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ABSTRACT 
 

We explore the potential source of returns from technical trading rules at the firm-level by 
examining the cross-sectional relationship between technical trading returns and stock return 
synchronicity. Inspired by Roll (1988) and Morck, Yeung and Yu (2000), we use R2 of a regression of 
individual stock returns on the market return as our measure of synchronicity. If a low R2 is largely 
attributable to noise trading, stocks will have lower synchronicity with market factors and lower R2. 
Low R2 stocks earn higher expected returns, according to De Long, Shleifer, Summers, and 
Waldmann (1989, 1990), or due to limits of arbitrage (Shleifer and Vishny, 1997), a predicted 
relationship which we termed as the Noise Hypothesis. Overwhelming support in prior literature is in 
favor of lower expected returns in low R2 stocks, or the Price-Informativeness Hypothesis according to 
Morck, Yeung and Zarowin (2003). China is our context for investigation; it is the second most 
synchronous market in the study by Morck et al (2000) which has grown to become the world’s third 
largest stock market by market capitalization. We find evidence of a negative relationship between 
returns from technical trading rules and R2 over 1991-2009, in favor of the Noise Hypothesis. Our 
results remain robust after controlling for firm-specific characteristics which include market-to-book, 
size, leverage, dividend payout ratio, turnover and firm age. Thus, an additional simple yet practical 
statistics - the R2 - can guide trading decisions using technical trading rules. Do technical trading rules 
work? Possibly only when the R2 is low, and for larger and younger stocks with lower turnover. 
However, sub-period analysis reveal that when there is an improvement in the information 
environment after the punctuation by an economically significant fundamental shock - the Non-
Tradable Share (NTS) reform in China in April 2005 - technical analysis work better post-NTS reform 
during 2005-09 for stocks with higher R2, consistent with the Price-Informativeness Hypothesis, and 
generally for older and bigger stocks with lower turnover and higher market-to-book ratio. Thus, 
without the guide of R2, investors should take the market prognosis by all these “alchemists” with their 
“voodoo” charts with a heavy dose of salt. We also reconciled the lively debate and extremely mixed 
evidence on the interpretation of R2 and its relationship with the cross-sectional returns of stocks.  
 
 
JEL classification: G11, G12, G14, G15, C1, O16, O53 
Keywords: Stock return synchronicity, R2, idiosyncratic volatility, technical trading rules, price 
informativeness, noise 
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1.  INTRODUCTION AND MOTIVATION 
 Few departures in position in finance are as vexing as that of establishing consistent and 

reliable returns predictability from past returns using technical trading rules and chart patterns across 

markets and over time. While technical analysis, ridiculed as “alchemy” by Burton Malkiel in his 

1973 book “A Random Walk Down Wall Street”, challenges the formidable market efficiency 

orthodoxy (Fama, 1970), there is pervasive use by practitioners and the persistence of belief in 

technical analysis techniques (see survey studies in Park and Irwin, 2007, and Menkhoff and Taylor, 

2007). However, the intellectual vacuum at the core of technical analysis – that efficient markets 

remove possible short-term patterns and autocorrelations in stock returns - has been increasingly filled 

up in recent times by growing receptiveness that markets may not be fully efficient because of noise 

trading (Kyle, 1985; Black, 1986), that herding behavior of short-horizon traders can result in 

informational inefficiency (Froot, Scharfstein and Stein, 1992) and self-fulfilling tendencies (Frankel 

and Froot, 1990), and that prices may be affected by behavioural biases (Barberis, Schleifer and 

Vishny, 1998; Daniel, Kent, Hirshleifer and Subrahmanyam, 1998; Hirshleifer, 2001; Shiller, 2003). 

Such peripheral views get reinforced the more difficult market conditions are, when techniques based 

on profits and valuations failed (Talley, 2002), especially during the recent financial crisis (Avgouleas, 

2009), and with the growing influence of quantitative hedge funds that employ the automation of 

technical trading rules as one of their investment strategies (Lo and Hasanhodzic, 2009). Still, the 

profitability of using technical trading rules based on past prices remains an open empirical question, 

albeit an extensively examined one.  

We tread a different path in our study by exploring the potential source of the returns of 

technical trading rules at the firm-level, an issue that has not been commonly explored in prior studies. 

We are motivated to examine this because of the parallel observation of a reported decline in technical 

trading profitability in U.S. over time (Sullivan, Timmermann and White, 1999; LeBaron, 2000; 

Kwon and Kish, 2002; Ready, 2002; Schulmeister, 2009), and a lower synchronicity of U.S. stock 

prices, or higher idiosyncratic volatility of individual firms, over time as the U.S. economy developed 

(Morck, Yeung and Yu, 2000, hereafter termed MYY).  

The popular explanation for this profitability decline in deploying technical trading rules is 

that markets have become more efficient and hence such opportunities have disappeared. This is 

especially so with the advent of cheaper computing power to spark the proliferation of computer-

driven trading, the growth of electronic communication networks (ECNs) that allow thousands of buy 

and sell orders to be matched at the speed of light without any human intervention1; the increasing 

popularity of “dark pool” platform where buyers and sellers can anonymously match large blocks of 

stock and keep details of the deals and prices concealed to prevent distorting prices in the broader 

                                                           
1 According to the New York Stock Exchange daily public disclosure, program trading accounts for about 20-25% and as 
high as 80% of the trading volume on that exchange every day. 
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market; and the lower transaction costs; all of which are helping to remove possible short-term 

patterns and autocorrelations in stock returns. 

Similar to MYY, Campbell, Lettau, Malkiel and Xu (CLMX, 2001) also found a secular 

decline in stock return synchronicity in the United States from 1960 to 1997, but they do not link it to 

cross-sectional returns. This time-series observation suggests that there could be a cross-sectional 

relationship between technical trading profitability and stock return synchronicity at the firm-level. 

Thus, the source of the profitability (or losses) of technical trading rules could be due to varying 

degrees of firm-level synchronicity with the market, a relationship that has not been explored in prior 

literature.  

We like to emphasize that our study is more concerned about investigating the source of the 

returns from the technical trading rules by testing its association with stock return synchronicity, 

rather than focusing on establishing the highly contentious point of whether the technical trading rules 

are indeed profitable and robust to problems such as data-snooping biases (Sullivan, Timmerman and 

White, 1999), since we acknowledge that these trading rules might perhaps not work for certain 

stocks at the firm-level, and we want to know what are the predictors that determine the trading 

profits or losses from applying these technical rules. 

Inspired by Roll (1988), MYY is the first in a series of papers that uses the R2 of a regression 

of individual stock returns on the market return as a measure of synchronicity, or the extent to which 

the stock prices of individual firms within a country move together. R2 is also the ratio of 

idiosyncratic volatility to systematic volatility; idiosyncratic volatility is thus the inverse measure of 

synchronicity. In sum, lower R2, or higher idiosyncratic volatility of individual firms, indicates lower 

synchronicity of stock returns. Roll (1988) offers an interesting discussion of R2, observing that the 

low R2 statistics among U.S. stocks and for common asset pricing models is due to vigorous firm-

specific return variation not associated with identifiable news releases and public information. He 

concludes that this implies “either private information or else occasional frenzy unrelated to concrete 

information (noise)”. The incorporation of either firm-specific information or noise both result in a 

lower R2, but these two effects lead to starkly different predictions of the relation between R2 and 

expected stock returns: 

(a) The Price-Informativeness Hypothesis: If a low R2 is largely resulted from the firm’s 

environment causing the stock prices to aggregate more firm-specific information, greater 

firm-specific uncertainty is resolved such that market factors should explain a smaller 

proportion of the variation in stock returns, increasing the realized historical idiosyncratic 

volatility, and investors holding these stocks should require lower expected returns.  

(b) The Noise Hypothesis: If a low R2 is largely attributable to the trading by noise traders, stocks 

will have lower synchronicity with market factors and lower R2 because the changes in stock 

prices cannot be fully justified by changes in fundamental risks reflected in the common 
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factors, and investors should earn higher expected returns according to De Long, Shleifer, 

Summers, and Waldmann (1989, 1990). 

