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Abstract—Many spectrum-based fault localization measures
have been proposed in the literature. However, no single fault
localization measure completely outperforms others: a measure
which is more accurate in localizing some bugs in some programs
is less accurate in localizing other bugs in other programs.
This paper proposes to compose existing spectrum-based fault
localization measures into an improved measure. We model the
composition of various measures as an optimization problem and
present a search-based approach to explore the space of many
possible compositions and output a heuristically near optimal
composite measure. We employ two search-based strategies
including genetic algorithm and simulated annealing to look for
optimal solutions and compare the effectiveness of the resulting
composite measures on benchmark software systems. Compared
to individual spectrum-based fault localization techniques, our
composite measures perform statistically significantly better.

I. INTRODUCTION

Many approaches have been proposed to help in automating
debugging process, especially in localizing faults [1]–[7]. One
common family of approaches is spectrum-based fault local-
ization, e.g., [2], [7], where program traces or abstractions of
traces (called program spectra) of correct and failed executions
are compared to identify likely program elements that causes
failures and are reported as potential faults. Some well-known
studies include Tarantula [2] and Ochiai [7]; Baah et al. [8]
improve fault localization accuracy by using a linear model to
estimate the causal effect of a program element on failures.
Lucia et al. [9] have also investigated the effectiveness of more
than 20 association measures, and report that information gain
may on average perform the best for fault localization.

We observe that although one measure could be more
accurate than other measures on some datasets, there are
programs where a poorer measure performs better than a better
one. We aim to leverage this fact by composing different
measures into a composite one that could perform better than
any individual constituent measure.

In this paper, we model the problem of finding an optimal
composition of various measures as a search-based optimiza-
tion problem. Our search-based fault localization engine works
on two phases: training and deployment. In the training
phase, the engine takes in a number of buggy programs
along with actual fault locations to measure how good a
particular composition is. A good composition should be able
to locate many bugs in this training set with a high accuracy.
Search heuristics (e.g. simulated annealing [10] and genetic
algorithm [11]) would be employed to traverse the search
space of all possible linear combinations of the more than 20

association measures to find near optimal ones that perform
best on the training set. In the deployment phase, our engine
takes a given buggy program and its spectra, and apply the
composite measure to identify potential fault locations.

We evaluate our search-based fault localization engine on
the Siemens test suite [12]. We compare the effectiveness of
our proposed composite measure with its constituent measures,
and show that our engine could locate relatively 51% and 22%
more bugs than Tarantula and Ochiai respectively when only
10% of the program code is inspected, and that the average
amount of code to be investigated to localize all bugs is
reduced from 31.8% and 27.6% to 20.0% when compared to
Tarantula and Ochiai respectively. With t-test, we also show
that the improvements are statistically significant.

II. RELATED WORK

Fault Localization. There are many studies on fault local-
ization and automated debugging, which can be categorized
in various ways. Based on the data used, fault localization
techniques can be classified into spectrum-based and model-
based. Spectrum-based fault localization techniques often use
program spectra, which are program traces or abstractions of
program traces that represent program runtime behaviors in
certain ways, to correlate program elements (e.g., statements,
basic blocks, functions, and components) with program fail-
ures (often with the help of statistical analysis).

Many spectrum-based fault localization techniques [1]–[6]
take as inputs two sets of spectra, one for successful executions
and the other for failed executions, and report candidate
locations where causes of program failures (i.e., faults) may
reside. Given a failed program spectrum and a set of correct
spectra, WHITHER [3] contrasts the failed execution to the
nearest correct execution to find most suspicious locations.
Delta debugging [1], [5], [13] uses binary-search-like algo-
rithms to locate failure causes. Recently, Artzi et al. [14],
[15] propose a directed test generation technique to generate
appropriate test cases and adapt Ochiai and Tarantula for
debugging web applications. They achieve significantly higher
fault localization accuracy since their approach utilizes a
mapping that could map different parts of an output to different
parts of the program. This mapping is very useful for accurate
fault localization when the output is of rich structures (e.g.,
HTML pages in web applications) and different parts of the
output are generated by different parts of the program code.
The mapping is unlikely to be useful for locating faulty code
in a program that outputs only simple structures or even a



single number—the code responsible for producing the output
might be the entire program.

