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Lightweight Delegated Subset Test with Privacy
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xuhuazhou2010@gmail.com kfchen@sjtu.edu.cn
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Abstract. Delegated subset tests are mandatory in many applications,
such as content-based networks and outsourced text retrieval, where an
untrusted server evaluates the degree of matching between two data sets.
We design a novel scheme to protect the privacy of the data sets in com-
parison against the untrusted server, with half of the computation cost
and half of the ciphertext size of existing solutions based on predicate-
only encryption supporting inner product.

Keywords: Private Subset Test, Predicate Encryption, Predicate Privacy

1 Introduction

Subset test, including set membership test, is a primitive computation widely
used in various applications involving data matching. For instance, in a publish-
subscribe network, an event is channeled to a subscriber only when the keywords
of the event is a subset of the subscriber’s interest filter. In keyword-based text
searching, a search query is a set of keywords and a document is qualified for
the query if its keyword set is a superset of the query.

The aforementioned applications are characterized by the third-party subset
test. Namely, the subset test is not performed by the data owner or endusers.
Instead, the data owner liaises with a service provider, e.g. a publish-subscribe
broker or a search engine, to carry out the evaluation. We call this delegated
subset test where the service provider is the delegator chosen by the data owner,
so as to differentiate it from private set operations [11, 16, 9, 8, 7] which is an
interactive algorithm between two participants. Privacy is the main concern in
delegated subset tests as the delegator is not trusted. The data in computation
exposes the data owner/user’s privacy to the delegator. For instance, the key-
words in the query set leak information to the search engine about the query
issuer’s interests.

In essence, a subset test for set A and B is to evaluate the predicate A ⊆
B. Therefore, it is a special case of predicate encryption [14] with A,B being
represented by two binary vectors and the test being implemented by a vector
inner product. However, Shen, Shi and Waters [18] have shown that predicate



encryption in the public key setting cannot protect predicate privacy. As a result,
they propose a symmetric-key predicate encryption scheme supporting inner
product computations with predicate privacy protection. When being applied for
delegated subset tests, their scheme requires 2n+ 2 group elements to represent
an encrypted vector and 2n+ 2 bilinear mappings for evaluation, where n is the
set size. Albeit a powerful tool, the scheme in [18] is not geared for delegated
subset test due to the high computation cost. In this paper, we construct a
secure delegated subset test scheme in the symmetric key setting. It preserves
the predicate privacy against the delegator at the cost of n+3 bilinear mappings
and produces ciphertext of n + 3 group elements, which is close to the optimal
efficiency for a set with n elements.

1.1 Related Work

Keyword matching is a special case of subset test. Public-key Encryption with
Keyword Search (PEKS), initially proposed by Boneh et al. [3], allows searching
on data encrypted under a public key. Several variants of PEKS have been pro-
posed with various improvements. Crescenzo and Saraswatt [10] proposed PEKS
by using Jacobi symbols. The requirement for secure channels were removed in
[1, 6], whereby a user provides the trapdoors (or filters) for the server. Schemes
proposed in [20, 21] focus on resistance to the offline keyword guessing attacks.
Baek et. al. introduced the concept of keyword refreshing in [1] which allows a
PEKS system to extend its keyword space. An extension of keyword matching
is to test whether a keyword is in a keyword set. Such keyword membership test
schemes were proposed in [12, 17, 6, 15].

To determine whether multiple keywords are in a keyword set is essentially a
subset test problem. Subset test is related to predicate evaluation on encrypted
data. Shi et al. proposed a scheme [19] which allows for conjunctive range queries
over encrypted data. Hidden-Vector Encryption (HVE) [5, 13, 2] is another public
key encryption primitive which supports conjunctive comparison query, subset
query and range query. Predicate encryption [14] is a more powerful tool than
HVE, as it evaluates the inner product of two vectors. However, Shen etl.al
remarked in [18] that predicate encryption in the public key setting can not
fully preserve predicate privacy, and proposed a symmetric-key based predicate
encryption with predicate privacy.

Delegated subset tests are related to, but different from private set operations
[11, 16, 9, 8, 7] such as set union and intersection. The latter is a special case
of secure two party computation whereby two participants jointly compute a
set operation without exposing their respective data. The main cryptographic
building block is homomorphic encryption. Note that they are not a solution to
the problem studied in this paper, due to the complete different protocol setting.

