
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2011 

Automated Detection of Likely Design Flaws in Layered Automated Detection of Likely Design Flaws in Layered 

Architectures Architectures 

Aditya BUDI 
Singapore Management University, adityabudi@smu.edu.sg 

- Lucia 
Singapore Management University, lucia.2009@smu.edu.sg 

David LO 
Singapore Management University, davidlo@smu.edu.sg 

Lingxiao JIANG 
Singapore Management University, lxjiang@smu.edu.sg 

Shaowei WANG 
Singapore Management University, shaoweiwang.2010@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons, and the Systems Architecture Commons 

Citation Citation 
BUDI, Aditya; Lucia, -; LO, David; JIANG, Lingxiao; and WANG, Shaowei. Automated Detection of Likely 
Design Flaws in Layered Architectures. (2011). SEKE 2011: 23rd International Conference on Software 
Engineering and Knowledge Engineering, Miami Beach, 7-9 July 2011: Proceedings. 613-618. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1399 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1399&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1399&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1399&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Automated Detection of Likely Design Flaws in
Layered Architectures

Aditya Budi, Lucia, David Lo, Lingxiao Jiang, and Shaowei Wang
School of Information Systems, Singapore Management University

{adityabudi,lucia.2009,davidlo,lxjiang,shaoweiwang.2010}@smu.edu.sg

Abstract

Layered architecture prescribes a good principle for sep-
arating concerns to make systems more maintainable. One
example of such layered architectures is the separation of
classes into three groups: Boundary, Control, and Entity,
which are referred to as the three analysis class stereo-
types in UML. Classes of different stereotypes are inter-
acting with one another, when properly designed, the over-
all interaction would be maintainable, flexible, and robust.
On the other hand, poor design would result in less main-
tainable system that is prone to errors. In many software
projects, the stereotypes of classes are often missing, thus
detection of design flaws becomes non-trivial. In this paper,
we provide a framework that automatically labels classes
as Boundary, Control, or Entity, and detects design flaws of
the rules associated with each stereotype. Our evaluation
with programs developed by both novice and expert devel-
opers show that our technique is able to detect many design
flaws accurately.

1 Introduction
Layered architecture is a recommended industry prac-

tice as it promotes separation of various concerns into lay-

ers [17]. By using this architecture, when requirements

change, most of the changes could be localized to a limited

number of classes in a particular layer. Thus, no changes

would be needed for classes in unrelated layers as long

as the interfaces between the layers remain the same. As

software evolves over time, layered architectures are more

likely to have better reusability, improve comprehension

and traceability, and ease maintenance and evolution tasks

than single-tier architectures.

One commonly used layered architecture is the separa-

tion of classes into three stereotypes, namely: Boundary,

Control, and Entity, following the Unified Modeling Lan-

guage (UML) and its suggested objectory process [15, 14].

Boundary classes are responsible to interface with external

systems or users. Control classes are responsible to real-

ize particular functionalities or use cases by coordinating

the activities of various other classes. Entity classes are re-

sponsible to model various domain concepts and store and

manage system data.

Class stereotypes are not just symbols; they come with

design rules governing their behaviors and responsibilities.

If the nature of a class is not apparent to developers or its

behaviors do not match its stereotype label, developers are

prone to make mistakes, violating the rules, especially as the

code evolves over time. There are two common rule vari-

ants: robustness rules [15], and well-formedness rules [14].

Unfortunately, many software projects, during develop-

ment or maintenance, have little documentation. Many de-

sign documents, including those specifying stereotype la-

bels of the classes in a program, are often missing. Such

information is often not obvious in the source code either

due to poor variable and class names, code changes, etc.

Also, keeping design documents and stereotypes up-to-date

manually could be time-consuming and error-prone.

To address the above issues, we propose a framework

that can automatically reverse engineer class stereotypes

and detect violations of design rules associated with them.

We empirically evaluated our proposed system on a num-

ber of student projects and a real software system. Our pre-

liminary experiments are promising. Compared with man-

ually stereotyped labels, our approach achieves on average

77% of accuracy. Design defects resulted from violations

of robustness and well-formedness rules could be detected

with up to 75% precision and 79% recall.

The rest of the paper is organized as follows. Section 2

describes related work. Section 3 presents the concept of

class stereotypes and their associated design rules. Sec-

tion 4 describes our design flaw detection framework. Sec-

tion 5 presents evaluation results. We discuss limitations

and applicability in Section 6 and conclude in Section 7.