Other spectrum-based techniques, e.g., [16], only use failed
executions as the input and systematically alter the program
structure or program runtime states to locate faults.

Different from these studies, we focus on a compositional
framework that combines any spectrum-based fault localiza-
tion technique which can sort program elements by their
suspicious scores, and we demonstrate that the framework
with search and optimization algorithms and 22 existing fault
localization measures can find better composite measures.

Search-based Algorithms in Software Engineering. Search-
based techniques have been frequently used in testing. Vari-
ous studies have proposed search-based test data generation
approaches [17], [18]. In this work, similar to the above ap-
proaches, we also utilize several search algorithms. However,
we address a different problem, and to our best knowledge, we
are the first to use search algorithms to find optimal compo-
sitions from existing individual fault localization techniques.

III. SEARCH-BASED COMPOSITION ENGINE

Our search-based fault localization process is divided into
two phases: training and deployment. The two phases are
illustrated in Figures 1 & 2.

A. Training Phase

In the training phase, we take as input all of 20 association
measures and Tarantula and Ochiai investigated in [9], along
with a training dataset. The training data is a set of program
spectra along with actual bug locations, which could be
obtained in practice from past fault localization efforts or
known bugs and fixes in programs. Based on the 22 measures
and the training data, the search algorithms investigate various
composite measures and search for one that performs the best
in localizing faults in the training dataset.

In the following paragraphs, we first define the search space
of potential composite measures. Next, we describe how we
adapt existing search algorithms for fault localization purpose.
The output of the training phase is a heuristically near optimal
composite measure that performs well for the training data.

1) Search Space: In this work, we employ one of the
many possible composition strategies, which is a linear model
represented as a weighted sum of individual fault localization
measures. Given 22 measures named as 𝑀1, 𝑀2, . . ., 𝑀22, and
a program element 𝑒, the suspiciousness score for 𝑒 assigned
by the composite measure is defined as follows:

𝑀𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒(𝑒) = 𝑤1 ×𝑀1(𝑒) + 𝑤2 ×𝑀2(𝑒) + . . .+ 𝑤22 ×𝑀22(𝑒)

The search space of all possible compositions corresponds
to the various assignments of weights, 𝑤1, 𝑤2, . . . , 𝑤22, and
each weight could be a real number from zero to one. However,
many search algorithms only work on discrete search spaces,
thus we discretize the search space by representing each
weight by 7 bits. The function mapping the 7 bit signature
to a weight is:

𝐵𝑖𝑡𝑇𝑜𝑊𝑒𝑖𝑔ℎ𝑡(𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7) =
Σ(𝑏𝑖 × 2𝑖)

27 − 1

2) Objective Functions: Search algorithms require an ob-
jective function to quantify the quality of potential solutions.
We define the objective function 𝑓 so that the lower the score
is, the better quality a fault localization measure has, and the
goal for search algorithms is to find candidate compositions
(i.e., assignments to the weights) that minimize 𝑓 .

Since the quality of a fault localization technique is often
defined as how much code is needed to be investigated to
find certain numbers of bugs, we define 𝑓 as the average
proportion of program elements that need to be investigated
to locate all bugs in a set of programs when lists of program
elements sorted in the descending order according to their
suspiciousness scores generated by the measure is traversed.

3) Adapting Search Algorithms: We consider two search
algorithms in our compositional framework in this paper:
simulated annealing [10] and genetic algorithm [11].

Simulated Annealing. With the search space modeled in
Section III-A1 and the objective function defined 𝑓 defined in
Section III-A2 as the objective function, simulated annealing
(SA) can be applied straightforwardly for our problem. Similar
to previous work employing search-based techniques in soft-
ware engineering tasks [19], we use some initial experiments
to set the parameters for SA.

Genetic Algorithm. To use genetic algorithm (GA) for our
problem, we further transform the search space modeled
in Section III-A1 to chromosomes required by GA: we
concatenate the 22 7-bit weights together to form 154-bit
chromosomes. The search space is thus all possible binary
chromosomes of length 154.

