
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2011

Allocating Resources in Multiagent Flowshops with Adaptive Allocating Resources in Multiagent Flowshops with Adaptive

Auctions Auctions

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Zhengyi ZHAO
Singapore Management University

Sam Shuzhi Ge
National University of Singapore

Thong Heng LEE
National University of Singapore

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, Business Commons, and the Operations

Research, Systems Engineering and Industrial Engineering Commons

Citation Citation
LAU, Hoong Chuin; ZHAO, Zhengyi; Ge, Sam Shuzhi; and LEE, Thong Heng. Allocating Resources in
Multiagent Flowshops with Adaptive Auctions. (2011). IEEE Transactions on Automation Science and
Engineering. 8, (1), 732-743.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1374

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/622?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1374&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Allocating Resources in Multiagent Flowshops
With Adaptive Auctions

Hoong Chuin Lau, Zhengyi John Zhao, Shuzhi Sam Ge, Fellow, IEEE, and Tong Heng Lee, Member, IEEE

Abstract—In this paper, we consider the problem of allocating
machine resources among multiple agents, each of which is re-
sponsible to solve a flowshop scheduling problem. We present an
iterated combinatorial auction mechanism in which bid gener-
ation is performed within each agent, while a price adjustment
procedure is performed by a centralized auctioneer. While this
approach is fairly well-studied in the literature, our primary
innovation is in an adaptive price adjustment procedure, utilizing
variable step-size inspired by adaptive PID-control theory coupled
with utility pricing inspired by classical microeconomics. We
compare with the conventional price adjustment scheme proposed
in Fisher (1985), and show better convergence properties. Our
secondary contribution is in a fast bid-generation procedure
executed by the agents based on local search. Putting both these
innovations together, we compare our approach against a classical
integer programming model as well as conventional price ad-
justment schemes, and show drastic run time improvement with
insignificant loss of global optimality.

Notes to Practitioners—Decentralization and competition are
major emerging themes in resource planning and scheduling.
A supply chain, for example, is inherently decentralized, where
decision makers are drawn from different companies which may
compete with one another. Hence, a mechanism needs to be de-
signed to ensure proper coordination among decision makers such
that the overall system performance would be optimized. In this
paper, we propose an enhanced iterative combinatorial auction
approach based on general equilibrium to tackle a decentralized
multimachine flow-shop scheduling problem. The major challenge
of this work is in attaining price convergence quickly thereby
achieving computational efficiency. To this end, we propose two
ideas for rapid price convergence—through the use of utility
pricing (from micro-economics) and variable step size (from con-
trol theory). We show that we can solve large-scale decentralized
flow-shop problems with drastic improvement in computational
performance with little compromise on solution quality.

Index Terms—Auction, decentralized decision making, flow
shop, resource allocation.

Manuscript received January 30, 2010; revised November 08, 2010; accepted
March 20, 2011. This paper was recommended for publication by Associate
Editor A. Kalir and Editor Y. Narahari upon evaluation of the reviewers’ com-
ments. This work was supported in part by the A*STAR SERC TSRP under
Grant P0520101 and Grant P0520104. A preliminary version of this paper was
presented at the International Conference on Electronic Commerce, Innsbruck,
Austria, 2008.

H. C. Lau is with the School of Information Systems, Singapore Management
University, Singapore 178902, Singapore (e-mail: hclau@smu.edu.sg).

Z. J. Zhao, S. S. Ge, and T. H. Lee are with the Department of Electrical and
Computer Engineering, National University of Singapore, Singapore 119077,
Singapore.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2011.2160536

I. INTRODUCTION

M ARKET mechanisms, which have their roots in eco-
nomics, have emerged as a powerful computational par-

adigm for multiagent decision making, particularly in a com-
petitive environment. In e-Commerce, they have been deployed
successfully in procurement (e.g., [3]) and sponsored search
(e.g., [12]). In resource planning and scheduling, we witness the
use of auctions in a variety of domains. For instance, in elec-
tricity markets, a pricing model is designed by Toczywski and
Zoltowska [26] for a centralized pool-based auction which in-
volves solving the unit commitment optimization problem under
competition that balances production offers (sell bids) with de-
mand over horizon of several periods of time. Confessore et al.
[5] consider a decentralized multiproject scheduling problem,
where different projects are managed by local decision makers
and a coordination mechanism is proposed to resolve shared re-
source allocation conflicts between different projects.

Despite the success of using markets in various applications,
a number of inefficiencies might occur when markets are used
in allocating resources. One major source of inefficiencies is the
complementarity among resources, i.e., when multiple indepen-
dently allocated resources are required in order to accomplish a
single task, an agent might end up with only part of the required
resources, and efficiency is lost as a result. This issue can be
directly addressed by running a combinatorial auction. [6] pro-
vides a comprehensive treatment on the subject of combinatorial
auctions where a number of other resource allocation applica-
tions (such as airspace system resources, truckload transporta-
tion, bus routes) have been presented.

In this paper, we consider the problem of multiagent resource
allocation where agents seek to optimize their respective op-
timization goals by contending for resources from a common
pool. More specifically, we are concerned with the following
problem scenario:

1) there is a central pool of limited renewable resources that
comprises multiple identical units of different machine
types;

2) there are multiple automated software agents, each having
a job list and is responsible to service jobs in its list by
solving its respective scheduling problem; in this paper,
we assume that each agent solves a generalized flowshop
problem where each operation in a job is served by one unit
of a distinct machine type.

The above problem scenario occurs in a variety of applica-
tions, such as container terminal operations (loading and dis-
charge of containers), forward and reverse logistics (pickup and
delivery over multiple transport modes), and (obviously) man-
ufacturing. Where we differ from classical optimization prob-

1545-5955/$26.00 © 2011 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

lems is that there are multiple decision makers contending for
resources for a common pool, and these agents are self-inter-
ested. They bid for the right to utilize certain combination of
machine resources from the pool over certain time periods. In
particular, we make use of a multiround combinatorial auction
mechanism that is built on a general equilibrium framework [4],
where the prices of machine resources over different periods
will iterate over multiple rounds of the bidding process until a
price equilibrium is achieved.

