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ABSTRACT
Specification mining takes execution traces as input and ex-
tracts likely program invariants, which can be used for com-
prehension, verification, and evolution related tasks. In this
work we integrate scenario-based specification mining, which
uses data-mining algorithms to suggest ordering constraints
in the form of live sequence charts, an inter-object, visual,
modal, scenario-based specification language, with mining of
value-based invariants, which detects likely invariants hold-
ing at specific program points. The key to the integration
is a technique we call scenario-based slicing, running on top
of the mining algorithms to distinguish the scenario-specific
invariants from the general ones. The resulting suggested
specifications are rich, consisting of modal scenarios anno-
tated with scenario-specific value-based invariants, referring
to event parameters and participating object properties.
An evaluation of our work over a number of case studies

shows promising results in extracting expressive specifica-
tions from real programs, which could not be extracted pre-
viously. The more expressive the mined specifications, the
higher their potential to support program comprehension
and testing.

Categories and Subject Descriptors: D.2.1 [Software
Engineering]:Requirements/Specifications–Tools;D.2.7 [Soft-
ware Engineering]:Distribution, Maintenance and Enhance-
ment–Restructuring, reverse engineering and reengineering
General Terms: Algorithms, Design, Experimentation
Keywords: Specification Mining, Dynamic Analysis, Live
Sequence Charts, Value-Based Invariants

1. INTRODUCTION
A specification typically imposes constraints both on se-

quencing of method calls or statement executions (ordering
constraints), and on values that method parameters or some
variables at a program point could have (value constraints).
One takes a separate viewpoint from the other, and each in-
dependently, although interesting, is unable to present the
full picture on the specification that a system should follow.
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

Motivated by the lack of documented specifications, re-
cently a number of studies have investigated mining of sug-
gested specifications from program executions, e.g., [13, 26,
31]. The mined specifications, whether value-based invari-
ants, automata/finite state machines, or scenario-based be-
havioral models, may be used for tasks related to program
comprehension, verification, and evolution.

One pioneering work, Daikon, mines for value-based in-
variants that hold at user-specified program points [13]. Val-
ues of method parameters, object properties etc. are col-
lected at selected program points during execution, and are
then generalized in order to suggest invariants that hold at
these points. Also, recently, we have investigated mining an
expressive visual sequence-diagram-like scenario-based spec-
ification in the form of live sequence charts (LSC) [9,16] us-
ing a data-mining approach [26,28,29]. However, these have
only considered ordering constraints among method calls.

In this paper, we merge the two specification mining ap-
proaches – the value-based approach of Daikon [13] and our
scenario-based approach – resulting in one that mines a com-
bination of ordering and value-based invariants. The key to
the merging is a multi-step mining process and a novel dy-
namic slicing technique we call scenario-based slicing, where
the mined scenarios are used as a slicing criteria over the
input traces. Following the initial scenario-based mining,
value-based invariants found over the sliced traces are com-
pared against value-based invariants found over the original
traces, so as to distinguish the ones unique to the scenarios
context. Finally, the invariants found are attached to the
mined scenarios. Thus, the resulting approach strengthens
the expressive power of the mined scenarios by enriching
them with scenario-specific value-based invariants.

To illustrate the advantages and challenges of mining sce-
narios with value-based invariants consider the following ex-
ample, taken from one of our case study applications, Cross-
FTP [1], a commercial open-source FTP server. Using the
scenario-based specification mining technique presented in
previous work [29], we were able to mine the scenario shown
in Fig. 1. Roughly, this scenario specifies that “whenever a
PASV command object calls the method setPasvCommand(...)

of the FtpDataConnector (DC), and the DC calls the
getSSL(...) method of a FtpDataConnectionConfig (DCC),
it must eventually call the createServerSocket of an Ssl

object (SSL)”. However, the mined scenario does not pro-
vide information on the values of parameters used and par-
ticipating object properties whenever this scenario indeed
happened. Are there any value-based invariants related and
unique to this scenario?
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Note that discovering general value-based invariants re-
lated to the methods that appear in this scenario or to its
participating objects may not be good enough. The same
method may be called with different parameters in different
contexts and thus the invariant we may extract from its calls
would be too general - in essence, too weak - not contribut-
ing to the understanding of the scenario at hand. Similarly,
participating object properties may hold different values in
different contexts.
Scenario-based slicing is used to address this problem.

Following the process of scenario-based specification min-
ing, we construct a sliced trace by selecting from the original
traces used for mining a concatenation of only the sub-traces
representing instances – positive witnesses – of the mined
scenario at hand. We then look for value-based invariants
twice – on the original trace and on the sliced trace – and
compare the results in order to identify the scenario-specific
invariants, those value-based invariants that are unique to
the witnesses of the scenario.
Indeed, to continue the example just presented, we were

able to find that whenever this scenario happens, the prop-
erty secure of the FtpDataConnection (DC) is true. This
invariant does not hold in general in our traces and hence
is not suggested by Daikon when running on the original
traces. However, it does hold whenever the scenario we ex-
amine happens!
Thus, the combination of value-based specification mining

and scenario-based specification mining, through the use of
scenario-based slicing, is able to produce expressive candi-
date specifications that each of the mining approaches alone
is unable to produce. As shown in previous work [6,12,33,37,
41], the mined specifications may be used for tasks related
to program comprehension, testing, and verification. Natu-
rally, the more expressive the specification mined, the better
it may support these tasks. Specifically, program compre-
hension is enhanced with stronger candidate invariants, com-
bining execution order and values. Tests that are induced by
these invariants are more accurate and hence more valuable.
We have implemented our ideas and evaluated them us-

ing a number of case study applications; see Sec. 5. The
examples throughout the paper are taken from two of these,
CrossFTP (mentioned above), and Jeti [3], a feature-rich
instant messaging application.
Specification mining in general, and combining mining of

value-based invariants with mining of ordering constraints
in particular, has been recently considered and implemented
(see, e.g., [31]). We discuss related work in Sec. 7.
Paper organization: Sec. 2 covers background material on

LSC, scenario-based specification mining, and value-based
specification mining. The syntax and semantics of scenarios
with value-based invariants, our target specification formal-
ism, are presented in Sec. 3. Sec. 4 describes the mining
framework and algorithms. The results of case studies are
given in Sec. 5. Sec.6 discusses some advanced issues of our
work, its advantages and its limitations, Sec. 7 discusses re-
lated work, and Sec. 8 concludes.