2 Related Work
There are a number of studies on the characteristics of

class stereotypes [2, 8, 1, 12]. Andriyevska et al. study the

effect of stereotypes on program comprehension [1]. Kuz-



niarz et al. also study the effects of stereotypes on program

comprehension but focus on user-defined stereotypes rather

than the standard three (i.e., Boundary Control, and En-

tity) [12]. Atkinson et al. propose different de facto ways

in which stereotypes are used [2]. Gogolla and Henderson-

Sellers analyze the part of the UML metamodel that deals

with stereotypes and provide recommendations for improv-

ing the definitions and uses of stereotypes [8]. Dragan et

al. investigated an automated way to infer class and method

stereotypes [6, 7]. To the best of our knowledge, we are

the first to propose an automated way to automatically de-

tect likely violations of design rules governing stereotypes

based on automatically identified stereotype labels.

Various studies also address the problem of detecting and

correcting design flaws and code smells [9, 11, 19, 13, 18].

Guéhéneuc et al. [9] find code segments that do not con-

form to a particular design pattern and transform them ac-

cordingly. Khomh et al. use Bayesian Belief Networks to

detect code and design smell [11]. Vaucher et al. study god
classes and propose an approach to distinguish good god
classes from bad ones [19]. Moha et al. extract concepts

from text descriptions and establish formal specifications of

code smells so that they can detect code smells automati-

cally [13]. Trifu and Reupke also detect structural flaws in

object oriented programs and use optimization-based tech-

niques to automatically restructure programs [18]. Our

work in this paper focuses on detecting class stereotypes

and checking violations of design rules involving stereo-

types, which enriches the type of design information and

defects detected by past studies and helps users to reverse

engineer their designs.

3 Design Rules of Class Stereotypes

This paper provides a mechanism to identify class stereo-

types automatically and detect design flaws in programs.

The class stereotypes and design rules associated with the

stereotypes are described in the following subsections.

3.1 Class Stereotypes

Identifying class stereotypesis an important step for de-

signing, analyzing, understanding, and maintaining a soft-

ware system. In particular, this paper focuses on automated

identification of three class stereotypes, i.e., Entity, Con-
trol, and Boundary, which was introduced as an extension

to the standard UML [14, 3]. The UML extension describes

the responsibilities of classes belonging to each stereotype.

It promotes separation of different concerns into different

class stereotypes, and thus software changes related to one

concern would only affect one particular stereotype involv-

ing a limited number of classes [17].

Classes with the Entity stereotype store and manage in-

formation in a system. In this paper, we further distinguish

Regular Entity from a special kind of entity called –Data

Manager, which is used to persist to storage systems (e.g.,

databases, file systems, etc). As an example, Course is a

possible entity class in a University Management System

(UMS) and CourseStore is a possible data manager class

that stores and retrieves course data from databases.

Classes with the Boundary stereotype serve as an inter-

face between a system and external systems interacting with

it. External systems, represented as Actors, could be other

computing systems or the users of the system. These inter-

face classes would be the ones affected if the behavior of

external systems change. In a typical UMS, CourseMan-
agementUI is a possible boundary class.

Classes with the Control stereotype act as a glue among

entity and boundary classes, and control the activities of

other classes for particular tasks. For example, CourseReg-
istration class is a possible control class that interacts with

a user interface class and related entity classes, e.g. Course.

3.2 Design Rules

Class stereotypes, based on their supposed responsibili-

ties and the principle of separation of concern, should fol-

low certain design rules, such as, an Entity class cannot

call a Boundary class directly. Regulating the interactions

among different classes of various stereotypes can help to

ensure the understandability and maintainability of a soft-

ware system.

Our work provides an automated mechanism for check-

ing compliance of design rules governing the interactions

among class stereotypes. In particular, we instantiate

the checking against two sets of rules which reflect vari-

ous architectural styles, namely robustness rules and well-
formedness rules. Our checking mechanism is designed to

be flexible enough to take various rules for checking.

3.2.1 Robustness Rules
Robustness analysis, as described in Rosenberg and Scott’s

UML book [15], provides a set of rules that indicate all

valid and invalid interactions among different class stereo-

types. The rules are paraphrased as follows, where Ac-
tors represent users of a system which could be humans or

classes/objects outside the system under analysis:

R1 Actors can only call boundary objects.

R2 Boundary objects can only call controllers or actors.

