chameleon commitment [3][9].

Construction 1. [12] The DL-based chameleon hash functions.

• Index generation: The algorithm generates a group G of prime order p and picks a generator
g of G. Randomly choose x ∈ Z∗p and compute y = gx. Return (G, p,g,y) as the hash index and
td = x as the trapdoor.
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• Evaluation: Given a hash index input (G, p,g,y) and (u,v) ∈ Zp×Zp, return

H(u,v) = gu · yv.

• Inversion: Given a hash index (G, p,g,y), a hash input (u,v) ∈ Zp×Zp, the trapdoor x, and
u′ ∈ Zp, return v′ = v+(u−u′)x−1 mod p.

In the Appendix, we describe a construction of chameleon hash functions based on the Damgård-
Jurik encryption scheme. The construction takes advantage of a cyclic group of the ciphertexts.

3 LTDFs, ABO-TDFs and Chameleon ABO-TDFs

In this section, we review the notions of LTDFs, ABO-TDFs and chameleon ABO-TDFs.

3.1 Lossy Trapdoor Functions

Informally, a collection of LTDFs [18] is a collection of functions with two computationally indistin-
guishable branches: an injective branch with a trapdoor and a lossy branch losing information about its
input.

Definition 1. (Lossy Trapdoor Functions). A collection of (n,k)-lossy trapdoor functions is a 3-tuple of
(possibly probabilistic) polynomial-time algorithms (G,F,F−1) such that:

1. Sampling an injective function: G(1κ , injective) outputs (s, td) where s is a function index and
td is its trapdoor. The algorithm F(s, ·) computes a (deterministic) injective function fs(·) over the
domain {0,1}n, and F−1(s, td, ·) computes f−1

s (·).

2. Sampling a lossy function: G(1κ , lossy) outputs s where s is a function index. The algorithm
F(s, ·) computes a (deterministic) function fs(·) over the domain {0,1}n whose image has size at
most 2n−k.

3. Hard to distinguish injective from lossy: The ensembles {s : (s, td)←G(1κ , injective)}κ∈N and
{s : s←G(1κ , lossy)}κ∈N are computationally indistinguishable.

3.2 All-But-One Trapdoor Functions

The notion of ABO-TDFs, introduced by Peikert and Waters [18], is generalized by Freeman et al. [6].
In an ABO collection, each function has a branch set B. There exists a subset B∗ ⊂B such that all the
branches in B \B∗ make the function injective, while all branches in B∗ make the function lossy. The
set B∗ is called the lossy branch set.

Definition 2. (All-But-One Trapdoor Functions). A collection of (n,k)-all-but-one trapdoor functions is
a 3-tuple of (possibly probabilistic) polynomial-time algorithms (Gabo,Fabo,F−1

abo) such that:

1. Sampling a function: For any κ ∈ N and b∗ ∈B, Gabo(1κ ,b∗) outputs (i′, td,B∗), where i′ is a
function index, td is a trapdoor and B∗ is a set of lossy branches with b∗ ∈B∗ ⊂B.

2. Evaluation of injective functions: Given (i′, td,B∗)←Gabo(1κ ,b∗), for all b /∈B∗, Fabo(i′,b, ·)
computes a (deterministic) injective function fi′,b(·) over the domain {0,1}n, and F−1

abo(i
′,b, td, ·)

computes f−1
i′,b (·).
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3. Evaluation of lossy functions: Given (i′, td,B∗)← Gabo(1κ ,b∗), for all b ∈ B∗, Fabo(i′,b, ·)
computes a (deterministic) function fi′,b(·) over the domain {0,1}n whose image has size at most
2n−k.

4. Security: The ensembles {i′ : (i′, td,B∗)←Gabo(1κ ,b∗0)}κ∈N,b∗0∈B and

{i′ : (i′, td,B∗)←Gabo(1κ ,b∗1)}κ∈N,b∗1∈B are computationally indistinguishable. Formally, Let A
be a distinguisher and define its advantage as

AdvABO
A (1κ) =

∣∣∣∣∣∣∣∣∣Pr

β = β ′ :

(b∗0,b
∗
1)←A (1κ);

(i′0, td0,B∗0)←Gabo(1κ ,b∗0);
(i′1, td1,B∗1)←Gabo(1κ ,b∗1);

β $←{0,1};β ′←A (i′β ,b
∗
0,b
∗
1)

− 1
2

∣∣∣∣∣∣∣∣∣ .
A collection of all-but-one trapdoor functions is secure, if AdvCH-LI

A (1κ) is negligible for every
PPT distinguisher A .