Both finance and accounting research had tilted overwhelmingly in favor of the Price-

Informativeness Hypothesis, in that R2 or stock return synchronicity is a measure for how much 

private information is impounded into stock prices. When informed trading activity is generated, it 

contributes to the lower R2 (or increase in idiosyncratic volatility). This is in the spirit of the 

Grossman and Stiglitz (1980) argument who predict that improving the cost-benefit trade-off on 

private information collection leads to more extensive informed trading and to more informative 

pricing. In a market with many risky stocks, the ones with cheaper information about their 

fundamental values are more attractive to traders. Accordingly, traders acquire more information 

about these stocks and their prices are more volatile and more informative than the prices of stocks 

with more costly information. Private information is turned into public information, thereby reducing 

the adverse selection problem of uninformed investors trading with informed investors. 

At the country-level, MYY (2000) find that stock prices are more synchronous (i.e. have 

higher R2) in emerging markets which are low-income countries with weak protection of investors’ 

and property rights; weak institutions discourage the acquisition of information about individual 

stocks and such markets lack informed traders because risk arbitrageurs find it more costly to keep 

their profits in such economies. However, there are mixed results when the country-level findings are 

examined at the firm-level. On one hand, Durnev, Morck, Yeung and Zarowin (2003) find evidence 

that firm with lower R2 exhibit higher associations between current returns and future earnings, 

suggesting that lower R2 is indicative of better informationally-efficient prices. Piotroski and 

Roulstone (2004) find that both institutional and insider trading are positively associated with 

idiosyncratic volatility. In other words, stocks with higher institutional trading and insider trading 

have lower R2, since institutional trading accelerates the incorporation of firm-specific information 

into stock prices, and consequently, lowers R2.  

On the other hand, in a widely-cited paper, Ang, Hodrick, Xing, and Zhang (2006) report that 

stocks with low R2 (or high idiosyncratic volatility) is associated with “abysmally low returns”. The 

average differential between quintile value-weighted portfolios of the lowest and highest idiosyncratic 

volatility is about -1.06 percent per month. Ang (2009) also confirm that the link also exists in 23 

other developed markets. The Noise Hypothesis is originated by Shiller (1981) who finds that the 

level of stock price volatility is too high to be explained by the volatility in the underlying 

fundamentals, e.g. dividends. Other studies suggest that behavioural factors, bubbles, herding, and 

other non-fundamental factors affect stock return volatility (see Shleifer (2000) for a review), and 

ultimately the usefulness of the synchronicity measure as a gauge of firm-specific information. 

Behavioural models, like Barberis and Huang (2001) predict that lower R2 stocks earn higher 

expected returns. In environments with frictions and incomplete information (Merton, 1987) and 
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limits to arbitrage (Shleifer and Vishny, 1997), R2 (or the idiosyncratic volatility of a stock) is linked 

to its expected return.  

 Thus, if there is a cross-sectional relationship between technical trading profitability and 

stock return synchronicity, the direction is unclear due to the two competing hypotheses.  

Still, the U.S. ranks as having the lowest synchronicity amongst the 40 countries in MYY 

(2000) study and there might not be a great deal of cross-sectional variation in synchronicity at the 

firm-level. China is the second most synchronous market in 1995 in MYY (2000) study, where over 

80 percent of stocks often move in the same direction in a given average week. There are also several 

important stylized facts about China that made it an economically important ground for investigation. 

China’s GDP per capita was $455 in 1995 in the MYY (2000) study and has since surged more than 

14-fold to $6,546 in 2009. While it is still an “emerging market” and “low-income country”, Shanghai 

has the world’s third largest stock market by market capitalization at around $3 trillion in its $3.2 

trillion economy, briefly overtaking Tokyo in July 2009. Shares worth $5.01 trillion changed hands on 

the Shanghai Stock Exchange in 2009, compared with $4.07 trillion on the Tokyo Stock Exchange, 

according to data compiled by Bloomberg. Only the NASDAQ stock market and the New York Stock 

Exchange had higher trading volumes than Shanghai. As an emerging market, China has a very high 

ratio of stocks changing hands. Wong (2006) reported that the turnover velocity of stocks, defined as 

the total transaction volume divided by the total number of tradable shares, was about 500 percent, 

suggesting the prevalence of noise trading in China. Moreover, some countries, including China, place 

asymmetric restrictions on the price formation process, such as short-selling constraints, which 

impede the impounding of bad news into prices in a timely manner and contribute to the high co-

movement of stock prices (Miller, 1977; Bris, Goetzmann and Zhu, 2003). Jin and Myers (2006) find 

that such synchronous markets are more prone to crashes.  

Using a comprehensive sample of China stocks since the inception of the Shanghai Exchange 

in January 1991 to December 2009, we show that the returns from technical trading rules has a 

negative association with stock return synchronicity, or the R2. Thus, we find evidence in favor of the 

Noise Hypothesis in that stocks with lower R2 earn higher profits from technical trading rules. 

Ranking the sample into 10 decile portfolios by R2, we find that the technical trading returns in N1 

(lowest R2 portfolio) exceeds that in N10 (highest R2 portfolio) by an annualized 7-11 percent over the 

sample period, depending on the type of technical trading rule that is employed. Our results remain 

robust even after controlling for firm-specific characteristics which include market-to-book, size, 

leverage, dividend payout ratio, turnover and firm age.   

Thus, an additional simple yet practical statistics - the R2 - can guide trading decisions using 

technical trading rules. Imagine that the Bloomberg terminal, Yahoo Finance and financial websites 

should have an additional statistics – the synchronicity measure – to allow investors and traders to 

assess how effective their technical analysis can be; for instance, if the informational environment is 
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generally noisy, then the technical traders should focus their efforts on less synchronous or low R2 

stocks to increase their probability of generating abnormal profits.  

Do technical trading rules work? Possibly only when the R2 is low, and for larger and 

younger stocks with lower turnover. However, sub-period analysis reveal that when there is an 

improvement in the information environment after the punctuation by an economically significant 

fundamental shock - the Non-Tradable Share (NTS) reform in China in April 2005 - technical analysis 

work better post-NTS reform during 2005-09 for stocks with higher R2, consistent with the Price-

Informativeness Hypothesis, and generally for older and bigger stocks with lower turnover and higher 

market-to-book ratio. Thus, without the guide of R2, investors should take the market prognosis by all 

these “alchemists” with their “voodoo” charts with a heavy dose of salt. We also reconciled the lively 

debate and extremely mixed evidence on the interpretation of R2 and its relationship with the cross-

sectional returns of stocks. 

The rest of the paper is organized as follows. Section 2 explores the literature review and 

hypotheses development. Section 3 describes the data, variable description and construction, and 

methodology. Section 4 presents the empirical results, while Section 5 examines the robustness of the 

results in sub-periods. Section 6 concludes. 

2.  LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT 
2.1 Technical Trading Rules 

Two empirical papers were particularly important in supporting the predictive capabilities of 

technical trading rules. Brock, Lakonishok and LeBaron (BLL, 1992) found significant technical 

trading profits by utilizing 26 trading rules to a very long data series of the Dow Jones index daily 

prices from 1897 to 1986. Lo, Mamaysky and Wang (2000) used a non-parametric kernel regression 

pattern recognition method to automate the evaluation of technical analysis trading techniques over 

the period from 1962 to 1996, and found strong evidence that there is incremental informational and 

practical value in technical analysis, particularly in NASDAQ stocks.  