R3 Entity objects can only call controllers.

R4 Controllers can call entities, other controllers, and

boundaries, but not actors.

3.2.2 Well-Formedness Rules
The well-formedness rules are defined in the UML exten-

sion [14], and rephrased as follows: 1

1The complete set of rules in the UML extension also allows the subscriber-
publisher style of interaction. This paper considers only interactions via direct calls
and thus omits a part of the rules governing subscribe-publish interactions.



Callee
Caller Actor Entity Control Boundary

Actor R1 W1

Entity W3 R3

Control R4 W4 R4 W4 R4 W4

Boundary R2 W2 W2 R2 W2 W2

Table 1. Robustness and Well-Formedness Rules.

W1 Actors can only call boundary objects.

W2 Boundary objects can call entities, controllers, other

boundaries, and actors.

W3 Entity objects can only call other entities.

W4 Controllers can call entities, other controllers, and

boundaries, but not actors.

The two sets of rules can also be represented as a matrix

shown in Table 1. Each entry indicates a rule that validates

the corresponding caller-callee relation. Unmarked entries

signify bad caller-callee relations that violate the rules.

4 Design Flaw Detection Framework

Our framework are shown as a flowchart in Figure 1. We

use a classification framework that has two phases, namely

training and violation detection. In the training phase, we

build a statistical model using a machine learning technique

that can discriminate the class stereotypes based on a set

of classes with given stereotypes, i.e., training data labeled

with Regular Entity, Data Manager, Control, and Bound-

ary stereotypes. In the violation detection phase, given a

class or a program containing more than one class with no

stereotype labels (i.e., test data), we first predict the corre-

sponding stereotype for each class based on the model. We

then detect design defects by using the inferred stereotypes

verified against either robustness or well-formedness rules.

Extraction of 
Basic Information 

Extraction of 
Basic 

Feature 
Construction

Model Learning 

Training Data 

Feature 
Construction

Training Phase Violation Detection 

Violation 
Detection

Stereotype 
Assignment 

Stereotypes 

Test Data 

Violations Model 

Figure 1. Design Flaw Detection Framework

There are five processes in the framework: extraction

of basic information, feature construction, model learning,

stereotype assignment, and violation detection. The follow-

ing paragraphs describe these processes in more detail.

Extraction of Basic Information. In this process, we ex-

tract information about the classes in each Java program

from its source code. The basic information we extract

Feature Description
Size Number of instructions that a class has

NOM Number of methods that a class has

ASize Average size of all the methods in a class

Fan-out Number of other classes that a class calls

Fan-in Number of other classes that call a class

GetCnt Number of getters method in a class

SetCnt Number of setters method in a class

CRUD Number of methods performing create, read, update, or delete to data
sources in a class

Table 2. Features Used in Our Statistical Model.

includes all the methods in each class, all the instructions

contained in each method, the call-relations among classes

(represented as call graphs), and the classes that contain op-

erations related to I/O or database operations. We built our

information extractor upon WALA [20].

Feature Construction. Based on the basic information, we

form features that could help in differentiating the training

classes belonging to each of the four given stereotypes. In

this work, we compute the set of features shown in Table 2

for each class. Instead of using absolute values for the fea-

tures, we normalize their values to be in the [0, 10] range.

Model Learning. In this process, we take the training

data with its features and learn a model that could dis-

criminate the four stereotype labels: Regular Entity, Data

Manager, Boundary, and Controller. We use Support Vec-

tor Machine (SVM) [5] for this task since it is a well-

known machine learning technique that has been shown to

have good accuracies in many application domains. Regu-

lar SVMs learn models that only discriminate between two

labels. We use an SVM extension handling multiple class

labels [4]. Implementation-wise, we use the publicly avail-

able SVMmulticlass [16].

Stereotype Assignment. We use the model learned in the

training phase and the features extracted from the test data

to assign stereotype labels to each class in the test data. We

use the classification capability of SVMmulticlass.

Procedure Violation Checking
Inputs:

R : A set of rules (e.g., robustness, well-formedness)
C : A set of classes
L: The corresponding stereotypes for the classes

Output: V : A set of violations against R
Method:
1: Let V = {}
2: Let RMap = Process R and represent it as a pair

〈Caller , {Callee}〉, where {Callee}
is the set of stereotypes that can be called
by the stereotype Caller as expressed in R.

