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Abstract

Econometric analysis of continuous time models has drawn the attention of Peter Phillips for nearly

40 years, resulting in many important publications by him. In these publications he has dealt with

a wide range of continuous time models and econometric problems, from univariate equations to

systems of equations, from asymptotic theory to finite sample issues, from parametric models to

nonparametric models, from identification problems to estimation and inference problems, from sta-

tionary models to nonstationary and nearly nonstationary models. This paper provides an overview

of Peter Phillips’ contributions in the continuous time econometrics literature. We review the prob-

lems that have been tackled by him, outline the main techniques suggested by him, and discuss

the main results obtained by him. Based on his early work, we compare the performance of two

asymptotic distributions in a simple setup. Results indicate that the in-fill asymptotics significantly

outperforms the long-span asymptotics.

JEL Classifications: C22, C32



1 Introduction

The history of continuous time modeling in economics and finance dates back to more than one
hundred years ago when Bachelier (1900) first discussed the use of Brownian motion to analyze
price movements and to evaluate contingent claims in financial markets. The use of continuous time
models is now widely found in economics, especially in macroeconomics and financial economics.
There is strong reason why continuous time models appeal to economists and financial specialists as
“the economy does not cease to exist in between observations” (Bartlett (1946) and Phillips (1988)).
On aggregate levels, economic decision makings almost always involve many agents and are typically
done at different times. With the vast advancement in globalization, economic integration and
information technology in modern era, news arrives at shorter intervals and economic activities take
place in a non-stop fashion (Bergstrom and Nowman, 2007). As a result, continuous time models
may provide a reasonable approximation to the actual dynamics of economic behavior. Another
important advantage with continuous time models is that they provide a convenient mathematical
framework for the development of financial economic theory, enabling simple and often analytically
tractable ways to price financial assets. Applications of continuous time models to price financial
contingent claims have created a field called mathematical finance, which has undergone amazingly
fast development in the last three decades.

There are other reasons why continuous time models are used in economics and finance. For
example, economics, finance, and related fields often distinguish between quantities which are stocks
and those which are flows. A stock variable is measured at one specific time, and represents a
quantity existing at that point in time, which may have been accumulated in the past. A flow
variable is measured over an interval of time. Therefore, a flow would be measured per unit of time.
Continuous time models allow for separate treatments of these two types of variables. Another
example would be that time aggregation is not an issue in the continuous time setup whereas it
may present obstacles in discrete time models, including some widely used specifications, such as
GARCH models (Drost and Nijman, 1993).

One of the most important proponents of continuous time econometric models in macroe-
conomics is Reg Bergstrom, a New Zealand economist, whose important work can be found in
Bergstrom (1966, 1983, 1984, 1985a, 1985b, 1986, 1990) and Bergstrom and Wymer (1976). The
use of continuous time models in finance is best seen in two of the most influential papers in financial
economics, Black and Scholes (1973) and Merton (1973). Merton (1990) contains many important
work of his in the area.

Directly influenced by Bergstrom, Peter Phillips completed his Master’s thesis in 1971 at the
University of Auckland, under the supervision of Bergstrom, working on estimation issues of con-
tinuous time models. A research article from his Master’s thesis appeared in Econometrica in 1972.
This was a remarkable kickoff to an illustrious career. Since then, Phillips has spent nearly 40 years
working on continuous time models, leading to more than 20 publications in the area. His written
contributions cover many important issues in the literature, from univariate equations to systems of
equations, from asymptotic theory to finite sample issues, from parametric models to nonparametric
models, from identification problems to estimation and inference problems, from stationary models
to nonstationary and nearly nonstationary models. Naturally his research focus changed as the field
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evolved and over time the applications of continuous time models has shifted from macroeconomics
to finance.

Like the contributions he made to other areas in econometrics, Peter Phillips has significantly
raised the level of technicality and rigor of continuous time literature since 1970s. Many contribu-
tions that he made to this literature are fundamental and have long-lasting effects. He has been
the frontrunner in estimation, identification, finite sample theory, and nonstationary and nearly
nonstationary issues in the continuous time literature.

It is a great honor and privilege for me to have this opportunity to write a review article
summarizing Phillips’ extraordinary contributions to the continuous time econometrics literature.
I have organized this article as follows. Section 2 reviews a variety of methods that he proposed
to estimate parametric continuous time models. Section 3 reviews the identification problem that
he pointed out in a class of continuous time models and the solutions that he suggested. Section 4
reviews various nonparametric methods he developed in recent years. Section 5 reviews his work in
the near unit root continuous time model, where his primary concerns are about the finite sample
issues of traditional approaches. Section 6 presents a new set of results in a simple setup and
show that the in-fill asymptotic theory is superior to the long-span asymptotic theory. Section 7
concludes.

2 Estimating Parametric Continuous Time Models

2.1 Estimating Continuous Time Macroeconometric Models

The continuous time model, considered in Phillips (1972, 1974, 1976a, 1976b), takes the form of a
stochastic differential equation (SDE):

dX(t) = (A(θ)X(t) +B(θ))dt+ ζ(dt), X(0) = X0. (1)

where X(t) = (X1(t), · · · , XM (t))′ is a M -dimensional continuous time random process, A(θ) (B(θ))
is an M×M matrix (n×1 vector) whose elements depend on unknown parameters θ = (θ1, · · · , θK)
that need to be estimated, ζ(dt) is a vector of white noise disturbances with covariance Σ (namely
E(ζ(dt)ζ(dt)′) = Σdt). See Bergstrom (1984) for the definition of the white noise disturbances. A
special case of the white noise disturbance is dW (t) where W (t) is a vector of standard Browian mo-
tion. It is important to remark that ζ(dt) is not necessarily a Gaussian process. The interpretation
of (1) is that the random process X(t) satisfies the following stochastic integral equation:

X(t) = X(0) +
∫ t

0
(A(θ)X(s) +B(θ))ds+

∫ t

0
ζ(ds).

The observed data are assumed to be recorded discretely at (0, h, 2h, · · · , nh(= T )) in the time
interval [0, T ]. So n + 1 is the total number of observations, h the sampling interval, and T the
time span of the data. While the data are assumed equispaced, such an assumption is made for
convenience of presentation and may be relaxed. Macroeconomic variables are typically available
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at annual and quarterly frequencies, and more recently, at the monthly frequency. As a result,
h = 1, 1/4, 1/12, corresponds to the annual, quarterly, and monthly frequency, respectively. In this
paper, we use X(t) to represent a continuous time process and Xt to represent a discrete time
process. When there is no confusion, we simply write Xth as Xt.

The difficulty with estimating the parameters of the continuous time model (1) lies in the fact
that only discretely observed data are available. To facilitate estimation, Bergstrom (1966) proposed
approximating the continuous time model (1) by the following discrete time model:

Xt+1 −Xt =
(

1
2
A(θ){Xt+1 +Xt}+B(θ)

)
h+ ut+1, (2)

where the trapezoidal rule is used to approximate the integral, namely,∫ ih

(i−1)h
µ(X(s); θ)ds ≈ h

2
{
µ(Xih; θ) + µ(X(i−1)h; θ)

}
.

The discrete time model is then estimated by standard methods, such as the three-stage least
squares. As model (2) is merely an approximation to model (1), such an estimation approach
inevitably suffers from the discretization bias that is induced by the trapezoidal rule. Obviously,
the bias depends on the sampling interval, h, and does not disappear even if T → ∞. The bigger
the h, the larger the discretization bias.

The trapezoidal approximation is closely related to the Euler scheme approximation given by:∫ ih

(i−1)h
µ(X(s); θ)ds ≈ hµ(X(i−1)h; θ),

which leads to the approximate discrete time model:

Xt+1 −Xt = (A(θ)Xt +B(θ))h+ vt+1. (3)

As argued in Phillips and Yu (2009a), the two approximations are equivalent to O(h). Obviously,
Bergstrom’s approximation is an implicit method and in the multivariate case, it leads to a non-
recursive simultaneous equations model approximation to a system of recursive stochastic differen-
tial equations, whereas the Euler approximation is explicit and leads to a recursive simultaneous
equations model.

Alternatively, one can obtain the exact discrete time model in the sense that the observations at
the discrete time points in time that are generated by (1) also satisfy the exact discrete time model.
The main advantage in the exact discrete time model is that it avoids the discretization bias, no
matter how big h is. This approach was taken seriously in Phillips (1972) and is a fundamental
contribution.