BLL (1992) results remain robust even after correcting for the leptokurtic, conditionally 

heteroskedastic, autocorrelated, and time-varying distribution in stock returns using the model-based 

bootstrap technique to overcome the weaknesses of conventional t-tests. However, Sullivan, 

Timmerman and White (STW, 1999) pointed out in that data-snooping biases can be severe when 

evaluating technical rules, which can lead to the false conclusion that technical trading strategies can 

predict future price movements. In particular, STW (1999) repeated BLL (1992) study by utilizing 

White’s (2000) Reality Check bootstrap methodology to correct for data-snooping biases and find that 

the trading rules examined do not generate superior out-of-sample performance. BLL acknowledged 

that possible data snooping biases remain when they use a range of rules chosen ex post. They argue 

that such dangers are minimized by the deliberate choice of a simple class of rules that has been in 

common use for a long period of time. Interestingly, STW acknowledged that they found BLL in-

sample results to be robust to data-snooping over the 100-year period in BLL (1992). 
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However, our study is more concerned about investigating the source of the returns from the 

technical trading rules by testing its association with stock return synchronicity, rather than focusing 

on establishing the highly contentious point of whether the technical trading rules are indeed 

profitable and robust to problems such as data-snooping biases (Sullivan, Timmerman and White, 

1999), since we acknowledge that these trading rules might perhaps not work for certain stocks at the 

firm-level, and we want to know what are the predictors that determine the trading profits or losses 

from applying these technical rules. 

There are surprisingly few papers that examine the value of technical analysis in China. Chen 

and Li (2006) found weak evidence for technical trading profits over the period from 1994 to 2002, 

but only for 39 companies which cover “23 percent of the daily turnover of the entire A-share market”. 

There are some supporting evidence that technical analysis add value in emerging markets 

(Bessembinder and Chan, 1995; Ito, 1999), but Ratner and Leal (1999) found the opposite results after 

correcting for data-snooping bias and adjusting for round-trip transaction costs, while Chen, Huang 

and Lai (2009) found there is a sharp decline in trading profits after implementing a one-day lag 

scheme to account for non-synchronous trading bias in eight Asian markets. These studies exclude 

China in their analysis.  

Given the extraordinary growth in China to become the world’s third largest stock market in 

recent years which were not in the sample period of most prior studies, it should be interesting to fill 

the gap in the extant literature findings by examining the source of returns predictability from 

deploying technical trading rules in a highly synchronous but fast-changing market like China.  

2.2 R2 or Stock Return Synchronicity 
The dominant interpretation of R2, or stock return synchronicity, is an important issue 

because prior research suggests that more informative stock prices, measured by lower R2, lead to 

better resource allocation, and therefore functional efficiency with efficient stock prices directing 

capital to the highest-value users, which has implications for economic growth (Tobin, 1982; Wurgler, 

2000; Durnev, Morck, and Yeung, 2004, Wang, Wu and Yang, 2009). 

Since the influential studies by MYY (2000) and CLMX (2001) documenting the trend of 

lower R2 over time, many proposed explanations have been instrumental in supporting the Price 

Informativeness story, that is, low R2 is a reasonable measure for the quality of the information 

environment at either the country-level or the firm-level.  

In particular, at the country-level, MYY find that stock prices are more synchronous (i.e. have 

higher R2) in emerging markets which are low-income countries with weak protection of investors’ 

and property rights; weak institutions discourage the acquisition of information about individual 

stocks and such markets lack informed traders because risk arbitrageurs find it more costly to keep 

their profits in such economies. At the firm-level, Durnev, Morck, Yeung and Zarowin (2003) find 

evidence that firm with lower R2 exhibit higher associations between current returns and future 

earnings, suggesting that lower R2 is indicative of better informationally-efficient prices. Piotroski and 
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Roulstone (2004) find that stocks with higher institutional trading and insider trading have lower R2. 

There is also evidence that Increased institutional ownership (Bennett, Sias, and Starks, 2003; Xu and 

Malkiel, 2003) is associated with lower R2. The idea is that Institutional trading contributes to private 

information collection and accelerates the incorporation of firm-specific information into stock prices 

(Hartzell and Starks, 2003), and provides a better explanation for a lower R2. Hutton, Marcus and 

Tehranian (2010) find that R2 decreases with information transparency. Ferreira and Laux (2007) 

show that firms with better corporate governance (as measured by having fewer anti-takeover 

provisions) display higher trading activity, better information about future earnings in stock prices, 

and lower R2. Irvine and Pontiff (2009) found that lower R2 could be due to product markets 

becoming more competitive.  

In a widely-cited paper, Ang, Hodrick, Xing, and Zhang (2006) report that stocks with low R2 

(or high idiosyncratic volatility) is associated with “abysmally low returns”. The average differential 

between quintile value-weighted portfolios of the lowest and highest idiosyncratic volatility is about -

1.06 percent per month. Ang (2009) also confirm that the link also exists in 23 other developed 

markets.  Jiang, Xu and Yao (2009) find that firms with past low R2 (or high idiosyncratic volatility) 

tend to have more negative future unexpected earnings surprises, leading to their low future returns.  

There is overwhelming support for the Price Informativeness story of R2. 

The Noise Hypothesis is originated by Shiller (1981) who finds that the level of stock price 

volatility is too high to be explained by the volatility in the underlying fundamentals, e.g. dividends. 

West (1988) provides a theoretical model in which low R2 is associated with less firm-specific 

information and more noise in returns. In West’s model, relatively more information results in prices 

being closer to fundamental values, and the release of new information results in smaller price 

movements and lower R2. West empirically tests his model and reports results indicating that lower R2 

is positively associated with bubbles, fad, and other non-fundamental factors. Recent evidence by 

Brandt, Brav, Graham and Kumar (2010) show that the trend of lower R2 is a speculative episodic 

event driven by low-priced stocks dominated by retail traders and that there is a reversal to higher R2 

(or lower idiosyncratic firm volatility) during the 2000s, using small trades data from ISSM/TAQ and 

brokerage data. Other direct or implicit opposing explanations of the Price Informativeness story view 

include firm fundamentals become more volatile, such as an increase in the variance of return on 

equity (Wei and Zhang 2006) or opaqueness in financial accounting information (Rajgopal and 

Venkatachalam 2006); newly listed firms becoming increasingly younger (Fink et al. 2009) and 

riskier (Brown and Kapadia 2007).  

Rebutting the widely-cited claims by Ang et al (2006), Fu (2009) reports that expected 

idiosyncratic volatility, estimated using the EGARCH model, is positively correlated with stock 

returns. Duffee (1995) found a positive contemporaneous relation between realized monthly 

idiosyncratic volatility and stock returns. Bali and Cakici (2008) show that the results in Ang et al 

(2006) are sensitive to the methodology used to form volatility portfolios and to the data frequency 
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used to estimate idiosyncratic volatility, and that the negative relationship between idiosyncratic 

volatility and expected returns disappears in the equal-weighted returns. Huang, Liu, Rhee and Zhang 

(2010) point out that the results in Ang et al (2006) may be driven by monthly return reversals. 

Other studies supporting the Noise Hypothesis suggest that behavioural factors, bubbles, 

herding, and other non-fundamental factors affect stock return volatility (see Shleifer (2000) for a 

review), and ultimately the usefulness of the synchronicity measure as a gauge of firm-specific 

information. Behavioural models, like Barberis and Huang (2001) predict that lower R2 stocks earn 

higher expected returns. In environments with frictions and incomplete information (Merton, 1987) 

and limits to arbitrage (Shleifer and Vishny, 1997), R2 (or the idiosyncratic volatility of a stock) is 

linked to its expected return. Merton (1987) suggests that, in the presence of incomplete markets 

where investors have limited access to information, firm-specific risk cannot be fully diversified away, 

and thus firms with low R2 require higher average returns to compensate investors for holding 

imperfectly diversified portfolios. In the influential “limits of arbitrage” argument by Shleifer and 

Vishny (1997), arbitrageurs tend to avoid stocks with low R2 (or high idiosyncratic volatility) during 

the holding period, allowing these stocks to enjoy higher expected returns whose mispricing are not 

arbitraged away. These arbitrageurs care more about the short-run performance, because they use 

capital provided by investors, who tend to withdraw funds if the short-run performance is poor. Thus, 

they desire to keep the ratio of reward-to-risk over shorter horizons high and are less willing to take 

large positions in these stocks and thus the largest mispricing are found in these stocks which receive 

the least arbitrage resources.  

