
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2010

Mining collaboration patterns from a large developer network Mining collaboration patterns from a large developer network

Didi SURIAN
Singapore Management University, didisurian@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, Numerical Analysis and Scientific

Computing Commons, and the Software Engineering Commons

Citation Citation
SURIAN, Didi; LO, David; and LIM, Ee Peng. Mining collaboration patterns from a large developer network.
(2010). WCRE 2010: 17th Working Conference on Reverse Engineering: 13-16 October 2010, Beverly,
Massachusetts: Proceedings. 269-273.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1339

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1339&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Mining Collaboration Patterns from a Large
Developer Network
Didi Surian, David Lo and Ee-Peng Lim

School of Information Systems, Singapore Management University
didisurian,davidlo,eplim@smu.edu.sg

Abstract—In this study, we extract patterns from a large devel-
oper collaborations network extracted from SourceForge.Net at
high and low level of details. At the high level of details, we extract
various network-level statistics from the network. At the low level
of details, we extract topological sub-graph patterns that are
frequently seen among collaborating developers. Extracting sub-
graph patterns from large graphs is a hard NP-complete problem.
To address this challenge, we employ a novel combination of
graph mining and graph matching by leveraging network-level
properties of a developer network. With the approach, we
successfully analyze a snapshot of SourceForge.Net data taken
on September 2009. We present mined patterns and describe
interesting observations.

I. INTRODUCTION

With the advent of communication devices, distant locations
do not hamper people to collaborate. Many projects involve
participants from diverse locations. Some of which might be
at the opposite ends of the globe. This is certainly the case
with software development.

Both open-source and closed-source software development
efforts benefit from this trend. Globally distributed software
development is apparent in large corporations like Microsoft,
IBM, etc that have centers all around the globe working
together on various common projects. In the open-source
settings, various people having common interests despite their
location work together in various projects.

Recently, there has been a number of work that investigates
globally distributed software development [9], [12], [4]. Other
studies visualize the socio-technical relationships in software
development [10], [6].

Extending the above studies, in this study we investigate
properties of distributed developments and patterns of collab-
oration among large number of developers. We particularly
focus on open source development community in Source-
Forge.Net.

By mining or reverse engineering patterns from historical
collaboration data we could learn from the past and capture
some interesting observations that could help in aiding open
source development in the future. Collaboration patterns shed
light to the dynamics of collaborations among developers
and highlight some apparent properties. Some weaknesses of
the current level or degree of collaborations among software
developers could also be identified.

As subjects of our analysis, we take developers involved
in software projects hosted within SourceForge.Net which is

the most popular open-source software portal. These devel-
oper collaboration networks are modeled as a large graph
or network whose nodes correspond to developers and edges
correspond to collaborations among them. Based on this
huge collaboration network, we investigate several research
questions listed below:

RQ 1: How connected are the developers? Are all devel-
opers connected to every other developers in the-
network? If no, how many clusters of connected
developers are there in the network?

RQ 2: What are some characteristics of developer col-
laboration clusters?

RQ 3: What are some common topological collaboration
patterns appearing in these developer collabora-
tion clusters?

RQ 4: Within a connected collaboration cluster, are all
developers connected to every other developers in
6 hops following the small world phenomenon?

To answer the above questions, we compute various counts
or statistics from the collaboration network. In addition to
the statistics, we also extract detailed topological patterns
that represent the most frequent patterns of collaborations
appearing in the network. Frequent topological patterns of
collaborations shed light on factors affecting the formation
of collaborations among developers.

Our contributions are as follows:

1) We investigate and describe various network-level statis-
tics extracted from large scale software collaborations
in SourceForge.Net. We report some interesting obser-
vations and answer some hypotheses.

2) We propose a novel solution that merges graph mining
and graph matching that scales to mine frequent sub-
graphs from a large software collaboration network.

3) We present top-30 topological collaboration patterns
mined from SourceForge.Net. We also describe some
interesting observations based on these patterns.

The structure of this paper is as follows. In Section II
some definitions and concepts are described. In Section III,
our approach to extract the dataset and mine patterns are
elaborated. In Section IV, we describe our experiment and
discuss our findings. We discuss some issues in Section V.
Section VI describes related work. Finally, we conclude and
mention future work in Section VII.