2. BACKGROUND
We provide background material on LSC, scenario-based

specification mining, and value-based invariants mining.

2.1 Live Sequence Charts
Live sequence charts (LSC) [9,16] extend classical sequence

LSC Set PASV – Short

setPasvCommand(…)

createServerSocket(…)

SSLDCCDCPASV

getSSL(…)

Figure 1: Example LSC: SECURE PASV

diagrams with a universal interpretation and must/may mo-
dalities. They thus allow the specification of scenario-based
temporal invariants describing interactions between system
objects. The language has been used in the context of exe-
cution, verification, and synthesis (see, e.g., [20, 23, 32]). A
translation of LSC into temporal logics appears in [22]. A
trace-based semantics for a UML2-compliant variant of LSC
appears in [16]. We use here a subset of the language, with
total-order events.

An LSC is composed of two basic charts: a pre-chart and
a main-chart. A basic chart is a tuple C = (CL, CE , C<)
where CL is a set of lifelines representing system objects,
CE is a set of inter-object events involving the objects rep-
resented by the lifelines in CL, and C< is a total order on CE .
Thus, a chart can also be represented as a chain of events
⟨e1, . . . , en⟩. We denote an LSC by L(pre, full), where pre is
the pre-chart and full is the concatenation of the pre-chart
and main-chart.

Syntactically, lifelines are drawn using vertical lines. Inter-
object events are drawn using horizontal arrows from caller
to callee; pre-chart events use dashed blue lines, main-chart
events use solid red lines.

Semantically, an LSC specifies a temporal invariant: when-
ever the events in the pre-chart occur in the specified order,
eventually the events in the main-chart must occur in the
specified order. An LSC does not restrict events not appear-
ing in it to occur or not to occur during a run.

Fig. 1 shows an example LSC. Roughly, this LSC means
that “whenever a PASV command object calls the method
setPasvCommand(...) of the FtpDataConnection (DC), and
the DC calls the getSSL(...) method of a FtpDataCon-

nectionConfig (DCC), it must eventually call the create-

ServerSocket of an Ssl object (SSL)”.

2.2 Scenario-Based Specification Mining
Scenario-based specification mining [26–29] is concerned

with extracting statistically significant LSCs from inter-object
traces of a system under investigation.

Inter-object trace, event. A concrete inter-object trace
is a sequence of inter-object events. A concrete inter-object
event ev is a tuple ⟨el1, el2,m⟩ representing an object el1
(the caller) calling method m of object el2 (the callee).

We define the significance of an LSC based on its occur-
rences in the traces and measure it using support and con-
fidence, commonly used metrics in data mining [14]. Below
we recall the concepts of scenario instance, positive and neg-
ative witnesses, support, and confidence, defined in [29].

Chart instance. Satisfaction of a chart follows the se-
mantics of LSC. We refer to a sub-trace (or a segment of
consecutive events in the trace) satisfying the chart C as an
instance of C. A segment of a trace is said to be an instance
of a chart C if it obeys the ordering specified by C. Each
event in the chart must map to a corresponding event in the
segment appearing in the specified order. Other events not
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specified by the chart can occur in any order, unrestrictedly.
To describe an LSC chart instance, we use Quantified Reg-

ular Expressions (QRE) [35]. In our context, quantified reg-
ular expression is similar to standard regular expression with
‘;’ as concatenation operator, ‘[-]’ as exclusion operator (i.e.
[-P,S] means any event except P and S1), and * as the stan-
dard kleene-star. The formal definition of an instance of a
chart is given in Defn. 2.1 (see [29]):

Definition 2.1 (Instance of a Concrete Chart).
Given a concrete chart C = (CL, CE , C<), a trace segment
SB = ⟨sbi,sbi+1, . . ., sbi+m−1⟩ is an instance of C if SB
follows the QRE expression

e1; [−G]∗; e2; . . . ; [−G]∗; en where,

CE = {e1, e2, . . . , en}, ∀0<i<n.ei <C ei+1, and G = CE.

Fig. 2 shows a short sample from a trace. The trace in-
cludes 2 instances of the LSC shown in Fig. 1: I1 = ⟨1, 2, 3⟩,
I2 = ⟨8, 10, 11⟩.

1 PASV DC setPasvCommand()
2 DC DCC getSSL()
3 DC SSL createServerSocket()
4 FRI DC getDataSocket()
5 PASV DC setPasvCommand()
6 FW FRI getUserArgument()
7 DC DCC getSSL()
8 PASV DC setPasvCommand()
9 FW FRI getUserArgument()
10 DC DCC getSSL()
11 DC SSL createServerSocket()
12 FRI DC getDataSocket()
13 PASV DC setPasvCommand()

Figure 2: Part of a sample trace (PASV stands

for the PASV class, DC for FtpDataController, DCC for

FtpDataConnectionConfig; the actual trace includes the full

qualified signatures of the classes and methods involved)