1.2 Organization

The rest of this paper is organized as follows. We formalize the delegated subset
test scheme and the security notions in Section 2. Section 3 describes the pre-
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liminaries and the complexity assumption we will use for security proofs. Our
proposed construction and its proofs are presented in Section 4. We conclude
the paper in Section 5.

2 Problem Formalization

2.1 Definitions

Let Σ denote the universe of n values. Given two sets A,B ⊂ Σ, a delegated
subset test scheme is for a semi-honest delegator to evaluate the predicate A ⊆ B
without knowledge of the contents in A or B. If A,B are represented by two n-bit
bitmap a, b respectively, the evaluation of A ⊆ B is equivalent to the evaluation
of bit operation a∧ b⊕ a. To differentiate a from b, we refer to a by filter, and
to b by message. For ease of presentation in the sequel, we misuse the notation
of ⊆ by using “a ⊆ b” to denote “a ∧ b⊕ a” or equivalently “A ⊆ B”.

Intuitively, a secure delegated subset test is to ensure the privacy of a and
b. Recall that the privacy of a or b will not be preserved if they are encrypted
using public key encryption, as the evaluator may test the encrypted mask by
using subsets of her own choices. Therefore, a secure delegated subset test only
works under a symmetric key setting, whose definition is formalized below.

Definition 1 (Secure Delegated Subset Test). A secure delegated subset
test scheme consists of the following four probabilistic polynomial time (PPT)
algorithms.

Setup(1λ) takes as input a security parameter 1λ and outputs a secret key SK.
GenFilter(SK,a) takes as input the secret key SK and a binary vector (filter)

a ∈ {0, 1}n representing set A, and outputs a filter token Ta.
GenSet(SK, b) takes as inputs the secret key SK and a binary vector (plain-

text) b ∈ {0, 1}n representing set B, and outputs an encrypted message vector
Cb.

Test(Cb, Ta) (run by the delegator) takes as input an encrypted vector Cb, and
a token Ta, and outputs 0 if a 6⊆ b; otherwise outputs 1.

The definition above describes a delegated subset test in a generalized fash-
ion. The executioner of individual algorithms may vary from application to ap-
plication. Taking a publish-subscribe network as an example, the publisher runs
Setup, GenSet and the subscribers run their GenFilter, while the brokers, i.e. the
delegators in our terminology, run Test. A secret key is shared between the pub-
lisher and subscribers. In other applications, such as searches on the outsourced
document corpus, a user may run all algorithms except Test, which is executed
by the search engine (i.e. a delegator). The timing of the execution of Test also
depends on applications. Both the filters and the data sets can be static or dy-
namically updated. For example, in publish-subscribe applications, filters are
static while data sets are dynamic. Note that the timing of running Test does
not affect its security. Our study focuses on protecting data privacy against the
delegators.
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2.2 Notion of Security

Informally, the privacy notion implies that the delegator learns no additional
information about the two sets A and B in evaluation except the test result
computed from the respective filter token Ta and the encrypted vector Cb. More
formally, we define the privacy notions for the filter and the message separately,
because the subset test computation is not commutative. The formal notions
are defined using two privacy game similar to the ones used in [18]. The games
are between a challenger which is a simulator and an adversary A attacking a
delegated subset test scheme. We first define GameP for the plaintext privacy.

Init: The adversary chooses an arbitrary index set I∗ ⊆ [1, n], and sends it to
the challenger.

Setup: The challenger runs Setup(1λ) and keeps SK to itself.
Query Phase 1: AP adaptively issues queries of the following two types:

– Filter query: On the i-th filter query, AP outputs a bit t = 0 (indicating
a filter query) and a binary vector ai with the restriction that ai[i

∗] = 0
for all i∗ ∈ I∗. The challenger responds with GenFilter(SK,ai).

– Ciphertext query: On the j-th ciphertext query, AP outputs a bit t = 1
(indicating a ciphertext query) and a binary vector bj . The challenger
responds with GenSet(SK, bj).

