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Abstract In this paper, we identify and solve a new type

of spatial queries, called continuous visible nearest neigh-
bor (CVNN) search. Given a data set P , an obstacle set O,

and a query line segment q in a two-dimensional space, a

CVNN query returns a set of 〈p,R〉 tuples such that p ∈ P
is the nearest neighbor to every point r along the interval

R ⊆ q as well as p is visible to r. Note that p may be NULL,

meaning that all points in P are invisible to all points in R
due to the obstruction of some obstacles in O. In contrast to

existing continuous nearest neighbor query, CVNN retrieval

considers the impact of obstacles on visibility between ob-

jects, which is ignored by most of spatial queries. We for-

mulate the problem, analyze its unique characteristics, and

develop efficient algorithms for exact CVNN query process-

ing. Our methods (i) utilize conventional data-partitioning

indices (e.g., R-trees, etc.) on both P and O, (ii) tackle the

CVNN search by performing a single query for the entire
query line segment, and (iii) only access the data points and

obstacles relevant to the final query result by employing a

suite of effective pruning heuristics. In addition, several in-

teresting variations of CVNN queries have been introduced

and they can be supported by our techniques, which further

demonstrates the flexibility of the proposed algorithms. A

comprehensive experimental evaluation using both real and
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synthetic datasets has been conducted to verify the effec-

tiveness of our proposed pruning heuristics, and the perfor-

mance of our proposed algorithms.
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Spatial database · Algorithm

1 Introduction

The continuous nearest neighbor (CNN) search, an impor-

tant operator in spatial databases, has been well-studied [1–

3]. Given a set of points P and a query line segment q, a

CNN query retrieves the nearest neighbor (NN) of every

point on q. The result of CNN retrieval, denoted by CNN(q),
contains a set of 〈p,R〉 tuples, such that p ∈ P is the NN

of each point r along the interval R ⊆ q, i.e., ∀r ∈ R,

∀p′ ∈ P − {p}, dist(p, r) ≤ dist(p′, r)1. An example is

shown in Figure 1(a), where data set P = {a, b, c, d, f, g, h}
and query line segment q = [s, e]. CNN(q) = {〈a, [s, s1]〉,
〈g, [s1, s2]〉, 〈h, [s2, s3]〉, 〈d, [s3, e]〉}, indicating that point

a is the NN for any point along the interval [s, s1], point g
is the NN for any point along the interval [s1, s2], and so on.

Points s1, s2, s3 on q are called split points, as the NN object

changes at those points.

Conventional CNN search does not take obstacles into

consideration. However, many physical obstacles (e.g., build-

ings, blindages, and hills, etc.) exist in the real world, and

their existence may affect the visibility/distance between ob-

jects and hence the result of spatial queries such as range

query, NN search, and spatial join, etc. Furthermore, in some

applications, users might be only interested in the objects

that are visible or reachable to them.

Recently, the impact of obstacles has been studied in

various spatial queries. Example queries include (i) visible

1 Without loss of generality, dist(pi, pj) denotes the Euclidean dis-
tance between two data points pi and pj .
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(a) CNN search (b) CVNN search

Fig. 1 Example of CNN and CVNN queries

k nearest neighbor (VkNN) retrieval [4,5], which returns

the k(≥ 1) closest objects that are visible to a specified

query point; (ii) visible reverse k-nearest neighbor search [6,

7], which retrieves the points in a data set P that have a

given query point as one of their k visible nearest neighbors

(VNNs), considering the blocks of obstacles in an obstacle

set O; (iii) obstructed nearest neighbor (ONN) query [8,9],

which finds the k points in a dataset that have the smallest

obstructed distances2 to a predefined query point; (iv) con-
tinuous obstructed nearest neighbor retrieval [10], which re-

trieves the ONN for every point along a specified query line

segment according to the obstructed distance; and (v) spa-
tial clustering in the presence of obstacles [11–16], which

divides a set of two-dimensional data points into homoge-

neous groups (i.e., clusters) by taking the influence of ob-

stacles into consideration. Nevertheless, most of the exist-

ing work only takes into account fixed query points instead

of moving query trajectories that contain continuous query

point locations. On the other hand, with the growing pop-

ularity of smart mobile devices and rapid advance of wire-

less technologies, more and more users issue queries even

when they are moving. Consequently, the traditional snap-
shot query might not satisfy the real requirements from mo-

bile users, and continuous query processing over a moving

trajectory is required.

Based on these observations, in this paper, we investigate

continuous3 visible nearest neighbor (CVNN) search that

finds the VNN of every point along a query line segment. To

be more specific, given a data set P , an obstacle set O, and

a query line segment q, a CVNN query retrieves the VNN

for each point on q. It aims at finding a set of 〈p, R〉 tuples,

where p ∈ P is the VNN for any point in the interval R ⊆ q.

It is important to note that p may be empty, meaning that all

points in P are invisible to any point on R due to the obstruc-

tion of obstacles in O. Consider, for example, Figure 1(b), in

which P = {a, b, c, d, f, g, h}, O = {o1, o2, o3} (denoted by

shaded rectangles4), and q = [s, e]. The CVNN query returns

2 The obstructed distance between any two data points in a data set
is defined as the length of the shortest path that connects them without
crossing any obstacle from a set of obstacles.

3 Here, “continuous” denotes “continuously in spatial” instead of
“continuously in time”.

4 Although an obstacle can be in any shape (e.g., triangle, pentagon,
etc.), we assume it is a rectangle in this paper.

{〈a, [s, s1]〉, 〈g, [s1, s2]〉, 〈c, [s2, s3]〉, 〈d, [s3, e]〉}, which in-

dicates that point a is the VNN for any point along inter-

val [s, s1], point g is the VNN for any point along interval

[s1, s2], and so forth. Notice that point h is the NN for each

point on interval [s2, s3] in the conventional CNN retrieval

as shown in Figure 1(a), whereas it is not the VNN for any

point on [s2, s3] in the CVNN search because of obstacle o3.

In addition to the CVNN query introduced above, it has

several interesting variations, including (i) continuous vis-
ible k nearest neighbor (CVkNN) search, which retrieves

the k VNNs for every point on a given query line segment;

(ii) trajectory VkNN (TVkNN) search, which returns the k
VNNs of every point along an arbitrary trajectory consisting

of multiple line segments; (iii) CVkNN query with visible
distance threshold δ (δ-CVkNN) which, for each point p on

a specified query line segment, finds the k nearest neigh-

bors that are visible to p and meanwhile have their distances

to p bounded by a given threshold δ; and (iv) constrained
CVkNN (CCVkNN) search, which retrieves the k VNNs in

the restricted area (defined by the spatial region constraints)

for each point along a specified query line segment.

CVNN search and all these potential variants constitute

a suite of interesting and practical problems from both the

research point of view and application point of view. In this

paper, we focus on CVNN retrieval because it not only in-

troduces some new challenges but is also useful in many ap-

plications, such as decision support and location-based com-

merce. Two example applications are listed as follows.

Placement of traffic surveillance cameras. Suppose that

Land Transport Authority (LTA) of Singapore wants to in-

stall traffic surveillance cameras to monitor accident-prone

roads/streets5. Obviously, each location loc along the mon-

itoring roads/streets should be visible to at least one cam-

era c. In addition, the distance between location loc and its

monitoring camera c is expected to be as small as possible

in order to improve the video quality. By taking both visibil-

ity and distance into consideration, CVNN query can locate

the best locations out of a given set of potential camera in-

stallation points for cameras to cover any point along the

monitoring region6.

Tourist recommendation. A CVkNN query can find

out the k closest visible scenes (e.g., temple, stele, pagoda,

etc.) for each (sub) route along a given tourist traveling route,

defined by a starting point s and an ending point e. Different

from conventional CNN retrieval, CVNN search considers

all the physical obstacles such as buildings and mountains.

Hence, the query result provides more accurate information

5 We assume the monitoring roads/streets can be approximated by
line segments.

6 Note that although the placement of traffic surveillance cameras
could be decided during offline planning process, efficient CVNN
query processing algorithm is still preferred, given the fact that the
number of monitoring regions considered and the number of traffic
surveillance camera placement decision might be huge.
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in terms of visibility. It is worth noting that, in this case,

the purpose of CVNN query differs from that of route query
which finds suitable routes that pass through part/all scenes

included in a specified scene set, e.g., optimal sequenced
route query [17,18] and trip planning query [19].

Motivated by the significance of CVNN queries and the

lack of efficient search algorithms, in this paper, we propose

an efficient algorithm for processing CVNN retrieval and its

variants. Our method (i) utilizes traditional data-partitioning

indices (e.g., R-trees [20,21]) on both the data set and the

obstacle set, (ii) tackles exact CVNN search by performing

a single index traversal, and (iii) enables a suite of effective

pruning heuristics to only access the data points and obsta-

cles relevant to the final query result. Moreover, the pro-

posed CVNN search algorithm is general and can be easily

extended to support different variations of CVNN queries,

including CVkNN search, TVkNN search, δ-CVkNN search,

and CCVkNN search. In summary, this paper has made five-

fold contributions which are listed as follows:

– We formalize CVNN retrieval, a novel addition to the

family of spatial queries, and reveal its unique charac-

teristics. To the best of our knowledge, this paper is the

first attempt on this problem.

– We propose a series of pruning heuristics on the data

set and the obstacle set respectively to effectively prune

those objects that do not contribute to the final query

result and improve the search performance accordingly.

– We develop an efficient CVNN search algorithm, ana-

lyze its cost, and prove its correctness.

– We introduce several interesting variants of CVNN queries,

and extend our techniques to handle them efficiently.

– We conduct extensive experiments using both real and

synthetic datasets to demonstrate the effectiveness of our

proposed pruning heuristics, and the performance of our

proposed algorithms.

A preliminary report of this study appeared in [22]. We

extend that work in this paper by (i) studying two new CVNN

query variants, i.e., TVkNN search and CCVkNN search;

(ii) evaluating the effectiveness of different pruning heuris-

tics; and (iii) conducting a more comprehensive performance

evaluation. Furthermore, we significantly improve the re-

view of related work to make this paper self-contained.

The rest of the paper is organized as follows. Section 2

surveys related work. Section 3 formulates the problem and

reveals its characteristics. Section 4 discusses the pruning

heuristics on the data set P and the obstacle set O, respec-

tively. Section 5 proposes efficient CVNN query processing

algorithms, assuming that P and O are indexed by two sep-
arate R-trees and a unified R-tree, respectively. Section 6

extends our solution to deal with various variants of CVNN

queries. Section 7 presents the performance study and re-

ports our findings. Finally, Section 8 concludes the paper

with some directions for future work.

2 Related work

In this section, we review the existing work related to CVNN

queries, namely, NN search using R-trees, CNN retrieval,

and visibility queries.

2.1 Algorithms for NN search on R-trees

R-tree [21] and its variants (e.g., R*-tree [20], etc.) are the

most well-received spatial indexes due to their simplicity

and efficiency. Figure 2 shows a data set P = {a, b, · · · , j}
in a 2D space, and the corresponding R-tree assuming a ca-

pacity of three entries per node. Note that, in Figure 2(b), the

number in each entry refers to the mindist between the query

point p and the corresponding Minimum Bounding Rectan-
gle (MBR) of the entry. As a leaf entry refers to a point p′ in

P , its mindist to p is the actual distance from p′ to p. These

numbers are not stored in R-tree previously, but computed

on-the-fly during query processing.

(a) The dataset placement

(b) The R-tree

Fig. 2 Example of an R-tree and a NN query

An NN query finds the object in a dataset P that is the

closest to a given query point p. Existing NN search algo-

rithms traverse the R-tree on P in a branch-and-bound man-

ner, and use some distance metrics, including mindist(p,N ),

maxdist(p,N ), and minmaxdist(p, N ), to prune the search

space. Here, p is a query point and N is an R-tree node

which corresponds to an MBR together with all the points

covered. The mindist(p, N ) and maxdist(p, N ) provide the

lower and upper bounds of the distances from p to any point

in the subtree of N . The minmaxdist(p,N ) defines an upper

bound of the distance between p and its NN in N , that is,

there is at least one point located inside N whose distance

to p does not exceed minmaxdist(p,N ). Figure 2(a) illus-

trates these pruning metrics between p and nodes N1, N2.
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Existing algorithms for NN retrieval follow either depth-
first (DF) or best-first (BF) traversal paradigm. DF algo-

rithms [23,24] start from the root, and visit recursively the

node with the smallest mindist to a given query point until

the leaf level where a potential NN is found. Take an NN

query issued at the point p shown in Figure 2(a) as an ex-

ample, DF accesses Root first, followed by N2, and then

N6, where the first NN candidate, i.e., point i, is discovered.

Subsequently, the algorithm conducts backtracking opera-

tions. In particular, during backtracking to the upper levels,

DF only visits those entries with minimum distances to p
smaller than the distance between p and the NN candidate

already retrieved. Continuing the above example, after find-

ing i, DF backtracks to the root level (without visiting N5

as mindist(p,N5) > mindist(p, i)), where the NN candidate

(i.e., i) is confirmed to be the actual NN of p. As demon-

strated in [25], the DF algorithm is suboptimal, i.e., it ac-

cesses more nodes than necessary.