To obtain the discrete time model of (1), one can first solve the SDE for X(t). Assume that
A(θ) has distinct eigenvalues λ1(θ), . . . , λM (θ), all with negative real parts. Consequently, there
must exist a matrix P (θ) such that:

P (θ)A(θ)P (θ)′ = diag(λ1(θ), · · · , λM (θ)) := Λ(θ).
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Bergstrom (1966) showed that the solution to SDE (1) is given by:

X(t) =
[
X(0) +A−1(θ)B(θ)

]
exp(A(θ)t)−A−1(θ)B(θ) + ut, (4)

where exp(A) := I +A+ 1
2!A

2 + 1
3!A

3 + · · · and ut =
∫ t

0 exp(A(θ)(t− s))P exp(Λ(t− s))P ′ζ(ds). As
a result, the exact discrete time model is given by:

Xt+1 = exp(A(θ)h)Xt −A−1(θ)(exp(A(θ)h)− I)B(θ) + εt+1, (5)

where

E(εt) = 0, E(εtε′t) =
∫ h

0
exp(A(θ)s)Σ exp(A(θ)′s)ds := Ω.

Phillips (1972) used a generalized least squares procedure to estimate θ that is equivalent to
maximum likelihood (ML) if the covariance matrix of the disturbances is known, and showed that
the estimators are consistent and asymptotically efficient when T → ∞. Using the terminology of
Peter Phillips, this form of asymptotics is called the long-span asymptotics. With simulated data
from a three-variable trade-cycle model, Phillips (1972) examined the finite sample properties of
the estimates and found the superior finite sample performance of the exact discrete model relative
to the approximate discrete model.

To illustrate the magnitude of the discretization error in the approximate model (3), consider
the following univariate continuous time model:

dX(t) = κ(µ−X(t))dt+ ζ(dt). (6)

So A = −κ, B = κµ. If κ > 0, X(t) is stationary with µ as the long run mean, κ as the speed
of mean reversion, 1/(κ ln 2) as the half-life of a shock. The Euler scheme leads to the following
approximate model:

Xt+1 = κµh+ (1− κh)Xt + vt+1, (7)

whereas the exact discrete time model is:

Xt+1 = µ
(

1− e−κh
)

+ e−κhXt + εt+1. (8)

Clearly we use κµh to approximate µ(1− e−κh) and 1− κh to approximate e−κh. The order of the
approximation error may be obtained from the following Taylor expansions:

µ(1− e−κh) = κµh+O(h2), (9)

e−κh = 1− κh+O(h2). (10)

Consequently, if h is small, the Euler scheme should provide a good approximation to the exact
discrete time model. However, if h is large, the Euler approximation can be poor. For a numerical
example, consider the case where κ = 2 (an empirically realistic value) and h = 1/12 (i.e. monthly
data) in which case e−κh is 0.8465 whereas 1 − κh is 0.8333 and the approximation is reasonable.
But if κ = 2 and h = 1 (i.e. annual data), e−κh is 0.1353 whereas 1− κh is −1. The quality of the
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approximation is unsatisfactory with the sign of the coefficient flipped. The economic implications
of these two values would be very different. Note that the autoregressive coefficient implied by
the Euler model is always smaller than that implied by the exact model when κh ∈ (0, 1) because
e−κh > 1− κh.

The model considered by Phillips (1972) in the Monte Carlo study is the three-variable trade-
cycle model given by:

dC(t) = α[(1− s)Y (t) + α− C(t)]dt+ ζ1(dt), (11)

dY (t) = λ[C(t) +DK(t)− Y (t)]dt+ ζ2(dt), (12)

dK(t) = γ[νY (t)−K(t)]dt+ ζ3(dt), (13)

where C = consumption, Y = income, and K = capital. There are 6 parameters in the model.
Phillips (1972) simulated 25 observations from the model and performed the generalized least square
estimation to the exact discrete model and the three-stage least squares to the approximate discrete
model. While the setup may seem easy from today’s perspective, given the rapid development in
computing technology and softwares in recent years, it is conceivably much harder in the 1960s to
develop the computer program and do the computing.

As his first publication in econometrics, Phillips (1972) is filled with major conceptual ad-
vance, cutting edge technical innovation, sophisticated Monte Carlo exercise, and perhaps most
importantly, enormous practical relevance to empirical studies in economics and finance. It was
masterfully put together with good knowledge of linear algebra, differential equations, computa-
tional mathematics, statistics and economics. It is even more remarkable given the fact that it was
based on his Master’s thesis. Indeed, the argument of eliminating the discretization bias has had a
long run impact on the literature. The concern about the discretization bias has motivated many
researchers to introduce various new methods to estimate continuous time financial models over the
last 2 decades (see, for example, Lo (1987), Pedersen (1995), Chib, Elerian and Shephard (2001),
and Aı̈t-Sahalia (2002)).

Phillips (1974) generalized the results by allowing the presence of identities, higher order of
derivatives, and exogenous variables. These augmentations are practically important in macroeco-
nomics. For instance, often imposed into the macroeconometric model are well known identities
such as the balance of payments identity and the national income identity. In the context of the
exact discrete model, Phillips (1974) showed that the presence of identities, whether it is in the first
order model or in the higher order models, is unlikely to cause any estimation problems, whereas
the introduction of exogenous variables represents a more serious complication. To explain the
complication, consider the following model:

dX(t) = (A(θ)X(t) +B(θ)Z(t))dt+ ζ(dt), (14)

where Z(t) is a vector of exogenous variables, observed at the same discrete point in time as for
X(t). The exact discrete time model of (14) is given by:1

Xt = exp(Ah)Xt−1 −A−1(exp(Ah)− I)B +
∫ h

0
exp(sA)BZ(th− s)ds+ εt, (15)

1To simplify the notations, we write A(θ), B(θ), P (θ), and Λ(θ) by A,B, P, and Λ, respectively.
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where εt =
∫ th

(t−1)h exp(A(θ)(t−s))P exp(Λ(t−s))P ′ζ(ds). If Z(t) is not a simple integrable function
of time, it cannot be integrated out analytically and hence a continuous record is needed for Z(t)
before the model can be estimated. Since in practice Z(t) is always observable only at a grid of
discrete points, we have to approximate the integral. Noting that polynomial is simple integrable
functions, Phillips (1974) proposed to expand Z(th− s) in a second order Taylor series about s = 0
and to use the three-point Lagrange interpolation formula to approximate Z(th− s), namely:

Ẑ(th− s) = Zt − s(Zt−2 − 4Zt−1 + 3Zt) + s2(Zt − 2Zt−1 + Zt−2)/(2h2).

Substituting out Z(th− s) in (15) by Ẑ(th− s) and integrating out the polynomials, we have:

Xt+1 = exp(A(θ)h)Xt + E2Zt + E3Zt−1 + E4Zt−2 + ηt+1, (16)

where the expressions for Ei, i = 2, 3, 4 are given in Phillips (1974). The generalized least squares
procedure can then be applied to estimate the approximate model. In general, there is an approx-
imation error in (16) which depends on h. The smaller the h, the smaller the discretization error.
However, if elements of Z(t) are polynomials in t of degree of at most two, there is no approximation
error in (16) because in this case (16) is the exact discrete model. Phillips (1976a, 1976b) made
further contributions along this line of research.

So far all the variables are assumed to be observed at specific points in time. This assumption
is reasonable for stock variables. Flow variables, such as C(t) and Y (t) in the trade-cycle model
given by (11), (12) and (13), can be observed only as the integrals, such as

∫ th
(t−1)hC(s)ds and∫ th

(t−1)h Y (s)ds. Let Xt =
∫ th

(t−1)hC(s)ds when C(t) is a flow variable. The exact discrete time model
for Xt is different from that when C(t) is assumed to be a stock variable. Phillips (1978) made
several contributions in this context.

It is important to point out that the continuous time models discussed in this section have been
widely applied to describe and forecast the movement of the economies of many industrial countries.
For example, Bailey, Hall and Phillips (1987) used a continuous time model to make predictions of
the New Zealand economy. Bergstrom (1996) provided a comprehensive list of the applications.

2.2 Estimation Continuous Time Financial Econometric Models

An important class of continuous time models used in finance is diffusion processes, where the
randomness is driven by the Brownian motion. A general time homogenous parametric diffusion
process takes the form:

dX(t) = µ(X(t); θ)dt+ σ(X(t); θ)dW (t), (17)

whereW (t) is a (vector)-standard Brownian motion, σ(X(t); θ) is a given diffusion function, µ(X(t); θ)
is a given drift function, and θ is a vector of unknown parameters. This class of parametric models
has been widely used to characterize the temporal dynamics of financial variables, including stock
prices, interest rates, exchange rates, and volatilities. Typically financial variables are observed at
higher frequencies than macroeconomic variables. If Xt is observed monthly (weekly or daily), we
have h = 1/12 (1/52 or 1/252). However, ultra high frequency data have become available in recent
years.
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Arguably the most important continuous time model in finance is the so-called affine model of
Duffie and Kan (1996), where both µ(X(t); θ) and σ(X(t); θ)σ(X(t); θ)′ are affine functions of X(t).
There are two important special univariate cases in the affine family.

