
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2011

Utility-Oriented K-Anonymization on Social Networks Utility-Oriented K-Anonymization on Social Networks

Yazhe WANG
Singapore Management University

Long XIE
Singapore Management University

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Ken C. K. LEE
University of Massachusetts Dartmouth

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Social Media Commons

Citation Citation
WANG, Yazhe; XIE, Long; ZHENG, Baihua; and LEE, Ken C. K.. Utility-Oriented K-Anonymization on Social
Networks. (2011). Database Systems for Advanced Applications: 16th International Conference, DASFAA
2011, Hong Kong, China, April 22-25, 2011, Proceedings, Part I. 6587, 78-92.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1408

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1249?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Utility-Oriented K-Anonymization on Social
Networks

Yazhe WANG1, Long XIE1, Baihua ZHENG1, and Ken C. K. LEE2

1 Singapore Management University
{yazhe.wang.2008, longxie, bhzheng}@smu.edu.sg

2 University of Massachusetts Dartmouth
ken.ck.lee@umassd.edu

Abstract. “Identity disclosure” problem on publishing social network
data has gained intensive focus from academia. Existing k-anonymization
algorithms on social network may result in nontrivial utility loss. The
reason is that the number of the edges modified when anonymizing the
social network is the only metric to evaluate utility loss, not considering
the fact that different edge modifications have different impact on the
network structure. To tackle this issue, we propose a novel utility-oriented
social network anonymization scheme to achieve privacy protection with
relatively low utility loss. First, a proper utility evaluation model is pro-
posed. It focuses on the changes on social network topological feature,
but not purely the number of edge modifications. Second, an efficient
algorithm is designed to anonymize a given social network with rela-
tively low utility loss. Experimental evaluation shows that our approach
effectively generates anonymized social network with high utility.

Keywords: social networks, privacy,k-anonymity, utility, HRG

1 Introduction

With the rapid growing of social network applications and the proliferation of
the social network data in recent years, social network data privacy has attracted
more and more attentions from academia [1–4]. Among various privacy problems
on social networks, identity disclosure [1] in publishing social network data is
most concerned. Usually, a social network is modeled as a complex graph. Given a
social network G, a published social network G∗ has identity disclosure problem
if there is a vertex v in G∗ that can be mapped to an original entity t in G
with a high probability. It has been demonstrated that even after removing all
identifiable personal information (e.g., names and identity card numbers), an
attacker is still able to identify an original entity in a published social network
with high confidence based on the knowledge of the topological structure around
the entity, such as degree, neighborhood and subgraph.

To tackle this issue, various anonymization models have been proposed based
on the principle of k-anonymity. They all have to make changes to the original
social networks in order to protect the privacy. Generally, from privacy protection

b

a

c

e

d f

h g

i

(a) Social network G

b

a

c

e

d f

h g

i

(b) Published G∗1

b

a

c

e

d f

h g

i

(c) Published G∗2

Fig. 1. An example of the impact of adding edges to achieve 2-degree anonymity.

point of view, more changes on the original social network are preferred. However,
it will greatly affect the utility of the social network. Ideally, we prefer that a
modified social network does not disclose the true identity of each vertex, and
meanwhile it still provides comparable level of accuracy with the original data for
the corresponding mining and analysis activities. The trade-off between privacy
and utility in publishing tabular data has been well studied [5], however, it is
still new in the field of social network publishing.

To the best of our knowledge, most of previous works use the total number
of modified edges to measure the social network utility loss. In other words,
they try to achieve anonymity with minimum number of edge modifications.
However, this measurement is not effective as it assumes each edge modification
has an equal impact on the original social network properties. For example, a
social network G is given in Fig. 1(a). Its vertices are naturally divided into
two communities, as indicated by the dash circles. The vertices within the same
community are strongly connected, while connections between the vertices of
different communities are weak. Assume there are two corresponding social net-
works G∗1 and G∗2 published based on G, as illustrated in Fig. 1(b) and Fig. 1(c)
respectively. In terms of privacy, both G∗1 and G∗2 satisfy 2-degree anonymity,
that is for any given vertex, there is at least one other vertex sharing the same
degree. In terms of utility, they are same as they both only add one edge to the
original social network. However, the change that G∗1 makes (i.e., adding edge
between vertex g and vertex c) is more significant, compared with the change
made by G∗2 (i.e., adding edge between vertex g and vertex e), as G∗2 remains the
two-community structure of G, while G∗1 blurs the boundary of the communities.

Based on the above observations, we believe that the number of edge mod-
ifications alone is not a good measurement of the utility loss and hence the
existing k-anonymization algorithms based on this measurement have nature
flaws in providing high-utility anonymized social network data. To address this
concern, we propose a novel utility-oriented social network anonymization ap-
proach in this paper to achieve high privacy protection and low utility loss. First,
a proper utility model is proposed based on the hierarchical community structure
of the social network, to measure the utility loss of a published social network.
It focuses on social network topological feature changes instead of purely the
number of edge modifications. Second, an efficient k-anonymization algorithm
is designed to modify a given social network G to G∗, where G∗ satisfies the
privacy requirement (e.g., k-degree anonymity) with relatively low utility loss.