Our goal in this paper is not to propose a new combinato-
rial auction mechanism for resource allocation, as we witness
abundance of contributions there (e.g., see the volume dedi-
cated to Combinatorial Auction in [6]). Rather, our interest is
to propose methods to boost the computational performance of
such combinatorial auction mechanism that achieves global op-
timality (defined as the sum of agent objectives) as far as pos-
sible. More precisely, our contribution is as follows. First and
foremost, we propose the a novel price adjustment procedure
that addresses the convergence issue faced by conventional price
adjustment schemes. This is done through an innovative combi-
nation of utility price (concept from micro-economics) and vari-
able step size adjustment (concept from control theory). Second,
we propose an efficient local search scheme for bid generation.
Put together, our auction scheme is capable of producing very
good solutions on large-scale problem instances with signifi-
cantly improved runtime performance over conventional auc-
tion schemes for decentralized scheduling proposed in the liter-
ature, such as [18].

This paper proceeds as follows. We first position our contribu-
tion in the light of a brief surveyed literature. We then introduce
our case problem and provide an overview of our proposed auc-
tion protocol. This is followed by detailed technical descriptions
of the proposed bid generation and price adjustment strategies.
An experimental study follows, and we conclude with some re-
marks.

II. PRELIMINARIES

General equilibrium auction mechanisms have been widely
used for coordination resource utilization among agents over
multiple periods. Wellman et al. [29], for example, introduced
auctions where prices derived through distributed bidding
protocols are used to determine job schedules, and investigated
the existence of equilibrium prices for some general classes
of scheduling problems. Other works such as Gagliano et al.
[10] and Kutanoglu and Wu [18] proposed similar ideas to
solve other resource allocation problems. In these works, the
price equilibrium is achieved by adjusting prices for all the
resources iteratively as the auction proceeds, which is done
through a tatonnement process that resolves resource conflicts
by adjusting price based on excess demands. Tatonnement
has its roots in computational economics [28]. One major
challenge in the computational efficiency of tatonnement and
tatonnement-based auction mechanism is on the speed of
convergence. The computational efficiency issue surrounding
auctions has been raised (in [2], [4], [16]), and in particular,
Fisher [8] proposed price adjustment process based on the
subgradient search method.

To our knowledge, there is rich research opportunity in
boosting computational performance through better price
adjustment strategies in a tatonnement process. In much of

the research works listed above, prices are often determined
primarily and simplistically by the supply-demand gap, or by
the profit gap between buyer and seller. In this paper, we care-
fully study how the standard scheme can be augmented in two
ways. First, we propose that bidders be given the opportunity to
also reveal to the auctioneer their marginal utility values, and
together with the market (i.e., aggregate demand and supply),
we can achieve faster convergence and better quality solutions.
Intuitively, we are able to achieve fast price equilibrium since
the auctioneer is now able to adjust prices not only by observing
the aggregate demand and supply discrepancies, but also the
individual marginal utilities information signalled by the agents
which give a sense of the sensitivity of individual objectives
(and therefore demands) with respect to price changes. We will
assume that agents truthfully report the marginal utility values.
We propose a price adjustment strategy called price adjustment
with utility pricing (termed as PA-U), which we compare with
the conventional price adjustment strategy based on bid prices
alone (PA-B). Second, we propose an adaptive scheme where
the step size is adjusted from one iteration to the next, which
will improve the speed of obtaining the first feasible solution.
The adaptivity of the step-size follows closely the concept of
control theory applied in robotics motion control. These two
extensions give rise to what we will call an “adaptive auction.”

With the improved price adjustment strategies as well as im-
proved search algorithms proposed in this paper, we are able to
tackle far larger and more complex scheduling instances com-
pared with known experimental results. As an illustration, Ku-
tanoglu and Wu [18] dealt with 3 3 flowshop (as well as other
small jobshop) instances, while we experiment with four agents
each solving a 20 3 generalized flowshop problem requesting
resources from a pool of 44 machines.

A. Problem Definition

We are concerned with the problem of allocating machine re-
sources from a common resource pool to multiple agents using
an auction approach. To guarantee feasibility, each agent is first
endowed with a baseline resource allocation. Each agent needs
to solve a generalized flowshop problem [30], where jobs com-
prise multiple operations requiring distinct machine types. The
goal is to seek an allocation that minimizes the global objective
function, which is the sum of the agent objectives.

Table I contains details for notations used in this paper.
All agents compete for the utilization of resources from a

common pool of different types of machines available over
periods, and the resource capacity is denoted as

. Each agent objective is to minimize
the weighted sum of total makespan and tardiness cost (abbrev.
makespan-tardiness cost or).

Being an auction approach, each machine at each pe-
riod will be priced. Let denote the bid price of for
machine at period in auction iteration . According to
this price vector, each agent will submit a resource bid de-
noted . Let denote the resulting makespan, and
tardiness is defined as .1 The
makespan-tardiness cost, denoted is computed as

. The

1Note that we measure makespan with respect to the release time. In other
literature, this is called flow-time.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LAU et al.: ALLOCATING RESOURCES IN MULTIAGENT FLOWSHOPS WITH ADAPTIVE AUCTIONS 3

TABLE I
LIST OF NOTATIONS

resource cost incurred for that bid, denoted , is computed
as . Finally, the total sum cost associated with
the bid, denoted , is simply .

The other notations in the table will be explained as the paper
proceeds.

As an example, we provide a sample problem instance, com-
prising four agents (or simply four job-lists), each with ten jobs
on two machines types. This sample problem is abstracted from
a real-life problem scenario in container terminal operations,
which has the following features.

• A job comprises three flow-shop operations and no wait is
allowed between consecutive operations.

• The three operations are performed by a quay crane, a truck
and a yard crane, respectively, and nonpreemptively.

• Each job has a release time and due time. All jobs must be
completed, and a tardiness penalty will be incurred if it is
completed after its due time.

• A quay crane is assumed as the proxy agent for a given
job-list, while trucks and yard cranes are common machine
resources.

The basic input data for the above sample instance and the
detailed job-list data are given in Tables II and III. For this in-
stance, we take one hour as one time period, and feasible so-

TABLE II
SAMPLE PROBLEM FOR FOUR AGENTS AND TWO MACHINES

TABLE III
PROCESSING TIME FOR THE FOUR AGENTS IN SAMPLE PROBLEM

lutions produced by various approaches are found in Table V
(which is shown later in Section IX, Experimental Results.

III. SYSTEM ARCHITECTURE

In this section, we present the overall system architecture and
our proposed auction protocol.

We propose a simple system architecture comprising three
modules.

• System initialization, which will perform initialization and
trigger the auction until one of the stopping criteria has
been reached (details below).

• Auction protocol, which includes the bid-generation and
price adjustment procedures (overview below). Bid gener-
ation will be discussed in detail in Section IV, while price
adjustment, in Section V. For the latter, our ideas of utility
prices and variable step-size will be separately discussed
in Sections VI and VII, respectively.