First, Vasicek (1977) proposed the following Ornstein-Uhlenbeck (OU) process to describe the
movement of short term interest rates:

dX(t) = κ(µ−X(t))dt+ σ dW (t), X0 ∼ N(µ, σ2/(2κ)) (18)

This model is a special case of (1) and hence, the exact discrete model is of the form:

Xth = µ
(

1− e−κh
)

+ e−κhX(t−1)h + σ
√

(1− e−2κh)/(2κ)εt, (19)

where εt ∼ i.i.d. N(0, 1). This is a Gaussian AR(1) process and can be estimated by ML. As
a result, the asymptotic theory developed by Phillips (1972) under stationarity assumptions (i.e.,
κ > 0) is applicable.2

Second, Cox, Ingersoll and Ross (1985, CIR hereafter) proposed the square root process to
describe movements in short term interest rates:3

dX(t) = κ(µ−X(t))dt+ σ
√
X(t) dW (t), X0 ∼ Γ(2κ/σ2, 2κµ/σ2)), (20)

where Γ(α, β) is a Gamma distribution with parameters α and β. The error term in the exact
discrete model is non-Gaussian.

One advantage of using the affine continuous time models is that the formulation permits closed-
form or nearly closed-form solutions to many important pricing formulae. For a general treatment,
see Duffie and Kan (1996). In the context of the OU process, Vasicek (1977) derived the expression
for bond prices and Jamshidian (1989) gave the corresponding formula for bond option prices. In
the context of the square root process, CIR (1985) derived the expressions for bond prices and bond
option prices.

While the affine models are analytically tractable, they may not necessarily fit the data well.
Chan, Karolyi, Longstaff, and Sanders (1992) (CKLS, hereafter) considered a univariate interest
rate diffusion process:

dX(t) = κ(µ−X(t))dt+ σXγ(t)dW (t), (21)

where γ is a free parameter that is to be determined by data. Obviously, this model has a more
flexible diffusion term than the affine models. Unfortunately, the exact discrete time model is not
analytically available and the error term is not Gaussian unless γ = 0.

To enable a Gaussian discrete time representation of (21), Nowman (1997) assumed that the
conditional volatility is constant between two consecutive observation points, [(t − 1)h, th), t =
1, 2..., n. Namely, the CKLS model is approximated by the OU process locally, with the diffusion
term σXγ(t) replaced with σXγ

(s−1)h when t ∈ [(s−1)h, sh). From Phillips (1972), the exact discrete
time model of the approximate continuous time model is:

Xth = µ
(

1− e−κh
)

+ e−κhX(t−1)h + σXγ
(t−1)h

√
(1− e−2κh)/(2κ)vt, (22)

2In the multivariate case, κ > 0 means that the eigenvalues of κ are all positive.
3Heston (1993) used the same specification for volatility.
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where vt ∼ i.i.d. N(0, 1). Equation (22) is amenable to ML estimation since the transition density
is Gaussian.

Motivated from the observation that the Gaussian model (22) is not the exact discrete time
model of (21), Yu and Phillips (2001) developed an exact Gaussian method to estimate continuous
time models with a linear drift function of the following form:

dX(t) = κ(µ−X(t))dt+ σ(X(t); θ)dW (t), (23)

The approach is based on the idea that any continuous time martingale can be written as a Brownian
motion after a suitable time change (Mt = W[M ]t

). That is, if the chronological time in a local
martingale Mt is adjusted to time based on the evolution of the quadratic variation process [M ]t
of M, we have the time change given by Tt = inf{s|[M ]s > t} and the process is transformed to a
Brownian motion (called the DDS Brownian motion).

To see how this approach can be used to estimate equation (23), first write (23) as:

X(t+ δ) = µ
(

1− e−κh
)

+ e−κhX(t) +
∫ δ

0
e−κ(δ−τ)σ(X(t+ τ); θ)dW (τ), ∀δ > 0. (24)

Define M(δ) =
∫ δ

0 e
−κ(δ−τ)σ(X(t+ τ); θ)dW (τ) and its quadratic variation process by:

[M ]δ = σ2

∫ δ

0
e−2κ(δ−τ)σ(X(t+ τ); θ)dτ. (25)

To construct the DDS Brownian motion to represent M(δ), one can use the stopping time. For
any fixed constant a > 0, let

δj+1 = inf{s|[Mj ]s ≥ a} = inf{s|σ2

∫ s

0
e−2κ(s−τ)σ2(X(tj + τ); θ)dτ ≥ a}. (26)

and construct a sequence of time points {tj} using the iterations tj+1 = tj + δj+1 with t1 assumed
to be 0. Evaluating equation (24) at {tj}, we have

Xtj+1 = µ
(

1− e−κδj+1

)
+ e−κδj+1Xtj +M(δj+1). (27)

where M(δj+1) = W[M ]δj+1
∼ N(0, a) is the DDS Brownian motion. Hence, equation (27) is an exact

discrete model with Gaussian disturbances and can be estimated directly by ML conditional on the
sequence of time changes. The asymptotic distribution can be obtained via the Fisher information
theory when T →∞.

While the SDE (17) is formulated in continuous time, the sample data are always collected at
discrete points in time or over discrete intervals in the case of flow data. One may argue that
for financial variables, the sampled data are so frequently observed as to be nearly continuously
available.

If a continuous record from [0, 1] is indeed available, Phillips (1987b) proposed to estimate κ in
the model:

dX(t) = −κX(t)dt+ dW (t), (28)
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by the following ML estimator:

κ̃ = −
∫ 1

0 X(t)dX(t)∫ 1
0 X(t)2dt

. (29)

This is because the log-likelihood function of X(t), t ∈ [0, 1], has the following form:

`(κ) =
∫ 1

0
−κX(t)dXt −

1
2

∫ 1

0
κ2X(t)2dt.

As a consequence of (29), the finite sample distribution of κ̂− κ is:

κ̃− κ =

∫ 1
0 X(t)dW (t)∫ 1

0 X(t)2dt
. (30)

Phillips and Yu (2009b) proposed an alternative method to estimate parameters in (17) based
on the following two properties: (1) the diffusion term can be fully uncovered from a continuous
record; (2) for a diffusion process with a known diffusion term, the likelihood function of the process
is analytically available via the Girsanov theorem. The method of Phillips and Yu (2009b) contains
two steps.

To fix the idea, consider the SDE:

dX(t) = µ(X(t); θ1)dt+ σ(X(t); θ2)dW (t), (31)

In the first step, parameters in the diffusion term are estimated from the empirical quadratic vari-
ation process. In the continuous time econometrics literature, the empirical quadratic variation is
known as the realized variance (RV). The approach is justified by the fact that RV is a natural
consistent estimate of quadratic variation. Also, RV has convenient distributional characteristics
that are determined asymptotically by (functional) central limit theory (CLT), as derived by Jacod
(1994) and Barndorff-Nielsen and Shephard (2002).

To proceed, assume that X(t) is observed at the following time points:

t = h, 2h, · · · ,Mhh

(
=
T

K

)
︸ ︷︷ ︸, (Mh + 1)h, · · · , 2Mhh

(
=

2T
K

)
︸ ︷︷ ︸, · · · , nhh(= T ),

where nh = KMh with K a fixed and positive integer, and Mh = O(nh). Phillips and Yu constructed
the non-overlapping K subsamples:

((k − 1)Mh + 1)h, · · · , kMhh, where k = 1, · · · ,K,

so that each sub-sample has Mh observations over the interval ((k − 1) TK , k
T
K ].

As h→ 0 and Mh →∞,

Mh∑
i=2

(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2 p→ [X]k T
K
− [X](k−1) T

K
, (32)
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and

ln(
∑Mh

i=2(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2 − ln([X]k T
K
− [X](k−1) T

K
) + 1

2s
2
k

sk

d→ N(0, 1), (33)

where

sk = min

{√
r2
k

(
∑Mh

i=2(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2)2
,

√
2
Mh

}
,

and

rk =

√√√√2
3

Mh∑
i=2

(
X(k−1)Mh+ih −X(k−1)Mh+(i−1)h

)4
,

for k = 1, · · · ,K. Note that [X]T is the quadratic variation of X which can be consistently estimated
by the empirical counterpart [Xh]T defined as:

[Xh]T =
nh∑
i=2

(Xih −X(i−1)h)2 := RV.