The rest of the paper is organized as follows. Section 2 presents some back-
ground knowledge and reviews related works about social network privacy pro-
tection. Section 3 details the new utility model based on the hierarchical com-
munity structure of the social network. Section 4 presents the k-anonymization
algorithm based on the proposed utility model. Section 5 reports the experiment
results. Finally, section 6 concludes the paper.

2 Preliminaries and Related Work

We first present the terminology that will be used in this paper. Similar as other
works, we model the social network as an undirected graph G(V, E), where vertex
set V represents the entities (e.g., persons, organizations, et al), and edge set E
represents the relationships between two entities (e.g., friendship, collaboration,
et al). An edge between vertex vi and vj is denoted as e(vi, vj) ∈ E. 1

2.1 Structural Re-identification Attack and K-Anonymity

Social network data publishing faces various privacy challenges, and we only
focus on the identity privacy problem in this work. We assume the entities’
true identities in the original social network G are sensitive, and hence they are
eliminated in the released social network G′. An attacker tries to locate a target
entity in G′ based on her background knowledge about the target. We use F
to denote the type of background knowledge that an attacker uses and F (t) to
represent the evaluated value of F for a target t. If F is based on the structure
of the graph, such as degree, neighborhood and subgraph, this attack is called
structural re-identification attack (SRA) [6], as defined in Definition 1.2

Definition 1 (Structural Re-identification Attack (SRA)). Given a so-
cial network G(V, E), its published graph G′(V ′, E′), a target entity t ∈ V and
the attacker’s background knowledge F (t), the attacker performs the structural
re-identification attack by searching for all the vertices in G′ that could be mapped
to t, i.e., VF (t) = {v ∈ V ′|F (v) = F (t)}. If |VF (t)| << |V ′|,3 then t has a high
probability to be re-identified.

K-anonymity is a widely adopted principle to prevent the SRA on social
networks [1–4], formally defined in Definition 2. Please note that we need to
specify the type of background knowledge F (e.g., degree, neighborhood) that an
attacker has in order to formally define k-anonymity. However, when the context
of F is clear, we use k-anonymity in this paper for the brevity of presentation.

Definition 2 (K-Anonymity). Given a graph G(V, E), and a type of attacker’s
background knowledge F , G satisfies k-anonymity against F , iff for each v ∈ V ,
there are at least (k − 1) other vertices in V with the same F value of F (v).

1For ease of presentation, we use “graph” and “social network” interchangeably.
2The attacker could possess some non-structural information as well (e.g., the ver-

tex(edge) labels), but we only consider the structural information in this paper.
3Notation |V | refers to the cardinality of a set V .

Different approaches have been proposed to convert a given graph into a k-
anonymized graph. In this work, we only focus on edge modification, that is to
modify a graph into a k-anonymized graph only via inserting and/or deleting
edges. It is expected that the topological structure of a graph will be changed
by modifications and the published graph is expected to lose some utility of the
original one. Consequently, social network publishing should take both the pri-
vacy and utility into consideration. Ideally a published social network G′ should
satisfy k-anonymity and meanwhile cause a utility loss as small as possible.

2.2 Related Work

Structural re-identification is one of the major privacy concerns in social network
publishing [7]. The initial study demonstrates that simply removing the iden-
tification information of the entities is not sufficient to protect privacy as the
true identities of the vertices can be inferred due to the structural uniqueness of
some embedded small subgraphs (i.e., SRA). Various classes of SRAs are there-
after proposed based on the types of attackers’ background knowledge, including
vertex refinement queries, subgraph queries and hub-fingerprint queries [6].

To counter the SRAs, various protection schemes were proposed [1–4, 6, 8].
For example, the random permutation approach protects privacy by randomly
inserting and deleting edges [8], which is simple but may significantly affect the
graph utility. Then graph generalization based approaches abstract an original
graph into a super graph by grouping the vertices into small blocks represented
by super nodes and linking super nodes via edges if the corresponding blocks
are connected [6]. The super graph introduces great uncertainty in the released
data, thus increasing the difficulties of using the data.

Recently, researchers start to apply the principle of k-anonymity [9] to pro-
tect the social network privacy. Based on the types of attacker’s background
knowledge, various k-anonymity schemes and algorithms have been proposed.
For example, k-degree anonymity scheme is to against the attackers with knowl-
edge of entity degree [1]; scheme proposed in [3] considers the attackers with the
information about the vertices’ neighborhood; k-automorphism and k-symmetry
schemes can resist multiple structural attacks. k-automorphism modifies the
graph such that for each vertex, there are at least (k − 1) other structurally
equivalent vertices [4]; and k-symmetry utilizes the symmetry property of the
social network to modify the graph [2]. All these algorithms anonymize graphs
based on edge/node modification operations (i.e., addition and/or deletion), and
try to preserve the utility of the released graphs. However, most of them employ
the number of edge/node changes as the only measurement to quantify the util-
ity loss, which is not effective, as demonstrated in Section 1. The new model we
propose, as will be detailed in next section, actually gives a better measurement.