Witnesses. Based on the above definition of a chart in-
stance, we define the notion of positive and negative wit-
nesses of an LSC. Recall that an LSC is composed of a pre-
chart and a main-chart. A positive witness of an LSC L =
L(pre,full), is a trace segment satisfying (i.e., is an instance
of) the full chart – by extension the pre chart as well, since
pre is a prefix of full. A negative witness of L is a posi-
tive witness of pre that can not be extended to a positive
witness of L (or full). We say that a negative witness is a
weak negative witness if the positive witness of pre cannot
be extended due to end-of-trace being reached (see discus-
sion in [29]). We denote the set of all positive witnesses of
an LSC L in a trace T by pos(L,T ). Similarly, we denote
the set of negative witnesses as neg(L,T ).
Support & confidence. We use the above notions of

witnesses to define the statistical support and confidence
metrics for LSC. Support and confidence are commonly used
statistics in data mining [14]. Given a trace T , the support
of an LSC L= L(pre, full), denoted by sup(L), is simply
defined as the number of positive witnesses of full found
in T . The confidence of an LSC L, denoted by conf (L),
measures the likelihood of a sub-trace in T satisfying L’s
pre-chart, to be extended such that L’s main-chart is sat-
isfied or the end of the trace is reached. Hence, confidence

1The original notation is slightly modified for brevity.

is expressed as the ratio between the number of positive-
witnesses and weak-negative-witnesses of the LSC and the
number of positive-witnesses of the LSC’s pre-chart:

conf (L, T ) ≡def
|pos(full,T )|+|w neg(full,T )|

|pos(pre,T )|
Notation-wise, when T is understood from the context, it
can be omitted.

The support metric is used to limit the extraction to fre-
quently observed interactions. The confidence metric re-
stricts mining to such pre-charts that are followed by par-
ticular main-charts with high likelihood. In scenario-based
specification mining we are interested in mining statistically
significant LSCs: those which occur frequently in the trace
(have high support) and in which the pre- is followed by the
main- chart with high likelihood (have high confidence). A
chart is said to be significant if it obeys minimum thresh-
olds of support and confidence, denoted by min sup and
min conf respectively.

For the LSC shown in Fig. 1 and the trace shown in Fig. 2,
sup(L) = 2, conf(L) = 2/3.

Data mining algorithms to compute a statistically sound
and complete set of LSCs, given a trace (or a set of traces)
and thresholds for minimal support and confidence, were
presented in [29]. These were extended in [27], to han-
dle symbolic scenario-based specifications (at the class level
rather than the object level), in [26], to handle the special
case of trigger and effect mining, and in [28], to take advan-
tage of architectural hierarchies.

2.3 Value-Based Invariants Mining
Value-based dynamic detection of likely invariants is con-

cerned with reporting likely program invariants, which hold
at a certain point or points in a program’s execution. Basi-
cally, dynamic invariant detection runs a program, observes
the values that the program computes, and then reports
properties that were true over the observed executions.

A primary example of a dynamic invariants detector is
Daikon [13]. Other examples are described in, e.g., [7, 36].
As opposed to scenario-based specification mining, which,
like, e.g., [6, 25, 41], is concerned with detecting temporal
invariants in the form of ordering constraints over program
events, these tools aim at detecting value-based invariants,
e.g., in the form of arg1 == false or return != null for
a certain method, this.field has only one value for a
certain object, etc.

In our present work we integrate temporal invariants with
value-based invariants. For value-based invariants detection
we use Daikon. For details on Daikon internals see [13].

3. SCENARIOS WITH VALUE-BASED IN-
VARIANTS

We now describe our target formalism, namely scenario-
based specifications with value-based invariants.

We consider three types of value-based invariants inside
LSCs: invpre, invpost, and invglobal; invpre and invpost are
attached to LSC events, and may refer to event parameters
or properties of the objects (caller and callee) involved in
the event; invglobal invariants are attached to the LSC as a
whole, and involve properties of objects participating in the
LSC.

More formally, a chart with value-based invariants is a
tuple CA = (CL, CE , C<, A) where the events in CE are
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tuples ⟨el1, el2,m, invpre, invpost ⟩ representing an object el1
(the caller) calling method m of object el2 (the callee) with
invpre holding immediately before the call, invpost holding
right after the call, and A is a set of global invariants, holding
throughout the chart instance occurrence.
Semantically, an LSC L(pre, full) made of basic charts

annotated with value-based expressions specifies a tempo-
ral invariant: whenever the events in the pre-chart occur in
the specified order, their corresponding invpre and invpost
expressions hold, and the pre-chart’s global invariants hold
throughout its occurrence, eventually the events in the main-
chart must occur in the specified order, their corresponding
invpre and invpost expressions must hold, and the main-
chart’s global invariants must hold throughout the occur-
rence of the main-chart. Naturally, an LSC does not restrict
events not appearing in it to occur or not to occur during
a run, and does not restrict the properties appearing in its
value-based invariants to take any value outside the LSC
context.
In the visual syntax of the LSC, invpre and invpost expres-

sions may be drawn adjacent to the arrow representing their
corresponding event, or in a table below the chart, together
with the invglobal expressions.
Fig. 9 shows an example LSC annotated with a value-

based invariant. The invariant found, this.secure==true,
is a global one, related to a property of DC, one of the ob-
jects participating in the scenario. Additional examples are
shown in Sec. 5.
Note that the LSC language as described in [9, 16] in-

cludes conditions (also called state-invariants), which spec-
ify hot/cold conditions that must/may hold during the oc-
currence of a scenario. Also, the variant of LSC defined
in [17] includes forbidden conditions, which may be used as
invariants over the scope of the entire scenario. Our tar-
get formalism is similar, with cold pre-chart conditions and
hot main-chart conditions. However, it is also somewhat
different, tying conditions directly to events pre- and post-
occurrence, and specifying not what should never happen
but what should always happen throughout the occurrence
of a chart.

4. MINING FRAMEWORK
Our mining solution integrates Daikon [13], a value-based

specification miner, with our previous solution for mining
scenario-based specifications in the form of LSC [26,28,29].
As is shown in Fig. 3, the framework involves a number of
steps: trace generation and conversion, scenario-based spec-
ification mining, scenario-based slicing, value-based invari-
ant generation via Daikon, and selection and integration of
scenario-specific invariants.
First, the input application is instrumented using the Dai-

kon front end. Running the instrumented program produces
a trace file (Daikon Trace File (DT)), which is converted
to the format accepted by the scenario-based specification
miner (LSC Miner Trace File (LT)). Running the scenario
miner produces a set of scenarios, all of which may be fur-
ther enriched with value-based invariants. For each of the
scenarios, we take DT and transform it to a scenario-based
sliced trace (SDT). Daikon is then invoked on the sliced
and original traces, i.e., DT and SDT. A comparison of the
invariants found on the sliced trace and the original trace al-
lows us to identify scenario-specific invariants, used to enrich
and strengthen the suggested scenario-based specifications.