The definition of quadratic variation gives the limit (32) while the CLT (33) is based on the
asymptotic theory of Barndorff-Nielsen and Shephard (2005). Based on the CLT (33), θ2 can be
estimated in the first stage by running a nonlinear least squares regression of

ln
(∑Mh

i=2(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2
)

+ 1
2s

2
k

sk
(34)

on
ln
(∑M

i=2 σ
2
(
X(k−1)Mh+(i−1)h; θ2

)
h
)
− 1

2s
2
k

sk
(35)

for k = 1, · · · ,K. This produces a consistent estimate θ̂2 of θ2 as h→ 0. Using the terminology of
Phillips, this is the in-fill asymptotics. In the second stage, the approximate in-fill log-likelihood
function is maximized with respect to θ1, i.e.,

argmaxθ1

{
n∑
i=2

µ(X(i−1)h; θ1)

σ2(X(i−1)h; θ̂2)
(Xih −X(i−1)h)− h

2

n∑
i=2

µ2(X(i−1)h; θ1)

σ2(X(i−1)h; θ̂2)

}
. (36)

This produces a consistent estimate θ̂2 of θ2 as T →∞ and h→ 0 (i.e., both the in-fill and long-span
asymptotics). The asymptotical theory for θ̂1 and θ̂2 is fully developed in Phillips and Yu (2009b).

3 Identification in Continuous Time Models

When continuous time models are estimated, one must ensure the set of parameters θ is identified
from discrete time models. In general, unfortunately, θ is not identifiable from discrete time models
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Figure 1: Aliasing problem. Circle points represent a set of discrete samples whose sampling interval

is 1.

in the multivariate context. This is the well known aliasing problem in statistics, signal processing,
computer graphics and related disciplines, which refers to an effect that causes different continu-
ous signals to become indistinguishable when sampled discretely. To the best of my knowledge,
Phillips (1973) is the first serious attempt to address this identification problem in continuous time
econometrics literature. In my opinion, this is a fundamental contribution to the literature.

The idea of aliasing can be explained simply by using a sinusoid, a periodic function of time.
Figure 1 plots a set of discrete samples whose sampling interval is 1 (see the circle points) and two
different sinusoids (see the two lines). Obviously the two functions could have produced the same
samples. Hence, it impossible to tell which function has produced the discrete sample. The usual
solution to overcome the aliasing problem is to collect discrete time sample at the frequency higher
than the Nyquist frequency. Although this may be a reasonable solution in natural sciences, it may
not work in economics as one cannot typically control the sampling interval.

To illustrate the aliasing problem in continuous time econometrics models, consider the first
order specification in only stock variables as observable,

dX(t) = A(θ)X(t)dt+ ζ(dt), X(0) = X0, E(ζ(dt)) = 0, E(ζ(dt)ζ(dt)′) = Σdt. (37)

The exact discrete time model is given by:

Xt = exp(A(θ)h)Xt−1 + εt, X0 = X0, E(εt) = 0, E(εtε′t) = Ω. (38)

Phillips (1973) showed that:

exp(Ah)Σ exp(A′h)− Σ = AΩ + ΩA′.

So (A,Σ) is identifiable in model (37) if and only if the matrix A is identifiable in exp(Ah). In
general, however, equation

exp(Ah) = B

does not have a unique solution for A. In particular, if some of the eigenvalues of A are complex, then
by adding the imaginary numbers ±2inπ to each pair of conjugate complex eigenvalues, the equation
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still holds true. In order to achieve the identification, certain restrictions have to be placed on A.
Phillips (1973) derived a rank condition in the case where there are linear homogeneous relations
between the elements of a row of A. Hansen and Sargen (1983) extended the result by showing that
Ω provides extra identifying information about A. As a result, identifiability may be less difficult
than one would think. In certain regions of the parameter space, there may be no identification
problem at all, even if the sampling frequency is lower than the Nyquist frequency.

Since the 1980’s, there has been a great deal of interest in unit roots and cointegration in econo-
metrics. Phillips (1991) formulated error correction models and cointegrated systems in continuous
time. A cointegrated system in continuous time takes the form:

X1(t) = BX2(t) + u1(t) (39)

DX2(t) = u2(t) (40)

where X1(t) is a m1-vector process, X2(t) is a m2-vector process, u1(t) and u2(t) are both stationary
continuous time residuals. Phillips (1991) showed that the exact discrete time model is given by:

Xt = exp(−EA)Xt−1 + εt = (I − EA)Xt−1 + ut (41)

ut = εt +
1
e
EAXt−1 (42)

where X = [X ′1, X
′
2]′, E = [I ′, 0′]′, A = [I,−B], and ut is stationary because both εt and AXt−1 are

stationary. As

exp(−EA) = I − EA− 1
2!

(EA)2 + · · · = I − e− 1
e

EA,

the relationship between B and the autoregressive coefficients I − EA in the exact discrete time
model is linear. Hence, there is no aliasing problem here. This result is in sharp contrast to the
stationary continuous time models. Phillips (1991) proposed a frequency domain based estimation
method and developed asymptotic distributions for the estimates. It turns out estimates of the
long-run equilibrium coefficients converge at the rate Op(T−1), which is faster than that in the case
of stationary models. This feature is consistent with that found in the discrete time framework.

4 Nonparametric Methods

Parametric continuous time models have proven very useful for predicting future economic activities
and for pricing financial assets. However, theory usually is silent about which parametric forms to
use. Often parametric specifications are adopted for mathematical convenience. Misspeficiation of
the model by a specific parametric form might lead to erroneous decision making. For example,
Aı̈t-Sahalia (1996) showed that when pricing bond options, traditional parametric models can yield
significant pricing errors. In this section, we will review various nonparametric methods proposed
by Peter Phillips.

12



4.1 Estimation of Drift and Diffusion Terms

Nonparametric estimation of continuous time models was pioneered by Aı̈t-Sahala (1996). The
model he investigated takes the form:

dX(t) = κ(µ−X(t))dt+ σ(X(t))dW (t), (43)

where the diffusion term, σ(X(t)) is an unknown function. The linearity in the drift term is an
identification restriction, through which the diffusion term can be identified from the marginal
distribution, without assuming h → 0. Assuming the process X(t) is stationary and π(x) is the
marginal distribution of the process, the relation between the diffusion term and the marginal
distribution is given by:

σ2(x) =
1

π(x)

∫ x

0
κ(µ− s)π(s)ds.

Replacing π(x) with a nonparametric density estimator would yield a nonparametric estimator
for σ(x). Aı̈t-Sahalia (1996) used a kernel function to estimate π(x) and σ(x), and established
the asymptotic normality of the estimates under the long-span asymptotics. Two assumptions are
critical to the development of the method, namely stationarity of the process and linearity of the
drift term.

Bandi and Phillips (2003) significantly extended the results by developing a nonparametric
method to estimate both the drift and diffusion terms without imposing stationarity assumption.
This absence of the stationarity assumption is important in financial time series analysis because
many financial time series, such as interest rates, stock prices, exchanges rates and volatility, may be
better modelled by martingale processes or processes of other forms of nonstationarity. Bandi and
Phillips used both the long-span and in-fill asymptotics to solve the identification problem and avoid
the aliasing problem. To achieve identification of the drift, the condition of recurrence is further
assumed, so that the process repeats itself. Asymptotic theory is developed using the chronological
local time process, a standardized local time process that is defined in terms of pure time units. For
further details about the chronological local time process, see Park and Phillips (2001), and Phillips
and Park (1999).

To fix the idea, assume the time homogenous diffusion model is nonparametrically specified as:

dX(t) = µ(X(t))dt+ σ(X(t))dW (t). (44)

Note that:
E [dX(t) | X(t)] = µ(X(t))dt, (45)

E
[
(dX(t))2 | X(t)

]
= σ2(X(t))dt, (46)

Application of the Nadaraya-Watson kernel method to (45) and (46) gives rise to the nonpara-
metric estimator of µ(x):

µ̂(x) =

∑n
i=1K

(
Xih−x

b

)
µ̃(Xih)∑n

i=1K
(
Xih−x

b

) ,
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and the nonparametric estimator of σ2(x):

σ̂2(x) =

∑n
i=1K

(
Xih−x

b

)
σ̃2(Xih)∑n

i=1K
(
Xih−x

b

) ,

where:

µ̃(Xih) =
1

m(ih)h

m(ih)−1∑
j=0

[Xt(ih)j+h −Xt(ih)j ],

σ̃2(Xih) =
1

m(ih)h

m(ih)−1∑
j=0

[Xt(ih)j+h −Xt(ih)j ]
2,

m(ih) =
n∑
j=1

1[|Xjh−Xih|≤ε],∀i ≤ n,

and b is the bandwidth. To develop the asymptotic distributions of µ̂(x), it is assumed that n→∞,
T → ∞, h = T/n → 0, and b → 0. Unlike µ̂(x), σ̂2(x) is consistently estimated without requiring
T → ∞. Bandi and Phillips (2003) developed the asymptotic distributions of σ̂2(x) for the case
when T is finite and also for the case when T →∞.