3 Graph Utility Measurement

In order to support utility-oriented k-anonymization, the first issue to address
is how to measure the utility loss of a published social network, compared with

b

c

da

(a) Graph G

a d

0

bc

1

1

(b) H1
G

2/3

a bc d

1

1

r1

r2

(c) H2
G

Fig. 2. A graph G and its corresponding HRGs.

1/18

1/2

UL ≈ 0.03

UL ≈ 0.02

r1

r2

a b c

1

1

g i f

1

1

e

2/3

d h

1

Fig. 3. An example of HRG
and utility loss.

the original social network. As pointed out in previous sections, the number of
edge modifications, the most common utility loss measurement, is not effective
as it treats all the edges equally. In our work, we aim at developing a new mea-
surement that reflects the different impacts of various edge operations on the
social network structure. Given the fact that social network is a complex graph,
there are many aspects of its topological properties, such as transitivity, eigen-
vector, and community structure. Among them, the community structure is a
central organizing principle of complex graph and it is a core graph topologi-
cal feature which has a strong correlation with other important features (e.g.,
transitivity and betweenness). Consequently, we decide to use the community
structure to represent the topological features of social networks as it provides a
simple representative to reflect the influence of the edge modification on social
network structure in a micro perspective. In this section, we first introduce the
Hierarchical Random Graph (HRG) [10] for modeling the community structure,
then present its construction algorithm, and finally introduce a novel hierarchical
community entropy to quantify the graph structural features (i.e., utility).

3.1 Hierarchical Random Graph

The community structure of a graph is a nature grouping of its vertices. The
vertices have dense connections within the groups, but sparse connections be-
tween groups. Recent studies suggest that the communities of social networks
often exhibit hierarchical organization (i.e. the large communities further con-
tain small communities). Consequently, we adopt a Hierarchical Random Graph
(HRG) model to capture this hierarchical organization of communities [10].

Given a graph G(V, E), the HRG is a binary tree, denoted as HG. The leaf
nodes of HG correspond to vertices of G, and each internal node r is associated
with a connection probability pr. Given a sub-tree Tr that is rooted at node r, pr

is the probability that a vertex in the left subtree TL
r has an edge with a vertex

in the right subtree TR
r . It reflects the connection strength between the vertices

in the left and right subtrees. The larger the pr is, the stronger the connection
is. Mathematically, connection probability pr is defined in Equation (1).

pr = |Er|/(|TL
r | · |TR

r |) , (1)

where |Er| is the number of edges e(vi, vj) ∈ E with vi ∈ TL
r and vj ∈ TR

r , and
|TL

r | (|TR
r |) is the number of vertices in r’s left (right) subtree. A graph G and

its two possible HRGs are depicted in Fig. 2. Naturally, the vertices in sub-tree
Tr rooted at node r are regarded as a community Cr.

3.2 Constructing HRG

As mentioned above, the tree-structure of HRG organizes the underlying social
network hierarchically. However, for a given social network G, there are multiple
possible HRGs. How to construct an HRG that captures the topological structure
of a given social network G best is a key issue we have to address in order
to use HRG to model social network. In the literature, a likelihood function
L has been developed to evaluate the fitness of a given HRG HG to G, with

L(HG) =
∏

r∈HG

[
ppr

r (1− pr)1−pr
]|T L

r |·|T R
r | [10]. Accordingly, a representative

HRG construction algorithm uses Markov chain Monte Carlo method to sample
the space of all possible HRGs with probability proportional to L and returns
the sampled HRG having the maximum L value.

Essentially, L(HG) is the posterior probability that the model HG gener-
ates G. However, in fact, a model HG generates G with high probability does
not necessarily mean that HG is a good model of the hierarchical community
structure of G. We use example depicted in Fig. 2 to support our statement.
We observe that the partition of H2

G is more meaningful than H1
G in terms of

the community structure. This is because H1
G groups a and d into the same

community which is improper as there is even no edge between them. However,
L(H1

G) = 1 >> L(H2
G) = 0.148. Consequently, maximize the likelihood value

L(HG) does not necessarily reflect a good community organization of a social
network G. Thus, the Monte Carlo sample algorithm which is developed based
on L(HG) cannot return the best HRG that preserves most, if not all, the topo-
logical structure properties of a given social network G as we expect, not to
mention its extremely high construction cost.

To overcome the shortcomings of the existing HRG construction approach,
we propose a simple greedy bottom-up construction algorithm. Initially, the
algorithm forms each vertex of G as one community (i.e. the leaf nodes of HG).
Thereafter, communities (i.e. subtrees) with strong connections are merged from
bottom to up until one unified community is achieved. The connection strength
of two community Ci and Cj is again evaluated by the connection probability
pCi,Cj

= |Eij |/(|Ci||Cj |), with |Eij | the number of edges connecting vertices of
Ci with vertices of Cj , and |Ci| (|Cj |) the number of vertices of Ci (Cj). Due to
the limitation of the space, we omit the detailed HRG construction algorithm.