• Resource reallocation, which will be triggered each time a
feasible solution has been found. Intuitively, this is a post-
processing step that improves the quality of the feasible
solution. Details will be discussed in Section VIII.

A. Initialization and Stopping Criteria

In the initialization step, we perform preprocessing in order
to improve the subsequent bid generation and price adjustment
procedures. First, we fix the job sequences that agents will sub-
sequently employ in their bid generation (which assumes the job
sequence to be given). For this purpose, each agent will apply
the genetic algorithm (GA) proposed in [23]. Second, we deter-
mine the upper bound resource capacities that will be required
by the agents by solving a centralized flowshop problem with
infinite resources, using the algorithm proposed in [30]. This

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

will enable us to obtain the upper bound profile of resource re-
quirements by the agents which sets the upper resource limits
for price adjustment. Based on the resource profile, the resource
prices are then initialized by performing a single period bid gen-
eration procedure (see details in Section IV).

Upon initialization, the auction protocol will be triggered, and
it will be executed until any of the following stopping criteria is
satisfied.

• An equilibrium solution has been achieved, which means
there is a feasible solution under a particular resource price
vector and this price vector does not change for a pre-
scribed number of iterations. This is a standard stopping
criterion used in a tatonnement auction.

• Maximum number of iterations has been performed.
The system will then return the best feasible solution found.
The reader may note that the best feasible solution may not be
the last solution found when an equilibrium solution has been
reached. Nevertheless, in order to terminate the auction process
quickly, it is important to be able to obtain an equilibrium solu-
tion quickly.

B. Overview of Auction Protocol

Our proposed auction protocol comprises mainly two compo-
nents: (a) Bid Generation and (b) Price Adjustment. The entire
auction process will proceed in rounds. Within each round, the
bidder agents will perform Bid Generation to generate their re-
spective bids; all bids are submitted simultaneously to the auc-
tioneer who will perform price adjustment. The process will be
repeated until a price equilibrium has been achieved, i.e., when
supply matches demands, which means a feasible solution has
been found.

On the bidder end, each agent has to decide on its bid in re-
sponse to the prevailing resource prices. This is called the Bid
Generation (BidGen) problem which, in our context, is the mul-
timachine flowshop scheduling problem that minimizes the total
cost made up three components, makespan, tardiness penalty,
and resource cost.

On the auctioneer end, price adjustment is performed at each
auction iteration as follows.

• Consolidate all agent bids and compute the aggregate de-
mand for all machine type at time slot .

• By comparing and supply capacity , the new price
is calculated and announced to all bidder.

• Announce to start a new round of BidGen, or stop the auc-
tion according to the stopping criterion.

Kutanoglu and Wu [18] observed that the above iterative com-
binatorial auction protocol is analogous to Lagrangian relax-
ation [8] for the case of job shop scheduling, and hence inherits
all properties related to it (including convergence). More pre-
cisely, they showed that the iterative process for finding the price
vector in Lagrangian relaxation actually corresponds to price
adjustment in an iterative combinatorial auction, the mapping is
described as follows.

• The auctioneer initializes the prices for the machine re-
source time slots .

• At auction round , each bidder agent performs Bid Gener-
ation by solving its local scheduling problem using the pre-
vailing resource prices in its objective function, and sub-

mits the resulting bid to the auctioneer. This process corre-
sponds to solving the subproblems of the relaxed problem
in Lagrangian relaxation.

• The auctioneer collates all the bids and resolves resource
conflicts by computing new prices for the resources using a
tatonnement price adjustment scheme. This corresponds to
an iteration in solving the Lagrangian dual master problem
(by using the subgradient search method) that updates the
price vector for the next iteration.

• The auctioneer checks whether a feasible schedule has
been found, and if not, it starts the next round of auction
by announcing the new prices to the bidders.

Similarly, this analogy carries over nicely to other determin-
istic scheduling and resource allocation problems so long as
they are able to follow the same Lagrangian-based decompo-
sition procedure. In our context, we follow the same idea of du-
alizing the resource capacity constraints as [18].

IV. BID GENERATION

In this section, we discuss technical details related to bid gen-
eration (BidGen). We will first consider a single-period bid gen-
eration problem, where the novelty of our approach lies in the
notion of a makespan matrix. We then extend our approach to
solve the multiperiod problem, and from there, we derive the
utility prices. The utility prices are then used in the price adjust-
ment process discussed in the next section.

Recall that the agent objective is to minimize the
makespan-tardiness cost . Given that resources are
priced, the problem of generating an optimal bid in response
to the resource prices is essentially a search procedure to find
a bid that minimizes the minimum total cost . Let SchGen
(Schedule Generation) denote the function that returns this
value by calling a single agent scheduling problem using re-
sources specified in a given bid. For this paper, our focus is not
to investigate algorithms for computing SchGen (since there
are already well-studied algorithms for various underlying
scheduling problems), but rather we treat it as a black box .

One critical concern in bid generation is to be able to deter-
mine the makespan, which is computationally intensive to find.
We also note that the makespan does not depend on the resource
prices, and hence once the makespan for a given resource level
is computed, it can be stored and looked up for future computa-
tion.

Hence, for an arbitrary agent , given the job-list information
, bid , and algorithm , the resulting makespan is derived

from

(1)

Over the entire bid space , given that the job-list infor-
mation is fixed throughout the auction process, we define the
Makespan Matrix for an agent as . Similarly, we can
derive the Sum Cost Matrix by summing the respective
value and prevailing value.

Strictly speaking, the term matrix can be used in the simple
case when , . For higher dimensions, it will be-
come a hypercube. Under the assumption that the computational
time for SchGen is high (which is usually the case for NP-hard
scheduling problems), we create the makespan matrix to store

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LAU et al.: ALLOCATING RESOURCES IN MULTIAGENT FLOWSHOPS WITH ADAPTIVE AUCTIONS 5

and look up the makespan and its corresponding bid during the
search process (to be discussed further below). Moreover, we
also show how the utility prices can be derived from the values
in the makespan matrix.

If the BidGen problem is single-period (i.e., when),
bids are made on resources at a constant level throughout the
time horizon. We propose a local search method that begins with
an initial bid (say 2 units of resource 1 and 1 unit of resource
2, for the sample problem). It searches along either dimension
of the sum cost matrix until it reaches a value that does not
decrease further. It then searches along the other dimension, and
the process is repeated until no more improvement is possible
(i.e., the sum cost value is at its local minimum). Extrapolating
to more than 2 dimensions, our local search can be seen a hill-
climbing neighborhood search in the sum cost matrix space—it
always increases one resource type by one unit, and continues
doing so until no further improvement is possible; it then repeats
the search with another resource type. Note that as the search
proceeds, undefined matrix (and hence sum cost) values become
defined, and are stored (for future search).