II. DEFINITIONS AND CONCEPTS

In this section, we describe some graph notations and intro-
duce sub-graph isomorphism, pattern matching, and frequent
graph mining problems.

A. Basic Notations

A collaboration graph G is a non-directed graph represent-
ing collaborations among a set of developers. The vertex/node
set denoted by N includes all the developers appearing in the
input dataset under study. The set of edges in G is denoted by
E and corresponds to a set of vertex pairs. Each pair (vi, vj)
corresponds to an edge between nodes vi and vj in G. Such
an edge means that developer vi collaborates with developer
vj before. For each node there is a label associated to it. This
corresponds to the identifier of the developer. The label of vi is
denoted as l(vi) and the set of all labels in G is denoted as NL.
Hence, a graph could be represented as the triple (N ,E,NL).

A collaboration pattern is a set of nodes and a set of edges.
It could be represented as a pair (N ,E), where N is a set of
nodes, and E is a set of edges.

B. Sub-Graph Isomorphism

Sub-graph matching or sub-graph isomorphism is a well
known problem. The formal definition of subgraph isomor-
phism is given in Definition 1.

Definition 1 (Sub-Graph Isomorphism): Consider two
graphs G=(N,E,NL) and G′=(N ′, E′, N ′

L). Sub-graph
isomorphism is an injective function f : N → N ′,
s.t., (1), ∀n ∈ N, l(n) = l′(f(n)); and (2),
∀(u, v) ∈ E, (f(u), f(v)) ∈ E′. The function or mapping f
is referred to as the embedding of G in G′.

A pattern P is said to match a graph G, iff ignoring the
node labels in G, P is a sub-graph of G. Mathematically, this
is defined in Definition 2.

Definition 2 (Pattern Match): A pattern P=(N,E) matches
a graph G=(N ′, E′, N ′

L), if there exists an injective function
f : N → N ′, s.t., ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′.

C. Frequent Sub-Graph Mining

The formal definition of Frequent Sub-Graph Mining is
given in Definition 3.

Definition 3 (Frequent Pattern Mining): Given a graph
dataset GSet and a threshold msup, find all patterns that
appear in more than msup graphs in GSet.

Past results of frequent graph mining (c.f., [15]) have shown
that Property 1 defined below holds.

Property 1 (Anti-monotonicity of Support): If a graph pat-
tern P is frequent, so is the graph pattern P ′, where P ′ is a
sub-graph of P .

Definition 4 describes the concept of frequent closed sub-
graph patterns. Among patterns having the same support, only
maximal patterns are deemed as closed. The formal definition
of closed graph mining is given in Definition 5.

Definition 4 (Closed Graphs): Given a set of graphs GSet,
a graph pattern g is closed, if there does not exists another
pattern g′ where g′ is a super-graph of g and both g and g′

match the same set of graphs in GSet. If there exists such a
g′, we say that g is being subsumed by g′.

Definition 5 (Frequent Closed Pattern Mining): Given a
graph dataset GSet and a threshold msup, find all patterns
that are frequent and closed.

III. PROPOSED APPROACH

A. Overall Framework

We start with the construction of a collaboration network
from SourceForge.Net dataset. We then extract developer col-
laboration clusters which corresponds to the various connected
components in the network. This set of connected components
are treated as a graph database which is the basis of our
analysis. We refer to this database as the collaboration graph
database CGD. Each member of the CGD is a collaboration
cluster and is denoted as CC.

In this work, our goal is to mine for two types of pat-
terns: high-level and detailed topological patterns. High-level
patterns correspond to the various statistics or counts that we
could extract from the collaboration network.

Detailed topological patterns correspond to patterns that
appear in many graphs in the CGD. Our goal is to get the
top-k most frequent graph patterns from the CGD.

B. Topological Pattern Mining

In this step, we extract top-k graph patterns from the
collaboration graph database CGD. We propose an approach
that merges graph mining and graph matching. The resultant
approach utilizes the strengths and limitations of each tech-
nique. The steps are described below:

1) Divide the database CGD into two sub-databases: One
containing the large graphs CGDL and another contain-
ing the small graphs CGDS .