3.3 Hierarchical Community Entropy

As mentioned above, we use an HRG HG to represent the topological features of a
given social network G. In this subsection, we introduce an information entropy
based utility function to quantify the information (i.e. utility) of G reflected
by HG. In the literature, there are various graph entropy definitions available,
based on different focuses. For example, entropy of the degree distribution, target

entropy and road entropy [11]. However, none of the above entropy definitions
considers the graph’s hierarchical community information. Consequently, we pro-
pose a new Hierarchical Community Entropy (HCE) to represent the information
embedded in the graph community structure.

HCE is defined based on the edge grouping. Given a graph G(V, E) and its
community structure represented by HG, there are |V | − 1 internal nodes in HG

as HG is a complete binary tree with |V | leaf nodes. Each internal node r in HG

roots a subtree corresponding to a group of crossing edges Er of G. Given the
numbers of vertices in left subtree and right subtree represented by |TL

r | and |TR
r |

respectively, |Er| = |TL
r | · |TR

r | · pr. The HCE of a given HG of a social network
G, denoted as HCE(G,HG) is defined in Equation (2), with pt represents the
connection probability. For example, the graph depicted in Fig. 1(a), the HCE
of its HG shown in Fig. 3 is 2.807.

HCE(G,HG) = −
|V |−1∑
t=1

|TL
t | · |TR

t | · pt

|E| log(
|TL

t | · |TR
t | · pt

|E|) . (2)

When we insert/delete an edge on a graph G, the modification will be re-
flected by the connection probability change of an internal node on HG, thus
changing the HCE value. Continue our example. When we add a new edge
e(vg, vc) to G in Fig. 1(a), the connection probability of the lowest common
ancestor of vg and vc (i.e. the root) is changed from 1

18 to 1
9 , with the new HCE

value of the modified graph being 2.840. Similarly, if we add a new edge e(vg, ve)
to G, its HCE value will be 2.790. The utility loss caused by the edge operation
is evaluated by the change of the HCE value, as defined in Equation 3.

UL(G,G′) = |HCE(G,HG)−HCE(G′,H ′
G)| , (3)

where G′ is the modified graph, and H ′
G is the corresponding HRG derived

from HG with updated connection probabilities. The main goal of this work
is to anonymize the social network while making the utility loss as small as
possible. Continue above example. As adding edge e(vg, vc) causes the utility loss
of |2.840− 2.807| = 0.033, and adding edge e(vg, ve) causes utility loss of 0.017,
the second modification has a less significant impact on the graph structure and
hence is preferred. It also confirms our observation in Fig. 1.

4 HRG based K-Anonymization

After introducing the HRG model and the information entropy based utility
measurement, we are ready to present HRG-based k-anonymization algorithm
that tries to anonymize a given social network via edge operations with the
utility loss as small as possible. In the following, we first present the basic idea of
HRG-based k-anonymization and then detail its main components individually.
Notice that although we only focus on k-degree anonymity in this section, our
approach is general and it is applicable to other k-anonymity based privacy
protection schemes on social networks (e.g. k-neighborhood anonymity).

Algorithm 1: HRG based k-anonymization algorithm
Input: Graph G(V, E), HG, F , and k
Output: K-anonymized graph G′

1 G′(V ′, E′) = G(V, E);
2 D∗ = estimate(G, F, k);
3 while G′ is not k-anonymized do
4 Setop = findcandidateOp(G′, D∗, HG);
5 while Setop 6= ∅ do
6 operation p = Setop.min op();
7 execute(p, G′, HG);
8 Setop = findcandidateOp(G′, D∗, HG);

9 if G′ is not k-anonymized then D∗=refine(D∗,G′);

10 return G′;

4.1 Basic Idea and Algorithm Framework

The optimal k-anonymization problem (i.e. k-anonymization with minimum util-
ity loss) on social networks is NP-hard. 1 To simplify the problem, we assume the
utility loss is affected by the number of edge operations performed and the utility
loss caused by each edge operation. In other words, we try to solve the problem
by reducing the number of edge operations and meanwhile always performing
the edge operations that cause smaller utility loss first. A greedy algorithm is
designed accordingly.

The basic idea of our algorithm is as follows. Given a graph G, the attack
model F and the privacy requirement k, we perform edge operations one at a time
on G to achieve k-anonymity. To restrain the utility loss, we perform the edge
operation that directs the current G towards its “nearest” k-anonymized graph
and meanwhile causes the smallest utility loss. Here, “nearest” k-anonymized
graph refers to the graph that satisfies k-anonymity with the smallest number of
edge operations, which is denoted as G∗ to facilitate our explanation. The knowl-
edge of G∗ is essential for our algorithm. However, G∗ is unknown in advance
and it is hard to locate. Given that forming G∗ directly is not always possible,
we try to estimate the local structure information of the vertices of G∗ (e.g., the
degrees and/or the degrees of the neighbors of each vertex) which, based on the
given G, F and k, is possible. Then, according to the local structure information,
a set of candidate edge operations are generated to lead G towards G∗.