Challenge: AP makes a ciphertext challenge as below:

– AP outputs two binary vectors b∗0 and b∗1 such that, the set I := {i|b∗0[i] 6=
b∗1[i], 1 ≤ i ≤ n} equals I∗. Due to these restrictions, for all previous fil-
ter queries ai, Test(ai, b

∗
0) = Test(ai, b

∗
1). The challenge picks a random

bit β and responds with GenSet(SK, b∗β).

Query Phase 2: AP adaptively issues additional queries as in Query Phase
1, subject to the same restriction with respect to the challenge index set as
above.

Guess: AP outputs a guess β′ of β.

The advantage of AP is defined as AdvAP
= |Pr[β′ = β]− 1/2|.

Definition 2 (Plaintext Privacy). A delegated subset test scheme has plain-
text privacy if, for all PPT adversaries AP , the advantage of AP in winning
GameP is negligible in λ.

Next, we describe GameF for the notion of filter privacy.

Init: The adversary chooses an arbitrary index set I∗ ⊆ [1, n], and sends it to
the challenger.

Setup: The challenger runs Setup(1λ) and keeps SK to itself.
Query Phase 1: AF adaptively issues queries of the following two types:

– Filter query: On the i-th filter query, AF outputs a bit t = 0 (indicating
a filter query) and a binary vector ai. The challenger responds with
GenFilter(SK,ai).
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– Ciphertext query: On the j-th ciphertext query, AF outputs a bit t = 1
(indicating a ciphertext query) and a binary vector bj with the re-
striction that bj [i

∗] = 1 for all i∗ ∈ I∗. The challenger responds with
GenSet(SK, bj).

Challenge: AF makes a filter challenge as below:

– A outputs two binary vectors a∗0 and a∗1 such that, the set I := {i|a∗0[i] 6=
a∗1[i], 1 ≤ i ≤ n} equals I∗. Due to these restrictions, for all previous
ciphertext queries bj , Test(a

∗
0, bj) = Test(a∗1, bj) The challenger picks a

random bit β and responds with GenFilter(SK,a∗β).

Query Phase 2: A adaptively issues additional queries as in Query Phase 1,
subject to the same restriction with respect to the challenge as above.

Guess: AF outputs a guess β′ of β.

The advantage of AF is defined as AdvAF
= |Pr[β′ = β]− 1/2|.

Definition 3 (Filter Privacy). A delegated subset test scheme has filter pri-
vacy if, for all PPT adversaries AF , the advantage of AF in winning GameF is
negligible in λ.

3 Background and Complexity Assumptions

In this section, we briefly review some known facts about bilinear groups of a
composite order and the complexity assumption we will use for a formal proof.

3.1 Bilinear Groups of Composite Order

Let G denote a group generation algorithm that takes as input a security param-
eter 1λ and outputs a tuple (p, q, r, s,G,GT , e) where p, q, r, s are distinct large
primes; G and GT are two cyclic groups of order N = pqrs; and e : G×G→ GT
satisfies the following properties:

– (Bilinear) ∀u, v ∈ G, ∀a, b ∈ ZN , e(ua, vb) = e(u, v)ab.
– (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We assume that group operations in G and GT as well as the bilinear map e
can be computed efficiently. We use Gp,Gq,Gr,Gs to denote the subgroups of
G with order p, q, r, s, respectively. In addition, elements in G have the following
properties.

– ∀a ∈ Gx, b ∈ Gx′ where x, x′ ∈ {p, q, r, s} and x 6= x′, e(a, b) = 1.
– Let Gpq = Gp × Gq. ∀a, b ∈ Gpq, there exist unique ap, bp ∈ Gp, aq, bq ∈ Gq

satisfying a = apaq, b = bpbq, and e(a, b) = e(ap, bp)e(aq, bq).

In the sequel, we will continue to use the group setting of (p, q, r, s,G,GT , e)
with the same notations described above.

5



3.2 Our Assumptions

The complexity assumptions used in this paper are the same as Assumption W
and `-DLinear Assumption previously stated in [18], and the former could be
reduced to Assumption 1 in [14].