Next, we extend the single-period algorithm to handle the
multiperiod BidGen problem. It is an improvement search over

until no further improvement is obtained from
one iteration to the next. For simplicity in notation, we omit the
subscript (agent index), and hence is simplified to be ,
while keeping in mind this BidGen is done for each agent. Let

denote the best-so-far bid (in terms of the objective value).
The following pseudocode describes our approach:

1) based on the current resource prices , compute the sum
cost matrix and initialize ;

2) for () until no further im-
provement:
• for

— perform single-period search for period , with bids
for other periods fixed as ;

— update makespan matrix.
• if an improved solution can be found then update .

We like to remark that although we propose a local search
procedure for Bid Generation, Bertsimas [1] shows that the local
optima obtained is indeed a global optima under the assumption
that the objective function (i.e., sum cost) is convex with
respect to the search space ().

Finally, we show how the utility prices can be extracted from
the entries in the makespan matrix

(2)
Equation (2) gives the formal definition of utility price. It

is the makespan penalty (or if there is tardi-
ness) times , which is the marginal (incremental)
makespan per unit change on particular machine type at a
fixed period . For simplicity of explanation, suppose the unit
for the makespan penalty is (virtual) dollars per hour. The
unit is hour per unit machine slot. Hence, the unit for
utility price is dollar per unit machine slot. It is called a utility
price because it reflects the marginal utility value of a particular
machine. It is interpreted as how many dollars could be saved

(or lost) if one such machine slot is added (or removed). It is de-
fined on the particular period , it is also related with the specific
bid point . Although each point in the bid space has
an associated utility price, we only need to calculate this price
for the final bid that has the
minimum sum cost. For the implementation, we apply a back-
ward difference procedure

(3)

The utility price will be used in the price adjustment strategy
presented in the next section.

V. OVERVIEW OF PRICE ADJUSTMENT STRATEGY

In this section, we present an overview of our contributions
in the light of literature on price adjustment. This is followed
by the subsequent two sections that present our contributions in
detail.

The classical price adjustment procedure is given as follows.
1) Collect bids from all agents and compute aggregate de-

mand, as (4).
2) According to the aggregate demand and supply (i.e., ca-

pacity) of each resource at each period, compute the price
adjustment step size .

3) Update the new price for next iteration for each resource
at each period, as (5), which is dependent on the step size
and the demand-supply gap and must be non-negative

(4)

(5)

Fisher [8] suggests that the step size is a function of the
difference between Upper Bound and Lower Bound es-
timation of the objective value as numerator, and the sum of
squares of all relaxed constraints as denominator. Kutanoglu
and Wu [18] follows the same strategy. For the highly intensive
computation due to the NP-hardness of the underlying sched-
uling problem, recent research (e.g., [5] and [20]) turn to such
methods that do not explicitly calculate and .

In this paper, building on recent works, we propose a price
adjustment scheme that departs from the classical price adjust-
ment scheme as follows.

• Instead of and , we use a simpler term Average
Price as the numerator of the step size formula (see next
section for details).

• We propose a new technique to compute the step size that
combine two ideas from micro-economics and control
theory to help us achieve equilibrium quickly.

Our first idea is to incorporate what is termed as the utility
price instead of bid price in the price adjustment formula. We
find that although the conventional scheme based on bid prices
is straightforward and computationally fast within a single it-
eration, it often exhibits poor convergence, especially when the
price values are near to zero. This idea will be further discussed
in Section VI.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Our second idea is to use a variable (instead of fixed) step
size that changes from one iteration to the next. A contin-
uous function has been designed for obtaining a feasible solu-
tion quickly. The function is defined within and the
value is within (0, 2) based on the theoretical result in [15].
While the idea of a variable step size is analogous to adaptive
control, we depart from it in the following aspects.

• The energy function in adaptive control is usually symmet-
rical around some special point. For example, both the Lya-
punov function by Fua et al. [9], and the
trench function by Ge and Fua [13]
are symmetric. In our case, the price adjustment function is
modeled after the Lagrangian dual master problem (as de-
scribed in the Systems Architecture section), and is asym-
metric.

• In adaptive control, convergence is defined as local and/or
global control error (setpoint—feedback) approaching
zero, whereas in our case, underlying the price adjustment
process is an optimization problem and hence convergence
is defined as prices approaching some unknown values
(since the optimal price vector is yet unknown).

• In adaptive control, the error could approach zero in either
directions (positive or negative) symmetrically, while in
our case the price must always be positive.

Despite the above major differences, in this paper, we seek to
apply adaptive control concepts in the price adjustment process
to speed up convergence. Details of our proposed variable step
size technique will be explained in Section VII.

VI. PRICE ADJUSTMENT WITH UTILITY PRICE

In the following, we present two price adjustment strate-
gies—one based on the conventional bid prices, while the other
using our proposed utility prices. These two approaches will be
compared experimentally in Section IX.

A. Price Adjustment With bid Price (PA-B)

The detailed formulation is as follows.
1) Calculate the aggregate demand as (4).
2) Step size

3) Calculate new price for next iteration as (5).

B. Price Adjustment With Utility Price (PA-U)

For this strategy, each agent must submit a utility price to-
gether with the bids . The auctioneer will calculate the av-
erage utility price for each resource on each period and this
average is weighted by individual agent’s demand.

1) Calculate the aggregate demand as (4).
2) Calculate average utility price

, for .

3) Step size

4) Calculate new price for next iteration as (5).

C. Comparing PA-B and PA-U

The major differences between PA-B and PA-U are the fol-
lowing:

1) The convergence of PA-B depends on the bid price, while
PA-U does not. During the auction process, once there is
a round such that , then

, which means the price thereafter will always be
0, whether or not a feasible solution has been reached.

2) The rate of convergence of PA-B depends on the initial
price, while PA-U is insensitive to it. The closer the initial
bid price is to zero, the slower the convergence for PA-B.

These differences are precisely needed to speed up conver-
gence. In the following, we provide an analytical insight on why
we believe that the use of utility prices is a superior approach
than those that use conventional bid prices in speeding up con-
vergence.