 

1. Instrument 
Program Using 

Daikon 
Chicory 

2.  Capture 
Caller-Callee 

Relationship & 
Object IDs  

3. Scenario-
Based 

Specification 
Miner 

4. Scenario-
Based Slicer 

5. Daikon 6. Invariant 
Comparator 

7. Integrate Scenario-
Specific Value-Based 

Invariants into the LSCs  

Daikon 
Trace 
(DT) 

LSC  
Miner 
Trace  
(LT) 

Scenarios/ 
LSCs 

Sliced  
Daikon  

Trace (SDT) 

Invariants 
on DT 

Invariants 
on SDT 

Scenarios/ 
LSCs 

Daikon 
Trace(DT) 

Scenario 
Specific 

Invariants 

Figure 3: Mining Framework

The steps are described in further detail below.

4.1 Trace Generation and Conversion
We use the Daikon tool’s front end to generate traces.

Daikon provides a number of front ends for Java, C, etc., all
of which produce a common trace format for Daikon’s in-
put. The trace files of Daikon contain the list of records cor-
responding method entries and exits during the run. Each
record contains information on method signature along with
the values associated with different parameter values and
global variables when each of the methods was entered or
exited. These traces are very rich as compared to the typi-
cal traces collected by most specification mining tools that
mine for temporal ordering constraints/invariants. This is
particularly needed by Daikon, so as to be able to infer value-
based invariants.

On the one hand, the scenario-based specification miner
looks only for temporal relationships and does not need to
know about parameters and global variables. On the other
hand, the scenario-based specification miner needs more in-
formation pertaining to the caller and callee of method calls.
Thus, we employ a converter to extract caller-callee informa-
tion based on the method entry and exit entries in Daikon
trace. The converter also remove unneeded information for
the scenario-based mining process including values of global
variables, parameters, etc..

4.2 Scenario-Based Specification Mining
Given the converted traces, we run a scenario-based spec-

ification mining algorithm. We are interested in finding sce-
narios that appear more times than a specified user-defined
min sup threshold. Each extracted scenario must also have
its main-chart appearing after each pre-chart with likelihood
higher than a min conf threshold.

The scenario-based specification mining algorithm works
in three steps: mining frequent charts, chart composition to
LSC, and chart redundancy elimination and post processing.

Frequent chart mining. The frequent chart mining algo-
rithm is a variant of a pattern mining algorithm that mod-
els mining as a search space exploration. Different from a
standard pattern mining algorithm that is agnostic to se-
mantics of program specifications, our specification mining
algorithm follows the semantics of LSC when identifying and
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counting the chart/pattern occurrences in the traces. Also,
since we consider scenario-based specifications in the form of
sequence diagrams, the input events are not atomic symbols
but rather triplets of caller, callee, and method call signa-
ture. A simplified pseudo-code is shown in Fig. 4.

Procedure MineFrequentCharts
Inputs:

T : Input trace
min sup : Minimum support threshold

Output: All frequent charts
Method:
1: Let FEv = All frequent events in trace T
2: For each ev in FEv
3: GrowChart(ev ,T ,FEv ,min sup,min conf )

Procedure GrowChart
Inputs:

P : Chart so far
T : Input trace
FEv : Frequent event
min sup : Minimum support threshold

Output:All frequent charts in the form of P++ evs
Method:
4: Let NxtPat = {P++ e|e∈ FEv}
5: For each nxt in NxtPat
6: If sup(nxt) ≥ min sup
7: Output nxt
8: GrowChart (nxt ,T ,FEv ,min sup,min conf )

Figure 4: Frequent Chart Mining Algorithm

The frequent chart mining process starts with chart of
size 1 and then tries to form longer patterns. Based on an
anti-monotonicity property (see [29]), the support or number
of occurrences of a pattern P should be larger or equal to
the support of pattern P++ evs, where evs is one or more
events. In this case, we only need to consider patterns of
length one with support larger than the min sup threshold
(i.e., frequent ones) (Line 1).
Each of the frequent events is then grown to form longer

frequent patterns (Lines 2-3). The search space of all pat-
terns is traversed in a depth first fashion by appending one
event at a time (Line 4). At each step one would compare the
number of occurrences of a pattern to the min sup threshold
(Lines 5-6). If the minimum support threshold is not met,
then based on the anti-monotonicity property, there is no
need to grow the pattern further, as longer patterns would
not be frequent. If the threshold is met, the algorithm will
output the pattern (Line 7) and continue to try to grow
the pattern further (Line 8). The algorithm will eventually
terminate with the set of all frequent charts.

Chart composition to LSC. An LSC consists of pre- and
main- charts and has the semantics that dictates that the
pre-chart must be followed by the main-chart. Given the
set of frequent charts mined, one could form LSCs by com-
posing these charts. In particular one could pair two charts,
one being a prefix of the other. Consider two charts pre
and pre++post, one could then form the LSC having pre as
the pre-chart and post as the main-chart. The process is
illustrated in Fig. 5.
Note that due to the anti-monotonicity property, the sup-

port of the pre-chart is larger or equal to the support of the

CHART DEL-A

onDeleteStart()

FCDELE

LSC DEL

setDelete()

setDelete()

onDeleteEnd()

FSIFCDELE

LSC DEL

setDelete()

setDelete()

onDeleteEnd()

FSIFCDELE

CHART DEL-B

setDelete()

onDeleteStart()

onDeleteEnd()

FSIFCDELE

U

conf(LSC DEL) >= min_conf ?