The nonparametric estimates has recently been applied to various contexts. Bandi (2004) used
them to estimate the short term interest rate model. Corradi and Disto (2007) employed it to design
a test statistic to distinguish one factor models against two factor models. Jeffrey, Kristensen,
Linton, Nguyen, Phillips (2004) made use it to estimate a multifactor Heath-Jarrow-Morton model.
Bandi and Phillips (2007) used it to developed a simple and robust approach for the parametric
estimation of scalar homogeneous SDEs, which we briefly discuss below.

Suppose a parametric continuous time model takes the form

dX(t) = µ(X(t); θ1)dt+ σ(X(t); θ2)dW (t), (47)

The estimator of θ1 can be obtained by

min
θ1∈Θ1

||µ̂− µ(X(t); θ1)||,

and the estimator of θ2 can be obtained by

min
θ2∈Θ2

||σ̂2 − σ2(X(t); θ2)||,

where ‖ · ‖ is the Euclidian distance, µ̂(x) and σ̂2(x) are the nonparametric estimates defined above.
Bandi and Phillips (2007) developed the asymptotic theory for the parametric estimates. Bandi and
Phillips (2007) showed that the consistency of θ2 does not require T →∞, whereas the consistency
of θ1 requires T →∞. The results are consistent with those noted by Merton (1980).

14



4.2 Estimation of Integrated Variance

Financial market volatility is a key concept in financial economics. In diffusion processes, the
diffusion term corresponds to an important measure of volatility – spot volatility. In previous
sections, we have seen a variety of ways to estimate the diffusion term. Another important measure
of volatility is the integrated variance, defined by,

IV =
∫ 1

0
σ2(t)dt. (48)

Obviously, this is the quadratic variation of the SDE

dX(t) = µ(X(t))dt+ σ(t)dW (t),

over a unit interval [0, 1]. Let 0 = t0,m < t1,m < · · · < tm,m = 1 be a sequence of deterministic
partitions of [0, 1], and h1,m = supi |ti,m − ti−1,m| is the grid size. A common assumption adopted
in the literature is that the partition involves a simple grid of equi-spaced points {ti,m = i

m : i =
0, ...,m}, in which case h1,m = 1

m , and h`,m = `
m .

An important nonparametric estimate of IV is the empirical quadratic variation of X(t), defined
by

m∑
i=1

[p∗i,m − p∗i−1,m]2 := RV (m)(p∗).

As explained before, the quantity is called RV and this nonparametric estimate has received a great
deal of attention in the continuous time literature in recent years. Pioneering work includes Andersen
and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (2001), and Barndorff-Nielsen and
Shephard (2002).

While the deterministic partitions and the equi-spaced partitions greatly facilitate the develop-
ment of asymptotic theory of RV, in the real ultra high frequency data, such assumptions may be
too strong. In particular, the phenomenon of flat pricing is very common in stock market trading,
leading to stochastic durations of trade intervals. Phillips and Yu (2009c) generalized the standard
asymptotic theory of RV to the cases where flat trading is present, with and without microstructure
noise.

Phillips and Yu (2009c) considered two mechanisms to generate flat trading. First, the flat
trading is determined by a simple Bernoulli process, i.e.,

pi,m =

 p∗i,m if ξi = 1

pi−1,m if ξi = 0
, (49)

where ξi is a Bernoulli sequence independent of p∗ with E(ξi = 1) = π, p0,m = p∗0,m = Op (1), and

dp∗(t) = σ(t)dW (t). (50)

Phillips and Yu (2009c) showed that, as m→∞

√
m
[
RV (m)(p)− IV

]
d→MN

(
0,

4− 2π
π

∫ 1

0
σ4(t)dt

)
, (51)
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where MN signifies mixed normal.
Second, the flat trading is determined by an autoregressive conditional duration (ACD) process,

i.e., as m→∞,

E
(
Dm,[ms]|Fτ[ms]−1

)
→p µD (s) , E

(
D2
m,[ms]|Fτ[ms]−1

)
→p ω

2
D (s) , (52)

where Dm,j measures the duration between observations (in units of the interval m−1) and may be
(partly) dependent on past prices. Phillips and Yu (2009c) showed that, as m→∞

√
m


Jm∑
j=1

[p∗ (τj)− p∗ (τj−1)]2 −
∫ 1

0
σ2(t)dt

⇒MN

(
0, 2

∫ 1

0
σ4(t)

ω2
D (t)
µD (t)

dt

)
. (53)

5 Finite Sample Issues

In continuous time finance literature, it has frequently been argued that ML should be the method
to use for parameter estimation and statistical inference. The statistical justification is that ML
estimates have good asymptotic properties and well developed asymptotic theory. Moreover, sample
sizes in typical financial data applications are large, leading to a common belief that these good
asymptotic properties hold true in finite samples.

However, recently it has been forcefully argued by Peter Phillips that the finite sample perfor-
mance of the ML estimator can be very poor from both statistical and economic perspectives. For
example, ML estimates of parameters in some continuous time models may be badly biased even
when the sample size is very large and the sampling interval is very small. This is especially the
case in the commonly occurring situation of drift parameter estimation in models where the process
is nearly a unit root process. Financial variables, such as interest rates and volatility, typically have
a root near unity, indicating an important shortcoming of ML from a practical viewpoint.

In the context of Vasicek model with a known long run mean, Yu (2008) showed that the bias
of ML estimate of κ is upward and approximated by 2/T . The author further derived analytical
expressions to approximate the bias, and argued that a nonlinear term in the bias formula is par-
ticularly important when the mean reversion parameter is close to zero. In the context of Vasicek
model and CIR model with an unknown long run mean, Tang and Chen (2007) showed that the
bias of ML estimate of κ is approximated by 4/T . If the true value of κ = 0.1 and T = 10 (10 years
data), the percentage bias in the ML estimate of κ, implied by these two results, is 200% and 400%,
respectively.

Both Yu (2008) and Tang and Chen (2007) are motivated from Phillips and Yu (2005a) where
the authors intuitively explained why the ML estimator of κ is severely biased upward. Denote the
autoregression coefficient by φ = exp(−κh). Note that φ ≈ 1−κh by the first order approximation.
Hence, the bias in κ̂ is approximately the bias in φ̂ multiplied by 1/h. It is well known that in the
context of the AR(1) model with an intercept only, to a first-order approximation, the bias φ̂ is
−1+3φ

n . Since T = nh, the bias in κ is approximately 1+3φ
T . This is an upward bias, which is mainly

determined by the data span, not the sample size. Phillips and Yu (2005a,b) performed extensive
Monte Carlo experiments to confirm the substantial percentage bias in the context of Vasicek and
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CIR models. For example, if κ = 0.1, n = 600 and h = 1/52 (i.e. more than 10 years weekly data
are used), ML estimates κ with 391% bias!

This finite sample problem turns out to be of great importance in the practical use of econometric
estimates in asset pricing. Phillips and Yu (2005a, 2009d) took seriously the economic implications
of the finite sample problems. It has been shown that there is nonlinear dependence of the pric-
ing functional on the parameter estimates, which may well exacerbate bias and makes good bias
correction more subtle. In particular, even if the parameter estimates are all unbiased, the plug-in
estimate of asset price is biased due to the nonlinearity. For example, if κ = 0.1, n = 600 and
h = 1/52 (i.e. more than 10 years weekly data are used), ML estimates a one-year near-the-money
European option written on a 3-year discount bond with 61% bias! The bias is conceivably larger
when the option is deeper out-of-the-money and the nonlinearity becomes more pronounced; see
Phillips and Yu (2009d). It it important to emphasize that the finite sample problems are not unique
to ML and they are applicable to most standard estimation methods, such as GMM, nonlinear least
squares and quasi-ML.

In this section we describe two approaches to improve the finite sample performances of ML
that Peter Phillips proposed. The first of these is based on Quenouille’s (1956) jackknife that
is a general and computationally inexpensive method of bias reduction. The second approach is
simulation-based and involves the indirect inference estimation idea of Smith (1993) and Gourieroux,
Monfort and Renault (1993). The two methods were used in Phillips and Yu (2005a) and Phillips
and Yu (2009d), respectively. While both the jackknife and indirect inference methods have been
widely used to reduce the bias in parameter estimates, the novelty in Phillips and Yu (2005a, 2009d)
is that they applied the bias correction methods to asset prices directly.