Assumption W Let (p, q, r, s,G,GT , e) be the group setting described in
Section 3.1. Let gp, gq, gr, gs be random generators of Gp,Gq,Gr,Gs, respectively.
Choose random R′1, R

′
2 ∈ Gr, random a, b, s ∈ Zq and a random bit γ. If γ = 0,

β = 0, otherwise β is chosen from Zp. Adversary A is given the description of
the bilinear group (N,G,GT , e), along with the following values:(

gq, gr, gs, gpR
′
1, gpg

a
q , g

b
q, g

c
q, T = gβp g

bc
q R
′
2

)
The adversary A outputs a guess γ′ of γ. The advantage of A is defined as
AdvA = |Pr[γ′ = γ]− 1/2|.

Definition 4. We say that G satisfies the above assumption if, for all PPT
algorithm A, the advantage of A in winning the above game is negligible in the
security parameter λ.

`-DLinear Assumption Let G be a group generation algorithm. Run G(1λ)
to obtain (p, q, r, s,G,GT , e). Let N = pqrs and let gp, gq, gr, gs be random
generators of Gp,Gq,Gr,Gs, respectively. Let ` be an integer greater than 2.

Choose two random vectors y = (y1, y2, . . . , y`)
R← F`q and z = (z1, z2, . . . , z`)

R←
F`q. Choose a random bit β. Choose a vector γ = (γ1, γ2, . . . , γ`) in one of two
ways, depending on the value of β. If β = 0, choose γ1, γ2, . . . , γ` independently
at random from Fq. In other words, the vector γ is picked at random from the
vector space F`q. If β = 1, choose the vector γ from the 2-dimensional subspace

span(y, z) of F`q generated by y, z. Specially, choose random w, t
R← Zq and let

γ = wy + tz. Define the following notation:

gxq :=
(
gx1
q , g

x2
q , . . . , g

x`
q

)
where x ∈ F`q.

Give the adversary the description of the group, (N = gprs,G,GT , e), the gen-
erators of each subgroup, gp, gq, gr, gs, and the following tuple:(

gyq , g
z
q , g

γ
q

)
.

The adversary outputs a guess β′ of the bit β. The advantage of A is defined as
AdvA = |Pr[β′ = β]− 1/2|.

Definition 5. We say that G satisfies the `-DLinear assumption if, for all PPT
algorithms A, the advantage of A in winning the above game is negligible in the
security parameter λ.
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4 Secure Delegated Subset Test

4.1 The Rationale

We begin with an intuitive explanation of our construction, which is different
from a direct application of inner product computation. Given two binary vectors
a = 〈a1, · · · , an〉, b = 〈b1, · · · , bn〉 representing set A,B ⊂ Σ respectively, let Γa,b
denote the index set {i|1 ≤ i ≤ n, ai = 1, bi = 0}. Thus, a ⊆ b is true if and only
if Γ = ∅. Based on this observation, we construct an encryption scheme for a, b
whereby the randomness has the following property: if Γ 6= ∅, the randomness
will not be nullified when testing a ⊆ b. Otherwise, the randomness is removed.

More specifically, a is represented with an n+2 dimension vector a′ whereby
all “1”s in a are represented by a common random number and each “0” is re-
placed by a unique random number. The remaining two coordinates in a′ contain
information about the sum of these two types of random numbers. In contrast,
all “0”s in b are replaced by a common random number whereas each “1” in b
is replaced by a unique random number. This setup allows all randomness to be
exactly annihilated when Γa,b = ∅. The privacy of a and b are then protected
by padding with Gr and Gq elements, a technique used many schemes [4, 14].

Remark Our subset test has no false negatives. Namely, if a ⊆ b, Test
always returns true. However, it has negligible false positives. If a 6⊆ b, it is
possible for Test to output true. This only occurs when those random numbers
happen to cancel each other. We argue that the false positive rate is negligible
because the random numbers are drawn from a significantly large domain.

4.2 Our Construction

We now describe our construction in detail. The five algorithms of the proposed
secure delegated subset test scheme are described as below.

Setup(1λ): The setup algorithm proceeds as follows.

– run G(1λ) to generate N = pqrs,G,GT , e with G = Gp ×Gq ×Gr ×Gs
and picks random generators gp, gq, gr, gs of Gp,Gq,Gr,Gs respectively.

– for each i ∈ [1, n + 2], select hi ∈R Gq, where n is the size of binary
vectors.

The secret key is

SK = (gp, gq, gr, gs, {hi}n+2
i=1 ).