OUTPUT

Yes

Figure 5: Chart Composition to LSC

pre-chart concatenated with the main-chart. Following the
semantics of LSC, we are only interested in retrieving LSCs
where the pre- is followed by the main-chart. Since the trace
could be incomplete, there could be bugs in the system, and
we are analyzing long running reactive systems, we provide
users with the ability to extract near perfect scenarios where
the pre-chart is only followed by the main-chart with likeli-
hood less than 100%. We refer to this notion of likelihood
based on the observed traces as the confidence of the LSC.
Hence, given a composition of two frequent charts resulting
in an LSC with confidence greater than a minimum confi-
dence threshold min conf, we would output the LSC. We
refer to the LSCs obeying the min sup and min conf thresh-
olds as the set of significant LSCs.

Redundancy elimination and post-processing. Often,
there are too many significant LSCs. One potential root
cause is that all sub-LSCs of a large and significant LSC are
potentially significant too. Thus there could be a combi-
natorial number of mined LSCs. Thus, it would be better
to mine a representative set of LSCs. To do this we only
extract maximal LSCs without any larger LSCs having the
same significance values of support and confidence. To do
this efficiently, we first bucketize the LSCs into support and
confidence value buckets. A one-to-all comparison to look for
non-redundant LSCs should only then be performed among
LSCs in each bucket rather than over all frequent and confi-
dent LSCs. The number of buckets depends on the number
of unique combinations of support of confidence values of
the LSCs. The more spread-out the distribution of support
and confidence value pairs the more effective the proposed
process would be. The process is illustrated in Fig. 6.

4.3 Scenario-Based Slicing
After a set of scenarios is mined, each scenario (or selected

ones) may be enriched with value-based invariants. To do
this, the parts of the traces that correspond to a scenario
under consideration are selected. We refer to this process as
scenario-based slicing. Consider a scenario L and a trace T ,
the slice of the trace T with respect to L is the sequence of
positive witnesses of L in the trace T . Let ++ and ⊑ rep-
resent the concatenation of two sequences of events and the
sub-sequence relationship between two sequences of events.
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Figure 6: Redundancy Elimination

The scenario-based slicing operation is defined as follows.

Definition 4.1 (Scenario-Based Slicing). Consider
a trace T=⟨ev1, . . . , evn⟩ and an LSC L. Slicing T with
respect to L produces a sub-trace ST , such that ST is the
maximal sub-sequence of T composed of series of positive
witnesses of L. Formally, ST = ST1 ++ . . . ++ STn, where
ST ⊑ T and {ST1,. . .,STn} = pos(L,T ).

As an example, consider the following trace:

1: USER | FTPWriter | send()

2: FTPWriter | FTPRequestImpl | getUserArgument()

3: USER | FTPRequestImpl | resetState()

4: PWD | FTPRequestImpl | getSystemFileView()

5: PWD | FtpWriter | send()

6: USER | FTPWriter | send()

7: FTPWriter | FTPRequestImpl | getUserArgument()

8: PWD | FtpWriter | send()

9: USER | FTPRequestImpl | resetState()

LSC – Send-Simple

getUserArgument()

send()

resetState()

FTPRequestImplFTPWriterUSER

Figure 7: LSC - Send Simple

Slicing the above trace with the LSC shown in Fig. 7 re-
sults in the following sliced trace:

1: USER | FTPWriter | send()

2: FTPWriter | FTPRequestImpl | getUserArgument()

3: USER | FTPRequestImpl | resetState()

6: USER | FTPWriter | send()

7: FTPWriter | FTPRequestImpl | getUserArgument()

9: USER | FTPRequestImpl | resetState()

Note that the 4th, 5th, and 8th events in the original trace
are removed. The above shows the simplified representation
used for scenario-based mining. The system maintains a one-
to-one correspondence between the events in the LSC mining
trace and the events in the Daikon trace. Converting the
events in the sliced traces back to Daikon events produces a
sliced Daikon trace. With the original Daikon trace and the
sliced Daikon trace, we are ready for the next step.

4.4 Scenario-Specific Invariants
Running Daikon on the original trace produces invariants

for entry and exit points of each of the instrumented meth-
ods. These invariants hold for every invocation of the re-
spective method in the traces. While these are useful, they
are too general, or generic, and not scenario-specific. Thus,
they are not good enough for our purpose.

On the other hand, running Daikon on the sliced trace
produces invariants that hold at entry and exit points of
each of the instrumented methods only when these methods
participate in the witnesses of the scenario at hand. This is
because method invocations that do not participate in the
scenario are not included in the sliced trace and hence are
not considered for the computation of the invariants. Based
on the invariants mined on the original and sliced traces, we
define the concept of scenario-specific invariants below.

Definition 4.2 (Scenario-Specific Invariants). Let
invorig and invsliced be the set of invariants mined by Daikon
on the original trace and sliced trace respectively. As the
sliced trace is a sub-trace of the original trace, the invari-
ants found on the former are equal to or stronger than the
ones found on the latter. We distinguish the strictly stronger
invariants using a comparison of the two sets. We call
these invariants scenario-specific. This is the set invsliced
\ invorig.

For example, for the PASV scenario shown in Fig. 9, Daikon
has not found an invariant related to the Boolean prop-
erty this.secure for DC in the original trace (because in
the original trace, this property was sometimes true and
sometimes false). However, Daikon did find the invariant
this.secure==true in the sliced trace, which included only
the sub-traces representing witnesses of the PASV scenario.

Note that a syntactic comparison of the two sets is typi-
cally good enough for our purposes, based on the assumption
that Daikon outputs semantically equivalent invariants us-
ing syntactically identical representations. We discuss this
assumption and its consequences in Sec. 6.

At the end of the process, we have collected a (potentially
empty) set of scenario-specific invariants including: invpre,
invpost for each method, and invglobal for the pre-chart and
the main-chart. Finally, we output the mined scenarios an-
notated with these invariants.