5. Hidden lossy branches: This property means it is hard to find one-more lossy branch. More
precisely, any probabilistic polynomial-time algorithm A that receives (i′,b) as input, where

(i′, td,B∗)← Gabo(1κ ,b∗) and b $←B∗, has only a negligible probability of outputting another
lossy branch b′ ∈B∗\{b}.

3.3 Chameleon ABO-TDFs

Chameleon ABO-TDFs is a specific kind of ABO-TDFs with two variable (u,v) as a branch [13]. The
chameleon property requires that given any u, it is easy to compute a unique lossy branch (u,v) with
the help of a trapdoor. The security requires that without the trapdoor, any lossy branch (u,v0) and any
branch (u,v1) from the injective branch set are computationally indistinguishable. Meanwhile, given a
lossy branch (u,v), it is impossible to generate another lossy branch (u′,v′) without the trapdoor.

Let U×V= {Uκ ×Vκ}κ∈N be a collection of sets whose elements represent the branches.

Definition 4 (Chameleon All-But-One Trapdoor Functions). A collection of (n,k)-chameleon all-but-one
trapdoor functions is a 4-tuple of (possibly probabilistic) polynomial-time algorithms (Gch,Fch,F−1

ch ,CLBch)
such that:

1. Sampling a function: For any κ ∈ N, Gch(1κ) outputs (i, td,S) where i is a function index, td is
the trapdoor and S ⊂Uκ ×Vκ is a set of lossy branches. Hereafter we will use U ×V instead of
Uκ ×Vκ for simplicity.

2. Evaluation of injective functions: For any (u,v) ∈ U × V , if (u,v) /∈ S, where (i, td,S) ←
Gch(1κ), then Fch(i,u,v, ·) computes a (deterministic) injective function gi,u,v(·) over the domain
{0,1}n, and F−1

ch (i,u,v, td, ·) computes g−1
i,u,v(·).

3. Evaluation of lossy functions: For any (u,v) ∈U ×V , if (u,v) ∈ S, where (i, td,S)←Gch(1κ),
then Fch(i,u,v, ·) computes a (deterministic) function gi,u,v(·) over the domain {0,1}n whose image
has size at most 2n−k.

4. Chameleon property: there exists an algorithm CLBch which, on input the function index i, the
trapdoor td and any u ∈U , computes a unique v ∈ V to result in a lossy branch (u,v). In formula,
v← CLBch(i, td,u) such that (u,v) ∈B∗.
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5. Security (1): Indistinguishability between lossy branches and injective branches. It is hard to
distinguish a lossy branch from an injective branch. Any probabilistic polynomial-time algorithm
A that receives i as input, where (i, td,S)← Gch(1κ), has only a negligible probability of distin-
guishing a pair (u,v0) ∈ S from (u,v1) /∈ S, even u is chosen by A . Formally, Let A be a CH-LI
distinguisher and define its advantage as

AdvCH-LI
A (1κ) =

∣∣∣∣∣∣∣Pr

β = β ′ :
(i, td,S)←Gch(1κ);u←A (i);

v0 = CLBch(i, td,u);v1
$← V ;

β $←{0,1};β ′←A (i,u,vβ )

− 1
2

∣∣∣∣∣∣∣ .
Given a collection of chameleon all-but-one trapdoor functions, it is hard to distinguish a lossy
branch from an injective branch, if AdvCH-LI

A (·) is negligible for every PPT distinguisher A .

6. Security (2): Hidden lossy branches. It is hard to find one-more lossy branch. Any probabilis-
tic polynomial-time algorithm A that receives (i,u,v) as input, where (i, td,S)← Gch(1κ) and

(u,v) $← S, has only a negligible probability of outputting a pair (u′,v′) ∈ S\{(u,v)}.