GenFilter(SK,a): Let a = 〈a1, . . . , an〉 be a binary filter vector. Define a set

W := {i|ai = 1, 1 ≤ i ≤ n}. Then set {qi}n+2
i=1

R←− Zn+2
N and {Si}n+2

i=1
R←−

Gn+2
s and choose a random w from ZN uniformly.

For each i = 1 to n,

– If i /∈W (ai = 0), set wi = w; Otherwise (i.e. ai = 1), set wi
R←− ZN ;

– Compute Ti = gwi
p gqiq Si.
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Choose a random Rn+3 from Gr. Set

Tn+1 = g
∑n

i=1 wi
p gqn+1

q Sn+1

Tn+2 = g−wp gqn+2
q Sn+2

Tn+3 =

n+2∏
i=1

h−qii Rn+3.

The output filter token is Ta = {Ti}n+3
i=1 .

GenSet(SK, b): Let b = 〈b1, . . . , bn〉 be a binary message vector. Define a set

V := {i|bi = 0, 1 ≤ i ≤ n}. Choose δ, v
R←− ZN and {Ri}n+2

i=1
R←− Gn+2

r . For
each i = 1 to n,

– If i /∈ V (bi = 1), set vi = v; Otherwise (i.e. bi = 0), set vi
R←− ZN ;

– Compute Ci = gvip h
δ
iRi.

Choose a random Sn+3 from Gs. Set

Cn+1 = g−vp hδn+1Rn+1

Cn+2 = g
∑

i∈V (vi−v)
p hδn+2Rn+2

Cn+3 = gδqSn+3.

The ciphertext is Cb = {Ci}n+3
i=1

Test(Ta, Cb): Suppose Ta = {Ti}n+3
i=1 and Cb = {Ci}n+3

i=1 . Compute

α =

n+3∏
i=1

e (Ti, Ci) .

If α = 1, output 1; otherwise output 0.

The correctness of the scheme can be easily verified as follows. Given Ta and
Cb properly produced by GenFilter and GenSet respectively. Then

α =

n+3∏
i=1

e(Ti, Ci) =

n∏
i=1

e
(
gwi
p gqiq Si, gvip h

δ
iRi
)

·e
(
g
∑n

i=1 wi
p gqn+1

q Sn+1, g
−v
p hδn+1Rn+1

)
·e
(
g−wp gqn+2

q Sn+2, g
∑

i∈V (vi−v)
p hδn+2Rn+2

)
·e

(
n+2∏
i=1

h−qii Rn+3, gδqSn+3

)
= e(gp, gp)

∑n
i=1 viwi · e(gp, gp)−

∑n
i=1 wiv · e(gp, gp)−

∑
i∈V w(vi−v)

= e(gp, gp)
∑n

i=1 viwi · e(gp, gp)(|W |+|V |−n)wv−
∑

i∈W wiv−
∑

i∈V wvi .

A brief explanation is as follows. All indexes are divided into four subsets
S1, S2, S3 and Γa,b, where S1 := {i|i /∈ W and i /∈ V }, S2 := {i|i ∈ W and i /∈
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V }, S3 := {i|i /∈ W and i ∈ V }, Γa,b := {i|i ∈ W and i ∈ V }. Recall that if
Γa,b 6= ∅, then a 6⊆ b. In fact, when Γa,b = W ∩ V . Therefore, If Γa,b = ∅,
|W | + |V | = |W ∪ V | and {1, · · · , n} = S1 ∪ S2 ∪ S3. As a result,

∑n
i=1 viwi =

(n− |W |+ |V |)wv+
∑
i∈W wiv+

∑
i∈V wvi, since the exponent of the last term

of the last equation corresponds to the joint set of S1, S2 and S3. Thus, α = 1
when a ⊆ b.

Note that, if Γa,b 6= ∅, it is still likely that α = 1 since
∑n
i=1 viwi may happen

to be the negative of (|W |+ |V | − n)wv −
∑
i∈W wiv −

∑
i∈V wvi. However, as

wi-s and vi-s are randomly generated, the probability is 1/N which is negligible
in λ.

