
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

4-2011 

IR-Tree: An Efficient Index for Geographic Document Search IR-Tree: An Efficient Index for Geographic Document Search 

Zhisheng LI 
Singapore Management University 

Ken C. K. LEE 
University of Massachusetts Dartmouth 

Baihua ZHENG 
Singapore Management University, bhzheng@smu.edu.sg 

Wang-Chien LEE 

Dik Lun LEE 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Geographic Information Sciences 

Commons 

Citation Citation 
LI, Zhisheng; LEE, Ken C. K.; ZHENG, Baihua; LEE, Wang-Chien; LEE, Dik Lun; and WANG, Xufa. IR-Tree: An 
Efficient Index for Geographic Document Search. (2011). IEEE Transactions on Knowledge and Data 
Engineering. 23, (4), 585-599. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1354 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1354&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Zhisheng LI, Ken C. K. LEE, Baihua ZHENG, Wang-Chien LEE, Dik Lun LEE, and Xufa WANG 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/1354 

https://ink.library.smu.edu.sg/sis_research/1354


1

IR-tree: An Efficient Index for Geographic
Document Search

Zhisheng Li† Ken C. K. Lee‡ Baihua Zheng] Wang-Chien Lee‡ Dik Lun Lee§ Xufa Wang†

† University of Science and Technology of China, China. zsli@mail.utsc.edu.cn, xfwang@utsc.edu.cn
‡ Pennsylvania State University, USA. {cklee,wlee}@cse.psu.edu

] Singapore Management University, Singapore. bhzheng@smu.edu.sg
§ The Hong Kong University of Science and Technology, Hong Kong. dlee@cs.ust.hk

Abstract— Given a geographic query that is composed of
query keywords and a location, a geographic search engine
retrieves documents that are the mosttextually and spatially
relevant to the query keywords and the location respectively,
and ranks the retrieved documents according to their joint
textual and spatial relevances to the query. The lack of an
efficient index that can simultaneously handle both the textual
and spatial aspects of the documents makes existing geographic
search engines inefficient in answering geographic queries. In
this paper, we propose an efficient index, calledIR-tree, that
together with a top-k document search algorithm facilitates
four major tasks in document searches, namely, spatial filtering,
textual filtering, relevance computation and document ranking
in a fully integrated manner. In addition, IR-tree allows searches
to adopt different weights on textual and spatial relevance of
documents at the run time and thus caters for a wide variety
of applications. A set of comprehensive experiments over a
wide range of scenarios has been conducted and the experiment
results demonstrate that IR-tree outperforms the state-of-the-art
approaches for geographic document searches.

I. I NTRODUCTION

The World Wide Web (WWW) has become the most popular
and ubiquitous information media. According to wikipedia,
there are 25 billion indexable web pages and over 100 million
web sites recorded in 2009, and these numbers continue to
grow. Due to the massive number of web pages, search engines
that search and rank documents based on their relevances to
user queries become essential for information seeking. Search
engines are required to determine relevant web pages within
a short latency. In other words,high search efficiencyis one
of the key design and implementation objectives of search
engines. To achieve this goal, efficient indexing techniques that
organize web pages according to their contents are mandated
for search engines.

Although web pages are accessible worldwide over the
Internet, users are usually only interested in information(such
as business listings or news) related to certain locations,e.g.,
“Las Vegas’s restaurant reviews”, “Boston’s hotels and bars”,
and “New York’s weather”. We refer to these queries, which
consist of both textual and spatial conditions on documents, as
geographic queries(or queries, for short), and search engines
specialized for answering geographic queries asgeographic
search engines.1 Here, we use Example 1 as a running example

1We refer to “documents” as units of textual information such asweb pages
in our discussion.

in this paper to illustrate the idea of geographic queries and
the function of geographic search engines.

Example 1: (Running example) Suppose in a geographic
search engine there is a set of 10 documents,D = {d1, · · ·
d10}, each of which is associated with one spatial location
and consists of multiple keywords. Figure 1(a) and Figure 1(b)
plot the frequencies of keywords “sushi” and “buffet” and the
spatial locations of the documents, respectively.

document words
sushi buffet

d1 0 0
d2 0 6
d3 0 8
d4 0 3
d5 1 1
d6 2 1
d7 1 0
d8 0 1
d9 2 2
d10 1 7
df 2 5
idf log 6

2
log 6

5

(a) Word and document frequency

d5

d2

d4

d3

d7

d6Boston

d1

d8

d10

d9

Entire Geographical Space

no “sushi” and “buffet” “sushi” only

“buffet” only “sushi” and “buffet”

(b) Document spatial distribution

Fig. 1. Example documents

Assume that a user Alice in Boston issues a geographic
query “Boston’s sushibuffet” and the top-3 documents are to
be returned. In this query, “sushi” and “buffet” are query key-
words, and “Boston” represents a location/area of her interest.2

Regardless of the order of their relevances, this example shows
a set of candidate result documents{d2, d3, d4, d5, d6}, with
respect to both textual relevance and spatial relevance.3 Here,
d1, although being within “Boston”, is not relevant because
it contains neither “sushi” nor “buffet”. On the other hand,
d7, d8, d9, and d10, although being textually relevant to the
query, are not within “Boston”. The top-3 documents in the
candidate set that are most relevant are returned. �

In the past few years, due to increasing application demands
and rapid technological advances in geographical information

2In Figure 1(b), we use a rectangle to annotate the “Boston” area for
presentational simplicity.

3The definitions of textual and spatial relevances of documents with respect
to queries are formalized in Section II.
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systems,geographic search enginehas been receiving a lot
of attention from both industry and academia [12], [15],
[21], [22], [26]. Same as the conventional search engines,
a geographic search engine is required to quickly return
documents of high relevance in both textual and spatial aspects
to a given geographic query. Serving as the core of search
engines, index structures apparently are very important. How-
ever, designing an efficient index structure for both textual
and spatial information is not trivial, as four major challenges
need to be overcome. First, each keyword in the documents
is usually treated as one dimension in the document space.
Indices for document search need to cover a very large high-
dimensional search space. Second, words and locations in
geographic documents have different forms of representations
and measurements of relevances to a query. A coherent index
that can seamlessly integrate these two aspects of geographic
documents is very desirable. Third, the words and location of
a document have separate influences on the overall relevance
of the document to a query, while the relative importance of
textual and spatial relevance is very much subjective to the
user. Various combinations of these two factors are necessary
to accommodate diversified user needs. Thus, an ideal index
should allow search algorithms to adapt to different weights
between textual and spatial relevance of documents at the
run time. Last but not the least, the index structure together
with an appropriate search algorithm has to facilitate efficient
determination of both textual relevance and spatial relevance
of the documents while performing document ranking in order
to guarantee high search efficiency.

Existing index structures for geographic search engines
can be roughly classified into two approaches. Approach I
uses separated indices (one for textual aspect and another for
spatial aspect) and Approach II utilizes a combined index
that carries both textual and spatial information in a single
index structure [12], [15], [18], [22], [26]. Unfortunately,
existing approaches are inefficient in processing geographic
document search, which motivates this research. In this paper,
we design an efficient index structure, namely,IR-tree, for
geographic search engines which effectively addresses allfour
challenges discussed above. The strength of IR-tree lays in
its ability to perform document search, document relevance
computation and document ranking in an integrated fashion.
In brief, IR-tree indexes both the textual and spatial con-
tents of documents that enablesspatial pruningand textual
filtering to be performed at the same time during query
processing. A top-k document search algorithm based on IR-
tree combines both the search and ranking processes, thus
effectively reducing the number of documents examined. A set
of comprehensive experiments over a wide range of system
and query parameters has been conducted. The experiment
results demonstrate that IR-tree significantly outperforms the
state-of-the-art approaches for geographic document searches.
In summary, the contributions of this paper are listed as
follows.

• We proposeIR-tree which indexes both the textual and
spatial contents of documents to support document re-
trievals based on their combined textual and spatial

relevances, which in turn can be adjusted with different
relative weights.

• We design a rank-based search algorithm based on IR-
tree to effectively combine the search process and ranking
process to minimize I/O costs for high search efficiency.

• We perform a cost analysis for IR-tree and conduct a
comprehensive set of experiments over a wide range of
parameter settings to examine the efficiency of IR-tree.