In the above definition, if F−1
ch (s, td,u,v, ·) inverts correctly on all values in the image of gs,u,v(·) with

(u,v) /∈ S, and CLBch(s, td,u) outputs v such that (u,v) ∈ S, both with overwhelming probability, the
collection is called almost-always chameleon ABO-TDFs.

4 General Construction of Chameleon ABO-TDFs

Given a family of ABO-TDFs
(

Gabo,Fabo,F−1
abo

)
, we show how to transform it into a family of chameleon

ABO-TDFs
(

Gch,Fch,F−1
ch ,CLBch

)
with the help of a family of chameleon hash functions

(
HGen,Hk,H−1

k

)
and possibly a family T of collision-resistant hash functions. The idea is the integration of the chameleon
hash functions into the ABO-TDFs by replacing each branch of an ABO-TDFs with the branch’s pre-
image in the chameleon hash function. Let Y be the range of the chameleon hash functions, and B the
branch set of the family of ABO-TDFs. When Y * B we still need a family T of collision-resistant
hash functions to map Y to B.

In the construction of chameleon ABO-TDFs from ABO-TDFs, a family of chameleon hash func-
tions is needed and their input (u,v) serves as the branches of the chameleon ABO-TDFs. With the help
of a family of chameleon hash functions H and a family T of collision-resistant hash functions, all

(u,v) are mapped into branches of an ABO-TDF i.e., b = T (Hk(u,v)) ∈B and Hk ∈H ,T $←− T . The
evaluation of the chameleon ABO-TDF behaves exactly as the ABO-TDF with b = T (Hk(u,v)) as its
branch input. Consequently, the set of lossy branches of the chameleon ABO-TDF is made up of the
pre-images of all lossy branches of the ABO-TDF, i.e., {(u,v) : T (Hk(u,v)) = b∗,b∗ ∈B∗}, with B∗ the
set of lossy branches of the ABO-TDFs. The chameleon property of the chameleon ABO-TDFs inherits
from that of chameleon hash functions and the security of the chameleon ABO-TDFs inherits mainly
from the security and the property of “hidden lossy branches” of the ABO-TDFs.

Construction 2. Let
(
HGen,Hk,H−1

k

)
describe a family of chameleon hash functions with Hk : U ×

V → Y , and
(

Gabo,Fabo,F−1
abo

)
describe a family of (n,k)-ABO-TDFs with B the set of branches.

Let T describe a family of collision-resistant hash functions mapping Y to B. Then, a family of
(n,k)-chameleon ABO-TDFs with branch set U ×V can be constructed with the following algorithms(

Gch,Fch,F−1
ch ,CLBch

)
.
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Sampling a function Gch(1κ): Given a security parameter κ ∈N, T $←−T , (k, td1)
$←−Hgen(1κ), u∗ $←−

U , v∗ $←−V , compute b∗=T (Hk(u∗,v∗)). Sample a function from the ABO-TDFs with (i′, td2,B∗)←
Gabo(1κ ,b∗). Let S = {(u,v) : T (Hk(u,v)) = b∗,b∗ ∈B∗}. Return i = (i′,Hk,T ) as the function
index, td = (td1,(u∗,v∗), td2) as the trapdoor, and S as the set of lossy branches.

Evaluation of functions: For all injective branch (u,v), define

Fch(i,u,v, ·) := Fabo(i′,T (Hk(u,v)) , ·).

Then, Fch(i,u,v, ·) computes an injective function if T (Hk(u,v)) /∈ B∗, and a lossy function if
T (Hk(u,v)) ∈B∗.

Inversion of injective functions: On input a function index i, a branch (u,v) /∈S , the trapdoor td =
(td1,(u∗,v∗), td2), and z = Fch(i,u,v,x), the inverse function returns

F−1
ch (i,u,v, td,z) := F−1

abo(i
′,T (Hk(u,v)) , td2,z).