Algorithm 1 sketches a high-level outline of our HRG based k-anonymization
algorithm. It takes a graph G, its HRG HG, attacker’s background knowledge
F and privacy parameter k as inputs, and outputs a modified graph G′ that
is k-anonymized and meanwhile has small utility loss. Initially, the algorithm
sets G′ to G, and sets D∗ as an estimation of G∗ based on G, F and k (lines
1-2). Thereafter, it generates a set of candidate edge operations, maintained

1The NP-hardness is proved by reducing the traditional set-packing problem [12]
to the optimal k-anonymization problem.

by a set Setop with the utility loss caused by each edge operation (line 4).
At each step, it gets the edge operation which causes the smallest utility loss,
performs that edge operation on G′, at the same time, updates the corresponding
connection probability on HG, and then re-generates the candidate set based on
the updated G′ (lines 6-8). This process continues until Setop becomes empty
(lines 5-8). After performing all the identified candidate edge operations, there
are two possible outcomes, i.e., the current G′ is k-anonymized or not. In case G′

still does not satisfy the privacy requirement, it means the k-anonymized graph
which has the local structure information D∗ is not achievable by the current
executed operation sequence and we need to refine D∗ via small adjustments and
continue previous process (line 9). We would like to point out that when refining
D∗, we only consider additive adjustment, i.e. adjust the graph via adding edges.
Thus, in the worst case, G′ will be modified towards a complete graph, which
always satisfies the privacy requirement. Therefore, our algorithm is convergent.

As highlighted in Algorithm 1, there are three key components, i.e., estima-
tion of local structure information, generation of candidate edge operations, and
refinement of D∗. Each of them will be detailed in following subsections.

4.2 Estimating Local Structure Information

As pointed out earlier, we only focus on k-degree anonymization for presenta-
tion simplicity. In the following, we explain how to find a good estimation of
the k-anonymized graph with smallest number of edge operations, i.e., G∗. Our
approach is to perform the estimation on the local structure information based
on degree sequence. Degree sequence D of a graph G(V, E) is a vector of size |V |
with each element D[i] ∈ D representing the degree of vertex vi in G. We further
assume the degree sequence is sorted by the decreasing order of its elements.

Given a graph G, its degree sequence D and k, we want to estimate the de-
gree sequence D∗ of its “nearest” k-degree anonymized graph G∗. We list some
pre-knowledge that can guide the estimation. First, D∗ shares equal size with
D, because we only consider graph modification via edge insertion/deletion but
not vertex insertion/deletion. Second, D∗ must be k-anonymized since D∗ is the
degree sequence of a k-degree anonymized graph of G. In other word, for each
element D∗[i] ∈ D∗, there are at least (k − 1) other elements sharing the same
value as D∗[i]. Third, because that D∗ is the degree sequence of the “nearest”
k-anonymized graph of G, the L1 distance between D∗ and D should be mini-
mized. Based on the above knowledge, we can employ the dynamic programming
method proposed in [1] to find D∗. We ignore the detail due to space limitation.

4.3 Generating Candidate Edge Operation Set

Once D∗ that represents the target local structure information is ready, we need
to find candidate edge operations that convert G′ to a k-anonymized graph
with its degree sequence represented by D∗. Before we introduce the detailed
algorithm, we first define three basic edge operations, i.e., edge insertion, edge
deletion, and edge shift, denoted as ins(vi, vj), del(vi, vj), and shift((vi, vj), vk).

b

a

c

e

d f

h g

i

Fig. 4. shift((vc, vd), ve).

D 5 4 4 3 3 3 2 2 2

D
∗ 5 5 4 4 3 3 2 2 2

δ 0 1 0 1 0 0 0 0 0

V S
+ = {vi, vg, vc, ve, vf}

V S
− = ∅

Candidate operations:
ins(vg, ve), ins(vi, vc), ins(vg, vc)

Fig. 5. HRG based 2-degree anonymization.

As suggested by their names, ins(vi, vj) is to insert a new edge that links vertex
vi to vertex vj and del(vi, vj) is to remove the edge between vi and vj . Operation
shift((vi, vj), vk) is to replace the edge e(vi, vj) with edge e(vi, vk). It is moti-
vated by the observation that the HCE value is only sensitive to the number of
the crossing edges between two communities. For example, as shown in Fig. 1(a),
G is partitioned into two main communities as demonstrated by the dash circles.
Edge e(vc, vd) is the crossing edge connecting those two communities, and their
lowest common ancestor is the root (based on HG shown in Fig. 3). If we shift
the end point vd of the edge e(vc, vd) to ve (i.e., shift((vc, vd), ve)) as illustrated
in Fig. 4, it will not affect the connection probability of the root in HG and
hence HCE value, as the number of the crossing edge is not changed. Therefore,
edge shift operation should receive a higher priority when modifying the graph
to achieve k-anonymity. Definition 3 gives formal definition of this operation.