It has been observed experimentally that the poor conver-
gence of conventional price adjustment schemes such as PA-B
occurs when the bid price falls to a zero value. Hence, to
improve convergence, one remedy is to ensure that the utility
price is NOT zero. In the following, we present properties under
which this property holds.

Consider a particular agent whose bid is represented by
a vector .

Lemma 6.1: If the makespan matrix satisfies the fol-
lowing properties.

— Monotonicity: For any time and any machine , the
makespan value is monotonically nonincreasing with
machine utilization.

— Convexity: For any time and any machine , the
makespan value is convex with respect to machine utiliza-
tion.

— BackDiff: The calculation of utility price is based on back-
ward difference, given in (3).

Then, once such that , for all
such that .

Proof: And means that

Due to convexity

then

Because of monotonic non-increasing property

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LAU et al.: ALLOCATING RESOURCES IN MULTIAGENT FLOWSHOPS WITH ADAPTIVE AUCTIONS 7

Then, there will be

It is further extended as

In other words, will not change for .
Then, by backward difference, , for all such that

.
In particular, for resource-constrained environment where the

total number of operations to be performed on a particular ma-
chine is always greater than the baseline allocation. i.e., for

any agent , we have , a nonzero utility
price can be guaranteed. We have the following corollary.

Proposition 6.2: In a competitive environment, if the
makespan matrix satisfies the above 3 properties
{Monotonicity, Convexity, BackDiff}, it never happens that

except at the upper bound machine capacity.
Proof: Following Lemma 6.1, in a resource-constrained

environment, for any and , we have the following strict in-
equality:

Hence, .
Note that the property of monotonicity should be always

true, since adding resource should never increase the schedule’s
makespan. Unfortunately, the property of convexity cannot be
enforced generally. Nonconvexity arises because the schedule
requires 2 or more resources that are interdependent.

VII. PRICE ADJUSTMENT WITH VARIABLE STEP SIZE

Given that the nice property of convexity presented in the
previous section may not always hold true in practice, we may
still get very small values for utility prices, which will in turn
impact the speed of convergence. In this section, we address this
shortcoming by proposing the idea of variable step size in price
adjustment.

The intuitive need for variable step size is listed as follows.
• When the maximum net demand

is 0, which means the resource capacity constraint
is violated, we choose a larger factor for speeding up the
process to get a feasible solution.

• When the maximum net demand
is 0, which means the resource capacity constraint is
already satisfied (so we already have feasible solutions),
we choose a smaller factor to fine tune the optimality.

• The standard deviation is considered—In an optimal solu-
tion, should be as small as possible.

We propose that the step-size given in (5) to be replaced by
two components , where intuitively is the utility price
component. As for , we further break into
representing the factor of standard deviation and the
speed factor , which are dependent on specific ma-
chine type . is derived from the standard deviation of
machine utilization for each type, and is a function of
maximum net demand. They are defined as follows:

(6)

(7)

if
if

(8)

Details of our consideration are given as follows:
• The standard deviation is measured from the first period to

the second last period , as we find the agent’s job-list
may not fully utilize the resources in the last period.

• The factor is only considered when the solution
is NOT feasible, i.e., , for some specific
machine type . When it is a feasible solution,
since always.

• The speed factor is a function of the maximum net demand,
and the formulation given in (8) is just one possible imple-
mentation. More options are further studied later.

• The speed factor function is continuous up to at least the
second order. They are all equal to 1 when , which
means a feasible solution with the best resource utilization.
Every optional speed factor is less
than 1 for a feasible solution and greater than 1 for an in-
feasible solution.

The design of the speed function bears
the following considerations.

— FuncSpeed-1: Defined for all real number, better with
some order of continuity, s.t. is th
order continuous.

— FuncSpeed-2: , as explained above, it can be
omitted when perfect utilization is achieved.

— FuncSpeed-3: It approaches when approaches ,
for convergence with feasible solutions, .

— FuncSpeed-4: It approaches monotonically when ap-
proaches , i.e., .

The above FuncSpeed-1 and FuncSpeed-2 are easy to un-
derstand, while FuncSpeed-3 and FuncSpeed-4 are actually
adopted from [8]. Furthermore, in [8], it has been shown that
the following two properties for the step-size are sufficient
but NOT necessary conditions for achieving convergence:

• , i.e., the price adjustment procedure is
converging;

• , i.e., the convergence does not occur too
quickly.

While there are many functions that can satisfy the above
specifications, we focus our study on two types of candidate
speed functions. They are type or type, which
will be further studied in next section.

A. Study on Two Types of Speed Function Candidates

The first types of speed function candidates is exponen-
tial and has two parameters, i.e., index parameter ,
and offset parameter

(9)

Above function is p-th order continuous since it can be verified
that .

(10)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 1. Comparison of speed factors. (a) Speed Factor exp-type, � ��� and
� ���. (b) Speed Factor atan-type, � ��� and � ���. (c) Speed Factor in one
plot.

Besides the continuous property, there are and
. Since , there is

. Intuitively, the larger is, the larger step-size will be
introduced whenever an infeasible solution happens. Compar-
isons of some with different parameters are shown
in Fig. 1(a).

The second types of speed function candidates is
type. It has only one index parameter , s.t. ,

(11)

It can be verified that is also -th order continuous.

(12)

Further, and . Comparisons of
some with different parameters are shown in Fig. 1(b).

The overall comparisons among exp-type and
type are shown in Fig. 1(c). We will further present their
difference empirically in experiment parts.

B. Integrated Price Adjustment

Combining both utility price and variable step size concepts,
we arrive at the following price adjustment formulas listed in
(13)–(15).

The step-size in (5) is now replaced by two components
and .

• Equation (13) shows that is the average of utility price
over Root Mean Square (RMS) net demand.

• Equation (14) shows that which augments the standard
deviation factor by considering variable step size.

• Equation (15) updates the price vector for the next round.
Again, the reader will note that our formulation does not cal-
culate the lower bound and upper bound , as in [8] and
[18], since they are computationally expensive

(13)

(14)

(15)

VIII. RESOURCE RE-ALLOCATION STRATEGY

Although our proposed adaptive auction scheme can improve
the speed of convergence and achieve feasibility, it often results
as a local optimal solution. On careful examination, we discover
that it is possible to obtain better solutions through reallocation
of resources that has not been fully utilized after the auction
process is completed. We perform a postprocessing phase with
the following resource reallocation strategy. We apply a simple
greedy algorithm based on makespan-tardiness cost as follows

We consider unallocated resources in each period
. For each non-fully utilized resource, we

simply allocate the spare units to the agent such that:
• is the largest in value;
• its job-list release time is on or after period .
After each reallocation, the agent will reconstruct its schedule

and recalculate its objective value . Notice that the ob-
jective value cannot be worse, since additional resources have
been allocated; moreover after reallocation, it is also possible

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LAU et al.: ALLOCATING RESOURCES IN MULTIAGENT FLOWSHOPS WITH ADAPTIVE AUCTIONS 9

TABLE IV
ILLUSTRATION OF EFFECT OF RESOURCE-REALLOCATION

that the resources that agents bidded for earlier may not be uti-
lized and hence they can be returned to the pool. The above pro-
cedure is repeated until none of the agent objective can improve
further.