4.3 Proof of Security

As defined in Section 2, the privacy notion in delegated subset test scheme
implies both the plaintext privacy and the filter privacy. Since GenFilter is a
dual of GenSet and the proofs for plaintext privacy and filter privacy are similar,
we only focus on proving plaintext privacy in order to avoid verbosity. The proof
for filter privacy can be achieved under `-DLinear Assumption using a proving
technique in the extended version of [18].

Plaintext Privacy. Informally, the plaintext privacy of a delegate subset test
scheme means that there exists no PPT adversary AP which could distinguish
two plaintext from ciphertexts generated by GenSet. We start with a special case
where the two plaintext vectors only have one bit difference.

Lemma 1. Under Assumption W , for all b0, b1 satisfying that there exists
unique i ∈ [1, n] and b0[i] 6= b1[i] and b0[j] = b1[j] for all j 6= i, j ∈ [1, n],
the ciphertext C∗0 ← GenSet(SK, b0) is computationally indistinguishable from
another ciphertext C∗1 ← GenSet(SK, b1) for all polynomial time adversary, who
could issue filter token inquiries a with restriction that the i-th element of a is
0, i.e. ai = 0.

Proof. In the following proof, without loss of generality we fix an arbitrary i∗ ∈
[1, n] as the index of different bits. Suppose there exists an adversary AP can
distinguish the ciphertexts of two vectors with one bit difference in GameP
defined in Section 2.2, we can leverage its ability to build a simulator B that can
break Assumption W .

A high level view of the proof is as follows. The simulator B is given an
instance of Assumption W , and it plays GameP with the adversary AP . The
adversary issues ciphertext queries and filter queries subject to the stated re-
striction. To respond to these queries, B computes corresponding ciphertexts
and filters using parameters of the assumption instance. The resulting cipher-
texts and filter tokens are distributed identically as normal. In the challenge
phase, AP sends B a challenge plaintext pair (b∗0, b

∗
1), satisfying b∗0, b

∗
1 only have

one bit difference at i∗. B responds with an encryption embedding the challenge
from Assumption W , such that if AP wins the game, B breaks the assumption
in the same probability of AP . Next, we present the details of the simulator B.

9



Initial. The adversary AP chooses a challenge index i∗ ∈ [1, n], and sends it to
the simulator B.

Setup. The simulator B is given an instance of Assumption W with the follow-
ing parameters:[

(N,G,GT , e), gq, gr, gs, gpR′1, gpgaq , gbq, gcq, T = gβp g
bc
q R
′
2

]
B’s objective is to determine whether β = 0 or not.

B uses these parameters to create a secret key for a secure delegated subset
test:

SK =
(
gq, gr, gs, {hi}n+2

i=1

)
,

where {hi = gµi
q }1≤i≤n+1,i6=i∗ and hi∗ = gc+µi∗

q , hn+2 = g
c+µin+2
q are gener-

ated as follows. For each i ∈ [1, n+2], chooses random µi ∈ ZN and computes
hi∗ = gcq · gµi∗

q , hn+2 = gcq · g
µn+2
q and hi = gµi

q for other i, where gcq, gq are
inherited from the assumption instance. Note that hi are distributed in Gq
randomly and uniformly.

Ciphertext query: Given a query vector b from AP , B responds with cipher-
text Cb which is generated in the same fashion as in GenSet, except that gp
is replaced by gpR

′
1 from the assumption instance.

Ci = (gpR
′
1)vi · hδi ·R′′i = gvip · hδi ·Ri, for1 ≤ i ≤ n

Cn+1 = (gpR
′
1)−v · hδn+1 ·R′′n+1 = g−vp · hδn+1 ·Rn+1

Cn+2 = (gpR
′
1)

∑
i∈V (vi−v) · hδn+2 ·R′′n+2 = g

∑
i∈V (vi−v)

p · hδn+2 ·Rn+2

Cn+3 = gδq · Sn+3.

Filter query: Given a query vector a from AP , B chooses randoms w,wi, Si in
the same fashion as in GenFilter, and randoms q′i ∈ ZN for each i ∈ [1, n+2],
then constructs the response as follows:

Ti = (gpg
a
q )wi · gq

′
i
q · Si = gwi

p · g
awi+q

′
i

q · Si for 1 ≤ i ≤ n

Tn+1 = (gpg
a
q )

∑n
i=1 wi · gq

′
n+1
q · Sn+1 = g

∑n
i=1 wi

p · ga
∑n

i=1 wi+q
′
n+1

q · Sn+1

Tn+2 = (gpg
a
q )−w · gq

′
n+2
q · Sn+2 = g−wp · g−aw+q′n+2

q · Sn+2.