The remainder of the paper is organized as follows. Sec-
tion II provides a background and reviews existing works
related to geographic search engines. Section III presents
the structure of IR-tree, and discusses variants of aggregated
document information and storage schemes as well as manip-
ulations. Section IV details a top-k document search algorithm
based on IR-tree. Section V evaluates the performance of
the proposed IR-tree in comparison with the state-of-the-art
approaches. Finally, Section VI concludes this paper.

II. PRELIMINARIES

In this section, we first define both geographic document
search and geographic document ranking based on textual
relevance and spatial relevance. Then, we discuss the measure-
ments of textual relevances and spatial relevances, and review
existing works proposed for geographic search engines.

A. Geographic Document Search and Ranking

We assume each documentd in a given document set
D is composed of a set of wordsWd, and is associated
with a locationLd. Given a queryq that specifies a set of
query keywordsWq and a query spatial scopeSq, the textual
relevance and spatial relevance of a documentd to q are
formalized in Definition 1 and Definition 2, respectively.

Definition 1: Textual relevance. A documentd is said to
be textually relevant to a queryq if d contains some (or all) of
queried keywords, i.e.,Wd∩Wq 6= ∅. To quantify the relevance
of d to q, a weighting function denoted byφq(d) is adopted.
Thus, for a givenq, φq(d1) > φq(d2) means documentd1 is
more textually relevant toq than documentd2. �

Definition 2: Spatial relevance. A documentd is said to
be spatially relevant to a queryq if the location ofd overlaps
with the query spatial scope ofq, i.e.,Ld ∩Sq 6= ∅. Let ϕq(d)
be a scoring function to quantify the spatial relevance ofd to
q. Thus,ϕq(d1) > ϕq(d2) indicates that documentd1 is more
spatially relevant toq than documentd2. �

Accordingly, geographic document searchfinds from D
those documents that are both textually relevant and spatially
relevant to a given query (as stated Definition 3), andgeo-
graphic document rankingranks the documents based on the
joint textual and spatial relevances with respect to the query
(as formalized in Definition 4).

Definition 3: Geographic document search. Geographic
document search identifies those documents inD that are both
textually and spatially relevant toq. �

Definition 4: Geographic document ranking. Geographic
document ranking returns thek most relevant documents,
sorted in descending order of their joint textual and spatial
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relevances, denoted byψq(d), with respect toq.4 Here,k is
specified by the user andψ(d) is formulated in Equation (1).

ψ(d) =

{

α · φ(d) + (1− α) · ϕ(d) if φ(d) > 0 andϕ(d) > 0
0 otherwise

(1)
The joint relevance ofd is the weighted sum of textual
relevance and spatial relevance, with a parameterα (∈ [0, 1])
controlling their relative weights. �

B. Document Relevance Measurement

The accurate estimation of the relevance between docu-
ments and user queries is critical to the perceived quality
and performance of search engines. Specific to geographic
search engines, we study some existing weighting functions
for estimating textual relevance and spatial relevance.

Textual relevance. There are various models (e.g., vector
space model, probabilistic model, language model, etc. [4])
to measure the relevance of documents to a given query.
Among all those, TF-IDF [13], [24] is the most widely used.
There are many TF-IDF variants sharing the same fundamental
principles, though using differenttf and idf formulations. For
simplicity, we consider the generic one hereafter. TF-IDF
weighs a term in a document based onterm frequency(tf )
and inverse document frequency(idf ) [16].5 A term frequency
tfw,d measures the number of times a wordw appears in a doc-
umentd, which indicates the importance of the word within the
document. On the other hand, the inverse document frequency,
idfw,D measures the specificity (importance) of a wordw in a
document setD, i.e., idfw,D = log

|D|
|{d|d∈D∧tf(w,d)>0}| . How-

ever, under the context of geographic document search, theidf
of a wordw, denoted byidfw,D,S , is defined corresponding to
a candidate document setDS instead. The documents inDS

have their locations fully covered by the query spatial scopeS.
Note that the candidate documents are completely subject toS
provided at the query time. Equation (2) formulatesidfw,D,S .

idfw,D,S = log
|DS |

dfw,DS
(2)

whereDS = {d|d ∈ D ∧ Ld ⊆ S} and dfw,DS
= |{d|d ∈

DS ∧ tf(w, d) > 0}|. In this paper, the textual relevance of a
documentd to q is defined in Equation (3).

φq(d) =
∑

w∈W

(

tfw,d · idfw,D,S

)

(3)

Spatial relevance.The spatial relevance of a documentd, de-
noted asϕ(d), depends on the types of the spatial relationships
defined between a document locationLd and a spatial scopeS.
Commonly adopted relationships as discussed in [26] include:

1) Enclosed. ϕ(d) is set to 1 if the corresponding location
is fully enclosed by the query scope, i.e.,

ϕ(d) =

{

1 if Ld ⊆ S;
0 otherwise.

4If the context is clear, we omit the subscriptq for notational simplicity
hereafter.

5In this paper, a term is equivalent to a word.

2) Overlapping. ϕ(d) is set to the fraction of the document
location that is covered by the spatial scope, i.e.,ϕ(d) =
Area(Ld∩S)

Area(Ld) .
3) Proximity . ϕ(d) is represented by the inverse of the

distance between the center ofLd and that ofS, i.e.,

ϕ(d) =

{ 1
dist(Ld,S) if Ld ⊆ S;

0 otherwise.

Without loss of generality, we focus on the proximity in
the following discussion. Other types of spatial relevances can
be supported by substituting proximity with a desired spatial
relevance calculation.

C. Related Works

Here, we review existing works in textual index, spatial
index and geographic document search engines.

Textual Index. To facilitate the calculation of TF/IDF of
documents, inverted files, which are collections of inverted
lists, are proposed. Each inverted listlw serves one wordw. An
element〈d, tfw,d〉 in lw records a documentd with tfw,d > 0;
and each list is arranged in descending order of documents’
tf values. Because conventional TF-IDF calculation does not
consider any query spatial scope, the IDF value of a given
word within a document setD can be easily obtained, i.e.,
idfw,D = log

|D|
|lw| where|D| and |lw| represent the cardinality

of D and the length oflw, respectively. Some proposed
optimization techniques only read the initial portion of lists
to avoid accessing unnecessary documents [2], [3], [23]. In
geographic document search, computingidfw,D,S as shown
in Eq. (2) is much more challenging than computingidfw,D

in conventional search engine.

Spatial Index. Spatial indices [9] have been extensively
studied in the spatial database community [25]. Among all
the existing spatial indices, R-tree [11] is very well-received.
In an R-tree, spatial objects are first abstracted as minimum
bounding boxes (MBBs). Those spatial objects whose MBBs
are closely located are clustered in leaf nodes. Similarly,leaf
nodes with closely located MBBs are grouped to form non-
leaf nodes. This grouping process propagates until the root
node is formed. Aggregate R-tree (aRtree) [17] extends R-
tree to support spatial aggregation queries to find aggregated
information within a search area. Also, R-tree and its variants
can support run time object ranking [14].

Geographic Search Engine.As briefly mentioned in Sec-
tion I, two approaches are used by existing geographic search
engines, with Approach I using separated indices for spatial
information and textual information, and Approach II using
a combined index [12], [15], [18], [22], [26]. However, they
both are not efficient.

Approach I logically extends conventional textual search
engines with spatial filtering capability of Quad-tree, R-tree
and Grid index as suggested in [5], [18], [22], respectively.
As an example, in [5], the most recent work of Approach I,
an inverted file is created to index words of documents and a
grid index is created to index locations of documents. Based
on two indices, a search generally follows a three-step process.
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• Step 1: retrieving textually relevant documents with re-
spect to query keywords via a conventional textual index.

• Step 2: filtering out the documents obtained from Step 1
that are not covered by the query spatial scope.

• Step 3: ranking the documents from Step 2 based on the
joint textual and spatial relevances in order to return the
ranked results to the user.

We use the running example (i.e., Example 1) to illus-
trate the above three-step process. First, Step 1 retrievesall
documents textually relevant to query keywords and ignores
those textually irrelevant documents (i.e.,d1). As Alice is
only interested in the query spatial scope “Boston”, documents
outside the scope are discarded in Step 2, i.e.,d7, d8, d9, and
d10. Finally, in Step 3, the remaining documents are ranked
according to their TF-IDF scores as listed in Table I; and the
top three documents (i.e.,d6, d3, andd5) are returned.