BF algorithms [26,27] achieve the optimal I/O perfor-

mance by visiting only the nodes necessary for obtaining

the NN. Towards this, BF maintains a priority queue (in this

paper we use a heap H) with the entries visited so far, sorted

in ascending order of their mindist to a specified query point

p. Initially, BF inserts all the entries of the root into H (to-

gether with their mindist), e.g., in Figure 2, H = {(N2,
√

5),
(N1,

√
9)}. Then, at each step, BF visits the node in H with

the minimal mindist. Continuing the running example, BF

de-heaps the top N2 of H , retrieves its content, and en-heaps

all the entries, after which H = {(N6,
√

5), (N1,
√

9), (N5,√
45)}. Similarly, the next node accessed is a leaf entry N6,

in which the data points are inserted into H (= {(i,√5),
(N1,

√
9), (j,

√
17), (h,

√
32), (N5,

√
45)}). Point i, the top

of H , is taken as the current NN. At this time, the algorithm

terminates with i as the final query result, because the next

entry in H (i.e., N1) is farther from p than i. Both DF and

BF can be easily extended to retrieve k (> 1) nearest neigh-

bors. Furthermore, BF is incremental, i.e., it returns the NNs

in ascending order of their distances to the query point; and

thus, k does not have to be known in advance.

In addition, different variants of NN queries have been

investigated as well. Ferhatosmanoglu et al. [28] discuss

constrained NN search that discovers the NN(s) in a re-

stricted area of the data space. Papadias et al. [29,30] ex-

plore aggregate NN (and group NN) queries where, given

a data set P and a query set Q, the goal is to retrieve the

point(s) in P with the smallest aggregate (e.g., sum, max,

min, etc.) distance(s) to all the points in Q. Zhang et al.
[31] introduce all NN retrieval, which finds for each point

p1 ∈ D1 its NN p2 ∈ D2, with D1 and D2 representing two

specified datasets. Deng et al. [32] consider surface k-NN

search, in which the distance is calculated from the shortest
path along a terrain surface. Hu et al. [33] study the range
NN query that returns the NN(s) for every point in a range.

2.2 CNN queries

The CNN search has received considerable attention since

it was first introduced by Sistla et al. [34] in the context of

spatial-temporal databases. In that pioneering work, model-

ing methods and query languages for the expression of CNN

queries are presented, but not the processing algorithms. The

first algorithm for CNN query processing, based on periodi-
cal sampling technique, is proposed in [1]. Due to the natural

disadvantage of sampling, its performance highly depends

on the number and positions of sampling points, and the ac-

curacy cannot be guaranteed. Therefore, the sampling based

approach is not considered in this paper as it cannot tackle

exact CVNN retrieval, the focus of this paper.

In order to conduct exact CNN search, two algorithms

using R-trees are proposed in [2,3]. The first algorithm is

based on the concept of time-parameterized (TP) queries,

which treats a query line segment as the moving trajectory

of a query point [2]. Hence, the nearest object to the moving

query point is valid only for a limited duration, and a new TP

query is issued to retrieve the next nearest object once the

valid time of the current nearest object expires, i.e., when a

split point is reached. Although the TP approach avoids the

drawbacks of sampling, it needs to issue m TP queries with

m being the number of answer objects7. In order to improve

the performance, the second algorithm [3] finds all answer

objects for the whole query line segment in a single round.

Since the algorithm proposed in this paper shares the

same principle as CNN search proposed in [3], we illustrate

the basic idea of CNN search using a running example. As

shown in Figure 3, a CNN query is issued at line segment

q = [S,E], the straight line connecting S and E, with the

data points depicted in Figure 2 forming a sample dataset P .

The basic idea is to evaluate the data points in P according

to the best-first order, i.e., those closer to q are evaluated ear-

lier. For each evaluated point p ∈ P , it finds out the set of

points along q that are covered by p, i.e., being closest to p,

prunes away the points that will not cover any point along q,

and fines tune the covering relationship during the traversal.

Initially, the result list is set to {〈∅, [S, E]〉} which indi-

cates that the whole query line segment is not covered by any

point, and the pruning metric SLMAXD that maintains the

maximal distance between any point along q and its current

NN object is set to ∞. Thereafter, the traversal of P starts.

When point i, the first point accessed, is evaluated, it cov-

ers the whole query line segment. Consequently, the result

list is updated to {〈i, [S,E]〉}, and SLMAXD is changed to

dist(i, E), as depicted in Figure 3(a). Next, e is evaluated.

As it is closer to E than its current NN (i.e., i), the result

list is updated to {〈i, [S, s1]〉, 〈e, [s1, E]〉} and SLMAXD is

decreased to the distance between s1 and e, i.e., dist(s1, e)

7 For the rest of this paper, we refer to the data objects/points in the
final query result as answer objects/points.
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(a) After processing i (b) After processing e

Fig. 3 Example of CNN algorithm

as shown in Figure 3(b). Thereafter, j is evaluated. Since its

minimal distance to q exceeds SLMAXD, it will not invali-

date the current covering relationship of any answer object

and hence can be discarded safely. Here, the algorithm ter-

minates because all the unexamined entries are guaranteed

to have their minimal distances to q larger than SLMAXD.

Based on the existing CNN search algorithms, a naive

approach for answering CVNN query, namely Baseline, can

be developed. The basic idea is to invoke CNN retrieval con-

tinuously to retrieve the NN objects, second NN objects, and

so on until those visible to the specified query line segment

q are found. Specifically, it first employs CNN search to lo-

cate the NN objects for q and then validates the visibility

of answer objects. In case an answer object o is not visible

(either completely or partially) to the line segment q′ it cov-

ers, a new C2NN query has to be issued to find the next NN

(i.e., 2nd NN) objects to q′. If the new object is visible to q′,
the search is completed. Otherwise, a new C3NN query has

to be issued to retrieve the third NN object to q′. The rou-

tine proceeds until all the VNNs to q are identified. Given

the fact that existing CkNN search returns kNN objects in a

whole but not the k-th NN object, a C(k+1)NN query actu-

ally repeats all the efforts spent on a CkNN query. In order

to support incremental CNN retrieval, Baseline preserves

all the entries (data points and nodes) pruned away during

CNN retrieval in an array ary to enable reuse and snapshots

the min-heap hp when CNN search is completed. It inserts

back the entries in ary into hp as an initial min-heap for the

new CNN search. In other words, the Baseline guarantees

a CVNN query can be answered via multiple CNN queries

with one dataset traversal. However, it is still not efficient.

First, it does not utilize visibility based pruning heuristics

to discard those unqualified entries during the search. Sec-

ond, it needs to conduct CNN search multiple times, result-

ing in high CPU overhead. Given the result list ∪i〈oi, qi〉
to a CVNN query, we assume the answer object oi is actu-

ally the ni-th NN object to any point along qi. Baseline in

total has to invoke MAXi(ni) CNN queries. If we further

improve the performance by starting the Ck1NN query with

k1 > 1 and then increasing the value of k1 by r instead of 1
thereafter, the number of CNN queries performed could be

reduced to (MAXi(ni) − k1)/r + 1. Nevertheless, how to

select the values of k1 and r is challenging.

In addition, some variations of CNN search have been

proposed in the literature. Iwerks et al. [35] study contin-
uous windowing algorithm to answer CkNN retrieval via

less expensive range queries. However, the algorithm is only

sub-optimal when the location updates of moving objects are

frequent or the k value is large. In view of this, Li et al. [36]

develop a beach-line algorithm, which monitors only the k-

th NN to maintain the CkNN query result, instead of moni-

toring all k NNs.

Recently, the CNN monitoring problem that monitors

the answer objects to a CNN query for a given duration, has

been studied. Different monitoring algorithms (e.g., CPM

[37], SEA-CNN [38], and YPK-CNN [39]) have been pro-

posed, based on the concept of monitoring region. Here,

the monitoring region corresponding to a query q refers to

an area inside which the movement of objects might af-

fect the query result, and hence those objects that are al-

ways outside the region could be safely discarded. Other

versions of CNN monitoring include (i) CNN monitoring in

the road network [40,41], where the distance between any

two objects is defined as the length of their shortest path;

and (ii) CNN monitoring in the distributed environment [42,

43], where the optimization target is to reduce the communi-

cation cost between the central query processor and the data

objects. More recently, Zheng et al. [44] investigate CNN

retrieval in wireless data broadcast systems, where mobile

clients answer their own CNN queries by listening to the

wireless broadcast channel. In addition, CNN retrieval in

spatial network databases has been studied in [45–47].

All the aforementioned work on CNN search and its vari-

ants do not consider obstacles that exist in many real-life

scenarios. Consequently, existing algorithms for them can-

not be applied to handle CVNN retrieval efficiently.

2.3 Visibility queries

Although visibility computation algorithms have been well-

studied in the area of computer graphics and computational

geometry [48], there are only a few works on visibility queries
in the database community [49–51]. The existing methods

utilize various indexing structures (e.g., LoD-R-tree [49],

HDoV-tree [51], etc.) to deal with visibility queries in vi-

sualization systems. Since these specialized access methods

are designed only for the purpose of visualization without

maintaining any distance information, they are not capable

of supporting efficient CVNN query processing.

Recently, Nutanong et al. [4,5] introduce visible near-
est neighbor (VNN) search to find the NN that is visible to

a specified query point. An example of VNN query issued

at s4 is depicted in Figure 1(b). The answer point is d. Al-

though point h is closer to s4 than d, it is blocked by obstacle
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o3 and hence is excluded from the final query result. A VNN

query algorithm, based on the fact that a farther object can-

not affect the visibility of a nearer object, is proposed in [4,

5]. The basic idea is to perform NN search and check its

visibility condition in an incremental manner. Nevertheless,

the algorithm is only for a fixed query point, but not a line

segment which contains multiple query points.

In our earlier work [6,7], we have investigated visible re-
verse nearest neighbor (VRNN) search where, given a data

set P , an obstacle set O, and a query point q, the goal is

to retrieve the points in P that have q as their VNN. We

propose an efficient algorithm for VRNN query processing,

assuming that both P and O are indexed by R-trees. Our

solution follows a filter-refinement framework, and requires

no pre-processing. Specifically, a set of candidate objects

(i.e., a superset of the final query result) is found in the filter

step, and gets refined in the subsequent refinement step, with

these two steps integrated into a single R-tree traversal. As

the size of the candidate objects has a direct impact on the

search efficiency, we employ half-plane properties (as [52])

and visibility check to prune the search space.

Based on the visibility query, we can employ a brute
force based algorithm (BFA) to answer CVNN search. It

first invokes visibility test to evaluate each and every data

point p in a given data set P , and then examines whether p
is closer to any point along the query line segment q than

its current NN object if p is visible either partially or com-
pletely to q. Obviously, BFA suffers from the blind and ex-

haustive scanning as it does not utilize any pruning tech-

nique and has to scan the entire dataset in sequence. The

experimental results to be reported in Section 7 will further

demonstrate its poor performance. Note that, although BFA

could be improved via pre-computing object visibility, we

leave the investigation of the improved BFA to our future

work due to the limitation of space.

3 Preliminaries

In this section, we first present problem definitions for CVNN

search, and then reveal some unique characteristics that can

facilitate the development of efficient CVNN query process-

ing algorithms. Table 1 summarizes the symbols used in the

rest of this paper.

3.1 Problem definitions

Given a set of data points P = {p1, p2, · · · , pn}, a set of

obstacles O = {o1, o2, · · · , om}, and a query line segment

q = [s, e] in a two-dimensional (2D) space, visibility be-

tween two points p, p′ is defined in Definition 1, based on

which we formulate VNN and CVNN queries in Definition 3

and Definition 4, respectively.

Table 1 Symbols and descriptions

Notation Description

P A set of data points p in a two-dimensional space
O A set of obstacles o in a two-dimensional space
Tp The R-tree on P
To The R-tree on O
q A query line segment with q = [s, e]
R An interval of q with R = [R.l, R.r] (⊆ q)
RL The result list of a CVNN query
Lo The linked list storing obstacles
⊥ (p, p′) The perpendicular bisector of the line segment [p, p′]
Rc Constrained region

Definition 1 Visibility. Given p, p′ ∈ P , p and p′ are visible
to each other iff there is no any obstacle o in O such that the

straight line connecting p and p′, denoted by [p, p′], crosses

o, i.e., ∀o ∈ O, o ∩ [p, p′] = ∅.

Definition 2 Visible region. Given p ∈ P and q, the visible
region of p over q, denoted by V Rp, is defined as the set of

intervals R ⊆ q such that p is visible to all points in R.

Definition 3 Visible nearest neighbor [4]. Given p′ ∈ P
and p /∈ P , p′ is the visible nearest neighbor (VNN) of p iff:

(i) p′ is visible to p; and (ii) ∀p′′ ∈ P −{p′}, if p′′ is visible

to p, dist(p′′, p) ≥ dist(p′, p).

Definition 4 Continuous visible nearest neighbor query.

Given P , O, and q, a continuous visible nearest neighbor
(CVNN) query returns a result list RL that contains a set of

〈pi, Ri〉 (i ∈ [1, t]) tuples such that (i) ∀i, j ∈ [1, t](i �= j),
Ri ∩Rj = ∅8; (ii) ∪t

i=1Ri = q; and (iii) ∀〈pi, Ri〉 ∈ RL, if

pi �= ∅, pi is the VNN of any point along Ri.

Definition 5 Dominance. Given p ∈ P and R, p dominates
R iff ∀p′ ∈ P −{p} and any point r along R (i.e., ∀r ∈ R),

dist(p, r) ≤ dist(p′, r).

Definition 6 Dominated region. Given p ∈ P and q, the

dominated region of p over q, denoted by DRp, is defined

as the set of intervals R ⊆ q that are dominated by p.

To illustrate the concept of dominance, Figure 4(a) de-

picts an example, in which P = {a, b} and R = [s, e] (i.e.,

q). As dist(b, s) > dist(a, s) and dist(b, e) > dist(a, e),
it is certain that a is closer to any point along q, compared

with b. Hence, point a dominates q.