Apparently, the randoms {qi}n+2
i=1 in GenFilter have the following values:

qi = awi + q′i, for each i ∈ [1, n]

qn+1 = a

n∑
i=1

wi + q′n+1

qn+2 = −aw + q′n+2.

10



Due to the aforementioned restriction, we have wi∗ = w. Next we continue
to address the last component of the response.

Tn+3 =

n+2∏
i=1

h−qii Rn+3 =

n+1∏
i=1,i6=i∗

(
gµi
q

)−qi · (gc+µi∗
q

)−qi∗ · (gc+µn+2
q

)−qn+2 ·Rn+3

=

n∏
i=1,i6=i∗

g
−µi(awi+q

′
i)

q · g−(c+µi∗ )(awi∗+q
′
i∗ )

q

·g−µn+1(a
∑n

i=1 wi+q
′
n+1)

q · g(c+µn+2)(aw−q′n+2)
q ·Rn+3

=

n∏
i=1

g
−µi(awi+q

′
i)

q · g−µn+1(a
∑n

i=1 wi+q
′
n+1)

q · g−cawi∗
q · gcawq

·g−cq
′
i∗+awµn+2−q′n+2(c+µn+2)

q ·Rn+3.

Note that since wi∗ = w, the two components g−cawi∗
q and gcawq are canceled

out, and the rest components could be calculated using gaqR
∗ =

gpg
a
q

gpR′1
and

gcq easily, where gpg
a
q , gpR

′
1, g

c
q are inherent from the assumption instance.

Thus, Tn+3 could be calculated, and has correct distribution.

Challenge. After a polynomial number of filter queries and ciphertext queries,
the adversary AP outputs the challenge plaintext pair (b∗0, b

∗
1) such that

b∗0[i∗] 6= b∗1[i∗] and b∗0[j] = b∗1[j] for all j ∈ [1, n], j 6= i∗. Without loss of
generality, let b∗0[i∗] = 0 and b∗1[i∗] = 1. In response, B selects vi, v, R

′′
i in

the same way as in GenSet, and returns the following to AP .

C∗i = (gpR
′
1)vi · (gbq)µi ·R′′i = gvip · hbi ·Ri for 1 ≤ i ≤ n, i 6= i∗

C∗i∗ = T · (gpR′1)v · (gbq)µi∗ ·R′′i∗ = gβ+vp · hbi∗ ·Ri∗

C∗n+1 = (gpR
′
1)−v · (gbq)µn+1 ·R′′n+1 = g−vp · hbn+1 ·Rn+1

C∗n+2 = T ·
∏

i∈V \{i∗}

(gpR
′
1)vi−v · (gbq)µn+2 ·R′′n+2

= g
∑

i∈V (vi−v)
p · hbn+2 ·Rn+2

C∗n+3 = gbq · Sn+3.

AP may continue to issue queries and B responds as explained above. In the
end, AP outputs the plaintext of {C∗i }

n+3
i=1 . If it outputs b∗0, B outputs β 6= 0.

If it outputs b∗1, B outputs β = 0. This is because when β 6= 0, {C∗i }
n+3
i=1 is the

ciphertext of b∗0, and when β = 0, it is the ciphertext of b∗1.
In summary, B has the same success probability in breaking Assumption W

as the success probability for AP to distinguish two encrypted vectors with only
one bit difference. ut

Next we remove the restriction on the bit difference b0, b1 and prove that no
PPT adversary can distinguish any b0 and b1.

11



Theorem 1 (plaintext privacy). Under Assumption W , for all n-bit vector
b∗0, b

∗
1, the ciphertext C∗0 ←R GenSet(SK, b∗0) is computationally indistinguish-

able from another ciphertext C∗1 ←R GenSet(SK, b∗1) for all polynomial time ad-
versary, who could issue polynomial ciphertext queries and filter token quiries,
where for each filter token query a has the restriction that a[i] = 0 for all
i ∈ {i|1 ≤ i ≤ n, b∗0[i] 6= b∗1[i]} and Test(a, b∗0) = Test(a, b∗1).