In addition, GA consists of the creation of an initial popula-
tion, and the selection, crossover, and mutation operations. We
created the initial population of chromosomes randomly. The
crossover and mutation operations are standard [11]. We only
define the selection step, and the intuition is to select the most
fit chromosomes in each generation based on 𝑓 . In this paper,
we define the fitness of a chromosome 𝑋𝑖 in a generation 𝑅
containing ∣𝑅∣ chromosomes as follows:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖) = 𝑠𝑢𝑚
∣𝑅∣
𝑗=1𝑒

[10×(𝑓(𝑋𝑗)−𝑓(𝑋𝑖))]

The definition implies that the smaller 𝑓(𝑋𝑖) is among all
chromosomes in the same generation, the better fit 𝑋𝑖 is. Since
the difference between 𝑓(𝑋𝑗) and 𝑓(𝑋𝑖) can be very small,
we take the exponentiation of this difference multiplied by ten.

With the fitness function, we consider two selections:

1) Random. In this strategy, each chromosome of the
current generation has a chance to be selected to be a
chromosome in the next generation proportional to its
fitness score.

2) Enhanced. In this strategy, we set a threshold 𝑘. Then,
if the objective function value of a chromosome is less
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than 𝑘 away from that of the best chromosome in the
current generation, it is put into the next generation;
otherwise, the chromosome is selected as in the random
strategy. The intuition for keeping better chromosomes
for next generations is to achieve potentially better fault
localization results within the same number of iterations.

We refer to GA with the Random selection as 𝐺𝐴𝑅𝑎𝑛𝑑𝑜𝑚

and the other as 𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑. Similar to SA, we use some
initial experiments to set the parameters of GA.

B. Deployment Phase

In the deployment phase, the composite measures learned in
the training phase are used to locate faults. Given a program
spectrum, a composite measure assigns a suspiciousness score
to each program element, as individual measures do; the higher
the score is for a program element, the more likely the element
is faulty. These suspiciousness scores are used to sort all
program elements in a list and presented to code inspectors.
The process is illustrated in Figure 2.

IV. EMPIRICAL EVALUATION

In this section, we describe our experimental settings and
evaluation results.

A. Settings

Subject Programs. We analyze seven programs from Siemens
Test Suite [12]. Siemens test suite was originally used
for research in test coverage adequacy and was devel-
oped by Siemens Corporation Research. We use the variant
provided at http://www.cc.gatech.edu/aristotle/Tools/subjects/.
The test suite contains seven programs, including print tokens,
print tokens2, replace, schedule, schedule2, tcas, and tot info.
Each program contains many different versions where each
version has one bug. These bugs comprise a wide array of
realistic bugs. The total number of buggy versions are 132.
Among these versions, we use 120 versions.

Instrumentation. We instrument the programs and run them
with the test cases to collect program block-hit spectra. Each
block-hit spectrum identifies how many times each block is
executed when a program is executed with a test case.

Cross Validation. We perform a three-fold cross validation
(i.e., 2/3 of the dataset is used for training and 1/3 is used for

TABLE I
DATASET DETAILS

Dataset LOC Faulty versions Test cases
print token 472 7 4030
print token2 399 10 4115
replace 512 32 5542
schedule 292 9 2650
schedule2 301 10 2710
tcas 141 41 1608
tot info 440 23 1051

testing) to evaluate the result of our search-based fault local-
ization approach. We randomly split the 120 versions into 3
buckets. Each bucket would thus contain 40 versions. In three-
fold cross validation, 3 separate iterations are performed. In
each iteration, we keep one of the bucket as the test/validation
set and use the other two buckets for training. The average
results across the 3 iterations are reported.

B. Evaluation Results

We measure the accuracies of the three variants of our pro-
posed search-based approach, namely, 𝑆𝐴, 𝐺𝐴𝑅𝑎𝑛𝑑𝑜𝑚, and
𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑, and compare them with those of Tarantula [2],
Ochiai [20], and Information Gain which are among the best
fault localization measures [9]. Here, the accuracy for each
fault localization technique is measured in terms of number (or
proportion) of bugs that could be localized by only examining
a certain number (or propertion) of program elements (blocks
in our case), which is also used in past studies [2], [5], [20].