TABLE I

GEOGRAPHIC DOCUMENT SEARCH RESULT

d6 d3 d5 d2 d4

TF-IDF 1.03 0.63 0.55 0.48 0.24

Approach I is inefficient due to the following reasons.
First, a keyword based search may retrieve a large number
of textually relevant documents that are outside the spatial
scope. Take our evaluation (to be discussed in Section V) as an
example. More than90% of the textually relevant documents
are outside the query spatial scopes. Although it is possible
to reorder Step 1 and Step 2 based on their selectivities,
performance improvement is rather limited if the selectivities
in Step 1 and 2 are both high. Besides, the ranking process
is not incremental, i.e., it has to sortall of the candidate
documents based on the joint textual and spatial relevances
in Step 3 in order to find the top-k documents. As the total
number of candidate documents is usually much larger thank,
document ranking becomes very expensive. Third, these three
steps are performed sequentially, prolonging the processing
time and requiring a large memory storage to buffer the
intermediate results between steps.

To improve the search efficiency, Approach II combines the
spatial locations and textual contents of documents together
and builds one index on them. Existing works following
Approach II include [12], [26], [15]. In [15], the name of
a location and every word of a document are combined as a
new word. Referring to our running example,d2 produces a
new word “Bostonbuffet” (use a location name as a prefix
and a word as suffix connected by an underscore). Then, an
inverted file based on those new words is created to support
geographic searches. However, this approach simply treatslo-
cations as texts and cannot deal with various spatial relevance
computations (as discussed in the previous subsection). Onthe
other hand, in [26], two hybrid indices are proposed, namely,
(a) an inverted file on top of R-trees (see Figure 2(a)), referred
to asHybridI, and (b) an R-tree on top of inverted files (see
Figure 2(b)), referred to asHybridR. Thus, a search upon
HybridI first locates a collection of documents based on search
keywords and then based on locations. The search strategy is
reversed forHybridR. However, these hybrid indices do not
integrate the textual filtering and spatial filtering seamlessly.

(a) HybridI (b) HybridR

Fig. 2. Two hybrid indexing schemes

KR*-tree is another type of hybrid indices which supports
searches for spatial objects based on their textual contents [12].
It extendsHybridR by augmenting with a set of words in the
internal nodes. Thus, it can support both spatial and textual
filtering simultaneously. The query processing algorithm finds
the nodes that are spatially relevant to the query spatial scope
and containing the query keywords. It then evaluates all the
objects in these nodes for ranking. Along the same line, IR2-
tree [8] builds an R-tree and uses signature files (rather than
a set of words) to record the document words associated
with nodes in the index. Signature files reduce the storage
overhead and R-tree can quickly determine the documents
spatially covered by a query spatial scope. However, signature
file can only determine whether a given document contains
query keywords but fail to order them based on the textual
relevance. In brief,HybridR, KR*-tree and IR2-Tree are not
efficient due to separation of document search and document
ranking. After the document search step, a large number
of candidate documents are usually retrieved but onlyk of
them are returned after document ranking. Consequently, the
evaluation of those non-result candidates is a waste. Finally,
although KR*-tree, IR2-Tree and our IR-tree proposed in this
paper are built on top of R-tree, they are very different in terms
of structures, functionalities, and extensibility to searches with
various relevance requirements.

III. IR-T REE

In this section, we presentIR-tree, an efficient index that
provides the following required functions for geographic doc-
ument search and ranking: i)spatial filtering: all the spatially
irrelevant documents have to be filtered out as early as possible
to shrink the search space; ii)textual filtering: all the textually
irrelevant documents have to be discarded as early as possible
to cut down the search cost; and iii)relevance computation
and ranking: since only the top-k documents are returned
and k is expected to be much smaller than the total number
of relevant documents, it is desirable to have an incremental
search process that integrates the computation of the joint
relevance and document ranking seamlessly so that the search
process can stop as soon as the top-k documents are identified.

In addition, IR-tree is designed by taking into account the
storage and access overheads since a document set is very
large in terms of numbers of documents and their words. In
the following, we first detail the design of IR-tree indexing
structure. Then, we discuss the notion ofdocument summaries
(and several variants) that facilitate search space exploration
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and pruning as well as ranking. Thereafter, we discuss the
storage schemes and index manipulation methods.

A. IR-tree Indexing Structure

In order to support efficient geographic document search,
the IR-tree clusters a set of documents into disjointed subsets
of documents and abstracts them in various granularities. By
doing so, it enables the pruning of those (textually or spatially)
irrelevant subsets. The efficiency of IR-tree depends on its
pruning power, which, in turn, is highly related to the effec-
tiveness of document clustering and the search algorithms.Our
IR-tree clusters spatially close documents together and carries
textual information in its nodes. These designs distinguish our
IR-tree from other hybrid indices (as reviewed in Section II-
C). IR-tree associates each leaf entry with an inverted file
and associates a document summary that provides textual
information of documents with each node so that thetf and
idf values of the document words can be estimated at nodes
without examining individual documents. Figure 3 depicts an
IR-tree indexing structure. An inverted file consists of a list
of words, with each corresponding to a wordw and pointing
to a list of documents that containw. On the other hand, for
each nodei, a document summary about a set of documents
Di indexed beneathi is captured as a three-element tuple:

〈Ai, |Di|,∪w∈Wi
{dfw,Di

, TFw,Di
}〉.

In the tuple, the first elementAi is the minimal bounding
box (MBB) covering all of the locationsLd of documentsd
in Di (i.e., Ai = MBB(∪d∈Di

Ld)). Next, |Di| refers to the
cardinality of the document setDi. The third element is a
set of (dfw,Di

, TFw,Di
) pairs. For each wordw that appears

in at least one document inDi (i.e., Wi), dfw,Di
represents

the number of documents inDi that containw andTFw,Di

is the aggregated information about thetf values ofw in Di.
We investigate two different representations ofTFw,Di

, and
they will be discussed in the next subsection. Notice that the
document summary of a non-root nodei is stored withi’s
parent nodeh. Then, given a query that reachesi’s parent node
h, it can decide whetheri contains potential result documents
(i.e., whether the examination ofi is necessary) based on the
document summary.

g

h

i

IR-tree node

node entries

document summary:

… …

…...

inverted files

document 
words

inverted lists

, ,,| |, { , }
i i ii i w W w D w DA D df TF∈< ∪ >

Fig. 3. IR-tree indexing structure

To facilitate our discussion, we use Example 2 to illustrate
an IR-tree based on our running example.

Example 2: Figure 4(a) shows an IR-tree for the example
document set, with the minimum and maximum node fanouts

set to 3 and 4, respectively and Figure 4(b) shows the distri-
butions of MBBs. Documentsd1, d5, andd6 that are spatially
close to each other are grouped into nodeNb. Similarly, d7,
d9, andd10 form the nodeNa andd2, d3, d4 andd8 form the
nodeNc. These three nodes are further grouped together to
form the root node. �

Na

Nb
Nc

i7 i9 i10

i1 i5 i6
i2 i3 i4 i8

i7 i10i9

i1 i6i5
i2 i4i3 i8

Na NcNb

root

inverted files

<Aa, |Da|=3,

{dfsushi=3, TFsushi,D}, {dfbuffet=2,TFbuffet,D}>

<Ac, |Dc|=4,

{dfsushi=0, TFsushi,D}, {dfbuffet=4,TFbuffet,D}>

<Ab, |Db|=3,

{dfsushi=2, TFsushi,D}, {dfbuffet=2,TFbuffet,D}>

document summaries

(a) IR-tree content

d5

d2

d4

d3

d7

d6
Boston

d1

d8

d10

d9 Na

Nb

Nc

i1

i3

i2

i4

i8

i7
i9

i10

i5
i6

(b) Node MBBs

Fig. 4. An example IR-tree

As defined in Section II-B, the textual relevance between a
document and a query is dependent on both thetf values and
the idf values of documents with respect to query keywords. To
facilitate the discussion, letDi represent the set of documents
indexed beneath nodei and Wi represent the set of words
appearing in at least one documentd (∈ Di) (i.e., Wi =
∪d∈Di

Wd). SinceAi, |Di| anddfw,Di
values are maintained

in document summaries, the candidate document setDS (i.e.,
⊆ D) can be formed as early as the search reaches a set of
nodesNS such thatAi in a document summary for any node
i ∈ NS is fully bounded by the query spatial scopeS, i.e.,
∀i⊆NS

Ai ⊆ S. Then, theidf value for a given query keyword
w can be determined over those identified nodesNS without
scanning the documents indexed beneath them as:

idfw,D,S = log

∑

∀i∈NS
(|Di|)

∑

∀i∈NS
(dfw,Di

)
. (4)

Then, with TFw,Di
values (or TF values for simplicity)

maintained by a document summary available, the textual
relevance of a documentd ∈ Di to q can be estimated by
φ(i) =

∑

w∈Wq
idfw,D,S · TFw,Di

. We formulate TF in such
a way thatφ(i) provides a good estimation ofφ(d) for d ∈ Di.
Consequently, the estimated values, although not necessarily
the exact values, are useful to prune those nodes that do not
contain any qualified documents in an early stage of a search
process. Notice that this pruning is very flexible. It can be
based on the joint spatial and textual relevance, the pure spatial
relevance, or the pure textual relevance. Further, based onthe
estimated values, a ranking algorithm can order the candidate
documents and give higher priorities to those nodes which are
more likely to contain result documents. The top-k document
search algorithm will be detailed in Section IV.