2) As most patterns are small all frequent graphs minable
from CGD at minimum support msup, could be mined
from CGDS with minimum support msup′, where
msup′ = (msup− |CGDL|) ≈ msup.

3) The mining algorithm outputs frequent closed patterns
along with their support in CGDS . Let us denote the
support of a pattern P in CGDS as sup(P ,CGDS).

4) For each graph pattern P that is mined, we try to find
graphs in CGDL that could be matched with P .

5) For each graph pattern P , we store the number of
graphs in CGDL containing it. We denote this value
as sup(P ,CGDL).

6) For each graph pattern P , we compute the total sup-
port of the pattern. This is equal to sup(P ,CGDS) +
sup(P ,CGDL). This number is denoted as sup(P ,CGD)
or sup(P), which corresponds to the support of the
pattern P in the the graph database CGD.

7) We sort the mined patterns in a descending order of their
support in CGD.

An end-to-end pseudo-code of our approach is shown in
Figure 1.

Procedure Mine Collaboration Patterns
Inputs: SFN : SourceForge.Net Database;

R: Desired range for k;
msup : Initial minimum support threshold;

Outputs: Top-k Frequent Graph Collaboration Patterns in SFN ;
Method:
1: Let CGD = Extract connected components from developer

and project tables in SFN
2: Let CGDL = {g|g∈CGD∧(|V (g)|>254∨|E(g)|>254)};
3: Let CGDS = CGD - CGDL;
4: Let FPS = {};
5: Do
6: FPS = Run CloseGraph on CGDS with minimum

support set at msup
7: If |FPS| is within range R
8: break;
9: Else
10: msup = Reduce the value of msup;
11: While |FPS| < R
12: For each pattern P in FPS
13: For each graph g in CGDL

14: If P is contained in g
15: P .support++;
16: Sort P in FPS according to its support
17: Output top-k patterns in FPS

Fig. 1. Mining Topological Collaboration Patterns - Mine-Match

IV. EXPERIMENTS

We extract a collaboration network from database dumps of
SourceForge.Net collected by Madey et al. described in [2].
Madey et al. dump the database monthly and we take the
snapshot extracted at September 2009. There are in total
73 tables with various relationships among them. From the
database we investigate 192,706 projects.

We are not interested in inactive projects, thus as an
initial step, we filter out projects with no developers and
only consider projects which have 100 or more number of
downloads. We find that 1,898 projects are not assigned
to any developer in the snapshot. Thus, we only process
the remaining 190,808 projects. The snapshot only contains
information on the number of downloads for 64,487 out of
the 190,808 projects. From these 64,487 projects, we find that
there are 28,087 projects with 100 or more downloads. From
these 28,087 projects, we extract a collaboration network. This
collaboration network consists of 55,694 developers.
A. How connected are the developers?

We first investigate whether the collaboration network is
a connected one. We find that this is not the case. Indeed
the graph is made of many disjoint connected components
or collaboration clusters (i.e., CCs). In total there are 6,744
collaboration clusters in the collaboration network.

The number of developers that work alone is very low. There
are about 838 developers among 55,694 developers (1.5%)
that do not work with anyone else. We also note that there is
a very large collaboration cluster (CC) of 30,111 developers
(54.07%) which represents the core community of developers.
Other CCs are of much smaller size (the second largest CC
only contains 117 developers).

B. What are some statistical characteristics of collaboration
clusters?

We plot the size of the CCs (x-axis) versus the count or
frequency of the CCs having that size (y-axis) in Figure 2.
We consider two notions of size: (a) the number of nodes in
a CC and (b) the number of edges in a CC. The left graph in
Figure 2 observes a power law like behavior, while the one
on the right follows a similar downward trend but is “noisy”.

110
100100010000

1 100 10000Fr
eq

ue
nc

y (
lo

g-
sc

ale
)

Num. of Nodes in CCs (log-scale)
110

100100010000

1 100 10000 1000000Fr
eq

ue
nc

y (
lo

g-
sc

ale
)

Num. of Edges in CCs (log-scale)

Fig. 2. All CCs: Size (Num. of Nodes) vs. Frequency (Left), Size (Num.
of Edges) vs. Frequency (Right)

We also compute a measure characterizing the connectivity
of a graph. We define connectivity as the number of edges
divided by the number of nodes.