3: For each class c in C
4: Let Caller = c’s stereotype
5: Let {Callee} = Caller ’s information in RMap
6: Let C ′ = All other classes that are called by c
7: For each class c′ in C ′

8: If c′’s stereotype /∈ {Callee}
9: V ← V + {c′} // A violation is found
10: OUTPUT V

Figure 2. Violation Detection

Violation Detection. After the stereotypes are inferred, we

can check for violations against a set of class design rules by



leveraging the caller-callee relations extracted from code,

and the inferred stereotypes. In this paper, we consider ro-
bustness rules [15] and well-formedness rules [14]. For a

set of rules, the automated rule checker performs the steps

shown in Figure 2 to search for violations. At line 1, we ini-

tialize the output set. At line 2, we represent a set of rules

as a set of pairs of valid interactions from a stereotype (i.e.,

classes with this stereotype) to other stereotypes. At line 3-

10, we visit each class and for each, we extract its stereotype

(line 4), other valid stereotypes that it could call (line 5), and

the set of other classes called by it (line 6). At line 7-8, we

check if any of the called classes has a stereotype that vio-

late the rule (i.e., not in the set {Callee}). If this is the case,

we record this violation at line 9. We finally report all vio-

lations found (line 10). For example, for the robustness rule

R3, given a class with stereotype Entity, any call from the

class to other Entity or Boundary classes will be reported as

a violation. As another example, for the well-formedness

rule W4, any call originated from a Control class is valid.

5 Empirical Evaluation

In this section, we describe our dataset and evaluate the

accuracies of our approach in inferring stereotypes and de-

tecting design flaws.

5.1 Dataset

We perform our evaluation on 15 Java projects devel-

oped by students of an object-oriented application devel-

opment (OOAD) course. The projects are all about a sin-

gle player hunting game. The number of Java classes per

project ranges from 36 to 67 with an average of 45. Each

project has 3431 to 9220 lines of code (including comments

and blank lines), with an average of 5168. We also per-

form experiment using a real open source software namely

OpenHospital, which is a hospital management system. The

system consists of 233 classes, with 59,087 lines of code.

For each project, we manually labeled the classes with

either Boundary, Control, (Regular) Entity, and Data Man-
ager. The manual labels provide us valid classes stereotypes

for the training phase and an oracle to measure the accuracy

of our approach in the testing phase.

5.2 Accuracy of Stereotype Inference

We employ ten-fold cross validation to evaluate our ap-

proach. It divides all data points (i.e. classes in a project)

into ten disjoint subsets of (approximately) equal size. To

obtain a representative training data, the classes of the same

stereotype are distributed over the subsets. Then, one sub-

set is used as test data, while the others are used as training

data. This process is repeated ten times (iterations); each

iteration uses a different subset as test data.

We evaluate the accuracy of a trained model in inferring

stereotypes as a ratio of number of correctly inferred class

Real Vs. Inferred Label Number and Proportion of Predicted Classes
Boundary Control Entity Data Man.

Boundary 81.35% 9.84% 1.04% 7.77%

Control 10.37% 58.54% 23.78% 7.32%

Entity 3.21% 2.88% 92.31% 1.60%

Data Manager 18.33% 6.11% 12.22% 63.30%

Table 3. Confusion Matrix of the Stereotypes Inferred

1 public class InventoryController{
2 private TrapDataManager trapDM;
3 private BaitDataManager baitDM;
4 private PlayerDataManager playerDM;
5 public InventoryController(){
6 {      trapDM = TrapDataManager.getInstance();
7 baitDM = BaitDataManager.getInstance();
8 playerDM = PlayerDataManager.getInstance();  }
9 public void setTrap(Player p, int trapID)

10 {    trapDM.setTrap(p, trapID); }
11 public ArrayList<Trap> retrieveAllTraps(String username)
12 {    return trapDM.retrieveAllTraps(username); }
13 public void setBait(Player p, int baitID)
14 {    baitDM.setBait(p, baitID); }
15 public ArrayList<Bait> retrieveAllBaits(String username)
16 {    return baitDM.retrieveAllBaits(username); }
17 public ArrayList<InventoryItem> retrieveAllInventory(String username)
18 {    return playerDM.retrieveAllPlayerInventory(username); }
19 public void readPlayerChoice(Player p, String choice)
20 { …
21 if (tOrBChoice == 'T')
22 {     InventoryUI inventoryUI = new InventoryUI(); …}
23 else if (tOrBChoice == 'C'){
24 {               InventoryUI inventoryUI = new InventoryUI(); …}
25 else{       InventoryUI inventoryUI = new InventoryUI();
26               System.out.println("Please enter a VALID item ID > "); }}
27 public String getBaitInUse()
28 �� return baitDM.getBaitInUse(); } }

Figure 3. Example of a Wrongly Labeled Control Class

stereotypes with number of classes in test data. We compute

the accuracy for each iteration for each project and average

them as the accuracy of each project. The accuracy of our

approach is then computed by taking the average of the ac-

curacies of all projects, which is 77%.