Suppose an interval R = [R.l, R.r] is dominated by a

point p, we define the circle cir(R.l, p) (cir(R.r, p)) that

centers at R.l (R.r) and has dist(p,R.l) (dist(p, R.r)) as

the radius as the vicinity circle of R.l (R.r), denoted by

V C(R.l) (V C(R.r)). Any other point p′ that can violate
p’s dominance over R must be within either V C(R.l) or

V C(R.r), as to be demonstrated in Lemma 1. Back to the

8 If Ri and Rj are adjacent, i.e., |i − j| = 1, Ri ∩ Rj �= ∅.
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above example. Assume a new point c is added into P , and

it violates a’s dominance on q (= [s, e]) since c is inside

e’s vicinity circle, i.e., V C(e) centered at e with dist(a, e)
as radius. The appearance of point c actually partitions the

interval q into two sub-intervals R1 (= [s, s1]) and R2 (=

[s1, e]), with a dominating R1 and c dominating R2 respec-

tively, as shown in Figure 4(b). Point s1 is defined as the split
point, i.e., the point on the interval where the VNN changes.

(a) After processing a (b) After processing c

(c) After processing f

Fig. 4 Updating result list

3.2 Problem characteristics

According to Definition 4, we understand that CVNN search

takes into account both the proximity and visibility between

the data points and the query line segment. Thus, we develop

Lemma 1 and Lemma 2 to facilitate the proximity checking

and visibility checking, respectively. Then, Lemma 3 sum-

marizes the condition that a VNN object must satisfy.

Lemma 1 Assume point p dominates an interval R = [R.l,
R.r]. A new point p′ violates p’s dominance over R iff p′ is
within V C(R.l) or V C(R.r), i.e., p′ ∈ V C(R.l)∪V C(R.r).

Proof We first proof sufficiency. If p′ is within V C(R.l),
dist(p′, R.l) < dist(p,R.l) and hence p′ violates the domi-

nance of p over R. Similarly, if p′ is inside V C(R.r), dist(p′,
R.r) < dist(p,R.r) and thus p′ violates p’s dominance on

R. We now prove necessity. If p′ violates the dominance of

p over R, it means there is at least one point p′′ along R
such that dist(p′′, p) > dist(p′′, p′). In other words, p′ ∈
cir(p′′, p), i.e., point p′ must be within the vicinity circle

that centers at p′′ and has dist(p′′, p) as the radius. How-

ever, according to the geometric knowledge, cir(p′′, p) ⊆
V C(R.l) ∪ V C(R.r). Therefore, p′ ∈ cir(p′′, p) indicates

p′ ∈ V C(R.l) ∪ V C(R.r). The proof completes. �

Lemma 2 Given an interval R = [R.l, R.r] and a new data
point p, p will not be the VNN of any point along R if p is
invisible to every point in R.

Proof The proof is obvious because the data point p that is

the VNN of R (i.e., p is the VNN of every point along R)

must be visible to each point in R. �

Lemma 3 Point p must be the VNN of any point along in-
terval R = V Rp ∩ DRp.

Proof According to Definition 2, V Rp is the visible region

of p, meaning that p is visible to any point in V Rp. Ac-

cording to Definition 6, DRp is the dominated region of p,

indicating that p dominates DRp, that is, p is the NN to ev-

ery point in DRp. Consequently, p must be the VNN of any

point along interval R (= V Rp ∩ DRp) by Definition 3. �

Lemma 1 suggests an incremental query processing ap-

proach, which aims at reporting the result of CVNN retrieval

issued at a given query line segment q = [s, e] with a single
dataset traversal. Initially, result list RL is set to {〈∅, [s, e]〉},

meaning that currently the VNNs of all the points in [s, e] are

unknown. Thereafter, we evaluate the impact of a new point

p on RL by checking whether p is located inside the vicinity

circle of Ri.l or Ri.r with respect to a tuple 〈pi, Ri〉 ∈ RL.

If p violates the dominance of an answer object pi on the in-

terval Ri, the RL is updated. The evaluation continues until

all the points in the dataset P are examined.

Figure 4 depicts a running example with dataset P =
{a, b, c, d, f}, obstacle set O = {o1, o2}9, and query line

segment q = [s, e]. Here, points in P are processed in al-

phabetic order. At the beginning, RL is set to {〈∅, [s, e]〉}.

As a is the first point encountered and its view is not blocked

by any obstacle in O, it becomes the current VNN of each

point in q, i.e., RL = {〈a, [s, e]〉}. Second, point b is eval-

uated. We only need to check whether b falls into V C(s)
or V C(e) (i.e., whether b is closer to s or e than its current

VNN). The fact that b is outside both vicinity circles guaran-

tees that b does not dominate any point along [s, e] and thus

b is discarded.

Next, point c is checked. Since c is inside V C(e) and it is

visible to every point in [s, e], a split point s1 is created. It is

the intersection between the query line segment (i.e., [s, e])
and the perpendicular bisector of the line segment [a, c] (i.e.,

⊥ (a, c)), indicating that points to the left of s1 are closer to

a while points to the right of s1 are closer to c. Consequently,

RL is updated to {〈a, [s, s1]〉, 〈c, [s1, e]〉}. Figure 4(b) de-

picts the case after the processing of point c. Then, point d
is evaluated and gets pruned because it is not visible to any

point along q, although d violates c’s dominance on [s1, e]
(see Figure4(b)). Finally, point f is examined. It does not

contribute to the CVNN query result as its visible region

V Rf (= [s0, s2]) and dominated region DRf (= [s3, e]) are

disjoint. After the processing of f , as shown in Figure 4(c),

9 To simplify the discussion, we use line segments, but not rectan-
gles, to represent obstacles in the rest of this paper, while our methods
can be used with rectangles that are sets of line segments.
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the final query result RL = {〈a, [s, s1]〉, 〈c, [s1, e]〉} is re-

trieved and the CVNN search is terminated.

In addition, we observe two important properties, namely,

VNN discontinuity and invisible interval, which are unique

to the CVNN query.

Property 1 VNN discontinuity. A data point p may be the
VNN to multiple intervals that are not adjacent.

For instance, Figure 5(a) depicts a situation where data

points a, b have been processed, and the corresponding RL
= {〈b, [s, s1]〉, 〈a, [s1, s2]〉, 〈∅, [s2, s3]〉, 〈b, [s3, e]〉}. Point b
is the VNN for all the points along intervals [s, s1] and [s3, e]
that are not adjacent. This property implies that a binary

search heuristic, which is used in conventional CNN search

to retrieve the dominated region for a specified point, cannot

be applied to CVNN retrieval.

(a) VNN discontinuity (b) Invisible interval

Fig. 5 Illustration of problem properties

Property 2 Invisible interval. The result list RL of a CVNN
query may have k(≥ 1) invisible intervals 〈∅, R〉, where no
point in a given dataset is visible to any point in R.

Continuing the running example, Figure 5(b) illustrates

the situation after the processing of point c, in which RL =

{〈b, [s, s1]〉, 〈a, [s1, s2]〉, 〈∅, [s2, s3]〉, 〈c, [s3, s4]〉, 〈b, [s4, e]〉}.

In this case, [s2, s3] is an invisible interval.

4 Pruning heuristics

We adopt branch-and-bound techniques to process CVNN

queries. In order to prune the search space, a series of prun-

ing heuristics are developed. In this section, we explain the

detailed pruning heuristics for data set P and obstacle set O,

respectively.

4.1 Pruning on data set

Heuristic 1 Suppose the current result list RL = ∪1≤i≤t

〈pi, Ri〉, with Ri = [Ri.l, Ri.r]. Given an intermediate node
entry E and a query line segment q, the subtree of E may
contain some answer points only if mindist(E, q) < RLMAXD,
where mindist(E, q) denotes the minimum distance from the
MBR of E to q, and RLMAXD = MAX1≤i≤t (dist(pi, Ri.l),
dist(pi, Ri.r)).

Figure 6(a) shows a data set P = {a, b, c}, an obstacle set

O = {o1, o2, o3, o4}, a query line segment q = [s, e], and cur-

rent RL = {〈b, [s, s1]〉, 〈a, [s1, s2]〉, 〈c, [s2, e]〉}. Rectangle

E represents the MBR of an intermediate (i.e., a non-leaf)

node. As mindist(E, q) > RLMAXD = dist(c, e), E does

not contain any point that dominates some interval of q, and

hence the search space covered by E can be safely pruned.

Note that the calculation of mindist between a rectangle (i.e.,

MBR) E and a line segment q, i.e., mindist(E, q), is pre-

sented in [3].

(a) Pruning with RLMAXD (b) Pruning with dominance

(c) Pruning with visibility

Fig. 6 Pruning techniques

Heuristic 1 can serve as the initial pruning criteria since

its computational overhead is very small. However, an en-

try E with mindist(E, q) < RLMAXD does not necessar-

ily contain any answer object, which means that the prun-

ing condition can be improved further. To verify this, con-

sider Figure 6(b), which is similar to Figure 6(a) except

that RLMAXD is larger. Notice that although E cannot be

pruned by Heuristic 1 as mindist(E, q) (= mindist(E, s1))
< RLMAXD, E does not contain any qualified data point that

dominates a certain interval of q. Consequently, Heuristic 2

is devised to prune away such entries.

Heuristic 2 Given an intermediate node entry E and a query
line segment q, the subtree of E may contain answer points
only if there is at least one interval R in RL such that some

points on R are dominated by E.

Heuristic 2 gives a stronger pruning criterion, but it in-

curs higher CPU cost compared with Heuristic 1, because

it requires the calculation of the minimal distance from E
to each interval included in the current RL. Therefore, it

is applied only for the entries that cannot be pruned away

by Heuristic 1. Nevertheless, the access to entries satisfy-

ing both Heuristic 1 and Heuristic 2 is not always necessary.

Take Figure 6(c) as an example. E satisfies Heuristic 1 and

Heuristic 2, but it can be pruned away because it is invisible
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to [s2, e] due to the obstruction of obstacle o4. Heuristic 3

enables this pruning.

Heuristic 3 Given an intermediate node entry E and a query
line segment q, the subtree of E needs to be accessed if there
is an interval R in RL such that (i) ∃R′ ⊆ R, R′ is com-
pletely dominated by E; and (ii) E is visible to any point
along R′.

By taking the visibility into consideration, Heuristic 3

further eliminates unqualified entries, whereas it also incurs

higher CPU overhead. Thus, it is utilized only for the entries

that cannot be pruned by both Heuristic 1 and Heuristic 2.

(a) Processing E1 first (b) Processing E2 first

Fig. 7 Sequence of entry accesses

In addition, the entry access order plays an important

role as well. As an example, consider Figure 7, in which

point a has been processed, but not entries E1 and E2. The

current RL = {〈a, [s, s2]〉, 〈∅, [s2, e]〉}, and RLMAXD = ∞.

Since both E1 and E2 cannot be pruned by Heuristic 1,

Heuristic 2, and Heuristic 3, they are accessed. Suppose that

E1 is visited first, then data points b, c in its subtree are pro-

cessed. RL is updated to {〈a, [s, s1]〉, 〈b, [s1, e]〉}, as shown

in Figure 7(a). Thereafter, E2 can be pruned away from fur-

ther exploration by Heuristic 1. On the other hand, if E2 is

accessed first, RL = {〈a, [s, s2]〉, 〈d, [s2, e]〉} and E1 has to

be visited (see Figure 7(b)). To minimize the number of node

accesses, we propose the following visiting order heuris-

tic, which is based on the intuition that entries closer to the

query line segment are more likely to contain qualifying data

points.

Heuristic 4 Entries E are accessed in a best-first fashion
according to the ascending order of their mindist to the
query line segment q.

4.2 Pruning on obstacle set

A line segment q in a 2D space can divide the data space

into two half-planes, as defined in Definition 7.

Definition 7 Half-plane. Given a query line segment q in

a two-dimensional space, the data space is partitioned by q
into two half-planes: HP⊥

q that is above q, and HP�
q that

is below q.

Observe that if a data point p lies in plane HP�
q (HP⊥

q ),

i.e., p ∈ HP�
q (p ∈ HP⊥

q ), only those obstacles that over-

lap the half-plane HP�
q (HP⊥

q ) could affect p’s visibility

with respect to q. For instance, as shown in Figure 8, the ob-

stacles affecting the visibility of point a include o1 and o3;

and the obstacles affecting c’s visibility contain o2 and o3.

Based on this observation, we propose the obstacle distribu-

tion heuristic below.

�

�

Fig. 8 Pruning with obstacle distribution

Heuristic 5 Given a data point p and a query line segment
q, an obstacle o that may affect the visibility of p with re-
spect to q must overlap the half-plane partitioned by q that
contains p, denoted as HPp(q).

Heuristic 6 Given a data point p and a query line segment
q = [s, e], the obstacles may affect the visibility of p with
respect to q if they overlap the triangle formed by p and q,
denoted as �pse.

(a) The o1.Al and o1.Ar (b) The p.Al and p.Ar

Fig. 9 Pruning with angular domain

Given a data point p and a query line segment q = [s, e],
Heuristic 6 indicates that any obstacle o with o ∩�pse = ∅
can be discarded because it has zero impact on p’s visibil-

ity with respect to q. Therefore, we can reduce significantly

the number of obstacles that need evaluations by applying

Heuristic 6.

Next, we explain how to determine whether an obsta-

cle shares some common area with �pse. Our method is

as follows. For a new obstacle o, we compute in counter-
clockwise direction its minimum (maximum) angle, denoted

by o.As (o.Ae), between a specified query line segment q
and the line segments connecting the starting (ending) point

s (e) of q and the vertexes of o. For instance, an example

is depicted in Figure 9(a), where o1.As = ∠cse and o1.Ae

= ∠seb. When processing a candidate data point p, we first

calculate in counter-clockwise direction its minimum (max-

imum) angle, denoted by p.As (p.Ae), formed by the query
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line segment q and the line segment connecting p and the

starting (ending) point s (e) of q. Thereafter, any obstacle o
that satisfies o.As > p.As or o.Ae < p.Ae does not need to

be processed since it cannot intersect or locate inside �pse.