5.1 Jackknife estimation

Under quite general conditions, one can show that for standard consistent estimates such as ML
estimates, there exists some constant a1 such that

E(θ̂n) = θ +
a1

n
+O(

1
n2

). (54)

According to (54), the bias decreases with the sample size. Quenouille (1956) proposed the jackknife
as a solution to finite sample bias problems in parametric estimation contexts such as discrete
time autoregressions. To fix ideas, let n be the number of observations in the whole sample and
decompose the sample into m consecutive subsamples, each with ` observations, so that n = m× `.
The jackknife estimator of θ utilizes the subsample estimates of θ to assist in the bias reduction
process, giving the jackknife estimator

θ̂jack =
m

m− 1
θ̂n −

∑m
i=1 θ̂li

m2 −m
, (55)

where θ̂n and θ̂li are the estimates of θ obtained by application of a given method like ML to the
whole sample and the i’th sub-sample, respectively. It is easy to show that the bias in the jackknife
estimate θ̂jack is of order O(n−2) rather than O(n−1).
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Phillips and Yu (2005a) proposed to use the jackknife method to the quantity of interest directly.
For example, if one wishes to estimate a bond option price, c(θ), instead of using c(θ̂), she can use

ĉjack =
m

m− 1
ĉn −

∑m
i=1 ĉli

m2 −m
. (56)

It turns out the direct application of the jackknife to the quantity of interest yields more desirable
finite sample performances. This is not surprising because the nonlinearity in the pricing relation
is taken into account in (56).

The jackknife has several nice properties. The first advantage is analytical simplicity. Unlike
many other bias reduction methods, the jackknife does not rely on the explicit form of bias formula.
Hence, it is applicable in a broad range of model specifications and is particularly useful when it
is difficult or impossible to derive the explicit form of bias formula. A second advantage is that
the jackknife is computationally much cheaper to implement. In fact, this method is not much
more time consuming than the initial estimation itself. A drawback with jackknife is that it cannot
completely remove the bias as it is only designed to decrease the order of magnitude of the bias.
However, Phillips and Yu (2005a, b) showed that with a careful choice of subsampling, jackknife
can substantially reduce the bias with only a marginal increase in variance, leading to a reduction
in mean squared error.

Phillips and Yu (2005a, b) also compared the price implications of three different biases, namely,
the specification bias, the discretization bias and the finite sample estimation bias, in the context of
affine models. It was found that the finite sample estimation bias was the most important and the
discretization bias the least harmful in the near unit root models used in finance. This finding is
very surprisingly and extremely important as the discretization bias and the specification analysis
have received much more attention in the continuous time financial econometrics literature.

5.2 Indirect inference estimation

The indirect inference (II) procedure is a simulation-based estimation procedure and can be under-
stood as a generalization of the simulated method of moments approach of Duffie and Singleton
(1993). It was first introduced by Smith (1993) and the term was coined by Gouriéroux, Monfort,
and Renault (1993). It is also closely related to the method proposed by Gallant and Tauchen
(1996). This method was originally proposed to deal with situations where the moments or the
likelihood function of the true model are difficult to deal with (and hence traditional methods such
as GMM and ML are difficult to implement), but the true model is amenable to data simulation.
Because most continuous time models are easy to simulate but present difficulties in the analytic
derivation of moment functions and likelihood, the II procedure has some convenient advantages in
working with continuous time models in finance.

A carefully designed II estimator can also have good small sample properties of parameter
estimates, as shown by MacKinnon and Smith (1996), Monfort (1996), Gouriéroux, Renault, Touzi
(2000) in the time series context and by Gouriéroux, Phillips and Yu (2007) in the panel context.
The reason as to why II can remove the bias goes as follows. Whenever a bias occurs in an estimate
and from whatever source, this bias will also be present in the same estimate obtained from data,
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which are of the same structure of the original data, simulated from the model for the same reasons.
Hence, the bias can be calculated via simulations. The method, therefore, offers some interesting
opportunities for bias correction and the improvement of finite sample properties in continuous time
parameter estimation, as shown in Phillips and Yu (2009a).

To fix the idea of II for parameter estimation, consider the OU process. Suppose we need to
estimate the parameter κ in:

dX(t) = κ(µ−X(t))dt+ σ(X(t)) dW (t),

from observations {Xh, · · · , Xnh}. An initial estimator of κ can be obtained, for example, by
applying the Euler scheme to {Xh, · · · , Xnh} (call it κ̂n). Such an estimator is involved with the
discretization bias (due to the use of the Euler scheme) and also with a finite sample estimation
bias (due to the poor finite sample property of ML in the near-unit-root situation).

Given a parameter choice κ, we apply the Euler scheme with a much smaller step size than h

(say δ = h/10), which leads to

X̃k
t+δ = κ(µ− X̃k

t )h+ X̃k
t + σ(X̃k

t )
√
δεt+δ,

where
t = 0, δ, · · · , h(= 10δ)︸ ︷︷ ︸, h+ δ, · · · , 2h(= 20δ)︸ ︷︷ ︸, 2h+ δ, · · · , nh.

This sequence may be regarded as a nearly exact simulation from the continuous time OU model
for small δ. We then choose every (h/δ)th observation to form the sequence of {X̃k

ih}ni=1, which can
be regarded as data simulated directly from the OU model with the (observationally relevant) step
size h.4

Let {X̃k
h , · · · , X̃k

nh} be data simulated from the true model, where k = 1, · · · ,K with K being the
number of simulated paths. It should be emphasized that it is important to ensure that the number
of simulated observations and the sampling interval are equal to the number of observations and
the sampling interval in the observed sequence, respectively, for the purpose of the bias calibration.
Another estimator of κ can be obtained by applying the Euler scheme to {X̃k

h , · · · , X̃k
nh} (call it

κ̃kn). Such an estimator and hence the expected value of them across simulated paths is naturally
dependent on the given parameter choice κ.

The central idea in II estimation is to match the parameter obtained from the actual data with
that obtained from the simulated data. In particular, the II estimator of κ solves

κ̂n =
1
K

K∑
h=1

κ̃kn(κ) or κ̂n = ρ̂0.5(κ̃kn(κ)), (57)

where ρ̂τ is the τth sample quantile. In the case where K tends to infinity, the II estimator solves

κ̂n = E(κ̃kn(κ)) or κ̂n = ρ0.5(κ̃kn(κ)) (58)
4If the transition density of Xt+h|Xt for the continuous time model is analytically available, exact simulation can

be directly obtained. In this case, the Euler scheme at a finer grid is not necessary.
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where E(κ̃kn(κ)) is called the mean binding function or the mean bias function, and ρ0.5(κ̃kn(κ)) is
the median binding function or the median bias function, i.e.,

bn(κ) = E(κ̃kn(κ)), or bN (κ) = ρ0.5(κ̃kn(κ)).

It is a finite sample functional relating the bias to κ. In the case where bn is invertible, the indirect
inference estimator is given by:

κ̂IIn = b−1
n (κ̂n). (59)

When a median binding function is used, the estimator is the median unbiased estimator of Andrews
(1993). Typically, the binding functions cannot be computed analytically in either case. That is
why II needs to calculate the binding functions via simulations. While the mean is often used in
the literature for the binding function, the median has certain advantages over the mean. First, the
median is more robust to outliers than the mean. Second, it is easier to obtain the unbiased property
via the median. In particular, while the linearity of bn(κ) gives rise to the mean-unbiasedness in κ̂IIn ,
only monotonicity is needed for bn(κ) to ensure the median-unbiasedness (Phillips and Yu (2009d)).

There are several advantages in the II procedure relative to the jackknife procedure. First, indi-
rect inference is more effective in removing the bias in parameter estimates. Phillips and Yu (2009a)
provided evidence to support this superiority of indirect inference. Second, the bias reduction may
be achieved often without an increase in variance. In extreme cases of root near unity, the variance
of II can be even smaller than that of ML (Phillips and Yu (2009a). To see this, note that equation
(59) implies:

V ar(κ̂IIn ) =
(
∂bn
∂κ

)−1

V ar(κ̂ML
n )

(
∂bn
∂κ′

)−1

.

When ∂bn/∂κ > 1, the II has a smaller variance than ML.
A disadvantage in the II procedure is the high computational cost. It is expected that with the

continuing explosive growth in computing power, such a drawback will become less of a concern.
Nevertheless, to reduce the computational cost, one can choose a fine grid of discrete points of κ and
obtain the binding function on the grid. Then standard interpolation and extrapolation methods
can be used to approximate the binding functions at any point.