Although at the first glance it looks similar toHybridR,
IR-tree is indeedstructurally and functionally different from
HybridR. From the design perspective,HybridR focusespurely
on document search, not supporting document ranking that
is critical to top-k document retrieval. On the contrary, IR-
tree maintains document summaries at different levels which
enables an estimation of the joint relevances of documents to a
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given query without reaching the leaf level, such that the top-
k result documents can be determined without getting all the
candidates ranked. On the other hand, IR-tree, KR*-tree and
IR2-Tree are all based on R-tree structure. While KR*-tree and
IR2-Tree are mainly for serving document filtering, they do not
support document ranking. Nevertheless, IR-tree supportsboth
geographic document search and ranking. Besides, IR-tree can
be tailored, though not explored in this paper, to cater for
various application needs by adjusting the content of document
summaries to support other relevant measurements based on
different TF-IDF variants.

B. Two AlternativeTFw,Di

As shown earlier, TF plays an important role in estimating
the textual relevanceφ(i) at nodei. Thus, two TF variants are
considered in this work.

TFs. Given a queryq related to a query spatial scopeS, the
textual relevance of a documentd with respect to a query
keyword w depends on the product oftfw,d and idfw,D,S .
As such, a straightforward approach to presentTFw,Di

is to
maintain in each document summary thetfw,d values for each
word w ∈ Wi; hence,TFw,Di

= ∪d∈Di∧tfw,d>0{〈d, tfw,d〉}.
In other words,TFw,Di

resembles an inverted file with respect
to all the documents indexed beneath nodei. With document
information available at each level of IR-tree, the search
efficiency is improved at the expense of extremely high storage
overhead forO(|Di|×|Wi|) TF values. Therefore, keeping all
tfs in every document summary is very storage expensive.

TF Maximum. In order to alleviate the storage overhead, we
store at nodei the TFw,Di

value as the maximum among all
tfw,Di

values for all documents inDi, i.e., maxd∈Di
(tfw,d)

(denoted bytfmax
w,Di

). This reduces the overall storage overhead
for TF values down toO(|Wi|) and provides a reasonably
good estimation of the textual relevance of the underlying
documents as∀d ∈ Di, (tfw,d·idfw,D,S) ≤ (tfmax

w,Di
·idfw,D,S).

The search for top-k documents can follow a path through
node i to reach result documents based on maximal TF
values, and the details about the search will be presented in
Section IV.

C. Keyword Based Storage Scheme

As the index I/O cost directly affects the search perfor-
mance, how an index is organized on disk is an important is-
sue. In this subsection, we present the IR-tree storage scheme.

In an IR-tree, every non-leaf nodeh maintains pointers
to individual child nodesi together with their document
summaries〈Ai, |Di|,∪w∈Wi

{dfw,Di
, TFw,Di

}〉. Consider a
scenario where|Wi| = 2000 andTFw,Di

as the TF maximum,
dfw,Di

andw take 2, 1 and 1 bytes, respectively. Thus, one
document summary consumes(2 + 1 + 1) × 2000 bytes, i.e.,
eight 1KB pages. Further, a non-leaf node with fanoutf takes
8f 1KB pages. Since only a few keywords are queried, loading
complete document summary corresponding to all the words
is not necessary as it accesses unnecessary DF/TF values for
non-query keywords.

Instead, we partition each document summary at node
i, i.e., 〈Ai, |Di|,∪w∈Wi

{dfw,Di
, TFw,Di

}〉 into different

segments, such as〈Ai, |Di|〉, 〈{dfw1,Di
, TFw1,Di

}〉, · · ·
〈{dfw|Wi|

,Di
, TFw|Wi|

,Di
}〉. The first segment〈Ai, |Di|〉,

which is independent to document words, is stored with the
parent nodeh of nodei. The remaining segments are stored
separately. Observing that a search for documents textually
relevant to a wordw only requires DF/TF values related tow,
we strategically store〈{dfw,Dx

, TFw,Dx
}〉 related to the same

word w but for different nodes together in the same memory
block. Here, a memory block refers to a linked list of pages.

<AN2, DN2>

<AN4, DN4><AN3, DN3>

N3 N4

N1

N5 N6

N2

N7 N8

N3

N9 N10

N4

N11 N12

N5

N13 N14

N6

N1 N2

N0

<AN1, DN1>

… inverted files …

( root )

(a) IR-tree tree hierarchy

w1

w|W|

index block

{dfw1,N0, tfw1,N0}N0

{dfw1,N1, tfw1,N1}N1

{dfw1,N2, tfw1,N2}N2

{dfw1,N3, tfw1,N3}N3

{dfw1,N4, tfw1,N4}N4

value block for w1

{dfw|W|,N0, tfw|W|,N0}N0

{dfw|W|,N1, tfw|W|,N1}N1

{dfw|W|,N2, tfw|W|,N2}N2

{dfw|W|,N3, tfw|W|,N3}N3

{dfw|W|,N4, tfw|W|,N4}N4

value block for w|W|

(b) DF/TF value blocks

Fig. 5. Keyword based storage scheme

Figure 5 illustrates our storage scheme, namelykeyword
based storage scheme. It consists of three components, namely,
(i) a tree hierarchy that presents the nodes’ parent-child
relationship in an IR-tree to support traversals for searches,
(ii) (conventional) inverted files, and (iii) DF/TF value blocks,
which keep TF and DF values for the same words in the
same memory blocks. An example tree hierarchy is shown
in Figure 5(a), in which every node has a fanout of 2. As
shown, 〈AN3

,DN3
〉 and 〈AN4

,DN4
〉 of nodeN3 and N4,

respectively, are kept at the parent nodeN1. Notice that in our
implementation, each node sits in one disk page. The inverted
files pointed by leaf node entries are stored independently.Due
to limited space, they are not depicted. Figure 5(b) illustrates
DF/TF value blocks. It has two parts, namely, index block
and value blocks. Index block consists|W | entries. Each entry
for one wordw points to a value block that contains DF/TF
values forw. Inside a value block of wordw is a list of
{i, dfw,Di

, TFw,Di
} entries.

When a geographic query with query keywordsWq and a
query spatial scopeS is processed, DF/TF value blocks for
those query keywordsWq are preloaded, and a traversal starts
from the root of the tree hierarchy. When a node is traversed,
its child nodei with Ai stored in tree hierarchy is compared
with S and the corresponding DF/TF values in the preloaded
DF/TF value blocks are accessed and evaluated. The detailed
search algorithm will be presented in Section IV.

D. IR-tree Manipulations

The IR-tree can be manipulated with three operations,
namely, bulkloading documents, inserting documents and
deleting documents. Given a set of documents, bulkloading
creates an IR-tree from scratch. Tne pseudo-code is depicted in
Algorithm 1. As a brief description, it first clusters documents
based on their spatial locations into leaf-level entries, and then
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groups the formed entries as nodes in a bottom-up fashion
repeatedly until the root is formed.

