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Abstract

This paper develops a double asymptotic limit theory for the persistent parameter (�)

in an explosive continuous time model with a large number of time span (N) and a

small number of sampling interval (h). The limit theory allows for the joint limits

where N ! 1 and h ! 0 simultaneously, the sequential limits where N ! 1 is

followed by h ! 0, and the sequential limits where h ! 0 is followed by N ! 1.

All three asymptotic distributions are the same. The initial condition, either �xed

or random, appears in the limiting distribution. The simultaneous double asymptotic

theory is derived by using results recently obtained in Phillips and Magdalinos (2007)

for the mildly explosive discrete time model and so a invariance principle applies.

However, our asymptotic distribution is di¤erent from what was reported in Perron

(1991, Econometrica) where the sequential limits, h ! 0 followed by N ! 1, were

considered. It is shown that the limit theory in Perron is not correct and the correct

sequential asymptotic distribution is identical to the simultaneous double asymptotic

distribution.



1 Introduction

There has been a long-standing interest in statistics for developing the asymptotic the-

ory for explosive processes. Two of the earliest studies are White (1958) and Anderson

(1959) where the asymptotic distribution of the autoregressive (AR) coe¢ cient was de-

rived when the root is larger than unity. Phillips and Magdalinos (2007, PM hereafter)

has provided an asymptotic theory and an invariance principle for mildly explosive

processes where the root is moderately deviated from unity. In economics, there has

recently been a growing interest on using explosive processes to model asset price bub-

bles. Phillips et al (2011) has developed a recursive method to detect bubbles in the

discrete time AR model. Phillips and Yu (2011) applied the method to analyze the

bubble episodes in various markets in the U.S. and documented the bubble migration

mechanism during the subprime crisis.

All the above cited studies focus on discrete time models. Explosive behavior can

also be described using continuous time models. Let T , h, N be the sample size, the

sampling interval, and the time span of the data, respectively. Obviously T = N=h.

While the asymptotic theory in discrete time models always corresponds to the scheme

of T !1, how to develop the asymptotic theory in continuous time is less a clear cut
because T ! 1 is achievable from di¤erent ways. In the literature, three alternative

sampling schemes have been discussed (see, for example, Jeong and Park (2011) and

Zhou and Yu (2011)), namely:

N !1; h is �xed; (A1)

N !1; h! 0; (A2)

h! 0; N is �xed: (A3)

The purpose of the present paper is to develop the double asymptotic theory under

scheme (A2) for an explosive continuous time model. In particular, three alternative

double asymptotics are considered. In the �rst case, N !1 and h! 0 simultaneously.

In the second case, a sequential asymptotic treatment is considered, i.e., N ! 1 is

followed by h ! 0. In the third case, another sequential asymptotic treatment is

considered wherein, h ! 0 is followed by N ! 1. We show that the asymptotic

distributions under these three treatments are the same.

Di¤erent from PM, in our double asymptotic distribution, the initial condition,

either �xed or random, appears in the limiting distribution. Interestingly, our limiting
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distribution is di¤erent from what was developed in Perron (1991) under the sequential

limits, h ! 0 followed by N ! 1. It is shown that the limit theory in Perron is
not correct and his distribution can be very di¤erent from ours for a general initial

condition.

The paper is organized as follows. Section 2 develops the double asymptotic distri-

bution of the persistent parameter in an explosive continuous time model with N !1
and h ! 0 simultaneously. Section 3 develops the sequential asymptotic distribution

where N ! 1 is followed by h ! 0. Section 4 develops the sequential asymptotic

distribution where h ! 0 is followed by N ! 1 and shows what goes wrong in

the derivations of Perron. Section 5 concludes. Appendix collects the proof of the

theoretical results.

2 Simultaneous Double Asymptotics

Consider the following continuous time Ornstein-Uhlenbeck (OU) process:

dy(t) = �y(t)dt+ �dW (t); y(0) = y0; (1)

where W (t) is a standard Brownian motion. When � < 0, the process is strictly

stationary and �� captures the speed of mean reversion. When � � 0, the process

becomes nonstationary. If � > 0, the process is explosive. y(t) is assumed to be

observed at discrete points in time, say t = 0; h; 2h; : : : ; Th.

The exact discrete time model corresponding to (1) is

yth = ah(�)y(t�1)h + �

r
e2�h � 1
2�

"t; y0h = y0; (2)

where ah(�) = e�h, "t
iid� N(0; 1): In the paper, we focus our analysis on the explosive

case � > 0 which means that ah(�) > 1. The initial value, y0, may be a random

variable, whose distribution is �xed and independent of the sampling interval h, or a

constant. We simply write yth as yt when it causes no confusion. The least squares

(LS) estimators of ah(�) and � are, respectively,

bah(�) =
TP
t=1

yt�1yt

TP
t=1

y2t�1

;
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and b� = 1

h
ln (bah(�)) : (3)

Letting �(h) = �
q

e2�h�1
2�

which has the order O(
p
h), xt = yt=�(h), x0 = y0=�(h),

and dividing both sides of Model (2) by �(h), we get the following explosive AR(1)

model

xt = ah(�)xt�1 + "t = e
�hxt�1 + "t; x0 = y0=�(h): (4)