We round-off the connectivity value to the nearest 0.5 (e.g,
2.31 is rounded off to 2.5). The plot of connectivity value (x-
axis) versus frequency of CCs having that connectivity value
(y-axis) is shown in Figure 3 (left). Next, we zoom in to the
largest CC of 30,111 nodes representing the core community
of developers. We plot the distribution of the degree of the
nodes/developers in the large CC in Figure 3 (right). The
degree of a node in a graph is the number of neighbors that it
has. We observe that Figure 3 (left) observes a power law like
behavior, however this is not the case with Figure 3 (right).

We perform a hypothesis test to investigate if the mean
of the connectivity values of the CCs of large sizes is sub-
stantially different from that of small size CCs. As a null
hypothesis we assume that both means are equal. We find
that we could reject the null hypothesis as the P value is
less than 0.0001 (statistically significant at α= 0.0001). As
the connectivity values are generally larger for larger graphs,
it suggests that having indirect “neighbor” helps in fostering
more collaborations among developers.

110
100100010000

0.1 1 10 100Fr
eq

ue
nc

y (
lo

g-
sc

ale
)

Connectivity (log-scale)

110
100100010000

1 10 100 1000Fr
eq

ue
nc

y (
lo

g-
sc

ale
)

Degree of Nodes (log-scale)

Fig. 3. Connectivity vs. Frequency (Left), Degree of Nodes vs. Frequency
(Right)

C. What are some common topological collaboration pat-
terns?

We separate graphs having more than 254 nodes or 254
edges to a separate dataset. There are a total of 36 graphs

min. support |P | runtime (CG) runtime (VF)
990 30 10.22 hours 0.71 hours
980 36 15.54 hours 0.84 hours
970 36 15.49 hours 0.87 hours
960 37 15.87 hours 0.90 hours
950 39 16.69 hours 0.95 hours

TABLE I
NUMBER OF PATTERNS (|P |) AND RUNTIME AT VARIOUS MIN. SUPPORT

THRESHOLDS FOR CLOSEGRAPH (CG) AND VFLIB (VF)

having more than 254 nodes or 254 edges. There is only
one graph with more than 254 nodes and 254 edges. This
graph has in total 30,111 nodes and 543,559 edges. We also
separate developers who only work with one other developer
or no other developer. For these very small graphs, we simply
keep their counts and would use them in the calculation of the
support of the pattern having only two nodes with one edge
connecting them1. Hence, there are 3 sets of graphs: large,
small, and very small.

We run CloseGraph [16] for the small graphs to produce an
initial set of patterns. We run VFLib [7] on the large graphs
to update the support count of the patterns. The final set of
patterns are then reported.

The runtime for CloseGraph and VFLib and the number
of patterns mined for different minimum support thresholds
are shown in Table I. The result of the experiment extracting
the top 30 most common topological collaboration patterns
is shown in Figure 4. The 30 patterns are mined with the
minimum support threshold set at 990. Our approach is able
to scale for the large dataset.

Performing a deeper analysis based on the general observa-
tions above, we note the following findings:

1) The frequent collaboration patterns are of relatively
small sizes. Many developers are only “professionally”
linked to a few other developers. Among the 30 patterns,
we only see patterns with at most 6 nodes.

2) The mined patterns suggest that the collaborations be-
tween developers follow triadic closure principle [8].
The principle states that if two people in a social network
have a friend in common then in the future, there is a
likelihood that they will become friends themselves. We
observe this when we compare G2 with G3, G5 with G6,
G6 with G7, G7 with G8, etc. We could then compute
the likelihood of clusters exhibiting G2 to also exhibit
G3 (similarly for G2 and G7, and G7 and G8). We notice
that the likelihoods are high which are 96.5%, 94.2%,
and 99.6% for G2 and G3, G6 and G7, and G7 and G8
respectively.

3) The least dense patterns are the chain like patterns i.e.,
G1, G2, G4, and G10. The most dense collaboration
patterns are the complete graph patterns i.e., G1, G3,
G8 and G20. It is interesting to note that the likelihoods
of clusters observing a chain like pattern to also observe
the complete graph pattern of the same number of nodes

1We ignore trivial graphs with only one node as they do not correspond to
collaborations.

are high. They are 96.5%, 92.9% and 90.0% for G2
and G3, G4 and G8, and G10 and G20 respectively.
The result suggests that indirect links (i.e., collaborators’
collaborators) are likely to realize into direct links (i.e.,
new collaborations).