In addition, Barberis, Shleifer and Wurgler (2005) also find significant changes in firms’ R2 

values surrounding additions and deletions to the S&P 500 Index in the U.S., consistent with market 

frictions influencing synchronicity. Since additions and deletions to indices do not signal new 

information to the market regarding firms’ fundamentals, the changes in firm’s R2 
values surrounding 

changes in the composition of indices is inconsistent with an information-based explanation of the R2 

measure. Consistent with the noise-in-returns interpretation of the R2 
measure, Kumar and Lee (2006) 

find that noise traders (uninformed retail investors) have a significant influence on stock price 

synchronicity. Thus, the findings of Barberis et al. (2005) and Kumar and Lee (2006) indicate that 

market frictions, i.e., factors unrelated to information, have a significant influence on stock price 

synchronicity. Other research supporting the Noise Hypothesis include Ali, Hwang and Trombley 

(2003), Mashruwala, Rajgopal, and Shevlin (2006) and Zhang (2006). 

2.3 Hypotheses 
We posit that the source of the profitability (or losses) of technical trading rules could be due 

to varying degrees of firm-level synchronicity with the market, a relationship that has not been 

explored in prior literature. Yet, in the cross-sectional relationship between technical trading 

profitability and stock return synchronicity, the direction is unclear due to the two competing 

hypotheses, namely Price Informativeness Hypothesis and Noise Hypothesis. Given that China 
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appears to be a “noisy” market, we posit that there is a positive relationship in the regression of 

technical trading returns on ψi, which is the inverse measure of R2 or lack of stock return 

synchronicity (we will explain the rationale for transforming the variable in Section 3.2), that is, a 

higher ψi or lack of stock return synchronicity (or lower R2) is associated with higher technical trading 

returns. In other words, the coefficient on the synchronicity measure ψi is positively significant.  

Our paper is similar in spirit to Teoh, Yang and Zhang (TYZ, 2009) and Chang and Luo 

(2010) who find bigger anomalies among lower R2 stocks. The presence of anomalies indicates that 

stock prices are inefficient with respect to information about future cashflows that are contained in the 

predictive variables explored by TYZ (2009)2. Their findings suggest that stocks whose returns have 

low R2 may incorporate less information about future fundamentals, and are more difficult for 

investors to analyze accurately. Using a much larger sample size and different methodology compared 

to Durnev et al (2003), TYZ (2009) also find that firms with lower R2 have smaller future earnings 

response coefficients (ERCs), indicating that their current stock price incorporates a smaller amount 

of future earnings news, and thus more uncertainty about future earnings news remains unresolved, 

which is inconsistent with Durnev et al (2003). In addition, low R2 firms have worse information 

environment as measured by earnings quality, earnings persistence, and earnings predictability, and 

have higher probability of distress. These results imply that low R2 stocks incorporate less information 

about future cashflows and thus inconsistent with the Price-Informativeness Hypothesis and more 

consistent with the Noise Hypothesis. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The declining synchronicity of China stock prices, or the declining fraction of China stock return variation 
explained by the market as measured by R2, the statistic from running a market model regression using weekly returns 
including dividend income from 1991 to 2009, using our sample size of 740 companies which represents around 90% of the 
population of stocks on Shanghai Stock Exchange in terms of market capitalization. Returns and indexes data are from 
Datastream. Note that the R2 in MYY (2000) for China in 1995 was 45.3% reported in their Panel C of Table 2 which is 
consistent with MYY.  

                                                           
2 They are (1) the post-earnings announcement drift or PEAD (Ball and Brown, 1968; Bernard and Thomas, 1990); (2) 
Value/Price or V/P (Lee, Myers and Swaminathan, 1998); (3) accruals (Sloan, 1996); and (4) net operating assets 
(Hirshleifer, Teoh and Zhang, 2004). 
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Figure 1 graphs the average R2 across stocks, based on weekly returns from 1991 to 2009. We 

observe an overall declining trend in R2. This brought us to the attention on whether there are any 

time-series dynamics that could possibly affect the cross-sectional relationship between stock return 

synchronicity and technical trading returns. We examine this issue further in Section 4. 

We like to emphasize that we do not explore the time-series dynamics on why R2 is declining 

over time; rather, we are more interested in what this time-series trend for our main predictor in the 

synchronicity measure implies for the direction of the cross-sectional relationship between stock 

return synchronicity and technical trading returns. Specifically, we want to find out whether or not 

there is a structural break in the beta coefficient for the synchronicity measure ψi. If so, it will be 

unclear whether the relationship of higher returns from lower R2 stocks still holds.  

But what sub-period(s) should we investigate to assess whether our results are robust? To 

avoid data-snooping biases (Lo and MacKinlay, 1990), we ask if there are any economically 

significant fundamental shocks to the information environment faced by stocks in China over the 

period. Indeed, there is the important Non-Tradable Share (NTS) reform that was announced in April 

2005. Following the NTS reform in 2005, the market capitalization of Shanghai Stock Exchange grew 

tremendously from around $380 billion to around $3 trillion at the end of 2009. Average R2 from Jan 

1991 to April 2005 in the pre-NTS reform period was 37 percent as compared to 21 percent in the 

post-NTS reform period from May 2005 to December 2009.  

We hypothesize that the informational environment in China should improve in the post-NTS 

reform period during May 2005-09 to the extent that R2 is now a measure that is more consistent with 

the Price-Informativeness Hypothesis. In other words, the NTS reform will lead to greater 

transparency for stocks and the cost-benefit trade-off on private information collection is improved, 

leading to more extensive informed trading and more informative pricing, as in the spirit of Grossman 

and Stiglitz (1980). Traders acquire more information about stocks and their prices are more volatile 

(equivalently, lower R2) and more informative than the prices of stocks with more costly information. 

Thus the positive coefficient on the synchronicity measure ψi for the overall period from 1991-2009 

should flip to the negative sign during the post-NTS sub-period. As a result, we hypothesize that low 

R2 stocks will now have lower returns from the technical trading rules (not higher as were under the 

Noise Hypothesis) after the NTS reform where there is an economically significant fundamental shock 

to the information environment.  

3.  DATA, VARIABLE DESCRIPTION AND CONSTRUCTION, AND RESEARCH 
METHODOLOGY  

We draw the data for our study from the Datastream database. Our initial sample includes all 

847 firms traded on the Shanghai Composite Index since the inception of the Shanghai Stock 

Exchange from 2 Jan 1991 to 31 December 2009. After removing firms with more than 100 days of 

zero returns in any year in the construction of our returns from technical trading rules, requiring firms 

to have a minimum of 40 weeks of non-zero returns to estimate our synchronicity measure ψi, and that 
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the sample to contain data for the control variables which include Market-to-Book, Size, Leverage, 

Dividend Payout ratio, Turnover, and Firm Age, we are left with a final sample of 740 firms that 

represent, on average, 90 percent of the initial population of stocks in terms of market capitalization. 

3.1  Technical Trading Rules 
Following BLL (1992), we evaluate three types of rules: Variable Length Moving Average 

(VMA) rules, Fixed Length Moving Average (FMA) rules, and Trading Range Break (TRB) rules 

(resistance and support levels). BLL (1992) provide additional description and motivation for these 

trading rules, as well as some historical perspective on their usage:  

(a) Variable Length Moving Average (VMA) and Fixed Moving Average (FMA): Moving average 

trading models take advantage of positive serial correlation in equity returns. A trading signal 

usually follows a large movement in stock price under the assumption that the autocorrelation 

bias in the time series trend will continue in the same direction. The VMA rules analyzed are 

as follows: 1±50, 1±150, 1±200, where the 1 represents the number of days in the short 

moving average, and the 50, 150 and 200 represent the number of days in the long moving 

average. Buy (sell) signals are emitted when the short-term average exceeds (is less than) the 

long-term average by at least a pre-specified percentage band (0 percent or 1 percent). This 

test is repeated daily with the changing moving averages throughout the sample. The buy 

position is a long position in the stock and is maintained until a sell signal is indicated. With 

the sell signal, the investor is out of the market. A rule is effective if the average buy minus 

sell (buy-sell) signal is positive, significant, and greater than a buy and hold alternative after 

trading costs. BLL (1992) evaluate each rule with a trading band of zero and one percent of 

returns. A zero band classifies each return to emit either a buy or sell signal, while a band of 

one would emit a buy or sell signal only when the short moving average crosses the trading 

band. With a band of zero, this method classifies all days into either buys or sells. Buy (sell) 

signals are emitted when the short moving average cuts the long moving average from below 

(above) and moves beyond it by the pre-specified band. Once a signal is emitted, VMA rules 

call for the position to be maintained until the short and long moving averages cross again, 

while FMA rules hold the position for a fixed number of days. We evaluate FMA strategies 

with fixed holding periods of ten days. 