5. EXPERIMENTS & EVALUATION
We have implemented our ideas and evaluated them on

two case study applications: CrossFTP server [1] and Jeti
instant messaging application [3]. CrossFTP is a commercial
open-source FTP server built on top of Apache FTP server.
It consists of 18841 LOC, 15 packages, 165 classes, and 1148
methods. Jeti [3] is a popular open-source instant messaging
application. Its core contains 49K LOC, 62 packages, 511
classes, and 3400 methods.

We report here on the results of our experiments (run-
ning on an Intel Core Duo 2.4 GHz, 3.24 GB RAM Windows
XP Tablet PC). The algorithms are implemented in C#.Net
compiled using VS.Net 2005. We used Daikon Chicory to
generate traces from CrossFTP, running it on usage scenar-
ios involving start up, file transfers, administrator login and
query, server maintenance, etc. Similarly, we used Daikon
Chicory to generate traces from Jeti, running it to chat or
communicate with a remote client. Various details of the
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Program CrossFTP Jeti
Trace Size 12,217 evs 3,182 evs
Scenario Mining 53s 2s
Daikon (All) 132s 54s
Slicing Time 11s 3s
Daikon (Sliced) 31s 23s

Table 1: Experiment Details: Program, Trace Size,
Scenario Mining Time, Daikon Time, Trace Slicing
Time, and Daikon Mining on Sliced Traces Time

experiments including trace sizes and runtimes are shown in
Table 1. We illustrate some miend scenarios in the following
paragraphs.
Retrieving connection information. Fig. 8 shows a sce-
nario from CrossFTP, specifying how the server retrieves in-
formation about the connection it is serving. In the figure,
the CTM (FTPConnectionTableManager) retrieves the name
and login time of the connecting user. The table at the bot-
tom of the LSC shows the scenario-specific value based in-
variants found: The col argument of method getValueAt()

is always set to 1 when the scenario occurs. This is not a
general invariant for the method CTM, but rather a scenario-
specific invariant related to the context of this scenario. Dif-
ferent values of col argument are found in the traces. Ad-
ditional scenarios involving other values of col are given in
the technical report [4].
For the scenario shown in Fig. 8, a total of 37 scenario-

specific invariants are reported. This is much less than the
value-based invariants reported by Daikon on the original
trace, consisting 5910 invariants. Indeed, out of the 11 cases
described in this section and in the accompanying technical
report, the number of invariants on the sliced traces is only
0.10% - 4.86% of that found in the original traces. Thus,
this demonstrates an additional benefit of scenario-specific
invariants: limiting the number of value-based invariants
presented, focusing particularly on a scenario context under
investigation.

LSC Retrieve Connection Info

getValueAt(…)

getName(…)

getUser(…)

getLoginTime(…)

FRIBUserENVCTM

{}{col==1}getValueAt()

Value-Invariant PostValue-Invariant PreMethod

{}{col==1}getValueAt()

Value-Invariant PostValue-Invariant PreMethod

Figure 8: Mined LSC: Retrieve Connection Info-1

PASV FTP command. Fig. 9 shows another mined sce-
nario, which holds when the PASV command is set. An FTP
has two modes of operation, namely PORT and PASV, in
addition to secure (using TLS or SSL) or regular. The sce-
nario captures the case when PASV command is set together
with SSL. We highlighted the most relevant scenario-specific

invariant namely isSecure==true. isSecure is a property
of the class DC (FtpDataConnection).

LSC Set PASV Command - SSL

getPasvPort(…)

setPasvCommand(…)

getPasvAddr(…)

createServerSocket(…)

SSLDCCDCPASV

{this.secure == true,…}DC

Value-InvariantObject

{this.secure == true,…}DC

Value-InvariantObject

getSSL(…)

getInetAddr(…)

getPort(…)
send(…)

FRI

resetState(…)

getFtpDataConnection(…)

FW

releasePassivePort(…)

Figure 9: Mined LSC: PASV Command - Secure

Sending data - several commands. Figs. 10 and 11
show two different scenarios for CrossFTP, where data pack-
ets corresponding to FTP commands USER and PWD are
issued. Two particularly interesting scenario-specific value-
based invariants related to the parameters code and subId

of the method send(...) are found. Each of the two sce-
narios has unique scenario-specific value-based invariants for
these two parameters. Similar examples are available in [4].

LSC Send Data - USER

getUser(…)

getArgument(…)

isLoggedIn(…)
setUserArgument(…)

FWFRIUSER

{subId.toString == 
“USER”,…}

{code==331, 
subId.toString == 
“USER”,…}

send()

Value-Invariant PostValue-Invariant PreMethod

{subId.toString == 
“USER”,…}

{code==331, 
subId.toString == 
“USER”,…}

send()

Value-Invariant PostValue-Invariant PreMethod

send(…)
getUserArgument(…)

isUTF8Encoding(…)
resetState(…)

Figure 10: Mined LSC: Send Data - USER, Port

Command-line startup. Fig. 12 shows one of the scenar-
ios when the CrossFTP server starts using the command-line
option. It shows the default case when the server is started
up with no parameters. It is also possible to start the server
by passing an XML file. Note that for this scenario, we
capture the scenario-specific invariants about the method
getConfiguration including: the size of the input args[]

array must be empty, and the type of the returned object
must be equal to PropertiesConfiguration. Another vari-
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LSC Send Data - PWD

getFileSystemView(…)

FWFRIPWD

{subId.toString == “PWD”, 
…}

{code==257, 
subId.toString == 
“PWD”, …}

send(…)

Value-Invariant PostValue-Invariant PreMethod

{subId.toString == “PWD”, 
…}

{code==257, 
subId.toString == 
“PWD”, …}

send(…)

Value-Invariant PostValue-Invariant PreMethod

send(…)
getLanguage(…)

resetState(…)

Figure 11: Mined LSC: Send Data - PWD, Port

ant involving start-up using XML file was also mined and is
given in [4].