Algorithm 1 IR-tree Construction

Input: a document set,D; minimal node fanout,min;
maximal node fanout,max;

Output: the root of an IR-tree;
Procedure:
1: Ne ← ∅
2: for eachd ∈ D do
3: geo-coded and representLd with MBB md;
4: if ∃e ∈ Ne,me = md then
5: addd to e’s document setDe;
6: else
7: create a new entrye;
8: setme ← md andDe ← {d};
9: Ne ← Ne ∪ {e};

10: for eache ∈ Ne do
11: build inverted file with each listlw w.r.t. every wordw in at

least one documentd ∈ De;
12: while |Ne| > nmax do
13: clusterNe according tomin/max into nodes, represented as

new entriesN ′
e; form document summary fore in N ′

e;
14: Ne ← N ′

e;
15: create the root node to coverNe and their document summaries;
16: output the root node;

Here, we assume that each document is mapped to one
locationLd, and documents mapped to the same location are
collected in a set of entriesNe (line 2-9). Accordingly, an
inverted file is created for each entrye ∈ Ne to keep the term
frequencies of different words (line 10-11). Further, entries in
Ne are clustered according to their locations to form IR-tree
nodes, each of which is associated with a document summary.
The number of entries included into one node is bounded by
the minimum and the maximum fanouts, i.e.,min andmax,
respectively (line 12-14). Typically,min is set to 30% of
max andmax is determined as the quotient of disk page size
divided by the maximum entry size. The entries for generated
nodes (i.e.,N ′

e) are grouped by the same clustering logic. At
last, when the number of generated entries (i.e.,|Ne|) is small
enough (≤ max) to be represented by a node, a root node is
formed and returned to complete this bulkloading (line 15-16).

Besides, the structure of IR-tree can be easily adapted
when new documents are added and/or existing documents
are deleted. When a new documentd is inserted, based on
Ld, we traverse an IR-tree to reach a leaf node that provides
the smallest expanded area afterLd is included. Then, the
document summaries of all nodes on the path from the leaf
node to the root are updated to accommodated. On the other
hand, deletion of a documentd is handled by first locating
the leaf node holdingd. Then, the document summaries of all
nodes on the path from the leaf node to the root are updated
to reflect the removal ofd. We omit the detailed insertion and
deletion algorithms and handling of some situations (such as
node overflow and node underfull) because they are similar to
those for conventional R-trees.

IV. TOP-k DOCUMENT SEARCH

In light of that the size of the candidate set is much
larger than the required number of result documents,k, we

develop a top-k document search algorithm based on IR-tree
to improve the efficiency of geographic document search. The
top-k search algorithm effectively avoids the computation of
the relevance scores for most of, if not all, non-result candidate
documents. Algorithm 2 outlines the logic of the top-k search
algorithm. It is composed of two steps, namely, (i) IDF-
Calculation and (ii) Top-k Document Retrieval. As the names
suggest, the former determines IDF for query keywords; and
the latter computes the relevance of candidate documents and
returnsk most relevant documents. In the following, we detail
these two steps and discuss the advantage of this algorithm.

Algorithm 2 Top-k Document Search

Input : the root of an IR-treer;
a queryq with keywords,Wq, and spatial scope,Sq;
the requested number of result documents,k;
the ratio between spatial and textual relevance,α;

Output : a set of topk documents
Procedure:
1: ({idfw,D,Sq , ∀w ∈Wq}, B)← IDF Calculation(r, Wq, Sq);
2: if B 6= ∅ then
3: return Top-k Document Retrieval({idfw,D,Sq , ∀w ∈Wq}, B,

Wq, Sq, α, k);
4: return ∅;

A. Step One: Derivation of IDF values

As defined in Equation (2),idf, a component to TF-IDF
for textual relevance, is a fraction between|DS | anddfw,DS

.
As the first step, we determine all of the documents that are
located inside the query scopeSq for a queryq. With |Di|
(as a part of document summary) available with every nodei
in an IR-tree, the search only needs to traverse to the nodesi
with Ai ⊆ Sq. Notice that if nodei is already fully covered
by Sq, it is not necessary to visiti’s child/descendant nodes in
order to determinedfw,DS

and |DS |. Meanwhile, we need to
identify some candidate nodes that contain result documents
being spatially and textually relevant to a query. Documents
beneath those nodes fully covered byS are spatially relevant
to the query but may not be textually relevant. To determine
whether a nodei contains any textually relevant document,
we examine thedfw,Di

values corresponding to each query
keywordw ∈Wq and discard the node if∀w ∈Wq, dfw,Di

=
0. Based on these ideas, we formulate Algorithm 3.

In the algorithm, we use a depth-first traversal strategy to
determineidf for all query keywords and to collect nodes
with candidate documents. Notice that breath-first traversal is
also applicable. In details, an entryε that represents a node is
examined from a stack in each iteration. Ifε has its areaAε not
covered bySq, ε and all the nodes indexed beneath it can be
discarded immediately. Otherwise,Aε andSq overlap in two
cases: (i)Aε covered bySq in part, and (ii)Aε completely
covered bySq. For (i), the child nodes ofε, that have smaller
area thanε, are pending for later examination (line 12). For
(ii), we accumulate|Dε| to DS (line 7). In addition, we
check whetherε can contribute toDFw by checkingdfw,Dε

corresponding to each query keywordw ∈ Wq. Once a non-
zerodfw,Dε

value is found,DFw will be updated accordingly
and ε is inserted intoB. Here,B is a buffer to keep track
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Algorithm 3 IDF Calculation
Input: the root of an IR-tree,r;

query keywordsWq and query spatial scopeSq;
Output: {idfw,D,Sq , ∀w ∈Wq}, and a buffer of nodesB;
Procedure:
1: DS ← 0; DFw ← 0, ∀w ∈Wq;
2: pushr to an empty stackT ;
3: while T is not emptydo
4: pop an entryε from T ;
5: if Aε ∩ Sq 6= ∅ then
6: if Aε ⊆ Sq then
7: DS ← DS + |Dε|; // count the no. of document;
8: if ∃w∈Wqdfw,Dε > 0 then
9: DFw ← DFw + dfw,Dε , ∀w ∈Wq; // sum of df’s

10: B ← B ∪ {ε}; // collect the nodes in B
11: else
12: push all child entries ofε to T ;
13: output ({idfw,D,Sq = log

DS

DFw
, ∀w ∈Wq}, B);

of nodes fully covered bySq during the traversal and it can
facilitate the document retrieval step, as to be discussed next.
The traversal repeats until the stackT is empty.

Lemma 1: When a nodei with zerodfw,Di
value for each

query keyword (i.e.,∀w ∈Wq, dfw,Di
= 0), all the documents

indexed beneathi are textually irrelevant toq. �

Proof. Suppose there is a documentd ∈ Di that is textually
relevant toq, i.e., ∃w ∈ Wq, tfw,d × idfw,D,Sq

> 0. Conse-
quently, tfw,d > 0 and hencedfw,Di

is at least one which
contradicts our assumption to complete the proof. �

B. Step Two: Top-k Document Retrieval

After buffer B containing candidate IR-tree nodes is re-
turned by the IDF Calculation algorithm, Top-k Document
Retrieval algorithm as the second step of the search runs
to identify the result documents. As the candidate set might
contain far more documents thank, this step tries to avoid ex-
amining non-result documents. Our strategy is to evaluate the
documents based on their joint spatial and textual relevances
with respect to a given queryq and to terminate the process
once the top-k result documents are obtained.

Algorithm 4 lists the pseudo-code of top-k document re-
trieval. It maintains a priority queueQ that orders the pending
entries (either nodes or documents) in descending order of
their relevance with respect toq (line 1-3). Based onidfw,D,Sq

,
tfmax

w,Dε
, and the distance betweenε and the query spatial scope

Sq, the upper bound of the relevance value of documentsd
within a queue entryε (if it is a node) toq can be estimated
as follows: ψ(ε) = α ·

∑

w∈Wq

(tfmax
w,ε · idfw,D,Sq

) + (1 −

α) 1
dist(Aε,Sq) . Here,Aε is the MBB corresponding toε. We

take the distance between the center ofAε and the center of
S as dist(Aε, Sq). Notice that this formula also applies to
individual documents to determine their exact relevance.

The search iteratively examines the head entry (ε,ψ(ε)) in
Q (line 4-15). If ε is a non-leaf node (line 14-15), its child
nodes are all enqueued toQ for later processing. Notice that
documentsd not in any lw should have theirtfw,d equal to
zero. Therefore, in case thatε is a leaf node (line 10-12),
documents appearing inlw (∀w ∈ Wq) are enqueued toQ.