We plot the accuracies of the various techniques in Figure 3.
The 𝑥-axis describes the proportion of blocks inspected and
𝑦-axis describes the proportion of buggy versions that can
be localized. Assuming an inspector can recognize a bug
when a block is presented to him or her, the plot lines shall
always reach 100% at the right ends. The more buggy versions
localized at lower numbers of inspected blocks, the better a
fault localization approach is.

We find that 𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 and 𝐺𝐴𝑅𝑎𝑛𝑑𝑜𝑚 perform better
than all other techniques. When less than 10% of the blocks
are inspected, 𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 and 𝐺𝐴𝑅𝑎𝑛𝑑𝑜𝑚 localize 52% of
all buggy versions. At the same proportion of inspected blocks,
𝑆𝐴 localize 43% of the bugs respectively, while Ochiai,
Tarantula and Information Gain localize 43%, 34%, and 37%
respectively. The relative improvements of 𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 and
𝐺𝐴𝑅𝑎𝑛𝑑𝑜𝑚 over Tarantula, Ochiai, and Information Gain are
51%, 22%, and 41% respectively.



Furthermore, 65% of all bugs are localized by 𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑

with only up to 20% of blocks inspected. To achieve the same
number of localized bugs, 𝐺𝐴𝑅𝑎𝑛𝑑𝑜𝑚, 𝑆𝐴, and Ochiai require
at least 20%, 28%, and 29% of block inspections respectively,
while Tarantula requires at least 43%. Also, 𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 and
𝐺𝐴𝑅𝑎𝑛𝑑𝑜𝑚 can localize more than 90% of the bugs when up
to 50% code elements are inspected. On the other hand, 𝑆𝐴
requires 60%, and Ochiai, Tarantula, and Information Gain
require 67%, 75%, and 75% respectively.
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Fig. 3. Accuracies of Various Techniques

Looking from another angle where developers need to local-
ize all faults, we examine the mean and standard deviation of
the proportions of blocks that need to be inspected to localize
all faults for each technique. The results are shown in Table II.
𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 and 𝐺𝐴𝑅𝑎𝑛𝑑𝑜𝑚 localizes all bugs with the lowest
average proportion of blocks inspected (20.0%). The relative
improvements of 𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 over Tarantula, Ochiai, and
Information Gain are 37%, 28%, and 28% respectively.

TABLE II
MEANS AND STANDARD DEVIATIONS OF PROPORTIONS OF INSPECTED BLOCKS

(SMALLER THE BETTER)

Techniques Mean Standard Dev.
𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 20.0% 23.2%
𝐺𝐴𝑅𝑎𝑛𝑑𝑜𝑚 20.0% 23.4%
𝑆𝐴 23.6% 24.2%
Ochiai 27.6% 27.9%
Information Gain 27.7% 28.6%
Tarantula 31.8% 29.1%

To check whether the differences among these means are
statistically significant, we perform the commonly used 𝑡-
test [21] for each pair of fault localization techniques with
𝑝-value set to 0.05. We notice that the improvements of
𝐺𝐴𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 over Tarantula, Ochiai, and Information Gain are
statistically significant.

V. CONCLUSION

There are many fault localization measures proposed in the
literature. For some programs, bugs, and program spectra,
some measures are better than the others. In this paper, we
leverage this observation to build a solution that combines
existing fault localization measures into an improved com-
posite measure. We model the possible compositions as a
search space in a linear model and adapt advances in the

machine learning and metaheuristics community to compute a
heuristically optimal composition based on a training set. We
demonstrate that our approach can achieve better fault localiza-
tion accuracy than existing spectrum-based fault localization
techniques. Compared with Ochiai, Tarantula, and Information
Gain, our approach with enhanced genetic algorithm can
localize at least 22% more bugs when 10% of the programs
is analyzed. Also, we can reduce the average amount of code
investigated by at least 28%. Our 𝑡-tests also show that the
improvements are statistically significant.

As future work, we plan to investigate more advanced ge-
netic algorithm solutions. We also plan to increase the number
of benchmark programs and perform a user study. In this work,
we have only considered a linear model to compose individual
fault localization measures; other composition models can also
be explored in the future.

Acknowledgement. This work is partially supported by a re-
search grant R-252-000-403-112 from Ministry of Education,
Singapore.
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