LSC Command Line Start Up:
Default

getFileFTPD(…)

SFCLENV

{ args[].toString == [], 
return.getClass() == 
org.apache.ftpserver.config.
PropertiesConfiguration.cla
ss, …}

{args[].toString == 
[], …}

getConfiguration(…)

Value-Invariant PostValue-Invariant PreMethod

{ args[].toString == [], 
return.getClass() == 
org.apache.ftpserver.config.
PropertiesConfiguration.cla
ss, …}

{args[].toString == 
[], …}

getConfiguration(…)

Value-Invariant PostValue-Invariant PreMethod

getConfiguration(…)

Figure 12: Mined LSC: Command Line Startup Normal

Start chat window. Fig. 13 shows one of the scenarios
when Jeti is used to communicate with a remote client. It
specifies the scenario where a message comes, the system
beeps, and a window is popped up by the Jeti client. Even-
tually the chat window is set up and the system is ready
to accept reply messages from the user. This scenario in-
volves JH (JabberHandler), Jabber, CWS (ChatWindows)
and CW (ChatWindow). Note that for this scenario we cap-
ture scenario-specific invariants about the method receive-

Packets. The method accepts many different types of pack-
ets involving presence updates (e.g., Busy, Away, Extended
Away, etc), error messages, etc. However, in the context of
this scenario, there should be only one type of packet be-
ing received by method receivePackets, namely Message.
Also, we capture the scenario-specific invariants involving
the return type of method getChatwindow, which, in this
scenario, is always null: a chat window creation occurs (the
<<create>> event), which only happens if two parties
have not communicated before, causing the call to method
getChatwindow to return a null value.
Add incoming new picture. Fig. 14 shows a scenario
where Jeti received a new picture creation message from

LSC Create Chat Window

beep(…)

message(…)

getChatwindow(…)

startChat(…)

CW

CWSJabber

{}{arg0.getClass() ==
nu.fw.jeti.jabber.elements.
Message.class}

receivePackets(…)

{return == null}{}getChatwindow(…)

Value-Invariant PostValue-Invariant PreMethod

{}{arg0.getClass() ==
nu.fw.jeti.jabber.elements.
Message.class}

receivePackets(…)

{return == null}{}getChatwindow(…)

Value-Invariant PostValue-Invariant PreMethod

<<create>>

setCWPosition(…)

receivePackets(…)

requestComposing(…)

JH

appendMessage(…)

Figure 13: Mined LSC: Create Chat Window

another client: the packet is received, newMessage arrival
message is passed, the history is updated, a Creation ob-
ject is created, appropriate new picture creation methods are
executed, and finally the updated window is shown. The sce-
nario involves JH (JabberHandler), Jabber, PC (Picture-
Chat), PC$1 (a nameless internal class of PictureChat), PH
(PictureHistory), C (Creation) and HP (HistoryPanel).
Note the scenario-specific invariant found for method add-

IncomingMessage. The method accepts many different types
of messages involving picture updates (e.g., creation, display,
deletion, change in background setting, etc.) as the first ar-
gument (i.e., arg0). However, for this scenario, there is only
one type of message being received by the method, namely
CreationMessage.

LSC Add Incoming New Picture

newMessage(…)

PCJabber

{…}{arg0.getClass() == nu.fw.jeti. 
plugins.drawing.elements.Creati
onMessage.class, …}

addIncomingMessage(…)

Value-Invariant PostValue-Invariant PreMethod

{…}{arg0.getClass() == nu.fw.jeti. 
plugins.drawing.elements.Creati
onMessage.class, …}

addIncomingMessage(…)

Value-Invariant PostValue-Invariant PreMethod

<<create>>

addAction (…)

receivePackets(…)

JH PC$1 PH

C

HP

addIncomingMessage(…)

execute(…)

showWindow(…)
execute(…)

Figure 14: Mined LSC: Add Incoming Picture

6. DISCUSSION
Choice of the target formalism. The popularity and
intuitive visual nature of sequence diagrams as a specifica-
tion language in general, together with the additional unique
features of LSC – in particular, the universal interpretation
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and its expressive power, motivate our choice for the tar-
get formalism of our mining work. Moreover, the choice is
supported by previous work on LSC (see, e.g., [20, 24, 32]),
which can potentially be used to visualize, analyze, manip-
ulate, test, and verify the specifications we mine (see [29]).
Still, one may consider other scenario-based formalisms

with different semantics as targets for mining (e.g., [38]), or,
more generally, the mining of other useful behavioral pat-
terns [11]. These alternatives require further investigation.
Soundness and completeness. Our previous work on
scenario-based specification mining [29] was sound and com-
plete; all mined scenarios met the minimum support and
confidence thresholds (soundness), and all the scenarios meet-
ing these thresholds were mined (completeness). Hence it is
important to note that our present work on adding value-
based invariants to the scenarios preserves soundness but
gives up completeness. Since scenario-based mining is done
first, independent of value-based mining, our current method
might miss scenarios whose confidence statistics depends
on their restriction with value-based invariants: when the
pre-chart is restricted, the actual confidence may be higher
than the one we computed without the restriction. Still,
our present work is sound: all mined scenarios with their
value-based invariants indeed meet the minimum support
and confidence thresholds. Developing a sound and com-
plete method to mining scenario-based specifications with
value-based invariants is left for future work.
Identifying scenario-specific invariants. A rather sim-
ple syntactic comparison of the invariants found on the orig-
inal trace and on the sliced trace suffices to identify the
scenario-specific invariants we are looking for. Comparison
correctness relies on the fixed and simple default syntax of
Daikon’s output textual representation of these invariants.
However, in some cases, a simple syntactic comparison

may not be good enough because two equivalent invari-
ants may be represented syntactically different. This in-
deed happened in one of our experiments, where Daikon
reported this.language == orig(this.language) for the
original trace, and this.userArgument == this.language;