Chameleon property(Computing a lossy branch): On input the trapdoor td = (td1,(u∗,v∗), td2), and

u′ $←−U , CLBch computes v′ = H−1
k (u∗,v∗, td1,u′), and return (u′,v′). In formula,

CLBch(i, td,u′) := H−1
k (u∗,v∗, td1,u′).

Theorem 1. The above general construction of chameleon ABO-TDFs satisfies (1) indistinguishability
between lossy branches and injective branches; (2) hidden lossy branches.

Proof. (1) Indistinguishability between lossy branches and injective branches: This property holds due
to the uniformity property of the chameleon hash functions and the security of the ABO-TDFs. Suppose
that there is an adversary A who is able to distinguish a lossy branch from an injective branch, then we
can build another algorithm E who can break the security of the ABO-TDFs as follows.

E samples a chameleon hash with (k, td1)
$←−Hgen(1κ), chooses u∗0,u

∗
1

$←−U , and v∗0,v
∗
1

$←− V ,T $←−
T . With overwhelming probability, T (Hk(u∗0,v

∗
0)) ̸=T (Hk(u∗1,v

∗
1)). Let b∗0 =T (Hk(u∗0,v

∗
0)) ,b

∗
1 =T (Hk(u∗1,v

∗
1)).

E sends (b∗0,b
∗
1) to a challenger C . The challenger C samples two ABO-TDF functions i′0 and i′1 with

Gabo(1κ ,b∗0) and Gabo(1κ ,b∗1), where i′0 is the first output of Gabo(1κ ,b∗0) and i′1 the first output of

Gabo(1κ ,b∗1). The challenger C randomly chooses β $←− {0,1}, and sends i′β to E . E will guess the
value of β .

Now E simulates the game between A and a challenger C ′ by playing the role of the challenger
C ′. E sends a function index i = (i′β ,Hk,T ) to A . A chooses a u ∈ U and gives u to E . E computes

v0 = H−1
k (u∗0,v

∗
0, td1,u) and v1 = H−1

k (u∗1,v
∗
1, td1,u). E chooses β ′ $←− {0,1} and sends vβ ′ to A as a

challenge.
If A responds with 0, then E sets β ′ as its guess of β , otherwise E sets 1−β ′ as its guess of β .
It is easy to see that i = (i′β ,Hk,T ) is a function index of a chameleon ABO-TDF, both (u∗β ,v

∗
β ) and

(u,vβ ) being lossy branches. Since u∗1−β ,v
∗
1−β are randomly chosen, Hk(u∗1−β ,v

∗
1−β ) is also randomly

distributed in Y due to the uniformity property of the chameleon hash function. Consequently, v1−β =

H−1
k (u∗1−β ,v

∗
1−β , td1,u) is also uniformly distributed in V . Therefore E simulates the challenger C ′

perfectly in the game.
If A ’s response is 0, which means (u,vβ ′) is also a lossy branch, hence E will have β ′ as its guess of

β . If A ’s response is 1, which means (u,v1−β ′) is a lossy branch, hence E will have 1−β ′ as its guess
of β .

81



General Construction of Chameleon ABO-TDFs Liu, Lai, and Deng

Consequently, E will have the same advantage in distinguishing a lossy branch from an injective
branch of the chameleon ABO-TDF as A in distinguishing i′0 and i′1, the first outputs of Gabo(1κ ,b∗0) and
Gabo(1κ ,b∗1) of the ABO-TDF.

(2) Hidden lossy branches: This property holds due to the collision resistance property of the chameleon
hash functions, the property “hidden lossy branches” of the ABO-TDFs and the collision-resistant prop-
erty of the hash function T . Now we analyze the probability of an adversary A winning the following
game.

A challenger C samples a chameleon hash function with (k, td1)
$←−Hgen(1κ), chooses u∗ $←−U ,v∗ $←−

V , T $←−T , and computes b∗=T (Hk(u∗,v∗)). C samples a function from the ABO-TDFs with (i′, td2,B∗)←
Gabo(1κ ,b∗). C sends the function index i = (i′,Hk,T ) and the lossy branch (u∗,v∗) of the chameleon
ABO-TDF to A , and A responds with another lossy branch (u,v). Let a = Hk(u,v) and a∗ = Hk(u∗,v∗).
There are three cases.