As pointed out earlier, since prices of contingent-claims are always non-linear transformations of
the system parameters, the insertion of even unbiased estimators into the pricing formulae will not
assure unbiased estimation of a contingent-claim price. The stronger the nonlinearity, the larger
the bias. As a result, plugging-in the indirect inference estimates into the pricing formulae may
still yield an estimate of the price with unsatisfactory finite sample performances. This feature was
illustrated in the context of various continuous time models and contingent claims in Phillips and
Yu (2009d). To improve the finite sample properties of the contingent price estimate, Phillips and
Yu (2009d) generalized the II procedure so that it is applied to the quantity of interest directly.

To fix the idea, suppose θ is the scalar parameter in the continuous time model on which the
price of a contingent claim, P (θ), is based. Denote by θ̂ML

n the MLE of θ that is obtained from
the actual data, and write P̂ML

n = P (θ̂ML
n ) be the ML estimate of P . P̂ML

n involves finite sample
estimation bias due to the non-linearity of the pricing function P in θ, or the use of the biased
estimate θ̂ML

n , or both these effects. The II approach involves the following steps:
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1. Given a value for the contingent-claim price p, compute P−1(p) (call it θ(p)), where P−1(·) is
the inverse of the pricing function P (θ).

2. Let S̃k(p) = {S̃k1 , S̃k2 , · · · , S̃kT } be data simulated from the time series model (17) given θ(p),
where k = 1, . . . ,K with K being the number of simulated paths. As argued above, we choose
the number of observations in S̃k(p) to be the same as the number of actual observations in
S for the express purpose of finite sample bias calibration.

3. Obtain φ̃ML,k
n (p), the MLE of θ, from the k’th simulated path, and calculate P̃ML,k

n (p) =
P (φ̃ML,k

n (p)).

4. Choose p so that the average behavior of P̃ML,k
n (p) is matched with P̂ML

n to produce a new
bias corrected estimate.

The procedure can be generalized to cases where θ is a K−dimensional vector and where θ is
obtained from cross-sectional data; see Phillips and Yu (2009d) for detailed discussion. Phillips and
Yu (2009d) performed extensive Monte Carlo studies, showing that the proposed procedure works
well, not only relative to ML but also relative to the jackknife procedure.

6 Some New Results

In econometrics, asymptotic theory always relies on the fiction of a sample with infinite observations.
As shown earlier, there are two ways to do asymptotics in continuous time models, long-span
(T →∞) and in-fill (h→ 0), both leading to a sample with infinite observations.

In this section, we will compare the performance of these two alternative asymptotic distributions
in the context of the OU process with a known long-run mean:

dX(t) = −κX(t)dt+ dW (t), (60)

where κ, the mean reversion parameter, is the parameter of the interest and is assumed to be
positive.

Data, namely, {X0h, X1h, · · · , Xnh} with nh = T , are simulated from the exact discrete time
model:

Xt = exp(−κh)Xt−1 + εt

and κ is estimated by:

κ̂ = −
ln
{∑n

t=1XtXt−1∑n
t=1X

2
t−1

}
h

, (61)

which is the ML estimate.
Since κ > 0, when T →∞ and h is fixed, the standard asymptotic theory implies that

√
n(κ̂− κ) d→ N

(
0,

exp(2κh)− 1
h2

)
. (62)
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Hence,

κ̂
a∼ N

(
κ,

exp(2κh)− 1
hT

)
. (63)

The asymptotic normality is not surprising as the process is stationary, ergodic and asymptotically
independent.

If h→ 0 and T is fixed, the continuous record is observable and the in-fill log-likelihood function
is given by: ∫ T

0
−κX(t)dX(t)−

∫ T

0

1
2
κ2X(t)2dt. (64)

From Phillips (1987b) the finite sample distribution of the ML estimator based on (64) is known.
Hence, it is natural to use this distribution to approximate the distribution of κ̂, namely,

κ̂
a∼ κ−

∫ T
0 X(t)dW (t)∫ T

0 X(t)2dt
. (65)

Obviously, this limiting distribution is asymmetric and non-normal. This compares interestingly
with the limiting distribution in (63).

To facilitate computation of the distribution in (65), we first prove a lemma. This result can be
found in Lánska (1979) and the proof is given in the Appendix.

Lemma Assume X(t) follows the SDE:

dX(t) = µ(t,X(t), θ)dt+ dW (t). (66)

Then the log-likelihood of {X(t)}Tt=0 is given by:

F (T,X(T ), θ)−
∫ T

0

{
f(t,X(t), θ) +

1
2
µ2(t,X(t), θ)

}
dt, (67)

where

F (t,X(t), θ) =
∫ X(t)

0
µ(t, y, θ)dy,

and
f(t,X(t), θ) =

∂F (t,X(t), θ)
∂t

+
1
2
∂µ(t,X(t), θ)

∂x
.

Applying Lemma to the model given in (60), we have:

F (t,X(t), κ) =
∫ X(t)

0
−κydy = −1

2
κX2(t) and f(t,X(t), κ) = −κ.

Hence, the log-likelihood can be rewritten as:

−1
2
κX(T )2 −

∫ T

0

[
−1

2
κ+

1
2
κ2X(t)2

]
dt. (68)
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The finite sample distribution of the ML estimator that maximizes (68) is

−X(T )2 + T

2
∫ T

0 X(t)2dt
. (69)

This is the in-fill asymptotic distribution of κ̂ defined in (61). Compared with the asymptotic
distribution (65), (69) only needs to calculate a Riemann integral. Furthermore, (69) compares
interestingly with the unit root limit distribution

W (1)2 − 1

2
∫ 1

0 W (t)2dt

obtained in Phillips (1987a).
To compare the performance of the two limiting distributions, (63) and (69), we simulate data

from the OU model with various values for κ, h and T . The actual finite sample distribution is
obtained from 50,000 replications of the estimates of κ̂ given by (61). The true values of κ are set at
0.1,1,10. The value of 0.1 is empirically realistic for interest data while the value of 1 is empirically
realistic for volatility. These two values suggest the slow speed for mean reversion. While κ = 10 is
not empirically realistic for financial time series, we include it for the purpose of comparison. The
true values of h are set at 1/12, 1/250, corresponding to monthly and daily frequencies, respectively.
It is now rare to see in continuous time literature to employ data at a frequency lower than monthly.
At the same time, it is more and more common to acquire data at a frequency lower than daily in
empirical work. So h = 1/12 is an upper bound in empirical studies. The true values of T are set
at 2, 10, 50. A 50-year time series span is perhaps close to the maximum in empirical work.

Tables 1-3 report the 0.5%, 1%, 5%, 10%, 90%, 95%, 99%, and 99.5% quantiles of the three
distributions, for κ = 0.1, 1, 10, respectively. A few results emerge from the tables. First and more
importantly, the in-fill asymptotics almost always performs significantly better than the long-span
asymptotics, regardless of the value for κ, h and T .5 It is remarkable that the superiority even
holds true when h = 1/12 and T = 50 for κ = 0.1 of 1. This is the worst case scenario where
the long-span asymptotics is favored for and the in-fill asymptotics is favored against. Second,
the larger the T , the better the long-span asymptotics. Third, the smaller the h, the better the
in-fill asymptotics. Fourth, the larger the κ, the better the two asymptotic distributions. Fifth,
the long-span asymptotic distribution seems to perform better in the left tail than in the right tail.
However, both the exact and the in-fill asymptotic distributions are heavily skewed. That partly
explains why the in-fill asymptotics outperforms the long-span asymptotics.

7 Conclusions

The theoretical development of econometric analysis of continuous time models has come a long
way. This paper has outlined some main developments in the methodology that Peter Phillips both
initiated and undertook to develop in the last 40 years. It is clear that while his contributions are

5The only exception is when κ = 10, h = 1/12 (hence the model is very far away from the unit root) and T is large.
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mostly focused on theoretical aspects, his impact extends far beyond mere theory. Without any
doubt, he will continue to make some more insightful contributions in this important area, given
the current level of his energy and devotion to this area of research.

Appendix: Proof of Lemma
From the definition of F (t,X(t), θ), we have:

∂F (t,X(t), θ)
∂x

= µ(t,X(t), θ) and
∂2F (t,X(t), θ)

∂x2
=
∂µ(t,X(t), θ)

∂x
.

Applying Ito’s lemma to F (t,X(t), θ), we get:

dF (t,X(t), θ) =
(
∂F

∂t
+ µ(t,X(t), θ)

∂F

∂x
+

1
2
∂2F

∂x2

)
dt+

∂F

∂x
dW (t)

=
(
∂F

∂t
+
µ2(t,X(t), θ)

2
+

1
2
∂µ

∂x

)
dt+ µ(t,X(t), θ)dW (t) +

µ2(t,X(t), θ)
2

dt.