this.userArgument == orig(this.language) for the sliced
trace (see Fig. 10, just after the return of getArgument()).
To handle such cases in general, a constraint solver should
be used to identify semantic differences, regardless of the
syntactic representation. We leave this for future work.
Additional limitations. Two additional limitations of our
present work should be mentioned. First, we handle only
fully ordered scenarios and cannot handle partial orders.
Second, in a multi-threaded environment one may be inter-
ested in mining thread-specific specifications; however, our
present work is agnostic to threads. We leave these two as
challenges for future work.
Integration with previous work. It is important to
note that our method of adding value-based invariants to
scenario-based specification mining is applicable to the var-
ious variants of the latter, that is, to the mining of scenario-
based triggers and effects presented in [26] and to the min-
ing of hierarchical scenario-based specifications presented
in [28]. Also, in the present work, object IDs are abstracted
away from the input traces. As discussed in previous work [27],
this cannot be done in the general case; thus, we implicitly
assume no overlapping LSCs. Relaxing this restriction re-
quires further work, see [27]. We leave the implementation
of these integrations and their evaluation for future work.

7. RELATED WORK
Reverse engineering of sequence diagrams. Many
works present various variants of reverse engineering of ob-
jects’ interactions from program traces and their visualiza-
tion using sequence diagrams (see, e.g., [2, 18]). These may
seem similar to our current work. Unlike our work, how-
ever, all consider and handle only concrete, continuous, non-
interleaving, and complete object-level interactions and are
not using aggregations and statistical methods to look for
higher level recurring scenarios; the reverse engineered se-
quences are used as a means to describe single, concrete, and
relatively short (sub) traces in full (and thus may be viewed
not only as concrete but also as ‘existential’). In contrast, we
look for universal (modal) sequence diagrams, which aim to
abstract away from the concrete trace and reveal significant
recurring potentially universal scenario-based specification,
ultimately suggesting scenario-based system requirements.
Automata-based specification mining. Most specifica-
tion miners produce an automaton (e.g., [5, 6, 8, 31]), and
have been used for various purposes from program compre-
hension to verification. Unlike these, we mine a set of LSCs
from traces of program executions. We believe sequence di-
agrams in general and LSCs in particular, are suitable for
the specification of inter-object behavior, as they make the
different role of each participating object and the commu-
nications between the different objects explicit. Thus, our
work is not aimed at discovering the complete behavior or
APIs of certain components, but, rather, to capture the way
components cooperate to implement certain system features.
Indeed, inter-object scenarios are popular means to specify
requirements (see, e.g., [15, 19, 21, 38, 39]). The addition of
value-based invariants strengthens the expressive power of
the mined scenarios.
Mining of automata with value-based invariants. Most
studies on specification mining extracting automata to date
do not capture value-based invariants. Some recent works
do. We briefly discuss these below.

Mariani and Pezze [34] work reports both value-based in-
variants and automata to help component integration. The
value-based invariants are mined using Daikon, while the
automata are mined using an automata learner. In con-
trast, we do not mine general invariants; rather, we merge
value-based invariants and sequencing constraints to form
scenario-specific specifications. Also, while an automaton
describes the entire behavior of a system, a scenario de-
scribes only a certain aspect of it. Different from the model
mined in [34], our mined scenarios also capture caller and
callee relationships and present them in the intuitive visual
syntax of sequence diagrams.

Lorenzoli et al. [31] integrate Daikon invariants with an
automaton using a four steps approach: (1) merging all
traces with the same sequence of methods invoked with dif-
ferent values of the parameter, (2) inferring Daikon invari-
ants from each of the merged traces, (3) creating an initial
automaton, and (4) merging locally equivalent states (based
on the next k-steps) to obtain the final automaton. Our
work is substantially different. First, we mine scenarios in
the form of LSC, which express universal properties in the
form of“Whenever the pre-chart occurs, the main chart must
eventually occur”. The automaton mined in [31] expresses
a global/existential property, modeling all executions that
are allowed in the traces. Due to this difference, the min-
ing algorithms are very different (see [40]). Second, [31] may
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‘mix’ between different behaviors, as it merges similar meth-
ods into one. The different context of each invocation is lost
in the merging. In contrast, our use of scenario-based slic-
ing and differencing ensures the mining of scenario-specific
invariants, where the context information is preserved and
highlighted.
Mining of temporal rules with equality constraints.
Lo et al. [30] mine length-2 quantified temporal rules in the
form “For all x, whenever method A is called with the nth
parameter equals to x, method C would eventually be called
with the mth parameter equals to x”. [30] permits equality
constraints. In our present work, we mine for scenarios in
the form of LSCs, not limited to length two. LSCs capture
caller and callee relationships not considered in [30]. While
the approach in [30] is shown to work only on equality con-
straints, we support a wider subset of Daikon invariants. We
introduce the concept of scenario-specific invariants and re-
alize it by scenario-based mining, slicing, and differencing.
However, [30] captures quantified variables, not supported
in our present work. Adding quantification to our approach
is left for future research.

8. CONCLUSION & FUTURE WORK
We presented scenario-based mining with value-based in-

variants, as an expressive extension of scenario-based spec-
ification mining in general. The key to the extension is a
new technique we call scenario-based slicing, to distinguish
scenario-specific invariants from general ones. The resulting
suggested specifications are rich, consisting of modal scenar-
ios annotated with scenario-specific value-based invariants,
referring to event parameters and participating object prop-
erties.
An evaluation over a number of case studies shows promis-

ing results in extracting expressive specifications from real
programs, which could not be extracted previously. The
more expressive the mined specifications, the higher their
potential to support program comprehension, testing, and
verification tasks. The work is part of the larger frame-
work of specification mining, integrating behavioral models
mining with value-based invariants mining to improve the
state-of-the-art support for property discovering tasks.
Future work directions relate to the challenges discussed

in Sec. 6. These include, among others, the development of
a complete (rather than only sound) solution, handling of
partial orders, and integration with previous work through
LM, the LSC mining tool [10].
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