(b) Trading Range Break (TRB): TRB rules involve comparing the current price to the recent 

minimum and maximum. TRB rules emit buy signals when the current price exceeds the 

recent maximum by at least a pre-specified band, and emit sell signals when the current price 

falls below the recent minimum by at least the pre-specified band. The rationale for this rule 

is that when the current price reaches the previous peak, a great deal of selling pressure arises 

because many people would like to sell at the peak. However, if the price exceeds the 

previous peak, it is indicated that the upward trend has been initiated. Like BLL (1992), we 

evaluate separate TRB rules where recent minimums and maximums are defined as the 
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extreme observations recorded over the prior 50, 150, and 200 days, respectively. We use 

bands of 0 and 1 percent, making for a total of six TRB combinations, and then evaluate each 

TRB rule using fixed investment horizons of 10 days. 

3.2  Synchronicity Measure ψi 
MYY (2000) is the first in a series of papers that uses the R2 of a regression of individual 

stock returns on the market return as a measure of synchronicity, or the extent to which the stock 

prices of individual firms within a country move together. R2 is also the ratio of idiosyncratic 

volatility to systematic volatility; idiosyncratic volatility is thus the inverse measure of synchronicity. 

Thus, lower R2, or higher idiosyncratic volatility of individual firms, indicates lower synchronicity of 

stock returns. Following MYY (2000), we estimate firm-specific return variation using a two-factor 

international model which includes both the local and U.S. market index returns: 

rit = αi + β1rmt + β2rust + eit          (1) 

using weekly return data; where rit is the return of stock i in period t; rmt is the value-weighted local 

market return; and rUSt is the value-weighted U.S. market return.  

Like MYY (2000) and other international studies, we use weekly returns to deal with 

infrequent trading in international markets. Following Dasgupta et al (2010), we compute the stock’s 

lack of synchronicity as the ratio of idiosyncratic volatility to total volatility σ2
ie=σ2

i that is precisely 1-

R2
i of Eq. (1). Given the bounded nature of R2; we conduct our tests using a logistic transformation of 

1-R2
i: 

ψi = log(1-R2
i)            (2) 

Thus, our predictor variable ψi measures idiosyncratic volatility relative to market-wide 

variation, or the lack of synchronicity with the market. One reason for scaling idiosyncratic volatility 

by the total variation in returns is that firms in some industries are more subject to economy-wide 

shocks than others, and firm-specific events may be correspondingly more intense. Additionally, this 

scaling and transformation allow for comparability to other studies. We do not add control variables 

to our price regression in (1) because MYY (2000) view the R2 as a summary measure of the amount 

of information reflected in returns. 

3.3  Relationship between Stock Return Synchronicity and Returns from Technical Trading 
Rules 
We examine the relationship between technical trading returns and stock return synchronicity 

R2 by estimating the following basic model:  

TTRi = α + β ψi + γ Firm Controlsi + εi          (3) 

where TTRi is Technical Trading Returns calculated using the methodology by BLL (1992) discussed 

in section 2.1; the synchronicity measure ψi is estimated from a market model that was discussed in 

section 2.2; Firm Controls include those commonly used in the literature, namely, Size (defined as the 

logarithmic of market value); Leverage (net debt over book equity); Dividend Payout ratio (dividend 

over net profits); Turnover (annual volume over number of shares outstanding); Firm Age (the 
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number of years the company first appears on the Shanghai Exchange). We control for turnover as 

volume may provide relevant information if prices do not react immediately to new information 

(Blume, Easley and O’Hara, 1994). 

The Price-Informativeness Hypothesis supports the view that expected returns from the 

predictor variable would be low; thus, the beta coefficient on the synchronicity measure ψi will be 

negative, that is, a higher ψi (lower R2) is associated with lower returns from the technical trading 

rules. On the other hand, a positive beta coefficient on ψi is consistent with the Noise Hypothesis, that 

is, a lower R2 is associated with higher returns. 

4.  EMPIRICAL RESULTS 
4.1  Summary Statistics of Sample Characteristics and Returns from Technical Trading 
Rules 

The summary statistics of R2, other sample characteristics and the average return from the 

three technical trading rules are reported in Panel A of Table 1. The average R2 is 25 percent, which is 

a significant decline from the 45 percent reported in MYY (2000). Panel B of Table 1 reports the 

cross-sectional average of the correlation among the sample characteristics; most of the sample 

characteristics do not appear to be highly correlated with our main synchronicity predictor ψi.  

The average annualized mean buy returns from the three technical trading rules are reported 

in Panel C of Table 1. Because China does not allow for short-selling of stocks, we report only the 

mean buy returns generated from the buy signal in the technical trading rules. They range from 22-42 

percent (22-24 percent for VMA, 17-24 percent for FMA, and 22-47 percent for TRB), which is 

significantly higher than the unconditional annualized average return of 8 percent, and also higher 

than the 12 percent reported by BLL (1992) for U.S. Dow Jones index.  

Table 1: Summary Statistics  
Panel A presents the summary statistics of the sample characteristics. The construction details are described in Section 2. 
Panel B reports the cross-sectional average of the correlation among the sample characteristics. Results in Panel C are for 
daily data from January 1991 to December 2009 where mean buy returns using technical trading rules are annualized. Rules 
are identified as (short, long, band) where short and long are the short and long moving averages respectively, and band is 
the percentage difference that is needed to generate a signal. Because China does not allow for short-selling of stocks, we 
report only the mean buy returns generated from the buy signal in the technical trading rules. Note that the unconditional 
annualized average return is 8%. 
 
Panel A: Summary Statistics 
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Panel B: Pearson Correlations 

 
 
Panel C: Results for the Technical Trading Rules (VMA, FMA and TRB) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2  Properties of R2 Deciles and Univariate Analysis  
 From Table 2, we find that low R2 stocks are generally smaller, younger, have a lower 

dividend payout ratio, and a higher leverage ratio. According to Baker and Wurgler (2006), such 

stocks are more difficult to value and their prices tend to be affected by investor sentiment, and they 

are more difficult to arbitrage, which could potentially result in these stocks having higher expected 

returns to compensate investors as argued earlier in the “limits of arbitrage” insight proposed by 

Shleifer and Vishny (1997) and consistent with the Noise Hypothesis. Interestingly, there is not any 

significant difference between the lowest decile R2 stocks and the highest ones in the market-to-book 

ratio. Also, high R2 stocks have a higher turnover ratio. 

In addition, returns from technical trading rules have a negative association with stock return 

synchronicity, or the R2. Thus, we find evidence in favor of the Noise Hypothesis in that stocks with 

lower R2 earn higher profits from technical trading rules. Sorting the sample by R2 into deciles of 10 

portfolios, we find that the technical trading returns in N1 (lowest R2 portfolio) exceeds that in N10 

(highest R2 portfolio) by an annualized 10-37 percent over the sample period, depending on the type 

of technical trading rule that is employed. In particular, the spread differential between the highest and 

lowest R2 portfolios is the highest for the TRB technical trading rule.  

In the next section, we carry out a multivariate regression analysis of equation (3) outlined in 

Section 2.3 to control for the firm-level characteristics (market-to-book, size, leverage, dividend 
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payout ratio, turnover, and firm age) in order to ensure that our findings of the negative relationship 

between technical trading returns and stock return synchronicity are robust. 

Table 2: Characteristics of R2 Portfolios 
Stocks are sorted into deciles of 10 portfolios based on the level of their average R2 over the sample period from low (L) to 
high (H).  