4) Some patterns of a lower rank could be derived from
patterns of a higher rank by expanding its hub. For
example, G2 could be derived by expanding the hub of
G1, G6 could be derived by expanding the hub of G3,
etc. These suggest that in many collaboration clusters

there are one or more developers who actively recruit
other developers to join in.

D. Does six-degree-of-separation exist?

We first analyze the largest CC with 30,111 nodes. We
use Java Universal Network/Graph Framework (JUNG)2 to
calculate the diameter and the average value of the shortest
paths between two nodes in a graph. The result shows that
the diameter of the largest graph is 19 and the average of the
shortest paths is 6.55 (≈ 6.6). Thus, our study shows that the
six-degree-of-separation exists among developers in the core
community of developers.

V. DISCUSSION

In our study, two developers are considered to collaborate
on a software project if both of them are listed as contributors
of the project in SourceForge.Net. A developer could be listed
as a contributor of a project, but does not actually contribute
anything to the project. These cases could be viewed as noise
in the dataset.

In our initial experiment, we have experimented with a
collaboration network formed by developers working on the
top-100 projects (based on the number of downloads) in
SourceForge.Net. We find 1,902 unique SVN/CVS committer
identifiers extracted from this dataset. However, there are
several issues with the identifiers. First, the same developer
might use different committer identifiers in different projects.
Second, different developers might use the same committer
identifier in different projects.

Due to the scalability issue and the issue with the unique-
ness of committer identifiers, we do not use CVS/SVN logs
to construct the collaboration network. Rather, we use the
contributor information in SourceForge.Net. Although some
developers listed as contributors might not eventually commit
code to the project, it is possible that they are involved in
the initial planning of the project or in other tasks which are
not recorded in the CVS or SVN but are yet valuable to the
success of the project.

VI. RELATED WORK

Several researchers have studied social or expertise networks
among developers. One of the early work is by Bird et al.
in [3] that extracts a social network from developers’ email
communications. This work complements past studies by
recovering collaboration patterns, in the form of statistical

2Available at: http://jung.sourceforge.net/index.html

Rank ID Pattern N E Sup Dia Den Con Rank ID Pattern N E Sup Dia Den Con

1 G1 2 1 5906 1 1 0.5 16 G16 5 6 1370 2 0.6 1.2

2 G2 3 2 3250 2 0.67 0.67 17 G17 5 7 1369 2 0.7 1.4

3 G3 3 3 3135 1 1 1 18 G18 5 6 1349 2 0.6 1.2

4 G4 4 3 2061 3 0.5 0.75 19 G19 5 8 1276 2 0.8 1.6

5 G5 4 3 2061 2 0.5 0.75 20 G20 5 10 1272 1 1 2

6 G6 4 4 2040 2 0.67 1 21 G21 6 5 994 4 0.33 0.83

7 G7 4 5 1922 2 0.83 1.25 22 G22 6 5 994 4 0.33 0.83

8 G8 4 6 1915 1 1 1.5 23 G23 6 5 994 3 0.33 0.83

9 G9 5 4 1416 3 0.4 0.8 24 G24 6 5 993 3 0.33 0.83

10 G10 5 4 1414 4 0.4 0.8 25 G25 6 6 991 3 0.4 1

11 G11 5 5 1400 3 0.5 1 26 G26 6 6 991 4 0.4 1

12 G12 5 5 1398 2 0.5 1 27 G27 6 6 990 4 0.4 1

13 G13 5 5 1379 3 0.5 1 28 G28 6 6 990 3 0.4 1

14 G14 5 5 1371 2 0.5 1 29 G29 6 6 990 2 0.4 1

15 G15 5 6 1370 3 0.6 1.2 30 G30 6 6 990 3 0.4 1

N = Number of nodes Sup = Number of support Den = Density
E = Number of edges Dia = Diameter Con = Connectivity

Fig. 4. Collaboration Patterns among Developers in SourceForge.Net

characteristics and topological patterns, among developers in
open-source projects, namely SourceForge.Net.