Definition 3 (Edge Shift). Given a graph G(V, E), the corresponding HRG
HG, an edge e(vi, vj) ∈ E, and a vertex vk ∈ V such that e(vi, vk) 6∈ E, let r be
the lowest common ancestor of vj and vk on HG, and assume vi is not in the
subtree of r. Edge shift shift((vi, vj), vk) is to replace e(vi, vj) with e(vi, vk).

The goal of the edge operations is to modify the graph such that its degree
sequence D′ matches the target degree sequence D∗. Consequently, the difference
sequence δ = (D∗ −D′) can give some guidance. For each element δ[i] ∈ δ with
δ[i] > 0 (i.e. D′[i] < D∗[i]), it means a vertex in G′ with degree D′[i] needs to
increase its degree, i.e., it should have more edges connected to. We maintain
D′[i] with δ[i] > 0 via set DS+ and maintain all vertices v ∈ G′ that have
degree of D′[i] via set V S+ which includes all the vertices that may require
edge insertion operation. Similarly, for each element δ[j] ∈ δ with δ[j] < 0 (i.e.
D′[j] < D∗[j]), it means a vertex in G′ with degree D′[i] needs to decrease
its degree, i.e., it should have less edges connected to. We maintain D′[i] with
δ[j] < 0 via set DS− and maintain all the vertices v ∈ G′ that have degree
of D′[j] via set V S− which includes all vertices that may require edge deletion
operation. Notice that the degree value of D′[i] or D′[j] may correspond to
multiple vertices in G′ and we treat them equally in our work. In addition, if
the degree D′[i] (D′[j]) only appears once in DS+ (DS−), we cannot perform
edge insertion (deletion) to connect (disconnect) two vertices vl, vm both with
original degree of D′[i] (D′[j]) and hence we mark these vertices mutual exclusive,
denoted as EX(vl, vm) = True.

Back to the graph G depicted in Fig. 1(a). Its degree sequence D and the
target 2-degree anonymized degree sequence D∗ are shown in Fig. 5. Based on

δ = (D∗ −D), we find δ[2] = δ[4] = 1 > 0 and hence D[2] (= 4) and D[4] (= 3)
are inserted into DS+. Consequently, all the vertices in G with degree being 4
or 3 are inserted into V S+ = {vi, vg, vc, ve, vf}. Notice that all pair of vertices
among of {vi, vg} and among of {vc, ve, vf} are marked mutual exclusive. As
there is no element of δ with its value smaller than 0, DS− = V S− = ∅.

The reason that we form V S+ set and V S− set is to facilitate the generation
of candidate edge operations. As V S+ set contains those vertices that need
larger degree, a new edge connecting vi to vj (i.e., ins(vi, vj)) is a candidate, if
vi, vj(i 6= j) ∈ V S+ ∧ e(vi, vj) 6∈ E′ ∧ EX(vi, vj) 6= True. We can enumerate
all the candidate edge insertion operations based on V S+ and preserve them
in set Opins. Similarly, removing edge e(vi, vj) (i.e., del(vi, vj)) forms an edge
deletion operation, if e(vi, vj) ∈ E′ ∧ vi, vj(i 6= j) ∈ V S− ∧ EX(vi, vj) 6=
True. Again, we explore all the candidate edge deletion operations and preserve
them in set Opdel. We also consider the candidate edge shift operation. For a
pair of vertices (vj , vk) with vj ∈ V S− ∧ vk ∈ V S+ ∧ (j 6= k), if there is a
vertex vi, (i 6= j, k) such that e(vi, vj) ∈ E′ ∧ e(vi, vk) 6∈ E′ ∧ vi is not in the
subtree of vj and vk’s lowest common ancestor on the HRG, shift((vi, vj), vk)
is a candidate. All possible edge shift operations form another set Opshift. We
continue the above example shown in Fig. 5. As V S− = ∅, we only need to
consider possible edge insertion operations, i.e., Opdel = Opshift = ∅. Based on
V S+ = {vi, vg, vc, ve, vf}, we have Opins = {ins(vg, ve), ins(vi, vc), ins(vg, vc)}.

Given all the candidate edge operations maintained in the operation sets
Opins, Opdel, and Opshift respectively, we can insert them into the candidate
operation set Setop that is used by HRG-based k-anonymization algorithm (i.e.,
Algorithm 1). We sort Setop by the increasing order of the HCE value changes
caused by each operations, so that the edge operation that causes smaller utility
loss will be performed earlier. Based on the HRG in Fig. 3, the corresponding
Setop is set to {〈ins(vg, ve), 0.017〉, 〈ins(vi, vc), 0.033〉, 〈ins(vg, vc), 0.033〉}. The
whole process of finding candidate operations is summarized in Algorithm 2.

4.4 Refining Target Local Structure Information

As mentioned above, our HRG-based k-anonymization algorithm generates D∗

that estimates the local structure information of the “nearest” k-anonymized
graph as the target, and performs edge operation to change graph towards D∗.
However, it is possible that k-anonymized graph with degree sequence D∗ is not
achievable by the current executed operation sequence. If this happens, we need
to refine D∗ and start another round of attempt. To ensure the convergence of
our algorithm, we only consider additive adjustment and we prefer that the new
target degree sequence is close to that of the original D∗. The basic idea is to
find a point on D∗ to make adjustment and hopefully, after the adjustment, we
can find executable candidate operations on G′.