Consider, for example, Figure 9(b), in which p.As = ∠pse
and p.Ae = ∠sep; and hence, obstacle o2, but not obstacles

o1 and o3, affects p’s visibility with respect to q.

Heuristic 7 Given a data point p and a query line segment
q, any obstacle o may affect the visibility of p with respect to
q only if mindist(o, q) < mindist(p, q).

Clearly, Heuristic 7 is correct. According to Heuristic 6,

all the obstacles that can affect the visibility of a data point

p with respect to a given line segment q = [s, e] must over-

lap the triangle formed by p and [s, e], i.e., �pse. On the

other hand, the minimal distance between any point p′ lo-

cated inside �pse and q (i.e., mindist(p′, q)) is smaller than

or equal to mindist(p, q). Consequently, if the obstacle o sat-

isfies mindist(o, q) > mindist(p, q), it must be located out-

side �pse and thus it does not affect p’s visibility.

It is worth noting that our proposed pruning heuristics

only target at a two-dimensional space, and they do not nec-

essarily hold in three or higher dimensional spaces. Although

it is challenging and interesting to develop effective pruning

heuristics for CVNN search in a high-dimensional space, we

leave it to our future work due to the focus of this work and

the space limitation.

5 CVNN query processing

In this section, we present an efficient algorithm for CVNN

search, assuming that the data set P and the obstacle set O
are indexed by two separate R-trees. The basic idea is to

traverse points in P according to ascending order of their

mindist to a given query line segment q = [s, e] (as implied

Heuristic 4). For each data point p ∈ P visited, we need

to check whether p will update the current result list RL
that is initialized to {〈∅, [s, e]〉}. To be more specific, we

need to evaluate whether p violates the dominance of any

existing answer object pi on an interval Ri (either partially

or completely), with 〈pi, Ri〉 ∈ RL.

In the following, we first present three sub-tasks involved

in this evaluation: (i) how to find out all the obstacles that

may affect the visibility of p, (ii) how to identify the visible

region of p (i.e., V Rp) on q in the presence of obstacles, and

(iii) how to evaluate p’s impact on the current RL and how

to do the update, in Sections 5.1, 5.2, and 5.3, respectively.

Then, we propose the complete CVNN search algorithm in

Section 5.4, together with the analysis of its time complexity

and the proof of its correctness. Finally, we discuss how to

adjust the search algorithm to tackle the CVNN query when

dataset P and obstacle set O are indexed by one unified R-

tree in Section 5.5.

5.1 Obstacle retrieval

In order to derive the visible region of point p ∈ P , we have

to get all the obstacles in O that may affect p’s visibility on

q. The solution, namely Get Obstacle Algorithm (GetObs),

is presented in Algorithm 1. The main idea is to scan the

obstacle set O based on ascending order of the distances

between the obstacles and the query segment q. According

to Heuristic 7, only obstacles o ∈ O with mindist(o, q) ≤
mindist(p, q) need to be evaluated, and thus the traversal on

O can be safely terminated once the accessed obstacle has its

distance to q larger than a specified search distance r, which

is set to mindist(p, q) with p is the data point currently under

evaluation. The result obstacles are stored in a linked list Lo.

Algorithm 1 Get Obstacle (GetObs)

Input: an obstacle R-tree To; a min-heap Ho; a search distance r;
a query line segment q; a linked list Lo storing obstacles

1: while Ho is not empty do
2: de-heap the top entry e of Ho

3: if mindist(e, q) > r then // use Heuristic 7
4: return Lo

5: else if e is an obstacle then
6: add e to Lo

7: else // e is an intermediate node
8: for each child entry ei ∈ e from To do
9: insert ei into Ho

In addition, we would like to highlight that since points

in P are examined in ascending order of their distances to

q, GetObs, for a point p ∈ P , does not need to start from
scratch. Suppose p2 ∈ P is examined right after p1 ∈ P . As

mindist (p1, q) ≤ mindist(p2, q), all the obstacles that might

affect p1’s visibility, denoted as GetObs(p1), also have the

possibility to affect p2’s visibility. Assume the obstacle list

Lo returned by GetObs(p1) is locally available, GetObs cor-

responding to p2 only needs to retrieve those obstacles hav-

ing distances to q between mindist(p1, q) and mindist(p2, q).
In general, GetObs corresponding to a data point pi+1 ∈ P
that is examined right after data point pi ∈ P only needs to

find out all the obstacles having their distances to q falling

inside the range [mindist(pi, q), mindist (pi+1, q)]. Hence,

GetObs is an incremental process, and it can find obstacles,

for all the data points in P , via one traversal of O.

As an example, Figure 10 illustrates the incremental pro-

cess of GetObs algorithm. In particular, GetObs is first in-

voked to obtain the obstacle o1 that may influence the visi-

bility of point a, maintained in Lo (i.e., Lo = {o1}). Then,

GetObs is called again for data point b. Since all the obsta-

cles in current Lo might affect b’s visibility on q, GetObs
only needs to find out all the obstacles other than those in Lo

(i.e., o2 and o3), after which Lo is updated to {o1, o2, o3}.

If there is a new data point (e.g., c) visited after b, all the

obstacles in Lo can be reused, and the search on O can be
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continued to get the rest of the obstacles (e.g., o4) that may

affect its visibility.

Fig. 10 Incremental access of obstacles

5.2 Visible region computation

Once all the obstacles that might affect the visibility of point

p ∈ P are retrieved via GetObs and maintained by Lo, we

can identify the invisible region of p over q that is blocked

by obstacle o ∈ Lo, denoted as IRp,o. Then, p’s visible
region V Rp on q can be easily derived based on V Rp =
q − ∪o∈LoIRp,o.

Algorithm 2 Visible Region Computation (VRC)

Input: a data point p; a query line segment q = [s, e]; a linked list Lo

that maintains obstacles
Output: p’s visible region V Rp over q

1: V Rp = q
2: for each obstacle o ∈ Lo do
3: if o ∩ HPp(q) �= ∅ and o ∩�pse �= ∅ then // Heuristics 5, 6
4: IRp,o = IRC(q, p, o)
5: for each region [l, r] ∈ IRp,o do
6: V Rp = V Rp − [l, r]

7: return V Rp

Based on this basic idea, Algorithm 2 depicts the pseudo-

code of the Visible Region Computation Algorithm (VRC). It

takes as input a data point p, a query line segment q = [s, e],
and a linked list Lo that maintains all the obstacles affect-

ing the visibility of p on q, and outputs p’s visible region

V Rp over q. VRC utilizes Heuristic 5 and Heuristic 6, and

only evaluates those obstacles o ∈ Lo which share some

common area with the half-plane HPp(q) and meanwhile

overlap with the triangle �pse, to form the visible region

for a given data point p. The function IRC(q, p, o) invoked in

line 4 of Algorithm 2 is to return the regions inside q that are

invisible to p due to the obstruction of obstacle o.

We illustrate Algorithm 2 using the example shown in

Figure 11, where the obstacles affecting the visibility of p
are maintained in Lo = {o1, o2, o3}. VRC initializes V Rp

to q = [s, e] and recursively evaluates each obstacle in Lo.

Specifically, it first examines obstacle o1 ∈ Lo and gets p’s

invisible region on q blocked by o1, i.e., IRp,o1 = [s1, s3].
Consequently, V Rp is updated to q − IRp,o1 = {[s, s1],
[s3, e]}. Next, VRC checks obstacle o2 ∈ Lo and obtains

p’s invisible region over q obstructed by o2, i.e., IRp,o2 =
[s2, s4], after which V Rp is updated to {[s, s1], [s4, e]}. Fi-

nally, obstacle o3 is evaluated. Since p’s invisible region

along q blocked by o3, i.e., IRp,o3 , is [s5, s6], V Rp is up-

dated to {[s, s1], [s4, s5], [s6, e]}. VRC outputs {[s, s1], [s4,
s5], [s6, e]} as the final p’s visible region on q to terminate

the visible region computation for point p.

Fig. 11 Example of VRC algorithm

5.3 Result list update

For a data point p ∈ P that is currently under evaluation,

once its visible region on q (i.e., V Rp) is formed via VRC,

we need to evaluate the impact of p on the current result

list RL. Towards this, a Result List Update Algorithm (RLU)

is developed to incrementally update RL for a CVNN query

upon the evaluation of p. It takes the current result list RL =
∪t

i=1〈pi, Ri〉, point p, and p’s visible region V Rp as input,

and outputs the updated result list.

As depicted in Algorithm 3, it performs the update via

scanning every tuple 〈pi, Ri〉 in RL. If p is visible to Ri ei-

ther partially or completely (i.e., Ri ∩ V Rp �= ∅), RLU first

derives the intersection Rint (= Ri ∩ V Rp) and difference

Rdif (= Ri −Rint) between Ri and V Rp. Thereafter, if the

VNN of Ri is empty (i.e., pi = ∅), 〈p,Rint〉 and 〈∅, Rdif 〉
(if Rdif �= ∅) are inserted into a temporary result list TRL.

Otherwise (i.e., pi �= ∅), RLU inserts 〈pi, Rdif 〉 into TRL
if Rdif �= ∅; and then, the algorithm invokes RS-CVNN al-

gorithm to determine whether pi can be partially/completely

replaced by p over region Rint. On the other hand, p may be

invisible to Ri (i.e., Ri ∩ V Rp = ∅) and hence p has a zero
impact on region Ri. RLU inserts 〈pi, Ri〉 into TRL. After

all the tuples in RL are evaluated, it outputs TRL as the up-

dated result list. It is important to note that whenever a new

tuple 〈p′, R′〉 is inserted into TRL, it might be merged with

an existing region R′′ in TRL if R′ and R′′ are continu-

ous and they share the same VNN, with the merge operation

represented by Merge().

The RS-CVNN algorithm is used to check whether Rint’s

current VNN pi is still valid upon the existence of p, and

replace pi with p either partially or fully if necessary. The

pseudo-code is described in Algorithm 4. Note that the re-

gion Rint = [l, r] (⊆ V Rp) is certainly visible to p, and
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Algorithm 3 Result List Update (RLU)

Input: a result list RL; a data point p; p’s visible region V Rp

Output: the updated result list

1: TRL = {〈∅, [s, e]〉}
2: for each tuple 〈pi, Ri〉 ∈ RL do
3: if Ri ∩ V Rp �= ∅ then
4: Rint = Ri ∩ V Rp and Rdif = Ri − Rint

5: if pi = ∅ then
6: insert 〈p, Rint〉 into TRL, insert 〈∅, Rdif 〉 into TRL

if Rdif �= ∅, and Merge() if necessary
7: else
8: add 〈pi, Rdif 〉 to TRL if Rdif �= ∅ and Merge()

if necessary
9: RS-CVNN(TRL, 〈pi, Rint〉, p) // see Algorithm 4

10: else
11: add 〈pi, Ri〉 to TRL and Merge() if necessary

12: return TRL

hence we only need to examine the dominance relationship

according to Lemma 1. RS-CVNN distinguishes four cases:

(i) If p does not dominate any interval over Rint, i.e., p /∈
V C(l) ∪ V C(r), the original tuple 〈pi, Rint〉 remains valid

and is added to TRL (line 2). (ii) If p dominates entire Rint,

the algorithm replaces pi with p and inserts 〈p,Rint〉 into

TRL (lines 3-4). (iii) If p is only within the vicinity circle

of l, i.e., p dominates partial interval on Rint, the algorithm

calculates the intersection s1 between the region Rint and

the perpendicular bisector of the line segment [pi, p] (i.e.,

⊥ (pi, p)), and inserts 〈p, [l, s1]〉 and 〈pi, [s1, r]〉 into TRL
(lines 5-7). (iv) Similar to case (iii), if p is only inside the

vicinity circle of r, the algorithm derives the intersection

s2 between Rint and ⊥ (pi, p), and adds 〈pi, [l, s2]〉 and

〈p, [s2, r]〉 to TRL (lines 8-10).

Algorithm 4 Region Split for CVNN (RS-CVNN)

Input: a temporary result list TRL; a tuple 〈pi, Rint〉 ∈ RL
with region Rint = [l, r]; a data point p
/* V C(p′) denotes the vicinity circle of p′, centered at p′ with
dist(p, p′) as radius */

1: if p /∈ V C(l) and p /∈ V C(r) then
2: insert 〈pi, Rint〉 into TRL
3: else if p ∈ V C(l) and p ∈ V C(r) then
4: insert 〈p, Rint〉 into TRL
5: else if p ∈ V C(l) then
6: s1 = Rint ∩ ⊥ (pi, p)
7: insert both 〈p, [l, s1]〉 and 〈pi, [s1, r]〉 into TRL
8: else // p ∈ V C(r)
9: s2 = Rint ∩ ⊥ (pi, p)

10: insert both 〈pi, [l, s2]〉 and 〈p, [s2, r]〉 into TRL

Figure 12 depicts an example with P = {a, b, c}, O =
{o1, o2, o3} and q = [s, e]. Suppose point a has been pro-

cessed and current RL = {〈a, [s, s2]〉, 〈∅, [s2, e]〉}. Now we

invoke RLU to evaluate a new point b, with V Rb = {[s, s3]}.