 
 
4.3 Multivariate Regression 

The multivariate analysis of the regression model from Section 2.3 to investigate the 

relationship between technical trading returns and synchronicity is presented in Table 3. The 

coefficient on the synchronicity measure ψi remains positive and significant after controlling for a 

battery of firm-level characteristics that include Market-to-Book, Size, Turnover, Leverage, Dividend 

Payout and Firm Age across all three technical trading rules. Thus, the findings are consistent with the 

Noise Hypothesis in that stocks with higher ψi (lower R2) have higher technical trading returns. 

In addition, we find that the coefficients on the fundamental-based factors i.e. Market-to-Book, 

Leverage and Dividend Payout, are insignificant across all three technical trading rules. This is an 

appealing and intuitive result in that we should not expect any relationship between these fundamental 

factors and technical trading returns since technical trading rules rely on non-fundamental trading 

signals.  

Finally, we find that Firm Age and Turnover are significantly negatively related to technical 

trading returns, whereas Firm Size is significantly positively associated with technical trading returns, 

across all three technical trading rules. Thus, larger and younger stocks with lower turnover have 

higher technical trading returns. If turnover is a proxy for liquidity as suggested by existing literature, 

the result is consistent since investors may demand a liquidity premium for low liquidity stocks which 

are more costly to trade. Dasgupta et al (2010) find that younger firms tend to have significantly lower 

R2 than do older firms, since the new information content (surprise) is larger for younger firms 

(Dubinsky and Johaness, 2006) and that would drive higher firm-specific return variation. Thus, their 

results suggest that younger firms have higher returns according to the Noise Hypothesis. However, 

the findings that larger stocks have higher technical trading returns is a counter-intuitive and 

important result because of the well-known “size effect” documented by Black (1976) and Banz 

(1981) in that smaller firms have higher risk-adjusted returns, on average, than larger firms. Marshall, 



17 
 

Qian and Young (2009) also found that technical analysis is more profitable for smaller stocks, albeit 

in U.S. over 1990-2004. We leave this interesting puzzle for future research. 

Table 3: Relationship between Technical Trading Returns and Synchronicity (1992-2009) 
This table reports the relationship between technical trading returns and synchronicity in the following model: 
    TTRi = α + β ψi + γ Firm Controlsi + εi  
where the dependent variable TTRi is Technical Trading Returns calculated using the methodology by BLL (1992) discussed 
in section 2.1; the synchronicity measure ψi is estimated from a market model that was discussed in section 2.2; Firm 
Controls include those commonly used in the literature, namely, Size (defined as the logarithmic of market value); Leverage 
(net debt over book equity); Dividend Payout ratio (dividend over net profits); Turnover (annual volume over number of 
shares outstanding); Firm Age (the number of years the company first appears on the Shanghai Exchange). Panel A, B, and C 
regress technical trading returns from applying the VMA, FMA and TRB rule on the synchronicity measure and firm 
controls respectively. Model (1) regresses technical trading returns on only the synchronicity measure ψi. Model (2) includes 
the additional control variables Market-to-Book and Size. Model (3) includes the rest of the control variables, namely 
Turnover, Leverage, Dividend Payout and Firm Age. The numbers in parentheses are t-ratios based on Newey-West standard 
errors.  
 
Panel A: VMA (1, 150, 0)          Panel B: FMA (1, 150, 0, 10)               Panel C: TRB (150, 0, 10) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.  SUB-PERIOD ANALYSIS AND THE NON-TRADABLE SHARE (NTS) REFORM IN 

2005 
Following the Non-Tradable Share (NTS) reform that was announced in April 2005, the 

market capitalization of Shanghai Stock Exchange grew tremendously from around $380 billion to 

around $3 trillion at the end of 2009. Average R2 from Jan 1991 to April 2005 in the pre-NTS reform 

period was 37 percent as compared to 21 percent in the post-NTS reform period from May 2005 to 

December 2009.  

We hypothesize that the informational environment in China should improve in the post-NTS 

reform period during May 2005-09 to the extent that R2 is now a measure that is more consistent with 

the Price-Informativeness Hypothesis. In other words, the NTS reform will lead to greater 

transparency for stocks and the cost-benefit trade-off on private information collection is improved, 

leading to more extensive informed trading and more informative pricing, as in the spirit of Grossman 

and Stiglitz (1980). Traders acquire more information about stocks and their prices are more volatile 

(equivalently, lower R2) and more informative than the prices of stocks with more costly information. 

Thus the positive coefficient on the synchronicity measure ψi for the overall period from 1991-2009 

should flip to the negative sign during the post-NTS sub-period. As a result, we hypothesize that low 
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R2 stocks will now have lower returns from the technical trading rules (not higher as were under the 

Noise Hypothesis) after the NTS reform where there is an economically significant fundamental shock 

to the information environment.  

Section 5.1 covers some institutional background information on the NTS reform. Section 5.2 

outlines the Chow Test to detect the presence of a structural break in beta coefficient for the 

synchronicity measure ψi. Section 5.3 details the empirical results of the relationship between 

technical trading returns and synchronicity in the two sub-periods, that is, pre-and post-NTS reform 

(1992-04/2005 and 5/2005-2009), and a discussion on the implications of the findings. 

5.1  Institutional Background on the Non-Tradable Share (NTS) Reform 
The Shanghai and Shenzhen Stock Exchanges were established in December 1990 and July 

1991 respectively. Non-tradable shares (NTS) prior to the 2005 reform composed of legal-person 

shares and state shares are held by SOEs or government agencies. Legal-person shares were 

transferable between domestic institutions upon the approval of CSRC. Tradable shares composed of 

A-shares (denominated in local currency) and B-shares (denominated in foreign currencies and 

reserved for foreign investors, and H-shares3. The non-tradable portion was as high as 72 percent in 

1993, and well over 60 percent prior to the NTS reform in 2005. According to the data from Chinese 

Security Regulatory Committee (CSRC), institutional investors held 28.89 percent of the value of 

tradable shares at the end of 2007, an increase by almost 25 percent compared to 2001. Before the 

NTS reform in 2005, the ownership structure in Chinese firms was concentrated, representing a partial 

transition from an economy in which most enterprises were owned by the state. At least 80 percent of 

the listed firms were created from the existing state-owned enterprises (SOEs) through carve-outs, in 

which the original business group remains as the parent firm, as well as the controlling shareholder. 

The largest shareholder controls more than 40 percent of the total shares in around 80 percent of listed 

firms, while the second largest shareholder typically owns less than 10 percent. 

The conflicting incentives of controlling and minority shareholders caused by this split-share 

ownership structure can lead to significant inefficiencies inside the firm (Shleifer and Vishny, 1986, 

1993; Rajan and Zingales, 2003). It has been argued that prior to the NTS reform, managers focused 

too much on book value, since any trades of state shares or legal shares approved by the CSRC took 

place at book value (Allen et al, 2007). Aharony, Lee and Wong (2000) documented that Chinese 

SOEs engage in financial packaging for public listing. Allen et al (2005) showed that China’s formal 

sector (consisting of state-controlled firms) underperforms the “informal sector” of non-state-owned 

firms. Ball, Kothari and Robin (2000) provide evidence that accounting income in China lacks timely 

incorporation of economic loss because of political influence on financial reporting practices. 

                                                           
3 While the two share classes of A and B shares issued by the same firm are identical in terms of shareholder rights (e.g., 
voting and dividend), B shares were traded at a significant discount relative to A shares and are traded less frequently than A 
shares. The “B share discount” has been reduced significantly since the CSRC allowed Chinese citizens to trade B shares 
(with foreign currency accounts) in 2001. In addition, Class H shares, issued by selected “Red Chip” Chinese companies, are 
listed and traded on the HKSE.  
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Piotroski, Wong and Zhang (2009) find that state-controlled firms suppress negative financial 

information around visible political events. Since the blockholders could not sell their shares, they 

were inclined to expropriate wealth from minority shareholders (LaPorta et al, 2002; Wei, Xie and 

Zhang, 2005; Cao, Dybvig and Qiu, 2007; Cheung et al, 2009; Chen, Jian and Xu, 2009). There is 

also evidence of significant cash transfer or tunnelling of resources via related lending from listed 

firms back to controlling owners after related-party transactions (Jian and Wong, 2008). State 

shareholders are also less inclined to discipline their CEOs (Chang and Wong, 2009).  