• a = a∗: A finds a collision Hk(u,v) = Hk(u∗,v∗) for Hk. It happens with negligible probability
due to the collision resistance property of Hk.

• a ̸= a∗ but T (a) = T (a∗): The uniformity property of the chameleon hash function Hk implies that
a∗ = Hk(u∗,v∗) is randomly distributed in Y . The collision-resistant property of the family T of
hash functions guarantees that the probability of T (a) = T (a∗) is negligible.

• a ̸= a∗ and T (a) ̸= T (a∗): The branch (u∗,v∗) is lossy, hence b∗ = T (Hk(u∗,v∗)) = T (a∗) is
a lossy branch of the ABO-TDF Fabo(i′,b∗, ·). If A finds another lossy branch (u,v) for the
chameleon ABO-TDF, then b = T (Hk(u,v)) = T (a) is also another lossy branch of the ABO-TDF
Fabo(i′,b∗, ·). According to the property of “hidden lossy branches” of ABO-TDFs, this probability
is negligible.

Consequently, A succeeds in outputing another lossy branch (u,v) with negligible probability. Q.E.D.

Note. When the range of the chameleon hash functions falls into the branch set of the ABO-TDFs, i.e,
Y ⊆B, the family T of collision-resistant hash functions can be omitted in the construction.

5 Instantiations of Chameleon ABO-TDFs Based on the DDH Assump-
tion

In [6], Freeman et al. proposed a construction of ABO-TDFs
(

Gabo,Fabo,F−1
abo

)
based on the DDH

assumption. Let G be a group of prime order p with g its generator. Let Rk1(Fp) be the set of n× n
matrices over Fp of rank 1. Given a vector x⃗ = (x1,x2, . . . ,xn) ∈ Fn

p, define g⃗x := (gx1 ,gx2 , . . . ,gxn) ∈ Gn.
Given an n×n matrix M = (ai j) over Fp and g ∈ G, define the n×n matrix gM := (gai j) over G. Given
an n×n matrix M = (ai j) over Fp and a column vector ggg = (g1,g2, . . . ,gn) ∈ Gn, define

gggM =

(
n

∏
j=1

ga1 j
j ,

n

∏
j=1

ga2 j
j , . . . ,

n

∏
j=1

gan j
j

)
.

Given a matrix SSS = (gi j) ∈ Gn×n and a column vector x⃗ = (x1,x2, . . . ,xn) ∈ Fn
p, define

SSSx⃗ :=

(
n

∏
j=1

gx j
1 j,

n

∏
j=1

gx j
2 j, . . . ,

n

∏
j=1

gx j
n j

)
.
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It follows that
(
gM
)⃗x

= (g⃗x)M = g(Mx⃗).

Construction 3. The ABO-TDFs based on the DDH assumption in [6] is defined as
(

Gabo,Fabo,F−1
abo

)
.

• Gabo(1κ ,b∗): On input the security parameter κ , choose 0 < ε < 1. Let n = κ . Choose a random
branch b∗ ∈B = {0,1, · · · ,2⌊εn⌋}. Choose an ⌈εn⌉-bit prime number p and a group G of order

p with generator g. Randomly choose a matrix A $←− Rk1(Fn×n
p ). Compute the matrix M = A−

b∗In ∈ Fn×n
p and SSS = gM ∈ Gn×n. Return (SSS,g) as the function index, M as the trapdoor, and

B∗ = {b∗,b∗−Tr(A)} as the set of lossy branches.

• Fabo (SSS,g,b, x⃗): on input a function index (SSS,g), a branch b ∈B and x⃗ = (x1,x2, . . . ,xn) ∈ {0,1}n.
Return SSSx⃗⊙ gb⃗x. Here ⊙ denote the component-wise product of elements of Gn. If b = b∗ or
b∗−Tr(A), then function Fabo (SSS,g,b,x) = SSSx⃗⊙ gb⃗x = gM+b∗In or gM+(b∗−Tr(A)In), and the matrix
M+b∗In (with respect to M+(b∗−Tr(A)In) is of rank 1. In this case, the image of the function is
restricted in a subgroup of Gn of size p < 2εn, hence is lossy. Otherwise, A is of full rank and the
function is injective.