Algorithm 4 Top-k Document Retrieval

Input: a set of idf values,{idfw,D,Sq , ∀w ∈Wq};
a candidate set,B; query keywords,Wq;
query spatial scopeSq;
a ratio between textual and spatial relevance,α;
the number of returned documents,k

Output: the k most relevant documents,R;
Procedure:

1: MACRO : ψ(ε) = α ·
∑

w∈Wq

(tfmax
w,ε · idfw,D,Sq ) + (1−α)

dist(Aε,Sq)
;

2: for each entryε ∈ B do
3: enqueue (ε, ψ(ε)) to Q; // initialize Q with entries inB
4: while Q is not emptydo
5: dequeue an entryε from Q;
6: if ε is a documentthen
7: R← R ∪ {ε};
8: if |R| = k then
9: goto 16;

10: else if ε is a leaf nodethen
11: for each documentd in any ε’s inverted listlw, ∀w ∈ Wq

do
12: enqueue (d, ψ(d)) to Q;
13: else
14: for each childc of ε do
15: enqueue (c, ψ(c)) to Q;
16: output R;

Here, the threshold algorithm and its variants [7], [10] canbe
adopted to improve the performance of reading entries from
inverted lists. Finally, ifε is a document (6-7), it is directly put
into a result setR asε has the greatest relevance among all in
Q. OnceR containsk documents or no more documents can
be found as implied by an empty priority queue, the algorithm
stops and outputsR.

C. Discussion

In order to illustrate our top-k search algorithm, Example 3
describes how it operates on our running example.

Example 3: Continue Example 1. We consider TF-IDF and
assume the top-1 document is requested (i.e.,k = 1). The
search is based on the IR-tree shown in Figure 4(a). Initially,
those entries covered by Boston are visited. The trace is shown
in Figure 6(a), withB = {i2, i3, i4, Nb}. The countersD,
Dsushi, andDbuffet are 6, 2 and 5, respectively, and the IDFs
of ‘sushi’ and ‘buffet’ arelog(6/2) = 0.477 and log(6/5) =
0.079, respectively.

Entry Stack (T ) Buffer (B)

root ∅
root Nb, Nc ∅
Nb Nc Nb

Nc i2, i3, i4, i8 Nb

i2 i3, i4, i8 Nb, i2
i3 i4, i8 Nb, i2, i3
i4 i8 Nb, i2, i3, i4
i8 Nb, i2, i3, i4

(a) Trace of candidate selection

Entry Priority queue (Q)

Nb, i3, i2, i4
Nb i6, i3, i5, i2, i4
i6 d6, i3, i5, i2, i4
d6 i3, i5, i2, i4

(b) Trace of ranking

Fig. 6. Trace of candidate selection and ranking

Thereafter, ranking starts. The priority queue,Q, is initial-
ized with entriesi2, i3, i4 andNb.Nb, with the largest TF-IDF,
is explored first. Its child entries (i.e.,i5 and i6) that contain
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at least one query word are put back toQ. Next, i6 is retrieved
and the corresponding document (i.e.,d6) is put intoQ. Then,
d6 with the largest TF-IDF is dequeued and inserted into the
result setR to complete this query. Figure 6(b) summarizes
all the steps. �

As illustrated by the example, the proposed top-k document
search algorithm based on IR-tree has five advantages over
existing geographic document search algorithms. First, itper-
forms spatial filtering and textual filtering simultaneously to
discard as early as possible branches that are out of the query
spatial scope and/or branches that do not contain any textu-
ally relevant documents. Second, it postpones the expensive
calculation of the relevance between each documentd and the
queryq until d is known to have a high chance to be included
into the final result set. Third, it terminates once the top-k
documents with highest relevances are identified. Fourth, it can
support variations of textual and spatial relevance measures
and different weights in combining the two relevances. Last
but not the least, it enables an early detection of queries that
return empty result sets.

V. PERFORMANCEEVALUATION

In this section, we evaluate the performance of IR-tree (la-
beled asIR-tree in our discussion) through both cost analysis
and simulations. In Section V-A, we derive a cost model to an-
alyze storage overhead and index I/O cost incurred forIR-tree.
Based on the model, we observe several critical performance
factors and validate these observations through experiments
using synthetic document sets. Then, in Section V-B, we used
two sample document sets, namely, newspaper clips from
LA Times (LATimes’94) [20] and news archives from Dow
Jones Factiva (Factiva) [6]6 to evaluate the search performance
of IR-tree in comparison with two existing state-of-the-art
approaches, including the hybrid indexHybridR that puts an
R-tree upon inverted files [26] and KR*-tree (labeled asKR*-
tree), as reviewed in Section II-C. Note that we hireHybridR

as the representative hybrid index as it performs much better
thanHybridI.

A. Performance Analysis

In the first place, we present a cost model forIR-tree to
analyze its storage overhead and I/O cost for a document set
D with documents uniformly distributed in|L| locations and
in total having |W | words. In this analysis, we assume the
fanout of an IR-tree index is a constantf . We further use
synthetic dataset to validate the observations made from the
cost model and to compareIR-tree with HybridR andKR*-tree.

1) Cost Model: Firstly, we analyze the storage overhead
and I/O cost forIR-tree. As the search time is highly dependent
on the I/O cost, we do not include the search time analysis
due to space limitation.

Storage Overhead. For IR-tree, its storage is contributed
by three components: (i) inverted files denoted asSinv, (ii)

6Notice that entire Factiva is a very large document set and we only
randomly selected around4 × 10

5 documents; whereas we use a complete
LATimes’94 document set.

tree hierarchy denoted asSinv, and (iii) document summaries
denoted asSds. The total storage forIR-tree, SIR−tree, can
be estimated as follows.

SIR−tree = Sinv + Stree + Sds (5)

Correspondingly,Sinv involves|L| inverted files, each con-
sisting ofO(|W |) inverted lists. As each document is mapped
to one location, each list hasO(|D|/|L|) TFs and document
IDs. Hence,Sinv = O(|W | · |D|). Next, for |L| locations, the
height of an IR-tree islogf |L|. With the root is at level0,

the number of IR-tree nodes, i.e.,Stree, is O(
∑logf |L|−1

l=0 f l).
Furthermore, while each node is associated with one document
summary, the storage for all document summariesSds is
O(|W | ·

∑logf |L|−1

l=0 f l). Elaborating Equation (5), we obtain a
more detailed estimation as in Equation (6), assuming|L| <
|D| and |L| < |W |.

SIR−tree

= O(|W | · |D|) +O(
∑logf |L|−1

l=0 f l)+

O(|W | ·
∑logf |L|−1

l=0 f l)

= O(|W | · |D|) +O( f
logf |L|−1

f−1 ) +O(|W | · f
logf |L|−1

f−1 )

≈ O(|W | · |D|) +O(|L|) +O(|W | · |L|)
≈ O(|W | · |D|)

(6)
From the equation, we can see the storage overhead forIR-

tree is dominated by that of inverted files. Also,|W | usually
does not increase as|D| grows. For example, LATimes’94 and
Factiva have different numbers of documents but they both
have similar number of document words in the corpus. Thus,
we can consider storage is linear to|D|. Following the same
idea, the storage overheads forHybridR and KR*-tree can be
derived and they produce similar asymptotic storage costs.

Index I/O Cost. There are three types of accesses onIR-
tree that constitute the I/O cost, including, (i) node traversal
to visit nodes that may contain qualified documents, denoted
by IOtree; (ii) lookup of document summaries to get the
documents’ TF and DF statistics with respect to query key-
words, denoted byIOds; and (iii) accesses of inverted files
associated with the leaf nodes in order to evaluate the relevance
of candidate documents to the query, denoted byIOinv. Due
to the small size of node IDs and relevance scores for IR-tree
nodes and candidate documents, we consider that buffers and
priority queues used in the rank-based search algorithm are
small enough to be retained in main memory. The accesses of
those are assumed to incur zero I/O cost. Thus, the I/O cost
for IR-tree IOIR−tree can be expressed in Equation (7).