This model compares to Model (1) in PM,

xt =

�
1 +

�

kT

�
xt�1 + "t; x0 = op

�p
kT

�
; kT !1; kT

T
! 0: (5)

Let kT = 1=h so that Model (4) may be written as

xt = ah(�)xt�1 + "t = e
�=kTxt�1 + "t; x0 = y0=�(h) = Op

�p
kT

�
; (6)

and, hence, bah(�) and b� can also be obtained from xt. The double asymptotics, h! 0

and N !1, implies that

kT =
1

h
!1 and

kT
T
=
1

N
! 0: (7)

Model (6) is very similar to Model (1) of PM with two subtle di¤erences. First,

the AR coe¢ cient in (6) is e�=kT whereas it is 1 + �=kT in PM. This di¤erence is

small since e�=kT = 1 + �=kT + O(k�2T ) and, not surprisingly, it has no impact on the

limiting distribution. Second, the initial condition in (6) is x0 � Op
�p
kT
�
, whereas it

is assumed to be op
�p
kT
�
in PM.

In Model (1) of PM, the root, 1+ �=kT , represents moderate deviations from unity

in the sense that it is in a larger neighborhood of one than the conventional local to

unity root, 1 + �=T . Therefore, under the double asymptotics the root in Model (6)

is also moderately deviated from unity. With a di¤erent initial condition, our analysis

can be regarded as an extension to PM from x0 � op
�p
kT
�
to x0 � Op

�p
kT
�
. It turns

out this change of the order of magnitude in the initial condition leads to a change in

the limiting distribution of the LS estimators, bah(�) and b�.
Let

XT =
1p
kT

TX
t=1

(ah(�))
�(T�t)�1 "t; (8)
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YT =
1p
kT

TX
t=1

(ah(�))
�t "t: (9)

With a slight change of the notation, using the proof of PM, we can obtain the following

lemma.

Lemma 1 Let ah(�) = e�=kT , kT = 1=h, T = N=h "t
iid� N(0; 1). When h ! 0 and

N !1, we have
(a)

(ah(�))
�T = o

�
kT
T

�
= o

�
1

N

�
; (10)

(b)

(ah(�))
�T

kT

TX
t=1

TX
j=t

(ah(�))
t�j�1 "j"t

L1�! 0; (11)

(c)

(XT ; YT ) =) (X; Y ) ; (12)

where X and Y are independent N
�
0; 1

2�

�
random variables.

Note that (ah(�))
�T = e��hT = e��N and that x0=

p
kT

L1�! y0=�. Theorem 1 reports

the double asymptotic distribution of bah(�) with h! 0 and N !1 simultaneously.

Theorem 2 Let ah(�) = e�h, bah(�) be the LS estimator obtained from xt, b� = (1=h) ln (bah(�)).
Under the simultaneous double asymptotics, we have

(a)

he��N
TX
t=1

xt�1"t )
1

2�
� [� + d] ; (13)

(b)

2�h2e�2�N
TX
t=1

x2t�1 )
1

2�
[� + d]2 ; (14)

(c)
e�N

2�h
(bah(�)� ah(�))) �

� + d
; (15)

(d)
e�N

2�

�b� � ��) �

� + d
; (16)

where � =
p
2�X; � =

p
2�Y are independent N (0; 1) random variables with (X;Y )

de�ned in Lemma 1 and d = y0
p
2�=�.
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Remark 1 To facilitate the comparison of our results with those of PM, we may
rewrite the limit theory in (15) as

(ah(�))
T kT

2�
(bah(�)� ah(�))) X

Y + y0=�
: (17)

When y0 = 0, the limiting distribution is Cauchy and the same as in PM. Since the

�nite sample distribution always depends on the initial value in continuous time models,

we expect that the double asymptotic distribution in (17) is a better approximation than

the Cauchy distribution when y0 is di¤erent from 0.

Remark 2 Since our asymptotic treatments follow those of PM for moderate devia-

tions, it is straightforward to show that the results in Lemma 1 and Theorem 2 continue

to hold for non-Gaussian errors, such as the explosive Levy processes. This observation

suggests that although the invariance principle does not cover the discrete time explo-

sive model it covers the continuous time explosive model under the simultaneous double

asymptotics.

3 Sequential Asymptotics: N !1 followed by h!

0

When h is �xed, the discrete time model (6) is an explosive AR(1) model with Gaussian

errors. Letting N !1, Anderson (1959) showed that

(ah (�))
T [bah (�)� ah (�)]
(ah (�))

2 � 1
=) Ya

Za + ah (�)x0

d
=

N
�
0; 1=

�
1� (ah (�))�2

��
N
�
0; 1=

�
1� (ah (�))�2

��
+ ah (�)x0

;

where Ya and Za are independent. The proof was done under the condition that x0 is

a constant, but it still holds when x0 � Op(1). It is straightforward to show that

Ya
Za + ah (�)x0

d
=

N (0; 1)

N (0; 1) + x0

q
(ah (�))

2 � 1

d
=

�

� + d
;

because d = y0
p
2�=�, and

x0 =
y0
� (h)

=
y0
�

s
2�

(ah (�))
2 � 1

:
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Letting h! 0, the sequential limiting distribution is

lim
h!0

lim
N!1

exp f�Ng [bah (�)� ah (�)]
2�h

= lim
h!0

(ah (�))
2 � 1

2�h

Ya
Za + ah (�)x0

d
=

�

� + d
;

which is the same as the double asymptotic distribution derived in Section 2. We now

collect these results together in the following theorem.