An example of the effect of reallocation for the sample in-
stance is given in Table IV.

IX. EXPERIMENTAL RESULTS

First, we benchmark our approach against a MIP (mixed in-
teger programming) model called ResAlloc-MIP whose objec-
tive function is the sum of agent objectives. Details of the MIP
formulation can be found in [30]. We present detailed results on
the sample problem instance given in Section II, followed by
a summary of results on a number of other problem instances.
This is followed by experimental results specific to price ad-
justment—an experimental comparison on different price ad-
justment strategies, and different variable step size parameters.

A. Comparison on Sample Problem Instance

Here, we provide a detailed commentary of a comparison of
the MIP model with both PA-B and PA-U strategies. Table V
gives the allocation for each agent given by the MIP, PA-B, and
PA-U solutions, respectively. Table VI shows the comparison of
the total cost and average makespan for four agents. We can see
that the solution produced by PA-U is nearer to optimal, and the
run time is comparable with that of PA-B.

Another observation is that the run-time performance of PA-B
is dependent on the initial price settings, as shown in Table VII.
In all the above solutions, the initial prices for machine types 1
and 2 are, respectively, [50, 50, 80, 150] and [80, 80, 130, 200]
corresponding to each time period. Given this sufficiently high
price levels, we observe that the rate of convergence of PA-B
is comparable with that of PA-U. In another experiment, we
investigate the setting for low initial prices. The initial price for
machine 1 is now set to [5, 5, 8, 15] and for machine 2, [8, 8, 13,
20]. We record the time of obtaining the first feasible solution.
When initial price is low, each agent will bid a higher amount
such that the overall demand exceeds supply and hence we have
an infeasible solution. Under the PA-U strategy, we can achieve
a feasible solution within three iterations, while it takes about 30

TABLE V
MULTIPERIOD RESOURCE ALLOCATION, SOLUTION COMPARISON

MIP, PA-B, AND PA-U

TABLE VI
SOLUTION COMPARISON FOR SAMPLE PROBLEM

TABLE VII
COMPARISON FOR DIFFERENT INITIAL PRICES

iterations for the PA-B strategy. When the initial price is zero,
PA-B fails to find a feasible solution while PA-U stills achieves
a feasible solution within a short time. This result is consistent
with our proposition.

B. Comparison With MIP Model

We next compare the solution quality of our approach with
the ResAlloc-MIP model. We generated ten problem instances
to compare on both the solution quality and run time perfor-
mance. These instances are extracted from a real-world resource
allocation problem from a container terminal. We like to re-
mark that for the MIP model, the CPLEX solver cannot even
find a feasible solution within 6 h for large-scale problem in-
stances. In our experimental setup, we consider medium-sized
hard problem instances with four agents, each having a 20 3
standard flowshop scheduling problem (i.e., a job-list with 20
jobs on 3 machines), and the following settings:

• A discrete-time domain where one period is equal to 40
time units.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE VIII
SOLUTION COMPARISON

• Two agents start their job-lists at 8:00 and the other 2 start
at 9:00 (i.e., 20 time-slot later), and each job comprises
three operations.

• The tardiness and makespan penalties are equal for all
agents—500 and 100 per period, respectively.

• There are 4 machines of type 1, 16 machines of type 2, and
24 machines of type 3.

• Processing time on type 1 machine is 1 unit, and type 3
machine is 2 units for all jobs.

• Processing time on type 2 machine is uniformly distributed
over a range. For our experiments, we set the bounds to be
[10, 16] for agent 1, [13, 17] for agent 2, [14, 18] for agent
3 and [11, 21] for agent 4.

In terms of computation time, we let the CPLEX solver run
for 2 h for each problem and record the best solution with the du-
ality gap. On the same computer with a Pentium-4 CPU at 3GHz
with 1GB memory, we run the PA-U auction for the same ten
problem instances, and the comparison is given in Table VIII.

We like the readers to take note of the following points.
• The above problem instances are exactly the same as those

presented in [21]. The current solution is done by auction
with both PA-U and Variable Step-Size (VSS), while our
preliminary result in [21] was achieved with PA-U and a
fixed step size.

• Our previous results were obtained using CPLEX 10.0,
while we used CPLEX 10.1.1 to obtain results in this paper.

• By comparison of the total cost (i.e., the smaller objective
function the better), our solution is slightly better than the
ResAlloc-IP solution obtained by CPLEX in 2 h, but worse
than that obtained in 12 h.

• By comparison of the solution time, solution by our ap-
proach with PA-U and VSS is much faster. It can achieve
price equilibrium within 10 minutes while the comparable
results by CPLEX within 2 h.

The reason why PA-U is better than PA-B has been explained
both theoretically and empirically. On the other hand, the theory
behind why VSS outperforms fixed-step-size is a subject matter
for future research. In the following, we will show this point
empirically.

C. Comparison Among Different Price Adjustment Strategies

In order to study the effects of utility pricing and variable step
size, we focus on a single problem instance taken from the set

Fig. 2. Empirical study of the effect of utility price and variable step size in
price adjustment.

of problem instances above. A total of four price adjustment
settings are studied for comparison.

-UP-VSS: with bid price and fixed step size (i.e., no utility
price nor variable step size.
+UP-VSS: with utility price and fixed step size.
-UP+VSS: with bid price and variable step size.
+UP+VSS: with both utility price and variable step size.

In order to clearly show the effect of combined utility price
and variable step size, we set the initial prices of all machines
to be 0, and we terminate after a maximum of 15 iterations. The
result is shown in Fig. 2.

From the experiment result shown in Fig. 2, we have the fol-
lowing observations.

• For the two settings that do not use utility price, i.e.,
-UP-VSS and -UP+VSS, they fail to get a feasible so-
lution after the maximum iteration. This result matches
that in previous Section IX-A. This point is clear since
we observe the formula in (15). The factor includes two
parts and . is related with average price. If bid
price is used and the initial condition is zero bid price,
will always remain as 0, resulting in the failure to find a
feasible solution.