We draw a confusion matrix to evaluate the accuracy

of each stereotype prediction produced by the trained

model [10]. A confusion matrix is a table with rows cor-

responding to real labels and columns corresponding to in-

ferred labels. A cell (X,Y) in the matrix corresponds to the

number of test data points with real label X that are assigned

label Y by a classifier/model. Table 3 shows the accuracy

of the inferred stereotypes in percentages.

Considering the diagonal entries of the matrix, we no-

tice that boundary and entity classes can be detected with

very good accuracies of more than 80%. However, it is

less accurate when assigning labels to control classes. Con-

trol classes are often confused with entity classes. Upon

inspection, we find that many students implement their con-

trol classes poorly. For example, consider the control class

named InventoryController in Figure 3. It is assigned an

entity stereotype by our approach. This is the case, as all of



the methods in this class except readPlayerChoice method

perform either get data operation (e.g., retrieveAllTraps) or

set data operation (e.g., setTrap). The control class simply

delegates the execution of these operations to the respective

data manager classes.

5.3 Accuracy of Design Flaw Detection

After the labels are inferred, we can detect design flaws

as violations of the robustness and well-formedness rules.

In this subsection, we show sample detected violations and

analyze the quality of our violation detection mechanism.

Sample Violations. Figure 4 shows an example where vio-

lations occur in a Boundary, a Control, and an Entity.

According to the robustness rule R2, a boundary can only

call controllers or actors. We detected a violation of R2 in

Code-1: the boundary class named RegistrationPage
calls an entity class named RegistrationManager
(lines 8 and 13). Note that this is not a violation when we

check it against the well-formedness rule W2.

Both robustness and well-formedness rules allow a con-

troller to interact with any class but not actors. In Code-2,

we detect a violation of the rules: the controller class named

SendingController calls System.out.println
(lines 6, 8, and 12) to display a message directly to a user

(i.e., an actor) and uses Scanner(System.in) (line 16)

to elicit inputs directly from the user.2

Robustness and well-formedness rules deal differently

with entity classes. The robustness rule R3 allows an en-

tity to call only controllers, while the well-formedness rule

W3 allows an entity to call only entities. Code-3 of Fig-

ure 4 shows that an entity class named Player violates

both of the rules: Player uses another entity Inventory
(line 4) and thus violates R3; It also uses a controller

StarbugsController (line 8) and thus violates W3.

In addition, this class interacts with an actor directly via

System.out.println (line 15), violating R3 and W3.

Quality of Detected Violations. With correct stereotype la-

bels, our checking mechanism will detect all violations per-

fectly (i.e., no false positives or negatives) as both robust-

ness and well-formedness rules are well specified. How-

ever, since stereotypes inferred by our approach could be

wrong, we may detect wrong violations (false positives) or

miss some violations (false negatives).

To measure false positives and negatives, we can simply

compare the violations detected with inferred labels against

those detected with correct labels: The size of the intersec-

tion of the two sets relative to the sizes of the two sets are

indicative of false positive rates and negative rates, which

can be measured by the notion of precision and recall. Pre-

cision is the ratio of inferred violations that are true and

recall is the ratio of true violations that are inferred.

2We have (manually) predefined a list of classes and functions that send or receive
messages to users which are treated as actors‘.

Class & Type Class Only
Evaluation Rob. Well. Rob. Well.
Precision 61.2% 74.6% 68.6% 69.9%

Recall 68.7% 61.8% 78.8% 59.8%

Table 4. Precision and Recall of Detected Anomalies for Robustness
Analysis (Rob.) and Well-Formedness Analysis (Well.)

Precision =
‖{Inferred V iolations} ∩ {True V iolations}‖

‖{Inferred V iolations}‖ .

Recall =
‖{Inferred V iolations} ∩ {True V iolations}‖

‖{True V iolations}‖ .