RLU recursively checks each region in RL. First, [s, s2] is

evaluated. As it overlaps with V Rb, RLU derives Rint (=

[s, s2]∩ [s, s3] = [s, s2]) and Rdif (= [s, s2]− [s, s2] = ∅),
and calls RS-CVNN to examine whether a, the current VNN

of Rint, can be partially/completely replaced by b. Since b is

within the vicinity circle of s, RS-CVNN computes the inter-

section s1 between [s, s2] and ⊥ (a, b), i.e., the perpendic-

ular bisector of the line segment [a, b], and adds 〈b, [s, s1]〉
and 〈a, [s1, s2]〉 to TRL. Next, RLU examines the second re-

gion in RL (i.e., [s2, e]) and discovers it also overlaps with

V Rb. Consequently, both Rint (= [s2, e]∩[s, s3] = [s2, s3])
and Rdif (= [s2, e] − [s2, s3] = [s3, e]) are calculated. As

the current VNN of [s2, e] is ∅, RLU adds 〈b, [s2, s3]〉 and

〈∅, [s3, e]〉 to TRL. Finally, it returns TRL = {〈b, [s, s1]〉,
〈a, [s1, s2]〉, 〈b, [s2, s3]〉, 〈∅, [s3, e]〉} as the updated result

list RL.

Fig. 12 Example of RLU algorithm

5.4 The complete CVNN search algorithm

Having explained GetObs, VRC, and RLU algorithms, we are

ready to present the complete CVNN query processing al-

gorithm, namely CVNN Search Algorithm (CVNN), whose

pseudo-code is shown in Algorithm 5. CVNN takes as input

an R-tree Tp on data set P , an R-tree To on obstacle set

O, and a query line segment q, and outputs the final result

list RL of a CVNN query. It follows the best-first traversal

paradigm, as suggested by Heuristic 4.

In order to enable the best-first traversal, the algorithm

maintains two heaps Hp and Ho to store the data and ob-

stacle entries visited so far respectively, sorted by ascending

order of their minimal distances (i.e., mindist) to q. First

of all, CVNN enheaps the root nodes of Tp and To to Hp

and Ho, respectively (line 2). Thereafter, it continuously de-

heaps the head entry e out of Hp for examination until Hp

becomes empty (lines 3-14). Each examination involves two

tasks. First, CVNN checks whether the early termination con-

dition is satisfied, i.e., mindist(e, q) ≥ RLMAXD (line 5). If

yes, the algorithm terminates because the remaining entries

in Hp can not contain any answer point according to Heuris-

tic 1. Second, the entry e is evaluated. If e is a data point,

CVNN invokes GetObs algorithm to obtain all the obstacles

that may affect the visibility of e, calls VRC algorithm to

derive e’s visible region V Re over q, and utilizes the RLU
algorithm to update the current result list RL (lines 7-10).

Otherwise, e must refer to an intermediate node (i.e., a non-

leaf entry). CVNN visits its subtree only if it may contain any
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∞

(a) After processing a

∞

(b) After processing b (c) After processing c (d) After processing d

Fig. 13 Illustration of a CVNN query processing

qualifying data point via Heuristic 2 and Heuristic 3 (lines

11-14). The advantage of CVNN algorithm over exhaustive

scan is that the access to some unnecessary nodes, i.e., those

certainly not containing any qualified object, is eliminated.

Algorithm 5 CVNN Search (CVNN)

Input: a data R-tree Tp; an obstacle R-tree To; a query line segment
q = [s, e]
Output: the result list RL of a CVNN query
/* Tp.root denotes the root node of Tp; To.root represents the root
node of To */

1: RL = {〈∅, [s, e]〉}, RLMAXD = ∞, and Lo = ∅
2: Hp = {Tp.root}, Ho = {To.root}
3: while Hp �= ∅ do
4: de-heap the top entry e of Hp

5: if mindist(e, q) ≥ RLMAXD then // use Heuristic 1
6: break
7: else if e is a data point then
8: GetObs(To, Ho, mindist(e, q), q, Lo) // See Algorithm 1
9: V Re = VRC(e, q, Lo) // See Algorithm 2

10: RL = RLU(RL, e, V Re) // See Algorithm 3
11: else
12: for each child entry ei ∈ e do
13: if ei dominates a subinterval of any region in RL and

it is visible to q then // use Heuristics 2 and 3
14: insert ei into Hp

15: return RL

Consider the example depicted in Figure 13, where P =
{a, b, c, d}, O = {o1, o2, o3, o4}, and q = [s, e]. Initially,

the result list RL is set to {〈∅, [s, e]〉}. When the first data

point a (that is the closest to q without considering obstacles)
is visited, CVNN invokes GetObs to obtain all the obstacles

that may affect the visibility of a (i.e., o1 and o2). Then, it

uses VRC to get V Ra = {[s, sa1 ], [sa2 , sa3 ]}, i.e., the a’s

visible regions over q. Next, RLU is called to update the

current RL to {〈a, [s, sa1 ]〉, 〈∅, [sa1 , sa2 ]〉, 〈a, [sa2 , sa3 ]〉,
〈∅, [sa3 , e]〉}, as shown in Figure 13(a). The second point

examined is b. Since b dominates [s, sa1 ] and [sa1 , sa2 ], the

corresponding VNNs are replaced by b with RL = {〈b, [s,
sa2 ]〉, 〈a, [sa2 , sa3 ]〉, 〈∅, [sa3 , e]〉}, as shown in Figure 13(b).

Subsequently, CVNN evaluates the third point c and updates

RL to {〈b, [s, sa2 ]〉, 〈a, [sa2 , sc2 ]〉, 〈c, [sc2 , e]〉}, which is il-

lustrated in Figure 13(c). Finally, when the last point d is en-

countered, d is pruned directly as mindist(d, q) > RLMAXD

(= dist(c, e)). Here, the algorithm terminates with the final

query result RL = {〈b, [s, sa2 ]〉, 〈a, [sa2 , sc2 ]〉, 〈c, [sc2 , e]〉},

as shown in Figure 13(d).

Next, we reveal some characteristics of the CVNN algo-

rithm, analyze its time complexity, and prove its correctness.

Lemma 4 Every data point in a data set P will be examined
during the CVNN search, unless one of its ancestor nodes has
been pruned.

Proof The proof is obvious since all data points in P that

are not pruned by Heuristics 1 to 4 (proposed in Section 4.1)

are inserted into the heap and examined. �

Lemma 5 Only obstacles that may impact the visibility of
the current data point processed are maintained in Lo.

Proof The proof is straightforward because the CVNN algo-

rithm employs the GetObs algorithm to find incrementally

all the obstacles that might affect the visibility of the data

point processed currently, and enables heuristics 5 to 7 (pre-

sented in Section 4.2) to prune away all the non-qualifying

obstacles that cannot contribute to the final query result. �

Lemma 6 The CVNN algorithm traverses the data R-tree Tp

and the obstacle R-tree To at most once.

Proof As shown in Algorithm 5, the CVNN algorithm tra-

verses Tp once based on the best-first manner to evaluate

every data point in P that cannot be pruned. In addition, it

only traverses To once. Although the GetObs algorithm is

invoked every time a new data point p ∈ P is evaluated,

it utilizes the obstacles preserved in the current Lo and tra-

verses the To in an incremental fashion. �

Let |O| be cardinality of the obstacle set O, |P | be the

cardinality of the data set P , |IRC| be the time complex-

ity of the IRC function called by VRC, |IRp,o| be the maxi-

mum number of regions in IRp,o (used in VRC), and |RL|
be the maximum cardinality, in terms of number of tuples,

of a result list RL. The time complexity of CVNN algorithm

is presented in Theorem 1, while its correctness is proved in

Theorem 2.

Theorem 1 The time complexity of the CVNN algorithm is
O

(|P |·log |P |·(|O|·log |O|+|O|·(|IRC|+|IRp,o|)+|RL|)).
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Proof As mentioned before, CVNN actually invokes GetObs,

VRC, and RLU to evaluate each point, and hence its time

complexity is attributed to by that of GetObs, VRC, and RLU.

First, all the obstacles in O have to be accessed in the worst

case, and thus the time complexity of the GetObs algorithm

is O(|O| · log |O|). Next, VRC is to obtain the visible region

of the point processed currently over q by considering each

obstacle preserved in Lo. Consequently, its time complexity

is O(|O| · (|IRC|+ |IRp,o|)). Third, RLU has to check every

tuple in RL, and the RS-CVNN invoked by RLU can be com-

pleted in O(1) time. Consequently, the time complexity of

RLU is O(|RL|). Given the fact that CVNN needs to evaluate

all the points in P in the worst case and it takes O(log |P |) to

locate a point in P , the overall time complexity of the CVNN
algorithm is O

(|P | · log |P | · (|O| · log |O| + |O| · (|IRC| +
|IRp,o|) + |RL|)). �

Theorem 2 The CVNN algorithm retrieves exactly the VNN
of every point along a given query line segment, i.e., the al-
gorithm has no false misses and no false hits.

Proof First, no answer points are missed (i.e., no false neg-

atives) because only unqualified data points in P are pruned

away safely according to Heuristics 1 through 4. Second, the

impact of each qualified data point in P on the current result

list RL is evaluated, which ensures no false positives (i.e.,

no false hits). �

5.5 CVNN query processing on one R-tree

Our previously presented CVNN search algorithm assumes

that dataset P and obstacle set O are indexed by two sepa-
rate R-trees. In what follows, we explain how to extend it to

support CVNN search on a single R-tree that indexes both

data points and obstacles.

The detailed extensions are listed as follows: (i) It re-

quires only one heap H to store candidate entries (contain-

ing data points, obstacles, and non-leaf nodes), sorted in as-

cending order of their minimum distances to a given query

line segment q. (ii) When processing the top entry e removed

from H , it distinguishes three cases. (1) e is an obstacle. It

adds e to a linked list Lo, which maintains all the obstacles

that may affect the visibility of the data points processed so

far with respect to q. (2) e is a data point p. It computes the

visible region of e over q, and updates the current result list

RL if necessary. According to the Heuristic 7, any obstacle

o that may impact the visibility of e on q must satisfy the

condition: mindist(o, q) < mindist(e, q). Therefore, all the

obstacles that might affect the dominance of p must have

been visited before p. Note that, there is no need to invoke

the GetObs algorithm to get all the obstacles that may af-

fect e’s visibility, since both data points and obstacles are

indexed by one unified R-tree. (3) e is a non-leaf node, indi-

cating that it may contain data points and/or obstacles. The

subtrees of e that may contain answer points or obstacles

that might affect the visibility of some answer points are re-

trieved. Note that all the heuristics proposed in Section 4

can still be applied for pruning unnecessary node accesses

significantly.

6 Variations of CVNN queries

In this section, we study several interesting CVNN vari-

ants, and present how the proposed CVNN algorithm can be

adapted accordingly. In particular, four variants are defined,

including (i) continuous visible kNN (CVkNN) search, (ii)

trajectory VNN (TVNN) retrieval, (iii) CVNN query with

visible distance threshold δ (δ-CVNN), and (iv) constrained

CVNN (CCVNN) search. It is important to note that due to

the space limitation and the similarity of the algorithm ex-

tensions, we only explain the extension of the algorithm to

support CVkNN retrieval in detail.

6.1 CVkNN search

Given a data set P , an obstacle set O, and a query line seg-

ment q = [s, e], CVkNN search is to retrieve k VNNs for

every point on q. The result list RL of a CVkNN query con-

tains a set of 〈S, R〉 tuples, where S is the set of VNNs for all

the points along the region/interval R ⊆ q. Different from

conventional kNN retrieval, the answer set S might not ex-

ist (i.e., S = ∅) or it might not hold k answer points (i.e.,

|S| < k), due to the existence of obstacles. The proposed

algorithms for CVNN queries can be easily extended to sup-

port CVkNN search. The detailed extensions are described

as follows.

First, the VNN query defined in Definition 3 is replaced

by a general VkNN query, stated in Definition 8. Accord-

ingly, the CVkNN query is defined in Definition 9.

Definition 8 Visible k nearest neighbors [4]. Given a query

point q′, p ∈ P is one of the visible k nearest neighbors
(VkNNs) of q′ iff: (i) p is visible to q′; and (ii) there are

at most (k − 1) data points p′ ∈ P − {p} such that p′ is

visible to q′ and meanwhile has its distance to q′ smaller

than that from p to q′, i.e., |{p′ ∈ P − {p}|p′ is visible to

q′ ∧ dist(p, q′) > dist(p′, q′)}| < k.

Definition 9 Continuous visible k nearest neighbor query.

Given P , O, and q, a continuous visible k nearest neighbor
(CVkNN) query returns a result list RL that contains a set of

〈Si, Ri〉 (i ∈ [1, t]) tuples such that (i) ∀i, j ∈ [1, t](i �= j),
Ri ∩ Rj = ∅10; (ii) ∪t

i=1Ri = q; (iii) ∀i ∈ [1, t], |Si| ≤ k;

and (iv) ∀〈Si, Ri〉 ∈ RL, if Si �= ∅, Si is the set of VkNNs

of all points along Ri.

10 As with Definition 4, if Ri and Rj are adjacent, i.e., |i − j| = 1,
Ri ∩ Rj �= ∅.
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Second, Heuristic 1 requires updating. RLMAXD is re-

placed with MAX1≤i≤|RL|(maximumdist(Si, Ri.l), maxi
mumdist (Si, Ri.r)), where |RL| denotes the number of re-

gions in the current result list RL, and set Si maintains the

set of VkNNs retrieved so far for its corresponding region

Ri. The detailed proof is presented in Lemma 7.