IOIR−tree = IOtree + IOds + IOinv (7)

To facilitate our discussion, we consider a query with|Wq|
query keywords, a query spatial scopeLq, requesting for
k documents. We assume that all document locations are
disjointed and meanwhile of equal size (i.e.,A/|L|), with
A being the total area of the search space. A fraction|Lq|

A

of an IR-tree tree hierarchy is approximately accessed.7 In
total, there areO(

|Lq|
A

·
∑logf |L|−1

h=0 fh) nodes accessed and this

7We use|Lq | to represent the size of query spatial scopeLq .
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contributes toIOtree. ForA being a constant,IOtree involves
O(|Lq| ·

∑logf |L|−1
h=0 fh). Next, with keyword-based storage

scheme, only|Wq| DF/TF value blocks are loaded. Each block
has entries with respect to each IR-tree node, and thusIOds

takesO(|Wq|·
∑logf |L|−1

h=0 fh) pages. Finally,O(|Lq|) inverted
files are accessed. In other words,O(|Wq| · |Lq|) inverted lists
are accessed, with each having|D|/|L| TF and DF values
examined. Putting all of them together, we obtain the total
I/O cost as in Equation (8).

IOIR−tree

= O(|Lq| ·
∑logf |L|−1

h=0 fh)+

O(|Wq| ·
∑logf |L|−1

h=0 fh) +O(|Wq| · |Lq| · |D|/|L|)
≈ O(|Lq| · |L|) +O(|Wq| · |L|) +O(|Wq| · |Lq| · |D|/|L|)

(8)
Equation (8) well indicates the performance factors. First,

the tree traversal cost (i.e., the first term) is mainly dependent
on the size of a query spatial scopeLq and the size of
an IR-tree which in turn is affected by|L|. Second, the
overhead of document summary lookups (i.e., the second term)
is contributed by the number of queried words|Wq| and the
size of an IR-tree. Finally, the access of inverted files (i.e.,
the third term) is based on|D|, |L|, |Lq| and |Wq|. Notice
that this equation does not takek, the number of requested
documents, into account. Hence, Equation (8) simply reflects
the (worst case) condition thatk is very large and/or all result
documents are sparsely distributed in different leaf nodes.
Of course, whenk is small, the search efficiency improves
since many nodes and their indexed inverted files are skipped
from detailed examinations. On the contrary,HybridR andKR*-
tree produce the same asymptotic I/O costs. However, without
incorporating ranking into the search asIR-tree, both of them
always incur the worst case I/O costs as stated in Equation (8).
This observation is consistent with our experiments to be
presented next.

2) Validation using Synthetic Documents:Here, we adopt
synthetic document sets to validate the observations made from
the cost models onIR-tree. As for comparison, we include
HybridR and KR*-tree. Since |W | is almost constant for a
document set, in our evaluation, we study the factors|L| and
|D| only.

The synthetic document sets are generated as follows. First,
the document locations distribute uniformly over the search
space and we assume each location contains the same number
of documents. Second, we assume there are50, 000 words
in total and each document contains500 words. Regarding
the size of locations, queries and other settings, we followour
simulation settings that will be detailed in the next subsection.
In the following, we first examine the impact of|L| by
changing|L| from 2000 to 8000, with |D| fixed at100, 000.
Then, we evaluate the impact of|D| varying from 100,000 to
1,000,000 while|L| is defaulted at1000.
Effect of |L|. First, we evaluate the performance of different
approaches against the number of locations|L|. The evaluation
results in terms of storage cost and I/O cost are depicted
in Figure 7. In Figure 7(a), the storage incurred byIR-tree
grows linearly with |L|, consistent to the observation made
on Equation (6). The same trends forHybridR and KR*-tree

are also observed. In Figure 7(b), similar linear trends are
observed for all the three approaches. Compared with the other
two, IR-tree performs the best as its cost increases slightly with
|L|. Here,HybridR produces the smallest indices but it incurs
the largest I/O cost.IR-tree and KR*-tree produce indices of
similar size butIR-tree incurs less I/O thanKR*-tree due to the
efficient rank-based search algorithm facilitated by document
summaries.
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Fig. 7. Storage overhead and I/O cost vs.|L| (|S| = 100km ×100km,
k = 100, α = 0.5, |D| = 100, 000)

Effect of |D|. Next, we evaluate the impact of the document
set size (|D|) on storage overhead and index I/O cost. Figure 8
shows the experiment results against|D| with |L| fixed at
1000. It is clear that all approaches follow a linear trend with
|D|, consistent to the behavior determined in our cost model.
Meanwhile, we can also see a significant difference in terms of
magnitudes among all those approaches. This can be analyzed
and explained by the above discussed reasons.
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Fig. 8. Storage overhead and I/O cost vs.|D| (|S| = 100km ×100km,
k = 100, α = 0.5, |L| = 1000)

B. Simulations Based on Real Document Sets

Next, we examine the performance ofIR-tree on two real
document sets, namely, LATimes’94 and Factiva. In what
follows, we first present the experiment setup. Then, we
discuss the evaluation details and experiment results in terms
of search time and search I/O cost against different query
parameters. Finally, we present the storage cost incurred for
different approaches.

1) Experiment Setup:To prepare the sample documents for
experiments, we extract location names from all individual
documents and then geo-code the location names into spatial
regions, following a commonly used practice (e.g., [5], [26]).
Our geo-coder is developed based on a proprietary geographic
ontology that covers about129, 784 worldwide locations [19],
and it employs the focus-detecting algorithm [1] to locate
one location for each document. As different locations cover
different granularity, we associate each location with atype
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(e.g., state, super large city) according to the governmentor
administration types and the population sizes, and assume the
locations of the same type cover the regions of the same size.
In this evaluation, six types of locations are defined and their
sizes are shown in Table II. The overall search space is roughly
set to3000km × 3000km. Take a documentdi that is geo-
coded to Chicago city as an example. The spatial scope ofdi

(i.e.,Ldi
) is set to a square centered atlChicago with the side

length set to200km. Here,lChicago is the point location that
represents the center of Chicago, which is pre-defined by the
internal geographic ontology. Finally, Table III summarizes the
properties of two sample document sets.

TABLE II

LOCATION TYPE AND AREA SIZE

Location type Area size

State 500km× 500km
Super large city 200km× 200km
Large city 100km× 100km
Medium city 80km× 80km
Small city 50km× 50km
County 20km× 20km

TABLE III

PROPERTIES OF SAMPLE DOCUMENT SETS

LATimes’94 Factiva
No. of indexed documents 110,273 380,760
Average no. of words per doc 504 522
No. of indexed document words 90,986 103,286
Total size (MB) 421 2560
No. of locations 2119 4007

We implementIR-tree and store the index on disk using
keyword based storage scheme, denoted byIR-tree. In addi-
tion, we implement the hybrid indexHybridR that presents
an R-tree on top of inverted files andKR*-tree (denoted as
KR*-tree) for comparison. Notice that since the originalKR*-
tree can only support search for documents that containall
query keywords, we improve its query processing algorithm to
handle the search for documents that can containsomequery
keywords, for comparison. The improved algorithm keeps all
the candidate nodes with each containing at leastone of
the query keywords in the node selection process and then
retrieves all the documents from these candidate nodes for
top-k document ranking. In our experiment, we fix the disk
page size at1KB, use 4-byte integers to represent a document
ID, a node ID, a TF value (i.e.,tfmax

w,D or tfw,d), a DF value
(i.e., idfw,D,S), a pointer individually, and use two 4-byte
floating points to store coordinates in a two-dimensional space.
All the algorithms were implemented in Microsoft Visual
C++, and all the experiments were conducted on Intel Xeon
2.0GHz computers equipped with 8GB main memory running
Microsoft Windows Server 2003.

In the following, we present the results of two sets
of experiments. The first set is to examine the search
performance ofIR-tree against that of others in terms of
average search time and average I/O cost. The former is
the average duration between the time the query is issued
to the time all of the result documents are identified over
all of the evaluated queries, and the latter stands for the
average number of index pages accessed by each query.

Since the query time and I/O cost of retrieving the result
documents is independent on the algorithms adopted, they are
excluded from our simulation results. Each experiment runs
100 random queries with each query containing up to four
keywords related to finance, politics, travel and food. Each
query on average has1.91 keywords, and11, 174 documents
of Factiva data set, and10, 437 documents of Latimes’94
data set are textually relevant to a query on average. All the
queries are run independently such that no query results and
intermediate states would be left in the system to benefit
subsequent ones. The second set of experiments is to examine
the index construction cost and the storage overhead of
IR-tree in comparison with that of others.