In our work, we take V S+ as a candidate set for the adjustable points. It
contains the vertices that have not been k-anonymized and need to increase
their degrees. For each vi ∈ V S+, we find vj ∈ V, (i 6= j), such that e(vi, vj) 6∈
E′, and EX(vi, vj) 6= True, and preserve ins(vi, vj) via an operation set Op.

Algorithm 2: findcandidateOp algorithm
Input: G′(V, E′), D∗, HG

Output: Candidate operation set Setop

1 D′ = degree sequence of G′;
2 δ = (D∗ −D′);
3 DS+ = {D′[i] | δ[i] > 0, 1 ≤ i ≤ |D′|};
4 DS− = {D′[i] | δ[i] < 0, 1 ≤ i ≤ |D′|};
5 V S+ = V S− = ∅;
6 foreach d ∈ DS+ do
7 V S+ = V S+ ∪ {vi|vi ∈ G′, vi.degree = d};
8 foreach d ∈ DS− do
9 V S− = V S− ∪ {vi|vi ∈ G′, vi.degree = d};

10 Opins = getOp(V S+, V S+), Opdel = getOp(V S−, V S−),

Opshift = getOp(V S+, V S−);

11 calculate the cost of each operation in Opins, Opdel, and Opshift;

12 Setop.insert(Opins, Opdel, Opshift);
13 return Setop;

Within Op, we choose the ins(vi, vj) that causes smallest utility loss. Notice
that this operation changes degree of vj even if the degree of vj does not request
adjustment. One simple method to address this issue is to change vj ’s degree in
D∗ but it breaks the k-anonymity of D∗. Therefore, we increase the degree of
vj in the original G (i.e., the corresponding element in the degree sequence D is
changed), and re-generate D∗ based on the updated D. As the changes made to
D are very small, the new D∗ should be very similar as the old one.

We consider V S+ first because we want to make additive change on D∗.
However, if V S+ is empty, we have to use V S− that contains the vertices having
not been k-anonymized and need to decrease their degrees. We can decrease
the degrees of those vertices of V S−, but it is against our goal of only making
additive change. Alternatively, for a vertex vi ∈ V S−, we increase the degree of
another vertex vj , whose degree value is close to vi according to G′. The rationale
is that because vi and vj have similar degrees, they are very likely to have the
same degree in the anonymized graph. Increasing the degree of vj will cause the
degree of vi and vj in the anonymized graph to be increased. In this case, vi will
not need to decrease its degree anymore. Still, we increase the degree of vj on
the seed degree sequence D instead of D∗ by the same reason mentioned above.

5 Experimental Evaluation

In this section, we compare the utility loss of our HRG-based k-anonymization
algorithm, referred as HRG, with the existing k-anonymization approaches that
only consider minimizing the number of edge modifications. We choose k-degree
anonymity as the privacy requirement, and use two existing k-degree anonymi-
zation algorithms proposed in [1] as competitors, namely probing method that

only considers edge addition operations, and greedy swap method that considers
both edge addition and deletion operations. We refer them as Prob. and Swap

respectively. We implemented all the evaluated algorithms in C++, running on
a PC having an Intel Duo 2.13GHz processor and 2GB RAM.

We first examine the utility loss by measuring the HCE value change. In ad-
dition, we use some common graph structural properties to further evaluate the
utility loss of different algorithms, such as clustering coefficient (CC), average
path length (APL), and average betweenness (BTN) (see [11] for more infor-
mation). We use function PCR = |P − P ′|/|P | to measure the property change
ratio, where P and P ′ are the property value (i.e., HCE, CC, APL, or BTN) of
the original graph G and the corresponding k-anonymized G′ respectively.

Two real datasets are used in our tests, namely dblp and dogster. The for-
mer is extracted from dblp (dblp.uni-trier.de/xml), and the latter is crawled
from a dog-theme online social network (www.dogster.com). We sampled sub-
graphs from these datasets with the size changing from 500 to 3000 respectively.

5.1 Utility Loss v.s. Graph Size

In our first set of experiments, we evaluate the impact of graph size in terms of
number of vertices on the graph utility loss (i.e., HCE and other graph properties
changes) under different k-anonymization methods. We set k = 25.

Fig. 6 shows the change ratio of different graph properties with different
graph size of two datasets. Generally, our HRG method is most effective in terms
of preserving graph properties. Take HCE value as an example. As depicted in
Fig. 6(a) and Fig. 6(e), the change ratio of our method (i.e., HRG) is around
0.1% for both dblp and dogster, while that under Prob. is 0.5% for dblp and
3% for dogster, and that under Swap is 60% for dblp and 14% for dogster.
The other example is APL value. As depicted in Fig. 6(c) and Fig. 6(g), as
number of vertices increases from 500 to 3000, our HRG method causes around
0.4% and 0.07% utility loss on average for dblp and dogster, respectively. On
contrary, Prob. causes 4% and 7% utility loss on average, and Swap causes around
11% and 1.6% utility loss for dblp and dogster datasets. All these observations
verify that HRG model does successfully capture most, if not all, core features of
the social network, as our HRG method which employs HRG model to represent
graph feature is most effective.