Lungu et al. propose an approach to visualize a super-
repository [10]. A related visualization study is also performed
by Sarma et al. [13]. Our approach is complementary to past
studies by Lungu et al.’s and Sarma et al.’s by mining for
patterns from a super-repository containing tens of thousands
of diversified projects.

There have been recent studies that investigate the appli-
cability of power-law in software engineering code bases [5],
[17]. Our study also shows that power law holds in a number
of cases. However, rather than investigating code elements, we
investigate developers that work on various code bases.

There have also been several work on the analysis of
open source developer communities [11], [14]. None of the
studies extract topological collaboration patterns. Also, we
enrich result reported in these past studies as described in our
technical report [1].

There are a number of studies analyzing globally distributed
software development activities [9], [12], [4]. In this study,
we complement those studies by analyzing both high-level
statistical patterns and detailed graph topological patterns de-
scribing collaborations among developers working across tens
of thousands of diversified projects in open source settings.

VII. CONCLUSION AND FUTURE WORK

In this work, we extract high-level counts and detailed topo-
logical graph patterns from a large super-repository, namely
SourceForge.Net. We show that not all developers are con-
nected to every other developers. There are many collaboration
clusters. The number of nodes of the clusters and connectivity
follow power law. But this is not the case for the number of
edges and node degrees in the core cluster. We find that the
small-world phenomenon also exists where each developers in
a connected network is separated on the average by approxi-
mately 6 hops. We also mine top-30 topological patterns. We
note the likely importance of hubs in fostering collaborations

as many mined patterns contain one or even more hubs. The
patterns also suggest that “weak” links resulting from transitive
relationships between developers in the network are likely to
evolve to direct collaborations.

In the future, we plan to develop a recommendation system
and study the evolution of network-level statistical counts and
detailed collaboration topological pattern as SourceForge.Net
evolves over time. We also plan to find “bad” collaboration
patterns that correlate to unsuccessful projects.

Acknowledgement. We would like to thank Greg Madey for
sharing with us the SourceForge.Net dataset, Xifeng Yan for
providing us the binary of CloseGraph, and National Research
Foundation (NRF) (NRF2008IDM-IDM004-036) for funding
the work.

REFERENCES

[1] http://www.mysmu.edu/staff/didisurian/papers/devcollabpattern.pdf.
[2] M. Antwerp and G. Madey, “Advancess in the sourceforge research data archive

(SRDA),” in OSS, 2008.
[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email

social networks,” in MSR, 2006.
[4] M. Cataldo and J. Herbsleb, “Communication networks in geographically dis-

tributed software development,” in CSCW, 2008.
[5] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a large object-

oriented software system,” IEEE TSE.
[6] C. R. B. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles, “Supporting

collaborative software development through the visualization of socio-technical
dependencies,” in ACM SIGGROUP, 2007.

[7] P. Foggia, “The vflib graph matching library, version 2.0.”
http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html, 2001.

[8] M. Granovetter, “The strength of weak ties,” American Journal of Sociology.
[9] J. Herbsleb, D. Paulish, and M. Bass, “Global software development at Siemens:

Experience from nine projects,” in ICSE, 2005.
[10] M. Lungu, M. Lanza, T. Girba, and R. Heeck, “Reverse engineering super-

repositories,” in WCRE, 2007.
[11] G. Madey, V. Freeh, and R. Tynan, “The open source software development

phenomenon: An analysis based on social network theory,” in AMCIS, 2002.
[12] N. Ramasubbu and R. Balan, “Globally distributed software development project

performance: An empirical analysis,” in FSE, 2007.
[13] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract: Interactive

visual exploration of socio-technical relationships in software development,” in
ICSE, 2009.

[14] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of the open
source software development community,” in HICSS, 2005.

[15] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,” in Proc. of
ICDM.

[16] ——, “Closegraph: Mining closed frequent graph patterns,” in KDD, 2003.
[17] H. Zhang, “Power laws in computer programs,” Information Procs. and Manage-

ment.

	Mining collaboration patterns from a large developer network
	Citation

	tmp.1320224033.pdf.LjdKH