Lemma 7 Assume the set S contains the VkNN objects iden-
tified so far for the region R. A new point p ∈ P updates S iff
dist(p, R.l) < maximumdist(S, R.l) or/and dist(p,R.r) <
maximumdist(S, R.r), with maximumdist(S, r) defined as
follows:

maximumdist(S, r) =
{

MAX∀pi∈Sdist(pi, r) if |S| = k
∞ if |S| < k

Proof When |S| < k, p will be included in S based on

Definition 8. Now we would like to prove the case when

|S| = k. First, we proof sufficiency. Without loss of gener-

ality, we assume dist(p,R.l) < maximumdist(S, R.l) and

∃pi ∈ S such that dist(p,R.l) < dist(pi, R.l). According

to Lemma 1 (proposed in Section 3.2), it is guaranteed that p
violates the dominance of pi over R. Given the fact that |S−
{pi}| = (k − 1) and Definition 8, pi is no longer one of the

VkNNs of R.l, and S needs to update. Next, we proof neces-

sity. Suppose p updates R by replacing pi ∈ S. Hence, there

is at least one point r ∈ R such that dist(r, pi) > dist(r, p).
As demonstrated in Lemma 1, p must be within the vicin-

ity circle cir(r, pi) and thus the union of cir(R.l, pi) and

cir(R.r, pi). In other words, dist(p,R.l) < dist(pi, R.l) ≤
maximumdist(S, R.l) or/and dist(p,R.r) < dist(pi, R.r)
≤ maximumdist(S, R.r). The proof completes. �

(a) Before updating RL (b) After updating RL

Fig. 14 Illustration of updating RL for a CV2NN query

The evaluation of data points is similar to that for CVNN

search. Specifically, the evaluation of each data point p ∈ P
involves three steps. First, all the obstacles affecting p’s vis-

ibility are obtained. Second, p’s visible region V Rp over

q is derived. Third, the current result list RL is updated if

necessary, which is more complex than that under CVNN

(i.e., k = 1) retrieval. We use an example depicted in Fig-

ure 14 to illustrate the update operation. Suppose a CV2NN

(k = 2) query is issued with data set P = {a, b, c}, obstacle

set O = {o1, o2, o3}, and query line segment q = [s, e].

We assume points a, b have been processed, and cur-

rently RL = {〈{b}, [s, s1]〉, 〈{a, b}, [s1, s2]〉, 〈{a}, [s2, s3]〉,
〈{a, b}, [s3, e]〉}, as shown in Figure 14(a). Notice that the

number of the current VNN(s) for intervals [s, s1] and [s2, s3]
is only one due to the obstruction of obstacles. Now the eval-

uation of a new data point c starts, and assume that we have

got its visible region V Rc = {[s, sc]} on q.

To simplify our discussion, we only focus on the eval-

uation of c based on a specified interval R, but the same

process can be applied to other intervals in RL. First, ac-

cording to the visibility, c partitions the interval R into two

regions Rint and Rdif , with Rint = R ∩ V Rc and Rdif =
R − Rint. Point c might change the result corresponding

to Rint, but definitely not Rdif . Consequently, the evalu-

ation can be safely terminated if Rint = ∅, meaning that

any point on the interval R is invisible to c. Now suppose

Rint = [l, r] �= ∅, and its corresponding answer point set is

S. If |S| < k, c becomes an answer point for every point on

Rint. As an example, consider the evaluation of c over re-

gion R (= [s2, s3]) ⊆ q (= [s, e]). Since R ∩ V Rc = [s2, sc],
the tuple 〈{a}, [s2, s3]〉 is changed to 〈{a, c}, [s2, sc]〉 and

〈{a}, [sc, s3]〉. If |S| = k, We have to check whether (i)

maximumdist(S, l) > dist(c, l) and/or (ii) maximumdist(S,
r) > dist(c, r) hold. If neither condition is satisfied, c is dis-

carded as it cannot be an answer point to any point along R.

Otherwise, the interval Rint needs to be split, which is tack-

led by the RS-CVkNN algorithm presented in Algorithm 6.

RS-CVkNN evaluates the impact of a new data point p on

an interval Rint ⊆ R. It takes as inputs a temporary result

list TRL, a region Rint = [l, r], a result set S that keeps k
answer points for Rint identified so far, and a new data point

p, and returns the updated TRL. RS-CVkNN distinguishes

two cases: (i) p is not an answer point of any point along

Rint, i.e., dist(p, l) > maximumdist(S, l) and dist(p, r) >
maximumdist(S, r). In this case, p certainly will not change

S and 〈S,Rint〉 remains valid (lines 1-2). (ii) p is an answer

point of some points on Rint , i.e., dist(p, l)≤maximumdist
(S, l) and/or dist(p, r) ≤ maximumdist(S, r). In this case,

the algorithm performs the following tasks. First, for every

point pi ∈ S, the intersection between Rint and ⊥ (pi, p)
is computed and inserted into a temporary set Ssp (lines 4-

6). Then, it finds the point sp ( �= l) in Ssp that is the clos-

est to the starting point of Rint (i.e., l) (line 7). If sp does

not exist, the tuple 〈S,Rint〉 remains valid and is added to

TRL (lines 8-9). Otherwise, RS-CVkNN locates point p′ ∈ S
that generates sp, i.e., sp = Rint∩ ⊥ (p′, p), and point

p′′ ∈ S that has the maximal distance to l, i.e., dist(p′′, l) =
maximumdist(S, l) (line 11). If p is closer to l than p′′, the

algorithm first swaps the values of p and p′′, and then RS-
CVkNN is invoked recursively to check the validity of S on

region [l, r] upon the existence of p (lines 12-14). Here, note

that set S is changed as p′′ ∈ S changes its value, and

the evaluated point p is updated as well. Otherwise, p′′ is
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still closer to l than p. The algorithm maintains the tuple

〈S, [l, sp]〉 in TRL and calls RS-CVkNN again to examine

the validity of S −{p′} ∪ {p} on region [sp, r] upon the ex-

istence of p′ (lines 15-17). Finally, the new result list TRL
is returned to complete the algorithm.

Algorithm 6 Region Split for CVkNN (RS-CVkNN)

Input: a temporary result list TRL; a region Rint = [l, r]; a set S
of the current VkNNs for each point along Rint; a data point p
Output: the updated TRL

1: if dist(p, l) > maximumdist(S, l) and dist(p, r) > maximumdist
(S, r) then // p does not dominate Rint

2: insert 〈S, Rint〉 into TRL
3: else // p dominates Rint partially/completely
4: for each point pi ∈ S do
5: spi = Rint ∩ ⊥ (pi, p)
6: add spi to set Ssp

7: let sp(�= l) be the point in Ssp that is the closest to l
8: if sp does not exist then
9: insert 〈S, Rint〉 into TRL

10: else
11: let p′ be the point in S such that sp = Rint ∩ ⊥

(p′, p), and p′′ be the point in S satisfying dist(p′′, l) =
maximumdist(S, l)

12: if dist(p, l) < dist(p′′, l) then
13: swap(p, p′′)
14: RS-CVkNN(TRL, [l, r], S, p) // p = p′′
15: else
16: insert 〈S, [l, sp]〉 into TRL
17: RS-CVkNN(TRL, [sp, r], S − {p′} ∪ {p}, p′)
18: return TRL

Back to the running example shown in Figure 14. Con-

sider the evaluation of c over region [s1, s2] ⊆ q (= [s, e]),
whose corresponding answer point set S is {a, b}. Point c is

fully visible to [s1, s2], and dist(c, s1) < maximumdist(S,

s1) (= dist(b, s1)) and dist(c, s2) < maximumdist(S, s2)
(= dist (a, s2)). Therefore, RS-CVkNN is employed to find

the split points along [s1, s2]. At the first recursion, the in-

tersection A between q and ⊥ (b, c) as well as the inter-

section C between q and ⊥ (a, c) are derived. Thus, Ssp =

{A,C}, and sp be point A as it is closer to s1. Accordingly,

we locate b as p′ whose bisector contributes to the genera-

tion of A and b as p′′ with the maximal distance to s1. Since

dist(c, s1) < dist(b, s1), the algorithm understands the c
will replace b to become V2NN objects to s1, together with

a. Thereafter, RS-CVkNN (TRL, [s1, s2], {a, c}, b) is called

again to evaluate the impact of b on [s1, s2] with S = {a, c}.

Again, Ssp = {A, B} is formed first with A contributed

by ⊥ (b, c) and B contributed by ⊥ (a, b), as illustrated

in Figure 14(b). Given Ssp, the one closest to s1, i.e., A,

is located, and p′ and p′′ are both set to c. As c is closer

to s1 than b does, S = {a, c} remains valid for [s1, A],
and 〈{a, c}, [s1, A]〉 is inserted into TRL. Next, RS-CVkNN
(TRL, [A, s2], {a, b}, c) is invoked with the query line seg-

ment shrink to [A, s2]. The algorithm proceeds in the same

manner until all the split points along the interval [s1, s2]
are found, after which TRL is updated to {〈{a, c}, [s1, A]〉,
〈{a, b}, [A,C]〉, 〈{b, c}, [C, s2]〉}. Table 2 lists the executive

processes of RS-CVkNN.

It is worth mentioning that k has a direct impact on the

size of the result list RL. In particular, the greater the k is,

the larger the number of regions contained in RL is, and the

higher the cost incurred by CVkNN algorithm is.

6.2 Trajectory VNN search

The above CVNN search is on a single query line segment.

However, in real applications, users may want to retrieve the

VNN of every point along a specified trajectory that con-

sists of several consecutive line segments. For example, a

wildlife observer in Yellow Stone National Park may issue

a query to find the closest observation point where he/she is

most likely to see wolves along his/her hiking trail. Moti-

vated by this, we introduce trajectory VNN (TVNN) search,

which retrieves the VNN of every point along a given query

trajectory, and the proposed CVNN algorithm can be adapted

to handle TVNN retrieval as well.

An intuitive solution to the TVNN query, namely Sim-
ple Processing Algorithm (SP), is to invoke the CVNN algo-

rithm for each line segment qi included in the trajectory q
(i.e., ∀qi ⊆ q), to find the VNN of every point along qi; and

then merge the results if necessary. Although this approach

is straightforward, it is inefficient in terms of I/O cost, which

will be demonstrated by our experimental results to be pre-

sented in Section 7.4. This is because, given a query trajec-

tory q that contains |q| line segments (i.e., q = ∪1≤i≤|q|qi),

SP needs to traverse the data R-tree Tp and the obstacle R-

tree To |q| times, resulting in extremely high I/O overhead,

especially when |q| is large. In the sequel, we explain how

to extend the CVNN algorithm to tackle the TVNN query by

traversing Tp and To only once.

Fig. 15 Distance metrics of TVNN search

First, instead of decomposing the trajectory into multi-

ple line segments, we consider it as one unit. The minimal

distance between an entry E (representing a data point or

an obstacle or a node MBR) and a specified query trajec-

tory q is defined as the minimum distance among all the

shortest distances from E to each line segment qi ⊆ q, i.e.,
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Table 2 The trace of RS-CVkNN algorithm

# Recursion Ssp sp p′ p′′ Operation TRL

First recursion {A, C} A b b swap(c, b), ∅
RS-CVkNN(TRL, [s1, s2], {a, c}, b)

Second recursion {A, B} A c c insert 〈{a, c}, [s1, A]〉 into TRL, {〈{a, c}, [s1, A]〉}
RS-CVkNN(TRL, [A, s2], {a, b}, c)

Third recursion {A, C} C a b insert 〈{a, b}, [A, C]〉 into TRL, {〈{a, c}, [s1, A]〉, 〈{a, b}, [A, C]〉}
RS-CVkNN(TRL, [C, s2], {b, c}, a)

Fourth recursion {B, C} − − c insert 〈{b, c}, [C, s2]〉 into TRL, {〈{a, c}, [s1, A]〉, 〈{a, b}, [A, C]〉, 〈{b, c}, [C, s2]〉}

minimummindist(E, q) = MIN1≤i≤|q|(mindist(E, qi)). In

Figure 15, for example, minimummindist (p, q) = MIN(
mindist(p, [s, u]), mindist(p, [u, v]), mindist (p, [v, e])) =
MIN(dist(p, u), dist(p, x), dist(p, v)) = dist(p, x).

Second, given a query line segment qi of a query trajec-

tory q, the obstacles o that might affect the visibility of point

p over qi must have their minimal distances to qi bounded by

mindist(p, qi). As we need to retrieve all the obstacles that

might affect p’s visibility on any point along q, the retrieval

distance r requested by GetObs algorithm should be set to

the maximum distance of all the minimal distances from p
to every line segment qi ⊆ q, i.e., maximummindist(p, q)
= MAXi∈[1,|q|] (mindist(E, qi)). For example, as shown in

Figure 15, maximummindist(p, q) = MAX( mindist(p, [s,
u]), mindist(p, [u, v]), mindist(p, [v, e])) = dist (p, u), and

the shaded area covers all the obstacles affecting p’s visibil-

ity over q.

Third, the pruning heuristics proposed for CVNN search

are still applicable, but based on the above minimummindist
and maximummindist metrics.

Compared with SP, this approach processes a TVNN

search via a single traversal of the R-trees no matter how

many line segments the specified query trajectory contains,

and thus, it has lower I/O cost. Compared with SP, however,

the method has higher CPU overhead because it incurs more

distance computation, visibility check, and result list update,

which will also be demonstrated by our experimental results

to be presented in Section 7.4.

Fig. 16 Example of a TVNN query

Figure 16 shows an example, where a data set P =
{a, b, c, d, f}, an obstacle set O = {o1, o2, o3, o4, o5}, and

a query trajectory q = [s, e] consisting of 3 line segments,

i.e., q1 = [s, u], q2 = [u, v], and q3 = [v, e]. As depicted in

Figure 16, the final result of a TVNN query is {〈a, [s, s1]〉,
〈b, [s1, u]〉, 〈c, [u, s2]〉, 〈d, [s2, s3]〉, 〈f, [s3, e]〉}, after pro-

cessing points b, c, d, a, f (in this order).

Note that the complexity of TVNN retrieval, compared

to the CVNN query, is higher due to the fact that the number

of split points and the number of obstacles which need to be

considered increase with the number of query line segments.

6.3 CVNN query with distance threshold δ

In real life, users might want to enforce distance constraints

on CVNN queries. Take the application placement of traffic
surveillance cameras described in Section 1 as an example.