• For the setting of +UP-VSS (utility price and fixed step
size), we can see that a feasible solution is found at the
fifth iteration. In this fixed step size price adjustment, the
auction process cannot find a better feasible solution there-
after, and the best objective function value remains at the
same level until the maximum iteration.

• For the setting of +UP+VSS (both utility price and variable
step size), we can see that a feasible solution is found at the
fourth iteration. The objective function value 1205 of this
solution is near optimal but not the best one. Subsequently,
at the fifth iteration, a better feasible solution is found with
the objective function value as 1055. This solution turns
out to be the best within the maximum iterations.

In summary, the above experiment shows empirically the
power of price adjustment that combines the concepts of utility
price and variable step size proposed in this paper. The perfor-
mance of such a combined setting +UP+VSS exceeds those of
all other settings.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LAU et al.: ALLOCATING RESOURCES IN MULTIAGENT FLOWSHOPS WITH ADAPTIVE AUCTIONS 11

Fig. 3. Sensitivity of different parameters in speed factor function.

D. Comparison Among Different Variable Step Size
Parameters

With exactly the same problem instance, we further study the
sensitivity of different parameters for the speed factor function
used to compute the variable step size. According to (9) and
(11), there are two types of speed factor functions, i.e., and

. The function has two parameters (offset parameter
and index parameter), while has one parameter (index
parameter).

In total, we tested ten different problem settings, the first
seven are of type and last 3 are of type. For the 7

-type settings, 1–4 have the same offset parameter value
but different index parameters . 4–7 have

the same index parameter but different in offset parameter
. For the -type speed function, we

test three cases, . The experimental results
are shown in Fig. 3.

We observe the following from the results.
• All above settings can achieve good final solutions.
• It seems that offset parameters in the -type function af-

fect the convergence more than index parameters, although
the final solutions are almost the same.

In summary, we find all the parameter settings are effective
to find high-quality solutions. Although there is a minor differ-
ence in the exact behavior of different speed-function parame-
ters, their final solutions are almost the same. This is good news
as it gives evidence that shows that our approach is insensitive
to the parameter values.

X. CONCLUSION

In this paper, we propose an adaptive auction scheme that
contains two novel ideas for price adjustment: the concepts of
utility pricing and variable step size, along with an efficient algo-
rithm for performing bid generation using the idea of makespan
matrix. Combined with the preprocessing and postprocessing
steps, we demonstrate the power of the entire system in solving

large-scale problem instances. On utility pricing, we demon-
strated experimentally that it has a better convergence property
than a conventional price adjustment scheme based on bid price,
and furthermore does not depend on the values of the initial
prices—although the price we pay is an increased communica-
tion overhead between the auctioneer and bidders. Analytically,
we have also shown that our approach converges to global op-
timality albeit under restricted condition. On variable step size,
we show experimentally that it performs better than fixed step
size with respect to solution quality and speed, and is insensitive
to the underlying speed function parameters.

Although our discussion centred around the flowshop sched-
uling problem, we believe our auction scheme is generic in the
sense that the bid generation can be readily replaced by an-
other algorithm to solve another decentralized resource alloca-
tion problem with little or no changes to the underlying price
adjustment process.

A salient point to conclude this paper is that this research is
not just computationally efficient and hence readily applicable
in handling real-time large-scale resource allocation problems,
but along with other literature on decentralized/distributed re-
source scheduling, it enables large-scale resources to be man-
aged in an inherently decentralized fashion through the use of
auctions, something we do not see too much in the classical auc-
tion literature.

REFERENCES

[1] D. Bertsimas, Introduction to Linear Optimization. Belmont, MA:
Athena Scientific, 1988.

[2] S. Bikhchandani and J. W. Mamer, “Competitive equilibrium in an ex-
change economy with indivisibilities,” J. Econ. Theory, vol. 74, no. 2,
pp. 385–413, 1997.

[3] T. S. Chandrashekar, Y. Narahari, C. H. Rosa, D. M. Kulkarni, J. D.
Tew, and P. Dayama, “Auction-based mechanisms for electronic pro-
curement,” IEEE Trans. Autom. Sci. Eng., vol. 4, no. 3, pp. 297–321,
Jul. 2007.

[4] J. Q. Cheng and M. P. Wellman, “The Walas algorithm: A convergent
distributed implementation or general equilibrium outcomes,” Comput.
Econ., p. 12, 1998.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[5] G. Confessore, S. Giordani, and S. Rismondo, “A market-based multi-
agent system model for decentralized multi-project scheduling,” Ann.
Oper. Res., vol. 150, no. 1, pp. 115–135, 2007.

[6] P. Cramton, Y. Shoham, and R. Steinberg, Combinatorial Auctions.
Cambridge, MA: MIT Press, 2006.

[7] M. Drozdowski, “Scheduling multiprocessor tasks—An overview,”
Eur. J. Oper. Res., p. 94, 1996.

[8] M. L. Fisher, “An application oriented guide to Lagrangian relaxation,”
Interfaces, vol. 15, no. 2, pp. 10–21, 1985.

[9] C. H. Fua, S. S. Ge, K. K. Do, and K. W. Lim, “Multirobot formations
based on the queue-formation scheme with limited communication,”
IEEE Trans. Robotics, vol. 23, no. 6, pp. 1160–1169, 2007.

[10] R. Gagliano, M. Fraser, and M. Schaefer, “Auction allocation of com-
puting resources,” Commun. ACM, vol. 38, no. 6, pp. 88–102, 1995.

[11] J. G. Gaines and T. J. Lyons, “Variable step size control in the numerical
solution of stochastic differential equations,” SIAM J. Appl. Math., vol.
57, no. 5, pp. 1455–1484, 1997.

[12] D. Garg and Y. Narahari, “An optimal mechanism for sponsored search
auctions and comparison with other mechanisms,” IEEE Trans. Autom.
Sci. Eng., vol. 6, no. 4, pp. 641–657, Oct. 2009.

[13] S. S. Ge and C. H. Fua, “Queues and artificial potential trenches for
multi-robot formations,” IEEE Trans. Robotics, vol. 21, no. 3, pp.
646–656, 2005.

[14] R. L. Graham and E. L. Lawler, “Optimization and approximation in
deterministic sequencing and scheduling: A survey,” Ann. Discrete
Math., pp. 287–326, 1979.