When comparing violations during the intersection op-

eration, we consider two equivalence criteria. One criterion

considers two violations are matched only if both the vio-

lating class (i.e., the class where the violation occurs) and

the type of the violation are matched (Class & Type). The

other considers only the violating class (Class Only).

The total numbers of true violations of robustness and

well-formedness rules are 244 and 138 respectively. The

total numbers of inferred robustness and well-formedness

violations are 255 and 112 respectively. The overall preci-

sion and recall of our approach is shown in Table 4. The

precision and recall values are aggregated averages across

many model building and testing iterations. We calculate

them using the two equivalence criteria.

Table 4 shows that violating classes (Class Only) can

be detected with precision and recall of 68.7% and 78.8%

(robustness), and 69.9% and 59.8% (well-formedness).

When considering both violating classes and violation types

(Class & Type), the precision and recall are reduced by

7.5% and 10.1% (robustness), and increased by 4.7% and

2% (well-formedness), due to some violations are detected

with correct violating classes but wrong violation types.

6 Discussion
Effects of Features Used. We used eight code features in

our experiments. It would be interesting to consider other

features, such as code complexity metrics, which might help

to improve the accuracy of the stereotype inference further.

The confusion matrix shown in Section 5.2 particularly sug-

gests more features related to controllers should be used to

reduce the number of confusion occurrences.

Effects of Dataset Investigated. We perform experiments

on software systems written by novice programmers and

one real medium-sized software system. These systems are

chosen based on the availability of the class labels. None

of the processes in our framework is expensive: basic in-

formation extraction, feature construction, model learning,

and stereotype assignment make use of an inexpensive static

analysis technique and a scalable classification engine, i.e.,

SVM. We believe the framework is able to process larger

programs. We plan to analyze larger systems in the future.

Effects of Design Rules Checked. We detected violations

against only robustness and well-formedness rules. There



�������� �������� �������	

����������������	

���
�
��	�����	
�� � ����������	

�������
����������� � ���������	

���	�����

���������� � �� � ������

������������	�����
�
��	���������������������

��������������������������������������������������������������
�
��	���������������� 
� �����������������
��	���	������

� ���������	���������
��
���	!�"������
��	

����"������
��	�#"������
�

��
���"������$��������"�����
�����
����%�������	�����
�
��	����&	�	
����&���'
���&�� � % ��������(��	�)�
�*��	���+���	���)�
����

�������������������	���,	�	&	�	
��'����������	���
�� ��

% ���������
����
���������������
��������-

����.������������
�
��	�����	
��� . ��������/���	���)�
�'
�0����*������ . �����������
��1������

����2����������	�����
���������	�������
��!'��� ��' 2 ��������������
�����
���
�
����������
������
���� 2 �������

����3���������
���	!���
�'��$��� 3 ��������-���
��� 3 ��������	���������4�
 

����5��������
 �!"������#����$�#
�#%��������#������ 5 ��������������
�����
���
�
����&�
'������������� 5 �������
#�%�(����
��������
#�%�(����
��������������

����6����������''' 6 �����������/������������7 ���*���	���)�
�'
�0��� ��88� 6 �������(��	�)�
�*9	��)���:��!+�	�9���������(��	�)�
�*9	��)���:��!+�� 

���7���������������
��	

������� �7 ����������������	����	��	��������	���)�
�'
����� �7 ��������	�9������'
��:����������'
��9	��
�� 

�������������������
����/��!	����� �� ���������������/�� �� ��������9	��)���:��!��������9	��������� 

���������������/����/��!	����'�;�	�
��	

����������' �� �������������������
�����
���
�
�������#)�#����(�
*#������� �� ���������������9	������'
��:����������'
��9	���� 

�������������������!"����'���!�(
�
�#

��������#��+�#��������� �� �������������������	���:,88 ��-�--- �� ���������/��	�9��'�
<!������==�>��������9	���>����������

���%��������������-��
����'''�- �% �����������������
��	�1�/�?��������	��������������� �% ��������������/���4�
'
����*�.7���

���.�����������-��
�� �. �������� �. �����������������������
�����
���
�
����,����(�����-����

���2�����������
��!'���'���������
���	!�8@��
�	���	�������
�@� �2 ��������'#������'��������'#��������
���
����- �2 ������������-�-��	��4��<$������������-����

���3��--- �3 ����- �3 �������������4�
'
��� �-

Figure 4. Violations in Boundary, Controller, and Entity Stereotypes

are other design rules, for example, some design rules re-

lax the robustness rules by allowing direct interactions be-

tween Entity objects. Our approach can be easily extended

to handle such variants. However, if the design rules in-

volve constraints such as conditional call-relations, our vi-

olation checking mechanism would then need further im-

provements, such as, taking control-flow conditions embed-

ded in inter-procedural call graphs into consideration.