Hence,

F (T,X(T ), θ) =
∫ T

0

(
∂F

∂t
+
µ2(t,X(t), θ)

2
+

1
2
∂µ

∂x

)
dt+

∫ T

0
µ(t,X(t), θ)dW (t)+

∫ T

0

µ2(t,X(t), θ)
2

dt.

By Girsanov theorem, the log-likelihood of {X(t)}Tt=0 is:

`(θ) =
∫ T

0
µ(t,X(t), θ)dX(t)−

∫ T

0

1
2
µ2(t,X(t), θ)dt

=
∫ T

0
µ(t,X(t), θ)(dX(t)− µ(t,X(t), θ)dt) +

∫ T

0

1
2
µ2(t,X(t), θ)dt

=
∫ T

0
µ(t,X(t), θ)dW (t) +

∫ T

0

1
2
µ2(t,X(t), θ)dt

= F (T,X(T ), θ)− F (T,X(T ), θ) +
∫ T

0
µ(t,X(t), θ)dW (t) +

∫ T

0

1
2
µ2(t,X(t), θ)dt

= F (T,X(T ), θ)−
∫ T

0

(
∂F

∂t
+
µ2(t,X(t), θ)

2
+

1
2
∂µ

∂x

)
dt,

where the last equality is obtained from the expression of F (T,X(T ), θ). This proves the lemma.
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h and T Methods 0.5% 1% 5% 10% 90% 95% 99% 99.5%

h = 1/12 exact -0.8447 -0.7042 -0.3563 -0.2155 1.7071 2.6012 5.1676 6.5470

T = 2 in-fill -0.8518 -0.7200 -0.4355 -0.3330 1.1327 1.9147 4.0532 5.0527

long-span -0.7355 -0.6546 -0.4336 -0.3157 0.5157 0.6336 0.8546 0.9355

h = 1/12 exact -0.1427 -0.1099 -0.0329 0.0027 0.5885 0.7869 1.3212 1.5574

T = 10 in-fill -0.1513 -0.1211 -0.0511 -0.0218 0.4831 0.6724 1.1543 1.3987

long-span -0.2673 -0.2318 -0.1346 -0.0828 0.2828 0.3346 0.4318 0.4673

h = 1/12 exact 0.0145 0.0214 0.0401 0.0521 0.2470 0.2987 0.4150 0.4700

T = 50 in-fill 0.0116 0.0181 0.0353 0.0461 0.2296 0.2806 0.3917 0.4453

long-span -0.0637 -0.0479 -0.0046 0.0185 0.1815 0.2046 0.2479 0.2637

h = 1/250 exact -0.7886 -0.6447 -0.3264 -0.1962 1.6350 2.4563 4.7549 5.8324

T = 2 in-fill -0.8691 -0.7188 -0.4333 -0.3329 1.1297 1.9050 4.0505 5.1093

long-span -0.7155 -0.6365 -0.4208 -0.3057 0.5057 0.6208 0.8365 0.9155

h = 1/250 exact -0.1345 -0.1064 -0.0313 0.0022 0.5793 0.7792 1.2916 1.5214

T = 10 in-fill -0.1533 -0.1224 -0.0524 -0.0222 0.4829 0.6715 1.1653 1.4047

long-span -0.2644 -0.2291 -0.1327 -0.0813 0.2813 0.3327 0.4291 0.4644

h = 1/250 exact 0.0131 0.0204 0.0398 0.0514 0.2447 0.2987 0.4141 0.4656

T = 50 in-fill 0.0101 0.0164 0.0348 0.0457 0.2281 0.2804 0.3952 0.4432

long-span -0.0629 -0.0472 -0.0041 0.0189 0.1811 0.2041 0.2472 0.2629

Table 1: Performance of two asymptotic distributions when κ = 0.1. This table reports the 0.5%,

1%, 5%, 10%, 90%, 95%, 99%, and 99.5% quantiles of the exact distribution, the in-fill asymp-

totic distribution and the long-span asymptotic distribution. The true distribution is obtained via

simulations based on 10,000 replications.
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h and T Methods 0.5% 1% 5% 10% 90% 95% 99% 99.5%

h = 1/12 exact -0.6044 -0.4450 0.0507 0.2873 4.2440 5.6903 9.3293 11.1353

T = 2 in-fill -0.4827 -0.3312 0.0295 0.2044 3.4411 4.5685 7.4923 8.3460

long-span -1.7448 -1.4789 -0.7527 -0.3656 2.3656 2.7527 3.4789 3.7448

h = 1/12 exact 0.3105 0.3589 0.5059 0.6029 1.9321 2.2628 3.0417 3.4019

T = 10 in-fill 0.3190 0.3589 0.4949 0.5863 1.8033 2.1118 2.7756 3.0594

long-span -0.2067 -0.0898 0.2294 0.3996 1.6004 1.7706 2.0898 2.2067

h = 1/12 exact 0.5999 0.6324 0.7277 0.7826 1.3311 1.4394 1.6541 1.7341

T = 50 in-fill 0.6058 0.6394 0.7309 0.7844 1.3052 1.4040 1.6063 1.6902

long-span 0.4622 0.5142 0.6565 0.7324 1.2676 1.3435 1.4858 1.5378

h = 1/250 exact -0.4481 -0.2763 0.1281 0.3356 3.8512 4.9482 7.7366 9.0473

T = 2 in-fill -0.5183 -0.3584 0.0232 0.2018 3.3855 4.3957 7.1799 8.3709

long-span -1.5836 -1.3333 -0.6498 -0.285 2.2854 2.6498 3.3333 3.5836

h = 1/250 exact 0.3441 0.3880 0.5297 0.6217 1.8825 2.1808 2.8451 3.1350

T = 10 in-fill 0.3255 0.3674 0.5002 0.5874 1.8062 2.0977 2.7630 3.0470

long-span -0.1545 -0.0427 0.2628 0.4256 1.5744 1.7372 2.0427 2.1545

h = 1/250 exact 0.6229 0.6494 0.7365 0.7915 1.3129 1.4098 1.6178 1.7071

T = 50 in-fill 0.6173 0.6447 0.7291 0.7833 1.3010 1.3971 1.6027 1.6873

long-span 0.4838 0.5338 0.6704 0.7432 1.2568 1.3296 1.4662 1.5162

Table 2: Performance of two asymptotic distributions when κ = 1. This table reports the 0.5%,

1%, 5%, 10%, 90%, 95%, 99%, and 99.5% quantiles of the exact distribution, the in-fill asymp-

totic distribution and the long-span asymptotic distribution. The true distribution is obtained via

simulations based on 10,000 replications.
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h and T Methods 0.5% 1% 5% 10% 90% 95% 99% 99.5%

h = 1/12 exact 5.7633 6.0789 7.0056 7.5923 13.6800 15.0377 18.1743 19.5199

T = 10 in-fill 7.0171 7.2564 7.9545 8.3715 12.0206 12.6204 13.9213 14.3905

long-span 4.1281 4.6968 6.2503 7.0785 12.9215 13.7497 15.3032 15.8719

h = 1/12 exact 7.7717 7.9616 8.4936 8.7995 11.4508 11.9073 12.7915 13.1478

T = 50 in-fill 8.5167 8.6440 9.0163 9.2234 10.8662 11.1287 11.6198 11.8075

long-span 7.3828 7.6363 8.3287 8.6979 11.3021 11.6713 12.3637 12.6172

h = 1/250 exact 4.6178 4.9565 6.1693 6.9406 15.6703 17.5964 21.7356 23.4049

T = 2 in-fill 4.5770 4.9339 6.0794 6.8284 15.1978 17.0108 20.9087 22.3676

long-span 1.6805 2.4863 4.6874 5.8608 14.1392 15.3126 17.5137 18.3195

h = 1/250 exact 6.9876 7.2632 7.9743 8.3950 12.1621 12.8098 14.1273 14.6391

T = 10 in-fill 7.0017 7.2722 7.9799 8.3712 12.0663 12.6887 13.9985 14.5156

long-span 6.2824 6.6425 7.6260 8.1504 11.8496 12.3740 13.3575 13.7176

h = 1/250 exact 8.5022 8.6453 9.0254 9.2301 10.8840 11.1439 11.6297 11.8125

T = 50 in-fill 8.5152 8.6540 9.0270 9.2267 10.8525 11.1079 11.5879 11.7759

long-span 8.3377 8.4987 8.9385 9.1730 10.8270 11.0615 11.5013 11.6623

Table 3: Performance of two asymptotic distributions when κ = 10. This table reports the 0.5%,

1%, 5%, 10%, 90%, 95%, 99%, and 99.5% quantiles of the exact distribution, the in-fill asymp-

totic distribution and the long-span asymptotic distribution. The true distribution is obtained via

simulations based on 10,000 replications.
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