[15] M. Held, P. Wolfe, and H. P. Crowder, “Validation of subgradient op-
timization,” Math. Programming, vol. 6, pp. 62–88, 1974.

[16] P. Joyce, “The Walarsian tatonnement mechanism and information,”
RAND J. Econ., vol. 15, no. 3, pp. 416–425, 1984.

[17] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differ-
ential Equations, 3rd ed. New York: Springer, 1999.

[18] E. Kutanoglu and S. D. Wu, “On combinatorial auction and Lagrangean
relaxation for distributed resource scheduling,” IIE Transactions, p. 31,
1999.

[19] E. Kutanoglu and S. D. Wu, “Improving scheduling robustness via
preprocessing and dynamic adaptation,” IIE Transactions, vol. 36, pp.
1107–1124, 2004.

[20] H. C. Lau et al., “Multi-period combinatorial auction mechanism for
distributed resource allocation and scheduling,” in Proc. Int. Conf. In-
tell. Agent Technol., 2007, pp. 407–411.

[21] H. C. Lau et al., “Utility pricing auction for multi-period resource allo-
cation in multi-machine flow shop problems,” in Proc. Int. Conf. Elec-
tron. Commerce, 2008, (doi>10.1145/1409540.1409547).

[22] P. L. Lorentziadis, “Pricing in multiple-item procurement auctions with
a common to all items fixed cost,” Eur. J. Oper. Res., vol. 190, pp.
790–797, 2008.

[23] C. Oğuz and M. F. Ercan, “A genetic algorithm for hybrid flow-shop
scheduling with multiprocessor tasks,” J. Scheduling, vol. 8, no. 4, pp.
323–351, 2005.

[24] A. B. Pritsker, L. J. Watters, and P. Wolfe, “Multi-project scheduling
with limited resources: A zero-one programming approach,” Manage.
Sci.: Theory, vol. 16, no. 1, pp. 93–108, 1969.

[25] F. Riane, A. Artiba, and S. E. Elmaghraby, “A hybrid three-stage
flowshop problem: Efficient heuristics to minimize makespan,” Eur. J.
Oper. Res., vol. 109, pp. 321–329, 1998.

[26] E. Toczywski and I. Zoltowska, “A new pricing scheme for a multi-
period pool-based electricity auction,” Eur. J. Oper. Res., vol. 197, no.
3, pp. 1051–1062, 2008.

[27] A. P. Vepsalainen and T. E. Morton, “Priority rules for job shops with
weighted tardiness costs,” Manage. Sci., vol. 33, no. 8, pp. 1035–1047,
1987.

[28] L. Walras, Elements of Pure Economics. Homewood, IL: Richard
Irwin, 1954.

[29] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason,
“Auction protocols for decentralized scheduling,” Games and Eco-
nomic Behavior, vol. 35, no. 1–2, pp. 271–303, 2001.

[30] Z. J. Zhao, H. C. Lau, and S. S. Ge, “Integrated resource allocation
and scheduling in a bidirectional flowshop with multimachine and cos
constraints,” IEEE Trans. Syst., Man, Cybern.—Part C: Appl. Rev., vol.
39, no. 2, pp. 190–200, 2009.

Hoong Chuin Lau received the B.Sc. and M.Sc.
degrees from the University of Minnesota, Min-
neapolis, in 1988 and the D.Eng. degree from the
Tokyo Institute of Technology, Japan, in 1996.

He is an Associate Professor of Information
Systems at the Singapore Management University
(SMU) and a Director of The Logistics Institute Asia
Pacific, National University of Singapore. He has
published more than 100 research papers in journals
and conferences. He is active in the development of a
number of innovative tools and systems for industry,

with applications to practical problems in transportation, logistics, supply chain
management, defense, and e-Commerce. His research in the combined areas
of artificial intelligence and operations research has been widely applied to
decision support and optimization.

Dr. Lau received the Singapore National Innovation and Quality Circles Star
Award in 2006 in recognition of his work and was awarded the Lee Kwan Yew
Research Fellowship at SMU in 2008.

ZhengYi John Zhao received the B.Eng. and M.Eng.
degrees from Tsinghua University, Beijing, China, in
1997 and 2001, respectively, the M.S. degree from
SMA-HPCES, Singapore, in 2002, and the Ph.D. de-
gree from the National University of Singapore.

He has six years experience in motion control
scheduling and production planning at ASM-PT
(Advanced Semiconductor Material Pacific Tech.),
R&D Department, Singapore. He has two years
working experience at the Singapore Management
University as a Research Engineer. His research

interest includes control, automation, and scheduling.

Shuzhi Sam Ge (S’90–M’92–SM’99–F’06) re-
ceived the B.Sc. and Ph.D. degrees from the Beijing
University of Aeronautics and Astronautics, Beijing,
China, in 1986 and the University of London, U.K.,
in 1993, respectively.

He is founding Director of the Social Robotics
Laboratory of Interactive Digital Media Institute,
and Professor of the Department of Electrical and
Computer Engineering, National University of Sin-
gapore. He has (co)-authored three books: Adaptive
Neural Network Control of Robotic Manipulators,

Stable Adaptive Neural Network Control and Switched Linear Systems, and
Control and Design. He has edited a book Autonomous Mobile Robots: Sensing,
Control, Decision Making and Applications. He has over 300 international
journal and conference papers. He is the founding Editor-in-Chief of the
International Journal of Social Robotics, Springer. He has served/been serving
as an Associate Editor for a number of flagship journals. He also serves as
a book Editor of the Taylor & Francis Automation and Control Engineering
Series. His current research interests include social robotics, multimedia fusion,
adaptive control, intelligent systems, and artificial intelligence.

Tong Heng Lee (M’90) received the B.A. degree
with (First Class Honors) in the engineering tripos
from Cambridge University, Cambridge, U.K., in
1980 and the Ph.D. degree from Yale University,
New Haven, CT, in 1987.

He is a Professor in the Department of Electrical
and Computer Engineering at the National University
of Singapore, as well as the current Head of the Con-
trol Engineering Section. His research interests are
in the areas of adaptive systems, knowledge-based
control, and intelligent mechatronics. He currently

holds Associate Editor appointments in Automatica, the IEEE TRANSACTIONS

IN SYSTEMS, MAN AND CYBERNETICS, Control Engineering Practice (an IFAC
Journal), the International Journal of Systems Science (Taylor and Francis,
London), and the Mechatronics Journal (Oxford, Pergamon Press).

	Allocating Resources in Multiagent Flowshops with Adaptive Auctions
	Citation

	untitled