On 31 January 2004, the state council called for comments on how to promote the share-

trading reforms. This showed the Chinese government’s determination to change the structure of the 

stock market4. On 29 April 2005, under the permission of state council, the CSRC issued “Notice on 

the Pilot Reform of the Share-Trading Business of Listed Companies”. Under the new plan, the 

remaining state shares among listed firms are converted to “G” shares and are tradable5. Four listed 

firms were in the pilot scheme that started the NTS reform process6. On 4 September 2005, CSRC 

issued Administrative Measures on Non-tradable Share Reform in Listed Companies and the reform 

had gone into real implementation from the pilot stage. By November 2006, 1,200 firms accounting 

for 96 percent of listed companies had completed the restructuring. By the end of 2007, there were 

only a few companies that have not reached an agreement with their shareholders on the terms of the 

reform.  

During the reform, many new regulatory policies were launched, such as new accounting 

standards which aimed to improve transparency and to protect the interest of minority shareholders7.  

5.2  Structural Break Analysis 
In the last section, we find that model (3) has the highest adjusted R2 for all three technical 

trading rules. We select model (3) to carry out our Chow Test to examine whether the coefficient on 

synchronicity is different in the two sub-periods, that is, pre-and post-NTS reform (1992-04/2005 and 

                                                           
4 From the latter half of 1998 to the first half of 1999, the Chinese government began an explorative trial to decrease state 
shares (known as Guoyougu Jianchi). The trial was stopped soon because of the big gap between expectation and market 
reactions. On 12 June 2001, the State Council of China issued Provisional Measures on Reducing State Shares and Raising 
Social Security Funds. On July 24, 2001, the government announced that it would sell some fraction of its remaining shares 
to ordinary investors, suddenly giving credibility and clarity to an ambiguously worded prior statement on future 
privatization (Calomiris et al, 2008). Again, considering the poor market reaction, the regulation was suspended on 22 
October 2001 and cancelled on 23 June 2002. 
5 The CSRC outlines the format for compensating existing shareholders and also imposes lockups and restrictions on the 
amount of G shares that can be sold immediately after they become tradable. More specifically, the new plan stipulates that 
G shares are not to be traded or transferred within 12 months after the implementation of the share structure reform. 
Shareholders owning more than 5% of the original non-tradable shares can only trade less than 5% of the total shares 
outstanding within one year and less than 10% within 2 years. These restrictions of G share sales are intended to reduce the 
downward pressure on the stock price, maintain market stability and protect the interests of public investors. The details of 
the “fully floating plan” for a firm, including the number of G shares to be granted to each Class A shareholder and the time 
window (e.g., one to three years) of G shares become fully floating, must be approved by two thirds of Class A shareholders 
of the firm. 
6 The first batch of the four pilot companies is Tsinghua Tongfang, Hebei Jinniu Energy Resources, Shanghai Zijiang 
Enterprises Group and Sany Heavy Industry. 
7 Other complementary policy measures must be undertaken before outside investors are willing to devote costly resources to 
the production of information. Ball (2001) argued that simply transporting rules from one economic environment to another 
can be unfruitful. Overall improvement in price informativeness is concentrated in countries with a strong macro 
infrastructure in terms of the efficiency of the judicial system, investor protection, and financial reporting. 
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5/2005-2009). We implement the three different trading rules (VMA (150,1,0), FMA (150,1,0,10), 

TRB (150,0,10)) in the two sub-periods to obtain the returns for our sample of stocks. The 

synchronicity measure ψi and the firm control factors for each sub-period are calculated using the 

same approach as outlined in the previous sections. Thus, we have:  

TTR1i = α1 + β1 ψ1i + γ1 Firm Control1i + ε1 where i, i = 1, 2, . . . , n1  

TTR2i = α2 + β2 ψ2i + γ2 Firm Control2i + ε2 where i, i = 1, 2, . . . , n2 

and the corresponding null hypotheses: 

H1
0 : α1 = α2, β1 = β2, γ1 = γ2. 

H2
0 : β1 = β2. 

Table 4: Probability Values for Tests of H0
1 and H0

2 

 
 

The probability values for these tests are given in Table 4 and we reject the null hypotheses 

that the coefficient on the synchronicity measure ψi is equal. Thus, there exists a structural break pre- 

and post-NTS reform (i.e. before and after 5/2005).  

5.3  Empirical Results of the Relationship between Technical Trading Returns and 
Synchronicity Pre- and Post NTS Reform8 
The average annualized mean buy returns from the three technical trading rules in the two 

sub-periods are reported in Table 5. The technical trading returns are negative during the pre-NTS 

reform sub-period, ranging from -4 to -33 percent depending on the technical rules applied, compared 

to the unconditional annualized average return of -15 percent. Post-NTS reform, the technical trading 

returns are hugely positive, ranging from 35 to 65 percent depending on the technical rules applied, 

which is better than the unconditional annualized average return of 25 percent. 

Table 6 show the important result that the sign of the coefficient in the synchronicity measure 

ψi for the VMA and FMA technical rule flips from positive during the pre-NTS reform period and to 

negative during the post-NTS reform period as hypothesized. While the sign for the TRB rule remains 

positive, it has now become insignificant. In other words, lower R2 stocks will now have lower returns 

from the technical trading rules (not higher as were under the Noise Hypothesis) after the NTS reform. 

When there is an economically significant fundamental shock to the information environment as was 

the case for the NTS reform, R2 is now a proxy measure for informative prices and a measure that is 

more consistent with the Price-Informativeness Hypothesis. 

                                                           
8 The results are robust when the real policy implementation announcement on 4 September 2005 is used as the break date, 
rather than the 9 April 2005 pilot scheme announcement. 
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Table 5: Results for the Technical Trading Rules (VMA, FMA and TRB) Pre- and Post-NTS 
Reform 
Results in Table 5 are for daily data for the two sub-periods: pre-NTS reform from 4/1992-2005 and post-NTS reform from 
5.2005-2009. Rules are identified as (short, long, band) where short and long are the short and long moving averages 
respectively, and band is the percentage difference that is needed to generate a signal. Because China does not allow for 
short-selling of stocks, we report only the mean buy returns generated from the buy signal in the technical trading rules. Note 
that the unconditional annualized average return is -15% pre-NTS reform and 25% post-NTS reform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6: Technical Trading Returns and Synchronicity Pre- and Post-NTS Reform 
This table reports the relationship between technical trading returns and synchronicity in the following model: 

    TTRi = α + β ψi + γ Firm Controlsi + εi  
where the dependent variable TTRi is Technical Trading Returns calculated using the methodology by BLL (1992) discussed 
in section 2.1; the synchronicity measure ψi is estimated from a market model that was discussed in section 2.2; Firm 
Controls include those commonly used in the literature, namely, Size (defined as the logarithmic of market value); Leverage 
(net debt over book equity); Dividend Payout ratio (dividend over net profits); Turnover (annual volume over number of 
shares outstanding); Firm Age (the number of years the company first appears on the Shanghai Exchange). Panel A and B 
presents the results from the regression of technical trading returns from applying the VMA, FMA and TRB rule on the 
synchronicity measure and firm controls for the two sub-periods 1/1992-4/2005 and 5/2005-12/2009 respectively. The 
numbers in parentheses are t-ratios based on Newey-West standard errors. 
 
Panel A: Pre-NTS Reform Sub-Period 1/1992-4/2005        Panel B: Post-NTS Reform Sub-period 5/2005-12/2009  
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The implications for these findings are important since it reconciles the lively debate and 

extremely mixed evidence on the interpretation of the synchronicity measure. Does low R2 stand for 

informed trading leading to more informative prices under the Price-Informativeness Hypothesis, or 

does it imply noisy trading, limits of arbitrage or/and incomplete market under the Noise Hypothesis? 