Threats to Validity. To reduce the threats to construct va-

lidity, we used standard evaluation metrics, namely accu-

racy, precision, and recall, which are commonly used in

data mining and information retrieval tasks. However, it

remains a question what is the effect of inaccuracies on pro-

gram comprehension. To answer this question, a user study

would be needed and is left as future work. To reduce the

threats to internal validity and selection bias, the 15 projects

used in the experiment are chosen randomly from a pool of

93 student projects. However, as aforementioned, there are

still threats to external validity on the generalizability of our

results. We plan to evaluate our framework on various types

of software systems of various sizes to alleviate the threats.

7 Conclusion & Future Work
In this paper, we present a framework that detects likely

design flaws in layered object-oriented architecture with

classes belonging to various stereotypes, which should fol-

low certain design rules. Also, to accommodate to sys-

tems without sufficient stereotype annotations, our frame-

work learns a statistical model to distinguish various class

stereotypes available from a training set. This model in turn

is used to give labels to unannotated classes. Likely de-

sign flaws are later detected by finding violations of well-

known design rules. We have evaluated our approach on

Java projects developed by novice and expert developers.

The results show that our approach can identify class stereo-

types with 77% accuracy on average and can detect vio-

lations of the design rules associated with each stereotype

with up to 75% accuracy and up to 79% recall.

In the future, we plan to further investigate more useful

features for the inference of class stereotypes and more soft-

ware systems. We believe our framework is general and can

be adapted for reverse engineering other kinds of domain-

specific stereotypes.

Acknowledgement. We would like to thank Yeow-Leong

Lee for providing some stereotype labels.

References
[1] O. Andriyevska, N. Dragan, B. Simoes, and J. Maletic. Evaluating uml class

diagram layout based on architectural importance. In VISSOFT, 2005.

[2] C. Atkinson, T. Kuhne, and B. Henderson-Sellers. Systematic stereotype us-

age. Software and Systems Modelling, 2:153–163, 2003.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

[4] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. JMLR, 2002.

[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines: And Other Kernel-Based Learning Methods. Cambridge, 2000.

[6] N. Dragan, M. Collard, and J. Maletic. Reverse engineering method stereo-

types. In ICSM, 2006.

[7] N. Dragan, M. Collard, and J. Maletic. Automatic identification of class

stereotypes. In ICSM, 2010.

[8] M. Gogolla and B. Henderson-Sellers. Analysis of uml stereotypes in the uml

metamodel. In UML, 2002.

[9] Y.-G. Guéhéneuc and H. Albin-Amiot. Using design patterns and constraints

to automate the detection and correction of inter-class design defects. In

TOOLS USA, 2001.

[10] J. Han and K. Micheline. Data Mining Concepts and Techniques. Morgan

Kaufmann, 2006.

[11] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui. A bayesian ap-

proach for the detection of code and design smells. In QSIC, 2009.

[12] L. Kuzniarz, M. Staron, and C. Wohlin. An empirical study on using stereo-

types to improve understanding of UML models. In IWPC, 2004.

[13] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur. DECOR: A

method for the specification and detection of code and design smells. IEEE
TSE, 36:20–36, 2010.

[14] Rational Software et al. UML Extension for Objectory Process for Software
Engineering ver. 1.1, 1997.

[15] D. Rosenberg and K. Scott. Use case driven object modeling with UML: a
practical approach. Addison-Wesley, 1999.

[16] http://svmlight.joachims.org/svm_multiclass.html.

[17] P. Tarr, H. Ossher, W. Harrison, and S. S. Jr. N degrees of separation: Multi-

dimensional separation of concerns. In ICSE, 1999.

[18] A. Trifu and U. Reupke. Towards automated restructuring of object oriented

systems. In CSMR, 2007.

[19] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Guéhéneuc. Tracking design

smells: Lessons from a study of god classes. In WCRE, 2009.

[20] http://wala.sourceforge.net.


	Automated Detection of Likely Design Flaws in Layered Architectures
	Citation

	258_Aditya_Budi.pdf