• F−1
abo (SSS,g,b,M,ZZZ): on input a function index (SSS,g), an injective branch b, the trapdoor M, an eval-

uation ZZZ = Fabo (SSS,g,b,x) ∈Gn×n, the inverse function computes hhh = (h1,h2, · · · ,hn) = ggg(M+bIn)
−1

and xi = logg(hi) with i = 1,2, . . . ,n and returns x⃗ = (x1,x2, . . . ,xn).

Now, using the DL-based chameleon hash function [12] proposed by Krawczyk and Rabin and Free-
man et al.’s DDH-based ABO-TDFs, we instantiate our black-box construction of chameleon ABO-TDFs
to obtain the first chameleon ABO-TDFs based on the DDH assumption.

Construction 4. The integration of Construction 1 to Construction 3 gives a family of chameleon-ABO-
TDFs with

(
Gch,Fch,F−1

ch ,CLBch

)
.

• Gch(1κ): On input the security parameter κ , choose 0 < ε < 1. Let n = κ . Choose a ⌈εn⌉-bit
prime number p and a group G of order p with its generator g. Choose T ∈ T , with T a family
of collision-resistant hash functions and T : G→ Zp.

Choose x $←− Zp and compute y = gx. A chameleon hash function H : Zp×Zp→ G is defined as
H(u,v) = gu · yv with x being its trapdoor.

Choose a random branch (u∗,v∗) from the branch set Zp×Zp. Compute b∗ = T (H(u∗,v∗)) =

T
(

gu∗ · (gx)v∗
)
.

Randomly choose a matrix A $←− Rk1(Fn×n
p ). Compute the matrix M = A− b∗In ∈ Fn×n

p and SSS =
gM ∈ Gn×n.

Return (SSS,g,y) as the function index, (M,x,u∗,v∗) as the trapdoor, and

S = {(u,v) : (u,v) ∈ Zp×Zp,T (gu · yv) = {b∗,b∗−Tr(A)}} as the set of lossy branches.

• Fch ((SSS,g,y),(u,v),x): On input a function index (SSS,g,y), a branch (u,v) ∈ Zp ×Zp and x ∈
{0,1}n, compute b = T (gu · yv). Return SSSx⃗⊙gb⃗x.

If (u,v) ∈S , the function is reduced to be a lossy function of the ABO-TDFs in Construction 3,
otherwise it is just an injective function of the ABO-TDFs in Construction 3.
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• F−1
ch ((SSS,g,y),(u,v),(M,x),ZZZ): On input a function index (SSS,g), an injective branch (u,v), the

trapdoor (M,x), and ZZZ = Fch ((SSS,g),(u,v),x), compute b = T (gu · yv), the inverse function re-
turns F−1

abo (SSS,g,b,M,ZZZ), i.e., compute hhh = (h1,h2, · · · ,hn) = ggg(M+bIn)
−1

and xi = logg(hi) with
i = 1,2, . . . ,n and returns x⃗ = (x1,x2, . . . ,xn).

• CLBch((M,x,u∗,v∗),u′): On input the trapdoor (M,x,u∗,v∗), and u′ $←− Zp, return the output of
the inverse function of the chameleon function, i.e.,

v′ = H−1(x,u∗,v∗) = v∗+(u∗−u′)x−1 mod p.

Since Construction 1 is the DL-based chameleon hash function [12] and Construction 3 is the DDH-
based ABO-TDFs, we have the following claim.

Claim 1. Construction 4 gives a family of chameleon-ABO-TDFs based on the DDH assumption.

Freeman et al. also proposed a construction of ABO-TDFs based on the DCR assumption in [6].
The chameleon hash functions of Construction 5 can help it change to chameleon ABO-TDFs, which
performs as fast as the chameleon ABO-TDFs in [13], see the Appendix.