5.2 Utility Loss v.s. k

In the second set of experiments, we evaluate the impact of k on the graph
property change ratio of different k-anonymity methods. Here, the size of the
graph is fixed to 2000 vertices.

Fig. 7 presents the results. We can observe that, in most cases, our HRG

approach outperforms the others. As privacy requirement increases (i.e., k value
increases), the utility loss under HRG and Prob. becomes more significant. This
is because more edge operations are needed to achieve k-anonymity with large k
under both methods. On the other hand, the utility loss caused by Swap algorithm

0

20

40

60

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(a) HCE (dblp)

10

30

50

70

90

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(b) CC (dblp)

0
3
6
9

12

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(c) APL (dblp)

0
4
8

12
16
20

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(d) BTN (dblp)

0

4

8

12

16

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(e) HCE (dogster)

0
4
8

12
16
20
24

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(f) CC (dogster)

0

3

6

9

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(g) APL (dogster)

0

4

8

12

16

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(h) BTN (dogster)

Fig. 6. Graph property change ratio v.s. the graph size.

is not affected by the change of k value that much. This is because, Swap method
has to perform a large number of edge operations even for a small k. When k
increases, the number of edge operations does not change much. 1

To sum up, our experiments use different graph properties to evaluate the
utility loss, although our HRG method is developed based on HCE values. The
experimental results clearly verify that our approach can generate anonymized
social networks with much lower utility loss.

6 Conclusion

Privacy and utility are two main components of a good privacy protection
scheme. Existing k-anonymization approaches on social networks provide good
protection for entities’ identity privacy, but fail to give an effective utility mea-
surement, thus are unable to generate anonymized data with high utility. Moti-
vated by this issue, in this paper, we propose a novel utility-oriented social net-
work anonymization approach to achieve high privacy protection with low utility
loss. We define a new utility measurement HCE based on the HRG model, then
design an efficient k-anonymization algorithm to generate anonymized social net-
work with low utility loss. Experimental evaluation on real datasets shows our
approach outperforms the existing approaches in terms of the utility with the
same privacy requirment.

Acknowledgment. This study was funded through a research grant from the
Office of Research, Singapore Management University.

1Due to the extremely long converge time of the Prob. method, its results on the
dogster graph with k = 100 were missing. However, it should not affect our observa-
tions of the experimental trend.

10

30

50

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(a) HCE (dblp)

10

30

50

70

90

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(b) CC (dblp)

0

3

6

9

12

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(c) APL (dblp)

0
3
6
9

12
15
18

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(d) BTN (dblp)

0

3

6

9

12

15

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(e) HCE (dogster)

0
3
6
9

12
15

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(f) CC (dogster)

0

3

6

9

12

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(g) APL (dogster)

0
3
6
9

12
15
18
21

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(h) BTN (dogster)

Fig. 7. Graph property change ratio v.s. k.

References

1. Liu, K., Terzi, E.: Towards Identity Anonymization on Graphs. In: SIGMOD’08.
(2008) 93–106

2. Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: K-Symmetry Model for Identity
Anonymization in Social Networks. In: EDBT’10. (2010) 111–122

3. Zhou, B., Pei, J.: Preserving Privacy in Social Networks Against Neighborhood
Attacks. In: ICDE’08. (2008) 506–515

4. Zou, L., Chen, L., Özsu, M.: K-Automorphism: A General Framework for Privacy
Preserving Network Publication. VLDB Endowment 2(1) (2009) 946–957

5. Li, T., Li, N.: On the Tradeoff Between Privacy and Utility in Data Publishing.
In: SIGKDD’09. (2009) 517–525

6. Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting Structural Re-
identification in Anonymized Social Networks. VLDB Endowment 1(1) (2008)
102–114

7. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore Art Thou R3579X?
Anonymized Social Networks, Hidden Patterns, and Structural Steganography. In:
WWW’07. (2007) 181–190

8. Hay, M., Miklau, G., Jensen, D.: Anonymizing Social Networks. Technical report,
UMass Amberst (2007)

9. Sweeney, L.: K-anonymity: A Model for Protecting Privacy. IJUFKS 10(5) (2002)
557–570

10. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical Structure and The Predic-
tion of Missing Links in Networks. Nature 453(7191) (2008) 98–101

11. Costa, L.D.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of
Complex Networks: A Survey of Measurements. Advances in Physics 56(1) (2007)
167–242

12. Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E.,
Thatcher, J.W., eds.: Complexity of Computer Computations. Plenum Press (1972)
85–103

	Utility-Oriented K-Anonymization on Social Networks
	Citation

	tmp.1420804213.pdf.TPTpZ