As different cameras have various crop factors, a camera has

a limited imaging area. Suppose cameras installed can only

monitor the objects located within 10 meters, CVNN search

with distance threshold 10 is more suitable, compared with

conventional CVNN retrieval. In view of this, we introduce

δ-CVNN search, a CVNN retrieval with maximum visible
distance δ constraint. Given a data set P , an obstacle set

O, a query line segment q, and a distance threshold δ, a δ-

CVNN query returns the VNN of every point along q with

its distance to q bounded by δ.

A straightforward approach to answer δ-CVNN query is

to first perform CVNN search, and then filter out those an-

swer objects whose distances to the corresponding intervals

on a specified query line segment q exceed δ. Nevertheless,

this method is not very efficient since the distance constraint

δ is applied at a very late stage. Another solution is to re-

trieve all the objects with their distances to q not exceeding

δ and then conduct CVNN retrieval. However, it needs to

build a new R-tree on these objects. In fact, the proposed

algorithms for CVNN search can be easily adjusted to sup-

port δ-CVNN retrieval, by integrating distance threshold δ
during the query processing. Moreover, in addition to all the

Heuristics presented in Section 4 that are still applicable, we

also develop two new pruning heuristics to fully utilize the

distance constraint δ in order to further improve the search

performance.

Search early termination. As the tree built on the data

set P is traversed in a best-first manner, the algorithm can

be safely terminated once an entry E (data point or node
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MBR) with mindist to q larger than δ is encountered. This is

because, when the top entry E has its mindist to q exceeding

δ, it is guaranteed that all the unexamined data points have

their distances to q greater than δ and thus will be excluded

from the final query result.

Fig. 17 Search range of δ-CVNN

Search range shrinking. The search space of δ-CVNN

retrieval is limited by δ. As an example, the shadowed area

in Figure 17 represents the search space of a δ-CVNN query

with q = [s, e] and δ being the distance threshold. Conse-

quently, any entry (involving data point, obstacle, and node

MBR) that is outside the search space can be directly ex-

cluded from the further examination, since it cannot con-

tribute to the final query result.

Fig. 18 Example of a δ-CVNN query

As shown in Figure 18, an example δ-CVNN query is is-

sued at q = [s, e], with P = {a, b, c, d} and O = {o1, o2, o3,
o4}. The δ-CVNN search outputs {〈b, [s, s1]〉, 〈a, [s1, s2]〉,
〈c, [s2, s3]〉, 〈∅, [s3, e]〉}, which is different from the output

{〈b, [s, s1]〉, 〈a, [s1, s2]〉, 〈c, [s2, e]〉} of a CVNN query is-

sued at q. Take the interval [s3, e] as an example, its VNN c
is an answer object to CVNN query but not δ-CVNN as its

distance to its dominance region [s3, e] exceeds threshold δ.

6.4 Constrained CVNN search

Our previously proposed CVNN search and its variants (in-

cluding CVkNN, TVNN, and δ-CVNN queries) aim at find-

ing, from the entire data space, the VNN for each point along

a given query line segment (or a query trajectory) q. How-

ever, in some real applications, users might be only inter-

ested in the objects within a specified spatial region. Take the

application tourist recommendation presented in Section 1

as an example. Suppose a photographer wants to take pho-

tography of scenes in the sunset. As only objects within a

limited range of distances from the camera will be repro-

duced clearly, the photographer may be only interested in

the nearby visible scenes within a certain distance to his

planed traveling route. Motivated by this, we introduce a

CVNN query with a spatial region constraint, namely con-
strained CVNN (CCVNN) search. Given a data set P , an ob-

stacle set O, a query line segment q, and a constrained region

Rc, a CCVNN query retrieves, for every point along q, the

VNN among all the objects located inside Rc. Actually, this

type of queries is to apply conventional (i.e., unconstrained)

CVNN retrieval in a specified spatial region and thus the fi-

nal result of CCVNN search must satisfy the given region

constraints.

Fig. 19 Illustration of mindist(E, q, Rc)

Since the users are only interested in the objects/points

located inside a specified spatial region, a simple method

for answering CCVNN search is to first find out all the data

points that are within the given spatial region, denoted as

PRc
= {p ∈ P ∧ p ∈ Rc}, and then perform a CVNN

query based on PRc
and the obstacle set O. However, this

approach requires to construct an R-tree on PRc
during the

query processing dynamically. Alternatively, we extend the

proposed CVNN algorithm to handle CCVNN retrieval, by

integrating the examination of regional constraint conditions

during the search. In the following, we highlight two main

differences between CVNN search and CCVNN search.

First, conventional (i.e. unconstrained) CVNN search tra-

verses the dataset P in a best-first fashion as long as the en-

try E (data point or node MBR) has mindist(E, q) bounded

by the current RLMAXD. Nevertheless, CCVNN retrieval only

visits those entries E that overlap with Rc according to as-

cending order of mindist(E, q,Rc). Here, mindist(E, q, Rc)
= mindist(E∩Rc, q). As illustrated in Figure 19, mindist(N1,

q, Rc) = l1, mindist(N2, q, Rc) = ∞, mindist(N3, q, Rc) =
mindist (N3, q) = l3, and mindist(N4, q, Rc) = mindist(Rc,

q) = l2. In addition, CCVNN search can terminate the search

when the heap Hp becomes empty or mindist(E, q,Rc) of

the top entry E in a heap Hp that contains unvisited node en-

tries is larger than the current RLMAXD. Furthermore, Heuris-

tics 1 to 4 (presented in Section 4.1) are also applicable ex-

cept that, for each intermediate node entry E, mindist (E, q)
is replaced with mindist(E, q, Rc).

Second, the search range for the obstacles that might

affect the visibility of some candidate answer points is re-

stricted by the region bounded by Rc and the query line seg-
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ment q. According to the relative locations between q and

Rc, there are four possible situations, as depicted in Fig-

ure 20.

(a) q ∩ Rc = ∅ (b) s ∈ Rc but e /∈ Rc

(c) s, e /∈ Rc ∧ q ∩ Rc �= ∅ (d) q ⊆ Rc

Fig. 20 Relative positions of a query line segment q = [s, e] and a
constrained region Rc

Specifically, (i) q and Rc are disjoint, as shown in Fig-

ure 20(a). CCVNN retrieval only needs to access those ob-

stacles located inside the quadrilateral AseC. (ii) One of the

endpoints of q falls into Rc, as illustrated in Figure 20(b).

CCVNN search only needs to visit those obstacles located

within the quadrilateral ABeC. (iii) q intersects Rc, as de-

picted in Figure 20(c). CCVNN query only needs to scan

those obstacles located inside the pentagon AsBeC. (iv) q
falls into Rc completely, as shown in Figure 20(d). CCVNN

search only needs to access those obstacles located inside

Rc. Consequently, when the GetObs algorithm is invoked to

retrieve the obstacles affecting the visibility of a data point

p ∈ P processed currently, only the obstacles located inside

the restricted search range require examination. In addition,

Heuristics 5 to 7 can still be applied for obstacle pruning.

Fig. 21 Example of a CCVNN query

Consider the CCVNN query depicted in Figure 21 with

P = {a, b, c, d, f , g, h, i, j}, O = {o1, o2, o3, o4}, q =
[s, e], and Rc set to the shaded rectangle. The final query re-

sult list RL = {〈f, [s, s1]〉, 〈a, [s1, s2]〉, 〈f, [s2, s3]〉, 〈a, [s3,
s4]〉, 〈∅, [s4, e]〉}. Notice that although points g, h, i and j
are closer to q than points a and f , they are excluded from

the RL as they are outside Rc.

It is worth mentioning that the constrained region Rc

has a significant impact on the algorithm performance, as

demonstrated by our experimental results (to be presented

in Section 7.6). Specifically, if a specified query line seg-

ment q is far away from Rc, more obstacles might affect

the visibility of a data point inside Rc over q, which leads

to more obstacle retrieval, visibility examination, and result

list updating.

7 Performance evaluation

In this section, we evaluate the performance of the proposed

pruning heuristics and CVNN search algorithm for CVNN

query and its variants via extensive experiments. All the al-

gorithms were implemented in C++ and the experiments

were conducted on a Pentium IV 3.0 GHz PC with 2GB

RAM, running Microsoft Windows XP Professional Edi-

tion. The detailed experimental setup is presented in Sec-

tion 7.1. Five sets of experiments are conducted. The first

set evaluates the effectiveness of the heuristics proposed,

as reported in Section 7.2. The second set verifies the ef-

ficiency and effectiveness of CVNN algorithm in supporting

CVkNN search with k ≥ 1, presented in Section 7.3. The

third, fourth, and fifth sets of experiments are to evaluate

the flexibility of CVNN algorithm in supporting TVkNN, δ-

CVkNN, and CCVkNN queries, different variants of CVNN

queries, in Section 7.4, Section 7.5, and Section 7.6, respec-

tively.

Table 3 Statistics of the real datasets used

Dataset Size Format Description

LCA 62,556 2D points locations in California
CGR 5,922 2D points cities and villages in Greece
SLA 131,461 2D MBRs streets in Los Angeles
RGR 24,650 2D MBRs rivers in Greece

7.1 Experimental setup

Our experiments are based on both real datasets and syn-

thetic datasets, with the search space fixed at a [0, 10000] ×
[0, 10000] square. Four real datasets are deployed, namely

LCA, CGR, SLA, and RGR11, as summarized in Table 3.

Specifically, LCA and CGR contain two-dimensional (2D)

points, representing 62, 556 locations in California and 5, 922

11 LCA, CGR, SLA, and RGR datasets are available in the R-tree Por-
tal (http://www.rtreeportal.org).
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Table 4 Parameter ranges and default values

Parameter Range

query length ql (% of space side) 5, 10, 15, 20, 25
k 1, 3, 5, 7, 9
|P |/|O| 0.1, 0.2, 0.5, 1, 2, 5, 10
buffer size (% of the tree size) 1, 2, 4, 8, 10 16, 32, 64
number of trajectory segments |q| 2, 4, 6, 8, 10
δ (% of space side) 5, 10, 15, 20, 25
Rc (% of space side) 10, 20, 30, 40, 50, 60, 70

cities and villages in Greece, respectively; SLA and RGR in-

clude 2D rectangles, representing 131, 461 MBRs of streets

in Los Angeles and 24, 650 MBRs of rivers in Greece, re-

spectively. All the datasets are normalized in order to fit the

search range. Synthetic datasets are generated based on uni-

form distribution and zipf distribution respectively, with the

cardinality varying from 0.1 × |SLA| to 10 × |SLA|. The

coordinate of each point in Uniform datasets is generated

uniformly along each dimension, and that of each point in

Zipf datasets is generated according to zipf distribution with

skew coefficient α = 0.8. We assume a point’s coordinates

on both dimensions are mutually independent.

Since CVNN query and its variants involve a data set

P and an obstacle set O, we deploy four different combina-

tions of the datasets, namely CR, LS, US, and ZS, represent-

ing (P,O) = (CGR, RGR), (LCA, SLA), (Uniform, SLA),

and (Zipf, SLA), respectively. Both CR and LS utilize real

datasets with |P | < |O|. On the other hand, US and ZS em-

ploy synthetic datasets, and we can adjust the relative size

of P and O to simulate different cases. Consequently, we

will explicitly specify the ratio of |P |/|O| for US and ZS in

the following evaluations. Note that the data points in P are

allowed to lie on the boundaries of the obstacles, but not in

their interior.

All data and obstacle sets are indexed by R*-trees [20],

with a page size of 4K bytes. We employ an LRU memory

buffer whose default size is set to 10% of the tree size. Ta-

ble 4 lists all the parameters that are considered in the exper-

iments, with numbers in bold representing default settings.

In each experiment, only one parameter is changed in order

to evaluate its impact on the performance, while all the other

parameters are fixed at their defaults. We run 200 queries for

each experiment, and the average performance is reported.

We consider I/O cost, CPU time, and total query cost

as the main performance metric. Here, I/O cost refers to

the number of pages/nodes accessed, and the query cost is

the summation of the I/O time and CPU time where the

I/O time is computed by charging 10ms for each page ac-

cess [52]. Given a query length ql, each query line segment

is generated by (i) selecting a random point in the data space

as the starting point of the query line segment, and (ii) se-

lecting randomly an orientation (angle with the x-axis) from

the range [0, 2π), with its length controlled by the speci-

fied query length ql. The line segments included into a pre-

defined query trajectory for TVkNN search are generated

in the same manner. However, we fix the trajectory length

to 15% of the search space side, and assume all the line

segments contained in the query trajectory share the same

length in order to simplify the simulation.

7.2 Effectiveness of pruning heuristics

The first set of experiments aims at evaluating the effec-

tiveness of the proposed pruning heuristics. As presented in

Section 4, Heuristic 2 and Heuristic 3 prune away unnec-

essary node entries of the R-tree Tp on the dataset P , and

thus we employ the number of data objects pruned as the

performance metric. Similarly, Heuristic 5, Heuristic 6, and

Heuristic 7 are developed to discard the obstacles that will

certainly not affect the visibility of any potential answer ob-

ject, and hence the percentage of obstacles pruned (account

for the entire obstacle set O) is measured as the performance

metric. Moreover, we measure the CPU time (in seconds)

for the corresponding heuristic(s) to demonstrate their CPU

cost. It is noticed that Heuristic 1 provides the early termina-

tion condition and Heuristic 4 specifies the best-first traver-

sal fashion. Compared with other heuristics proposed, these

two heuristics play a less significant role in pruning away

data points or obstacles, and therefore their effectiveness is

ignored from the evaluation. In addition, we illustrate the ef-

ficiency of Heuristic 5 and Heuristic 6 together because they

are applied in the VRC algorithm simultaneously to prune

unqualified obstacles (see line 3 of Algorithm 2).