6 Conclusion

In this paper, we showed a black-box construction of chameleon ABO-TDFs, which can transform any
ABO-TDFs into chameleon ABO-TDFs with the help of chameleon hash functions, and possibly some
collision-resistant hash functions. We instantiated the construction with the existing ABO-TDFs and
chameleon hash functions to obtain the first chameleon ABO-TDFs based on the DDH assumption.
According to [13], these chameleon ABO-TDFs imply more efficient black-box construction of CCA-
secure PKE in the standard model than that in [18].
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A Chameleon ABO-TDFs Based on the DCR Assumption

Here, we describe a construction of chameleon hash functions and a construction of ABO-TDFs
(

Gabo,Fabo,F−1
abo

)
proposed by Freeman et al. [6], both of which are based on the Damgård-Jurik (DJ) encryption scheme.
Then, we will change the ABO-TDFs into chameleon ABO-TDFs, according to the black-box construc-
tion of chameleon ABO-TDFs.

We first describe the Damgård-Jurik (DJ) encryption scheme [5] which relies on the following theo-
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rem.

Theorem 2. [5] For any admissible N such that N = PQ, P,Q odd primes and gcd(N,ϕ(N)) = 1, and
s < min{P,Q}, the map ψs : ZNs ×Z∗N → Z∗Ns+1 defined by ψs(x,r) = (1+N)xrNs

mod Ns+1 is an iso-
morphism, where

ψs(x1 + x2 mod Ns,r1r2 mod N) = ψs(x1,r1) ·ψs(x2,r2).

Moreover, ψs(x,r) can be inverted to recover (x,r) in polynomial time given λ (N) = lcm(P−1,Q−1).

Below describes the Damgård-Jurik encryption scheme.

DJKg(1κ): On input the security parameter κ , choose an admissible κ-bit modulus N = PQ, and s <
min{P,Q} and return the public key PK = (N,s), and the secret key SK = λ (N).

DJEnc(PK,m): On input a plaintext m ∈ ZNs and the public key PK = (N,s), choose a random r ∈ Z∗N ,
and return C = (1+N)mrNs

mod Ns+1.

DJDec(C,SK): On input a ciphertext C ∈Z∗Ns+1 and the secret key SK = λ (N), the inversion algorithm
in Theorem 2 is used to compute (m,r)← ψ−1

s (C). Return m.

The DJ encryption scheme is a homomorphic PKE scheme with CPA secuirty, based on the DCR
assumption. We can construct chameleon hash functions from the DJ scheme, following the line of
Construction 1.

Construction 5. • Index generation: Generate a public/private key pair (PK,SK)← DJKg(1κ).
Randomly choose x ∈M and compute

C1 = DJEnc(PK,1),C2 =Cx
1.

Return (PK,C1,C2) as the hash index and td = (SK,x) as the trapdoor.

• Evaluation: Given a hash index (PK,C1,C2) and (u,v) ∈M ×M , return

H(u,v) = (C1)
u · (C2)

v =Cu+x·v
1 .

• Inversion: Given a hash index (PK,C1,C2), (u,v) ∈M ×M , the trapdoor (SK,x), and u′ ∈M ,
return

v′ = v+(u−u′)x−1 mod Ns.

Claim 2. Construction 5 gives a family of almost-always chameleon hash functions.

Proof. The plaintext space M = ZNs is a ring. The homomorphic property of the DJ scheme implies that
(DJEnc(PK,1)M , ·) is a cyclic group of order |M | with DJEnc(PK,1) as a generator, and this group
is a subgroup of (Z∗Ns+1 , ·). The DL assumption applies to the cyclic group (DJEnc(PK,1)M , ·). The
remaining proof follow that in [12].

Since any element in ZNs has multiplicative inverse with overwhelming probability, the construction
family is almost-always chameleon hash functions. Q.E.D.

Now we introduce a construction of ABO-TDFs
(

Gabo,Fabo,F−1
abo

)
based on the DJ scheme proposed

by Freeman et al. [6].

86



General Construction of Chameleon ABO-TDFs Liu, Lai, and Deng

Construction 6. The ABO-TDFs
(

Gabo,Fabo,F−1
abo

)
based on the DJ scheme is defined as follows.