As emphasized, these two competing hypotheses have starkly different relationship with expected 

returns, that is, both informed and noisy trading lead to low R2, but the former is related to lower 

expected returns, while the latter indicate higher expected returns. 

Thus, technical trading rules work better for low R2 stocks when the information environment 

does not experience any economically significant fundamental shock, such as the case for China 

during the sub-period from 1991 till April 2005 before the NTS reform, which is consistent with the 

Noise Hypothesis. However, an economically significant fundamental shock to the information 

environment will lead to the synchronicity measure to become a proxy for informative pricing, as was 

the case for China post-NTS reform from May 2005 till December 2009, resulting in lower technical 

trading returns to low R2 stocks, consistent with the Price-Informativeness Hypothesis. 

After an economically significant fundamental shock to the information environment, higher 

technical trading returns come from stocks with higher R2 for the VMA and FMA technical rules, and 

generally for older (not younger) and bigger stocks with lower turnover. In addition, we observe that 

the coefficient on the fundamental factor Market-to-Book is now significantly positive. If MTB is a 

proxy for “growth” stocks (Lakonishok, Shleifer, and Vishny, 1994), the result indicates that these 

companies have higher technical trading returns. When MTB is a proxy for distress (Fama and French, 

1993, 1995) and profitability9 (Daniel and Titman, 2006; Ecker, Francis, Olsson and Schipper, 2009), 

the result suggests that less distressed and less profitable stocks have higher technical trading returns.  

To sum up, the relationship between stock return synchronicity and technical trading returns 

is negative over the period 1991-2009, that is, low R2 stocks have higher technical trading returns, 

consistent with the Noise Hypothesis. Post-NTS reform, during the period from May 2005-2009, 

stock return synchronicity and technical trading returns are positively related, that is, low R2 stocks 

have lower technical trading returns, consistent with the Price-Informativeness Hypothesis. We do not 

find this result to be conflicting. After all, we have only around four years of informed trading post-

NTS reform during May 2005 to December 2009 as compared to around fourteen years of noise 

trading pre-NTS reform during January 1991 to April 2005, and the overall sample period from 1991-

2009 is therefore dominated by noise trading, and hence the overall significantly negative relationship 

between stock return synchronicity and technical trading returns can be justified. As the information 

environment in China improves going forward in the next few decades, we can expect that the 

interpretation of R2 to be more consistent with the Price-Informativeness Hypothesis. 

                                                           
9 Daniel and Titman (2006) dispute Fama and French’s (1995) analysis of the book-to-market ratio as an indicator of distress, 
and perform their own analysis of this ratio as an indicator of valuation-relevant information that is not contained in past 
accounting-based performance measures 
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Interestingly, the results suggest that fundamental analysis could play a bigger role in the 

gathering of relevant firm-specific information for decision-making in investing in developing 

transitional economies determined in establishing the institutional structures and complementary 

changes in country infrastructure to create incentives for higher quality informational environment 

and good governance to protect investors’ rights. 

A higher quality informational environment is important because the risk generated by noise 

trading can reduce the capital stock and consumption of the economy (De Long et al, 1989), and also 

forces managers to focus on the short term, and to bias the choice of investments against long-term 

projects. Shleifer and Summers (1990) argued that even if investors earn higher average returns from 

noise trading, it is because they bear more risk than they think. And even if they get rich over time, it 

is only because they underestimate the risk and get lucky.  

There are policy implications in noise trading. Shleifer and Summers (1990) gave the analogy 

that making it costly for noise traders to bet on the stock market to protect them from their own utility 

losses is in principle identical to the case for prohibiting casinos, horse races, and state lotteries. In 

addition, noise trading benefit arbitrageurs who take advantage of noise traders. For instance, when 

noise traders are optimistic about particular securities, it pays arbitrageurs to create more of them. 

These securities might be mutual funds, new share issues, penny oil stocks, or junk bonds: anything 

that is overpriced at the moment. Just as entrepreneurs spend resources to build casinos to take 

advantage of gamblers, arbitrageurs build investment banks and brokerage firms to predict and feed 

noise trader demand. This suggests that regulatory actions could be needed when noise trading is 

prevalent to regulate the activities of these arbitrageurs taking advantage of the noise traders, as 

evident from the recent 2008 Financial Crisis with noise traders chasing subprime mortgage assets 

created by the financial institutions.  

Thus, our results appear to suggest that the relationship between technical trading returns and 

R2 can also help regulators to assess whether the informational environment is “noisy” or 

“informative”, and make their policy recommendations and regulatory actions accordingly.  

6.  SUMMARY AND CONCLUSION 
We acknowledge that technical trading rules might perhaps not work for certain stocks at the 

firm-level, and we want to know about the source behind the trading profits or losses from applying 

these technical rules. We believe that we are the first to empirically establish the link between 

technical trading returns and stock return synchronicity. An additional and a very simple yet practical 

statistics - the R2 - can guide trading decisions using technical trading rules10. Imagine that the 

Bloomberg terminal, Yahoo Finance and financial websites should have an additional statistics – the 

synchronicity measure – to allow investors and traders to assess how effective their technical analysis 

can be; for instance, if the informational environment is generally noisy, then the technical traders 

                                                           
10 Volatility is well-known to be persistent (Engle, 1982) and past idiosyncratic volatility, or R2, should still have predictive 
power when longer sample periods are used to compute R2. 
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should focus their efforts on less synchronous or low R2 stocks to increase their probability of 

generating abnormal profits. 

Do technical trading rules work? Possibly only when the R2 is low, and for larger and 

younger stocks with lower turnover, consistent with the Noise Hypothesis. However, sub-period 

analysis reveal that when there is an improvement in the information environment after the 

punctuation by an economically significant fundamental shock - the NTS reform in China announced 

in April 2005 - higher technical trading returns post NTS-reform in 2005-2009 come from stocks with 

higher R2 for the VMA and FMA technical rules, consistent with the Price-Informativeness 

Hypothesis, and generally for older (not younger) and bigger stocks with lower turnover and higher 

market-to-book (MTB). Thus, without the guide of R2, investors should take the market prognosis by 

all these “alchemists” with their “voodoo” charts with a heavy dose of salt11. We thus reconcile the 

lively debate and extremely mixed evidence on the interpretation of R2 and its relationship with the 

cross-sectional returns of stocks. 

An economically significant fundamental shock to the information environment also lead to 

the significance of the Market-to-Book (MTB) ratio, suggesting that growth, distress and profitability 

(fundamental factors which MTB ratio proxies for) are important determinants to technical trading 

returns. Thus, fundamental analysis could play a bigger role in the gathering of relevant firm-specific 

information for decision-making in investing in developing transitional economies determined in 

establishing the institutional structures and complementary changes in country infrastructure to create 

incentives for higher quality informational environment and good governance to protect investors’ 

rights.  

Our results also appear to suggest that the relationship between technical trading returns and 

R2 can also help regulators to assess whether the informational environment is “noisy” or 

“informative”, and make their policy recommendations and regulatory actions accordingly. For 

instance, when the informational environment is noisy, regulatory actions could be needed to regulate 

the activities of arbitrageurs taking advantage of the noise traders to protect them from their own 

utility losses, as evident from the recent 2008 Financial Crisis with noise traders chasing subprime 

mortgage assets created by the financial institutions. 

A cross-country study adapting our research methodology will likely be helpful to assess the 

relative usefulness and interpretation of R2. 

Using a Bayesian framework, Treynor and Ferguson (1985) suggest that past prices, when 

combined with other valuable information, can be helpful in achieving unusual profit. He concludes 

that: “It is the non-price information that creates the opportunity. The past prices serve only to permit 

its efficient exploitation.” A natural important extension would be to examine the use of fundamental 

analysis in conjunction with technical analysis, which we leave for future research. 

                                                           
11 The idea of scaling investment signals by the past idiosyncratic volatility of the stock is conveyed in a well-known book to 
practitioners, “Active Portfolio Management” (Grinold and Kahn 1999). Jacobs and Levy (1996) provide similar advice. 
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