First, we vary the query length ql of q from 5% to 25%
of the side length of the search space, with k fixed at 5. The

results are shown in Figures 22 for CR and LS, respectively.

Evidently, each heuristic evaluated prunes away a large num-

ber of non-qualifying data objects or obstacles, which vali-

dates its usefulness. Take Heuristic 2 for CR combination as

an example. It saves the detailed examination of 1,030 out

of 5,922 objects when ql = 15%. Compared with Heuris-

tic 3, Heuristic 2 has a more powerful pruning capability

and a lower CPU overhead in most cases. This is because

Heuristic 3 is more strict, i.e., it is only applied to those ob-

jects that cannot be pruned by Heuristic 2 via taking visibil-

ity into account. Similarly, for the pruning of the obstacles,

Heuristics 5 and 6 are more effective than Heuristic 7, but

incur a higher CPU cost since their implementation requires

more computational overhead. Figure 23 and Figure 24 plot

the pruning efficiency of different heuristics with respect to

k and |P |/|O| respectively, using dataset combinations CR
and LS. The diagrams confirm the observations and corre-

sponding explanations of Figure 22.

All the above experimental results are the average per-

formance of multiple queries. In order to demonstrate the
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(a) CR (b) CR (c) LS (d) LS

Fig. 22 Pruning efficiency of heuristics versus ql (k = 5)

(a) CR (b) CR (c) LS (d) LS

Fig. 23 Pruning efficiency of heuristics versus k (ql = 15%)

(a) US (b) US (c) ZS (d) ZS

Fig. 24 Pruning efficiency of heuristics versus |P |/|O| (ql = 15%, k = 5)

pruning efficiency of heuristics on individual queries, Fig-

ure 25 shows the results on random 20 sample queries (i.e.,

10% of each query workload) for different dataset combina-

tions, by fixing ql and k to their default values (i.e., 15% and

5, respectively). It is observed that although heuristics per-

form differently as queries change, their overall effective-

ness is significant. In other words, all the evaluated heuris-

tics are important because each heuristic is applied multiple

times, and prunes unnecessary data objects or obstacles sig-

nificantly, especially for Heuristics 2, 5, and 6.

7.3 Results on CVkNN queries

The second set of experiments evaluates the performance of

CVNN algorithm in answering CVkNN queries. As CVNN

search shares some similarities with CNN and VNN queries

that have been well-studied, we implement two simple so-

lutions extended from existing CNN and VNN search algo-

rithms, i.e., Baseline and BFA, which are presented in Sec-

tion 2.2 and Section 2.3 respectively. In our experiments,

both k1 and r of Baseline are set to 2k (10k). We study the in-

fluence of various parameters, including (i) query length ql,

(ii) the number of VNNs required k, (iii) the ratio of dataset

cardinality |P | to obstacle set cardinality |O| (i.e., |P |/|O|),
and (iv) buffer size. As explained in Section 5, P and O can

be indexed either by two separate R-trees, denoted as 2T, or

by a single R-tree, denoted as 1T. Note that Baseline and BFA
can only support 2T case but not 1T scenario.

Effect of query length ql. First, we investigate the im-

pact of ql on the efficiency of the algorithms, based on the

dataset combinations CR and LS with k set to 5. The results

are depicted in Figure 26. The first observation is that CVNN
is several orders of magnitude faster than Baseline and BFA
in all cases. The reason behind is that, as mentioned in Sec-

tion 2, Baseline needs to invoke CkNN search multiple times

and BFA requires scanning the entire dataset (in sequence)

without any pruning. For presentation clarity, we skip Base-
line and BFA in the remaining experimental results as CVNN
consistently outperforms them. The second observation is

that although CVkNN-2T and CVkNN-1T share a similar

performance trend, CVkNN-1T performs better. This is be-

cause when data points and obstacles are indexed by one

R-tree, only one traversal of the unified R-tree is required.

Data points and obstacles that are close to each other could

be found in the same leaf node of the R-tree. Hence, using

a single R-tree to index P and O is one potential approach

to further boost up the performance. It is also noticed that

the cost of CVkNN queries increases with ql. The reason

behind is that, as the query length becomes longer, both the

number of data points processed and the number of the split-



22 Yunjun Gao et al.

(a) CR (b) LS (c) US (|P |/|O| = 1) (d) ZS (|P |/|O| = 1)

Fig. 25 Pruning heuristic application efficiency of individual queries (ql = 15%, k = 5)

(a) CR (b) CR (c) LS (d) LS

Fig. 26 CVkNN search performance versus ql (k = 5)

(a) CR (b) CR (c) LS (d) LS

Fig. 27 CVkNN search performance versus k (ql = 15%)

ting regions in the specified query line segment increase,

resulting in more distance computation, visibility examina-

tion, and result list updating. In addition, we find that the

query cost on LS exceeds significantly that on CR. This is

because LS contains far more data points than CR (i.e., in

CR, |P | = 5, 922, while in LS, |P | = 62, 556.).

Effect of k. Next, we explore the impact of k and Fig-

ure 27 illustrates the performance of the CVNN algorithm un-

der different k values with ql fixed at 15%. Similar to what

observed from previous experiment, CVkNN-1T is better

than CVkNN-2T, and they share the similar performance

trend. On the other hand, the value of k affects the perfor-

mance. Moreover, it has a more significant impact on CR
than on LS. This is caused by the different nature of the

datasets. In CR, |P |/|O| ≈ 0.25 while that in LS is around

0.5. In other words, the visibility of an object from CR on

average is affected by more obstacles, compared against the

object from LS. Hence, the dominance region of an answer

object from CR is smaller, compared with that of an answer

object from LS. As k grows, the efficiency of the CVNN algo-

rithm for CR suffers from a more significant deterioration.

Effect of |P |/|O|. Then, we evaluate the performance of

CVNN algorithm under different |P |/|O| settings, with result

plotted in Figure 28. As expected, CVkNN-1T outperforms

CVkNN-2T and they share the similar performance trend.

Consequently, we only present the performance of CVkNN-

2T and ignore the performance of CVkNN-1T in the sub-

sequent experiments. We also observe that as |P |/|O| in-

creases from 0.1 to 10, the cost of CVkNN queries first

drops and then increases. This is because initially, the den-

sity of dataset P increases with the growth of |P |/|O|, which

implies a smaller search range for the answer points and ob-

stacles. Therefore, the performance improves. However, as

|P |/|O| further grows, the interval dominated by each data

point becomes shorter, and the result list contains more an-

swer points. The gain from the reduced search range can-

not pay off the cost of frequent result list update operation,

and thus the performance deteriorates. Notice that the per-

formance of CVNN achieves the best performance when P
and O share similar cardinalities (e.g., |P |/|O| = 0.5 or 1
in Figure 28).

Effect of buffer size. As mentioned in Section 7.1, all

the above experiments are conducted with an LRU buffer

that is set to 10% of the tree size. The fourth experiment

examines the performance of CVNN with various LRU buffer

sizes, by fixing ql = 15% and k = 5. We use the first 100

queries to warm up the buffer, and the average cost of the

last 100 queries is reported in Figure 29. Obviously, as the

buffer size increases, the I/O cost drops gradually, whereas

the CPU cost remains almost the same.
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(a) US (b) US (c) ZS (d) ZS

Fig. 28 CVkNN search performance versus |P |/|O| (ql = 15%, k = 5)

(a) CR (b) CR (c) LS (d) LS

Fig. 29 CVkNN search performance versus buffer size (ql = 15%, k = 5)

7.4 Results on TVkNN queries.

The third set of experiments evaluates the performance of

CVNN algorithm in answering TVkNN queries. Here, the

SP algorithm presented in Section 6.2 is taken as a base-

line approach. We investigate the influence of two factors:

k and the number of trajectory segments |q|. The trajectory

length is set to 15% of the search space side length, and it

consists of several connective line segments with equivalent

length. Again, we consider the case where P and O are in-

dexed by two separate R-trees and the case where P and O
are indexed by one unified R-tree, denoted as TVkNN-2T

(2T for short), TVkNN-1T (1T for short), and SP-2T (S2T

for short), respectively.

(a) LS (b) LS

Fig. 30 TVkNN search performance versus k (|q| = 3)

First, we fix |q| to 3 and vary k between 1 and 9 to

study the effect of k on the efficiency of the algorithms,

using the LS dataset combination. The experimental results

are depicted in Figure 30. It is observed that the I/O cost

of TVkNN outperforms significantly that of SP, but with a

longer CPU time. The reason behind is that, as mentioned in

Section 6.2, SP needs to traverse the data set and the obsta-

cle set multiple times, resulting in numerous redundant node

accesses; while TVkNN requires spending higher CPU time

to implement pruning heuristics to avoid unnecessary node

accesses. The second observation is that TVkNN-2T and

TVkNN-1T share the similar performance trend, whereas

TVkNN-1T performs better. As mentioned earlier, the ad-

vantage of TVkNN-1T can be explained by the fact that

data points and obstacles located close to each other are

very likely stored in the same page. Therefore, the access to

the data points and that to the obstacles may share the node

traversals when P and O are indexed by a single R-tree. In

addition, the cost of TVkNN search increases as k grows,

because a higher k value incurs a larger search space, more

distance computation, and more result list maintenance cost.

(a) LS (b) LS

Fig. 31 TVkNN search performance versus |q| (k = 5)

Then, we explore the impact of |q| on the performance

of CVNN algorithm, with the result shown in Figure 31. As

expected, TVkNN-1T outperforms TVkNN-2T and the cost

of the algorithm increases with the growth of |q|.

7.5 Results on δ-CVkNN queries

The fourth set of experiments evaluates the performance of

CVNN algorithm in answering δ-CVkNN queries. We vary

the δ value from 5% to 25% of the search space side length,

with ql set to 15% and k fixed at 5. The experimental results
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are shown in Figure 32. Here, δ-CVkNN-2T (2T for short)

represents the case where dataset P and obstacle set O are

indexed by two different R-trees, and δ-CVkNN-1T (1T for

short) denotes the case where P and O are indexed by a

single R-tree.

(a) LS (b) LS

Fig. 32 δ-CVkNN search performance versus δ (ql = 15%, k = 5)

It is observed that δ-CVkNN-1T outperforms δ-CVkNN-

2T, although their performance trend is similar. However,

compared with the performance difference demonstrated in

previous sets of experiments, the performance difference be-

tween δ-CVkNN-1T and δ-CVkNN-2T narrows down. The

reason behind is that the search spaces for both data points

and obstacles are bounded by δ, and thus the saving bene-

fited from traversing one unified R-tree is less significant.

On the other hand, as δ value grows, the cost of δ-CVkNN

retrieval increases, which is consistent with our expectation

and confirms that δ has a direct impact on the performance.

7.6 Results on CCVkNN queries

The last set of experiments evaluates the performance of

CVNN algorithm in answering CCVkNN queries. We fix ql

and k to their default values (i.e., 15% and 5 respectively),

and vary the constrained region Rc from 10% to 70% of

the search space side length (i.e., from 1% to 49% of the

search space area). Figure 33 plots the experimental results

for the dataset combination LS, in which CCVkNN-2T (2T

for short) represents the case where dataset P and obstacle

set O are indexed by two separate R-trees, and CCVkNN-1T

(1T for short) denotes the case where P and O are indexed

by one unified R-tree.

Again, CCVkNN-1T demonstrates a better performance,

while its performance trend is similar to that of CCVkNN-

2T. It is observed that initially, the cost of CCVkNN search

increases slightly with Rc, but thereafter it drops gradually

as Rc further grows. The reason behind is that, when Rc

is small (e.g., 10%, 20%), it is very likely that the answer

objects to a traditional CVNN query are not located inside

Rc, and hence nearly every data point within Rc has to be

evaluated. If the query line segment q is far away from the

constrained region Rc, more obstacles may affect the visi-

bility of a data point inside Rc over q, resulting in a higher

obstacle retrieval cost and a higher visible region formation

cost. Consequently, as Rc increases, more data points need

to be evaluated with a higher search cost and a higher I/O

overhead. However, as Rc reaches a certain size (e.g., 60%,

70%), it is very likely that data points located close to q are

inside Rc, and thus the search space that has to be traversed

for retrieving the answer objects is reduced, which leads to

a significant improvement of the search performance.

(a) LS (b) LS

Fig. 33 CCVkNN search performance versus Rc (ql = 15%, k = 5)

8 Conclusions

This paper identifies and solves a new type of spatial queries,

namely continuous visible nearest neighbor (CVNN) search.

CVNN retrieval is not only interesting from a research point

of view, but also useful in many practical applications (in-

volving spatial data and obstacles) such as decision sup-

port, mixed-reality games, and location-based commerce.

We carry out a systematic study of CVNN queries. First,

we provide a formal definition of the problem and reveal

its unique characteristics. Second, we present a suite of ef-

fective pruning heuristics and develop an efficient CVNN al-

gorithm to tackle the problem. Next, we extend CVNN al-

gorithm to handle several CVNN query variants, including

CVkNN, TVkNN, δ-CVkNN, and CCVkNN queries. Fi-

nally, we conduct extensive experiments to evaluate the ef-

fectiveness of the proposed pruning heuristics and the per-

formance of the proposed algorithms.

In the future, we intend to explore the application of

the proposed methodology to other forms of spatial queries

(e.g., all nearest neighbor search, etc.) in the presence of ob-

stacles. Another interesting direction for future work is to

investigate visibility queries for moving objects and mov-

ing obstacles. Finally, it would be particularly interesting to

develop analytical models for estimating the query cost of

CVNN search and its variants, because such models will not

only facilitate query optimization, but may also reveal new

problem characteristics that could lead to even better algo-

rithms.
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