Proof. The theorem can be proved by using a series of games and Lemma 1.
Without loss of generality, suppose b∗0 and b∗1 are different in m bit positions
i1, · · · , im, 1 ≤ i1 < i2 · · · < im ≤ n. We define a list of m + 1 vectors b′0 =
b∗0, b

′
1, b
′
2, · · · , b′m = b∗1, such that the only difference between two adjacent

vectors b′j and b′j−1 is at the ij-th bit and b′j [ij ] = b1[ij ], 1 ≤ j ≤ m. Note that
for any a satisfying a ⊆ b0 and a ⊆ b1, then a ⊆ b′i for all 1 ≤ i ≤ m. This is
because none of the bit positions with differences in b0, b1 impacts the subset
test of a.

The proof is the same as in Lemma 1 except the Challenge phase. In the Chal-
lenge phase, AP outputs two vectors b∗0 and b∗1 satisfying the filter restriction
defined in GameP . Instead of returning C∗ for either b∗0 and b∗1, the simulator
B first returns C∗1 for b′∗0 and b′∗1 to AP in the same way as in Lemma 1. If AP
fails, B first returns C∗2 for b′∗1 and b′∗2 , and so on until returning C∗m. Note that
if AP can distinguish b∗0 and b∗1, there exists i ∈ [1,m] such that AP succeeds in
distinguishing C∗i , which leads to breaking the assumption as in Lemma 1. ut

Using the proving technique in the extended version of [18], we can prove
the filter privacy under `-DLinear Assumption. The main difference is that AF ’s
challenge vectors are treated as filters. Correspondingly, B embeds the assump-
tion challenge into the generation of filter token T ∗. We omit the proof here to
avoid redundancy.

Theorem 2 (filter privacy). Under Assumption W and `-DLinear Assump-
tion, for all n-bit vector a∗0,a

∗
1, the filter token T ∗0 ←R GenFilter(SK,a∗0) is

computationally indistinguishable from another filter token T ∗1 ←R GenFilter(SK,a∗1)
for all polynomial time adversary, who could issue polynomial filter token queries
and ciphertext queries, where for each ciphertext query b has the restriction that
v[i] = 1 for all i ∈ {i|1 ≤ i ≤ n,a∗0[i] 6= a∗1[i]} and Test(a∗0, b) = Test(a∗1, b).

4.4 Efficiency Analysis

To show the improvement of efficiency of the proposed scheme, we compare it
with a solution based on predicate-only encryption supporting inner product
(POE) described in [18].

Firstly, we give a brief description of the POE-based solution. The SSW
scheme proposed in [18] consists of 4 algorithms: SK ← Setup(1λ), CTx ←
Encrypt(SK,x), TKv ← GenToken(SK,v), b← Query(TKv, CTx). Encrypt and
GenToken take as input 2 vectors x and v, and output a ciphertext CTx and a
token TKv, separately; b equals to 1 if 〈x,v〉 = 0, otherwise 0.

12



Given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) for testing whether
a ⊆ b (as described in 2.1), we extend a and b and obtain two new vectors
a′ = (a1, . . . , an, na) and b′ = (b1, . . . , bn,−1), where na is the count of bit 1,
i.e. ai = 1. Clearly, if a ⊆ b, 〈a′, b′〉 = 0. To test the same vectors of length n,
both ciphertext and token consist of 2n + 4 elements from a group G of order
N , and there are 2n+ 4 times pairings in the algorithm Query in the POE-based
solution. In the meantime, both ciphertext and token of our proposed scheme
consist of n+ 3 elements from a group G of order N , and there are n+ 3 times
pairings in the algorithm Test. In conclusion, our scheme is almost more efficient
with half of the computation cost and half of the ciphertext size and the token
size.

5 Conclusion

To summarize, we have proposed an efficient scheme for delegated subset test.
Our scheme protects the privacy of both operands of a subset test, which falls in
the general predicates privacy encryption [18]. Our construction is based on the
characteristics of binary vectors. Therefore, it only costs n+ 3 bilinear mapping
operations and n + 3 group elements to achieve the same strength as using the
inner-product based scheme.
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