2) Search Efficiency:In the first set of experiments, we
investigate the impacts of three factors on the search perfor-
mance. They are (i) the size of the query spatial scope|S|;
(ii) the number of requested documentsk; and (iii) the relative
importance of textual relevanceα to spatial relevance. Their
settings are shown in Table IV in which the underlined values
are the default settings. In each experiment, we only vary one
parameter value while fixing the others at their defaults, unless
explicitly stated. We do not report the performance ofHybridI

as it performs much worse thanHybridR for all of the cases.
As an example, for Factiva, whenk = 100, α = 0.5 and
|S| varies from102 to 5002, the average search time and I/O
cost incurred forHybridI is shown in Table V. Comparing
with Fig 10, we can easily find out thatHybridR outperforms
HybridI significantly. The similar results are observed for the
rest experiments. The reason behind is that to compute TF-
IDF we have to find all of the documents located inside
a query spatial scope in order to decide theidf value (as
defined in Equation (2)). AsHybridI maintains R-trees under
inverted files, all of the documents that contain any of the
query keywords have to be accessed while the majority of
them are located outside the query spatial scope.

TABLE IV

EXPERIMENT PARAMETERS

Parameters Values

Spatial scope size (|S|) 10
2, 20

2, 100
2, 500

2(unit: km2)
Request no. of documents (k) 10, 30, 50, 100, 300
The rate of textual rel. (α) 0, 0.25, 0.5, 0.75, and 1

TABLE V

SEARCH PERFORMANCE VS. |S| FOR HYBRIDI (k = 100, α = 0.5)

|S| Search Time(MS) I/O Cost (# Page Accessed)

10
2 622.8 904.2

20
2 723.8 1172.4

100
2 809.8 3927.5

500
2 944.5 9657.1

Effect of k. First, we vary the requested number of document,
k, from 10 to 300 while |S| is fixed at100km ×100km and
α is fixed at0.5. Figure 9 shows the experimental results of
all three approaches in terms of the average search time and
average I/O cost againstk. The first finding is thatHybridR

performs the worst whileIRtree performs the best in all the
cases. Consider the search time.KR*-tree takes around48%
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Fig. 9. Search performance vs.k (|S| = 100km ×100km, α = 0.5)
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Fig. 10. Search performance vs.|S| (k = 100, α = 0.5)
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Fig. 11. Search performance vs.α (|S| = 100km ×100km, k = 100)

of HybridR’s search time whileIRtree takes around20% of
HybridR’s search time under Factiva. For LATimes’94,IR-tree
takes around20% of HybridR’s search time andKR*-tree takes
around41% of HybridR’s search time.

The second finding is that the I/O cost of bothHybridR and
KR*-tree is not affected byk while that of IR-tree increases
as k increases. This is becauseHybridR evaluates all of the
documents that are spatially and textually relevant to the query,
regardless ofk. ThoughKR*-tree only explores the documents
in the leaf nodes which are spatially and textually relevant
to the query, it still needs to retrieve all the documents in
those nodes first to get the top-k documents. However,IR-
tree adopts a ranking-based document retrieval. It evaluates
the documents based on the likelihood that a document will
be included into the final result, and documents which are
more likely to become result documents will be evaluated
earlier. The advantage of rank-based document retrieval over
blind evaluation becomes more significant when the difference
betweenk and the cardinality of the candidate set is larger. As
an illustration, when|S| = 100km× 100km, HybridR retrieves
440 documents andKR*-tree evaluates222 documents for all
thek settings under Factiva data set. On the other hand,IR-tree
evaluates182 documents whenk = 30 and 203 documents
when k = 100. Overall, IR-tree performs much better than
both HybridR andKR*-tree in terms of I/O cost.
Effect of Query Scope Size(|S|). Next, we evaluate the perfor-
mance of the approaches under different query spatial scope

sizes |S| (ranging from10km ×10km to 500km ×500km),
with k fixed at 100 and α fixed at 0.5. The number of
documents that are spatially relevant toS is listed in Table VI,
and the experiment result is plotted in Figure 10.

TABLE VI

SPATIAL SELECTIVITY

|S| LATimes’94 Factiva

10km × 10km 819.5 1872.13
20km × 20km 946.66 2458.17

100km × 100km 2267.86 4808.12
500km × 500km 8045.85 21334.3

In general,IR-tree performs the best whileHybridR does the
worst, i.e., the performance trend is consistent with that under
variousk values. It is observed that the superiority ofIR-tree
overHybridR becomes more significant when|S| increases. In
the figure,IR-tree incurs40% of HybridR’s search time when
|S| = 20km ×20km, but only17% of HybridR’s search time
when|S| = 500km ×500km. This is because the top-k search
algorithm adopted inIR-tree only accesses some, but not all,
of the candidate documents. As|S| becomes larger, more
documents are covered by queries, resulting in larger candidate
sets. Consequently,HybridR suffers from the exhaustive scans
of every single candidate document independent ofk. Consider
the results for Factiva. When|S| = 100km ×100km andk =
100, HybridR and KR*-tree evaluate440 and222 documents,
respectively, whileIR-tree evaluates203 documents. When
|S| = 500km ×500km andk = 100, HybridR and KR*-tree
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evaluate2, 210 and960 documents, respectively, whileIR-tree
evaluates601 documents.
Effect of α. Third, we evaluate the impact ofα with k fixed
at 100 and |S| fixed at100km ×100km. The result is shown
in Figure 11. Again,IR-tree outperforms bothHybridR and
KR*-tree significantly under all cases. Since bothHybridR and
KR*-tree need to rank all of the candidate documents before
determining the top-k relevant documents, their performances
do not change much under differentα values. However,
the performance ofIR-tree drops slightly asα increases.
Notice that even when only textual relevance, but not spatial
relevance, is considered (i.e.,α = 1), IR-tree still performs
much better than others, which indicates that the document
summaries do provide good guidance of document retrieval
based on textual relevance.

3) Index Construction Cost and Storage Overhead:In the
last set of experiments, we evaluate the construction cost and
storage overhead of different index structures, with results
presented in Table VII and Table VIII.IR-tree takes a bit longer
than KR*-tree because it consumes more time to aggregate
the information of DF and TF. In terms of storage overhead,
for KR*-tree and IR-tree, we separate the document summary
from an R-tree to show the storage overheads of the different
components of the index. Notice thatIR-tree requires around
25% extra space compared with the hybrid approaches, since
it maintains the summary information of DF and TF values of
different keywords in the internal nodes. On the other hand,
as KR*-tree only stores the IDs of the tree nodes for each
query keyword, it needs less storages thanIR-tree. Given the
requirement of high search performance in search engines
and the fact thatIR-tree significantly improves the search
performance as shown in the previous set of experiments, the
extra storage overhead is well paid off.

TABLE VII

INDEX CONSTRUCTIONCOST (UNIT: HOUR)

LAtimes’94 Factiva

HybridR 3.25 8.3
KR*-tree 3.35 8.4
IR-tree 4.55 8.6

TABLE VIII

INDEX STORAGE (UNIT: MB)

LAtimes’94 Factiva
Index Addi. Overhead Index Addi. Overhead

HybridR 272 0 901 0
KR*-tree 272 8.44(KR*-list) 901 19(KR*-list)
IR-tree 272 83.1(Doc. Sum.) 901 196(Doc. Sum.)

The cost of adding/deleting documents in theIR-tree is
composed of three parts: (i)adding/deleting the documents
from the inverted files; (ii)spliting/deleting nodes in theR-
tree when node overflow or node underfull is happened;
(iii)updating the document summaries in the nodes. The first
and second part are the same as the updating cost of inverted
files or R-tree. For the third part, since we update the document
summaries of all the nodes on the path from the leaf node
to the root, its cost is linear with the hight of R-tree, i.e.,
O(logf |L|). Due to the space limitation, we ignore the detailed
experiment results of the update cost forIR-tree.

VI. CONCLUSION

In this paper, we focus on the efficiency issue of geographic
document search. We propose an efficient indexing structure,
namely, IR-tree, along with a top-k document search algorithm
for geographic document search.

We are prototyping IR-tree as a public geographic document
search facility and building a testbed based on IR-tree for
future research. We also plan to further enhance the IR-tree
index based on various access patterns.
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