• Gabo(1κ ,b∗): Let n = κ . (PK,SK) $←− DJKg(1κ) with PK = (N,s) and SK = λ (N). Choose a
random branch b∗ ∈B = {0,1}n/2, and compute C =DJEnc(PK,−b∗). Return the function index
(PK,C), the trapdoor (SK,b∗), and the lossy branch set B∗ = {b∗}.

• Fabo (PK,C,b,x): On input a function index (PK,C), a branch b ∈B and x ∈ ZNs . Return Cx ·
DJEnc(PK,bx). Due to the homomorphic property of the DJ scheme, Cx ·DJEnc(PK,x · b) =
DJEnc(PK,x · (b−b∗)). When b = b∗, then function is reduced to be DJEnc(PK,0), which is
lossy. Otherwise, it is injective.

• F−1
abo (PK,C,b,SK,b∗,z): on input a function index (PK,C), the branch input b ̸= b∗, the trap-

door (SK,b∗), and an evaluation z = Fabo (PK,C,b,x), the inverse function returns (b− b∗)−1 ·
DJDec(z,SK).

Both Construction 5 to Construction 6 are based on the DJ encryption scheme, then the integration
of two constructions results in a family of chameleon ABO-TDFs according to Theorem 1.

Construction 7. The combination of Construction 5 to Construction 6 also gives a family of almost-
always chameleon ABO-TDFs given by

(
Gch,Fch,F−1

ch ,CLBch

)
.

• Gch(1κ): Let n = κ . (PK,SK) $←− DJKg(1κ) with PK = (N,s) and SK = λ (N), and T ∈ T , with
T a family of collision-resistant hash functions and T : Z∗Ns+1 →{0,1}n/2.

Randomly choose x ∈ ZNs and compute

C1 = DJEnc(PK,1), C2 =Cx
1.

The hash index (C1,C2) uniquely determines a chameleon hash function defined as H(u,v) =
(C1)

u · (C2)
v.

Randomly choose (u∗,v∗) $←− ZNs × ZNs and compute b∗ = T (H(u∗,v∗)) = T
(
(C1)

u∗ · (C2)
v∗
)
.

Compute C =C−b∗
1 .

Return (PK,C1,C2,C) as the function index, (SK,(u∗,v∗)) as the trapdoor, and S = {(u,v) :
(u,v) ∈ ZNs×ZNs ,T ((C1)

u · (C2)
v) = b∗} as the set of lossy branches.

• Fch ((PK,C1,C2,C),(u,v),x): on input a function index (PK,C1,C2,C), a branch (u,v) ∈ ZN×ZN

and x ∈ ZNs , compute b = T ((C1)
u · (C2)

v) Return Cx ·DJEnc(PK,bx). Due to the homomorphic
property of the DJ scheme, Cx ·DJEnc(PK,bx) = DJEnc(PK,(b−b∗)x). When (u,v) ∈S , then
function is reduced to be DJEnc(PK,0), which is lossy. Otherwise, it is injective.

• F−1
ch ((PK,C1,C2,C),SK,(u∗,v∗),(u,v),z): on input a function index (PK,C1,C2,C), the trapdoor

(SK,(u∗,v∗)), a branch (u,v) /∈S , and z = Fch ((PK,C1,C2,C),(u,v),x), the inverse function re-
turns x=(b−b∗)−1 ·DJDec(z,SK) mod Ns, where b=T ((C1)

u · (C2)
v) and b∗=T (H(u∗,v∗))=

T
(
(C1)

u∗ · (C2)
v∗
)
. Since b,b∗ ∈ {0,1}n/2, we know that gcd(b− b∗,Ns) = 1, which ensures the

existence of (b−b∗)−1.

• CLBch(SK,(u∗,v∗),u′): On input the trapdoor (SK,(u∗,v∗)), and u′ $←− ZNs , return the output of
the inverse function of the chameleon function, i.e., v′ = v∗+(u∗−u′)x−1 mod Ns.

Claim 3. Construction 7 gives a family of almost always chameleon-ABO-TDFs based on the DCR
assumption.
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The family of chameleon ABO-TDFs from Construction 7 and the family proposed by Lai et al. are
both based on the DJ scheme, hence based on the DCR assumption. The two families almost share the
same efficiency.
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