Theorem 3 Let ah(�) = e�h, bah(�) be the LS estimator obtained from xt, b� = (1=h) ln (bah(�)),
we have

(a)

lim
h!0

lim
N!1

exp f�Ng [bah (�)� ah (�)]
2�h

d
=

�

� + d
;

(b)

lim
h!0

lim
N!1

exp f�Ng
2�

�b� � �� d
=

�

� + d
;

where �; � are independent N (0; 1) random variables and d = y0
p
2�=�.

Remark 3 Although the sequential asymptotic theory developed here is the same as
the asymptotic distribution derived in Section 2, the advantage of using the setup of

PM is clear, namely, the applicability of the invariance principle is easy to establish

from PM but not from Anderson.

4 Sequential Asymptotics: h ! 0 followed by N !

1
Perron (1991) derived a sequential limiting distribution for the LS estimator of the

persistent parameter � in the explosive OU process; see Corollary 1 (ii) on Page 217

and the corresponding proof on Page 234 in Perron (1991). The sequential asymptotics

�rst requires h! 0 and then N !1. To our surprise, however, his sequential limiting
distribution is di¤erent from the limiting distributions that we obtained in Section 2

and Section 3. It is important to �nd the reasons that cause this discrepancy. In this

section we investigate the double asymptotic theory under the sequential limits where

h! 0 is followed by N !1.
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The continuous time OU process considered in Perron is given in (1) where the

initial condition is assumed to be constant, y0 = b. First, by letting time interval h

goes to zero with �xed time span N , Perron developed the in-�ll asymptotics for bah(�),
T (bah(�)� ah(�))) A (; c)

B (; c)
; (18)

where

A (; c) = 

Z 1

0

exp fcrg dW (r) +
Z 1

0

Jc (r) dW (r); (19)

B (; c) = 2
exp f2cg � 1

2c
+ 2

Z 1

0

exp fcrg Jc (r) dr +
Z 1

0

Jc (r)
2 dr; (20)

and Jc (r) =
R 1
0
exp fc (r � s)g dW (s) is generated by the stochastic di¤erential equa-

tion

dJc (r) = cJc (r) dr + dW (r);

with the initial condition Jc (0) = 0, c = �N ,  = b=
�
�
p
N
�
.

To derive the sequential limiting distribution, he then let N ! 1, namely, c !
+1, and showed that (see (vi) and (viii) of Lemma A.2 in his paper)

(2c)3=2 e�2c
Z 1

0

exp fcrg Jc (r) dr ) N(0; 1);

and

(2c)1=2 e�c
Z 1

0

exp fcrg dW (r)) N(0; 1):

Then he argued, without a proof, that these two limiting distributions are identical

(call it �). Based on this argument and the two results in Phillips (1987), Perron

obtained the limiting distributions of A (; c) and B (; c), and the sequential limiting

distribution for bah(�) and b�,
lim
N!1

lim
h!0

e�N (bah(�)� ah(�))
2�h

= lim
c!1

(2c) e�cA (; c)

(2c)2 e�2cB (; c)
=
d� + ��

[d+ �]2
; (21)

lim
N!1

lim
h!0

e�N
�b� � ��
2�

=
d� + ��

[d+ �]2
; (22)

where � and � are independent N(0; 1) variates, d = y0
p
2�=� = b

p
2�=�.

The limiting distribution in (21) (or (22)) is di¤erent from that in (15) (or (16)) un-

less y0 = b = 0 where the two limiting distributions become the Cauchy distribution. In
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this section we will show that the limiting distributions of (2c)3=2 e�2c
R 1
0
exp fcrg Jc (r) dr

and (2c)1=2 e�c
R 1
0
exp fcrg dW (r) are not identical and hence, his sequential limiting

distribution is not correct. Instead, the two limiting distributions are independent. The

correct sequential limiting distribution turns out to be identical to the simultaneous

double asymptotic distribution developed in Section 2.

Let us start the investigation from the joint moment generating function (MGF)

of A (; c) and B (; c) given by Perron. Firstly, we derive the limiting joint MGF

in Theorem 4, from which we obtain the sequential limiting distribution. Secondly, in

Theorem 5, we give the correct limiting distributions of (2c)3=2 e�2c
R 1
0
exp fcrg Jc (r) dr

and (2c)1=2 e�c
R 1
0
exp fcrg dW (r) and show that they are actually independent.

Theorem 4 Let d = b
p
2�=�,  = b=

�
�
p
N
�
. When N ! +1; c = �N ! +1;we

have

(a) The limiting joint MGF of (2c) e�cA (; c) and (2c)2 e�2cB (; c) is

lim
c!+1

M (ev; eu) = lim
c!+1

E
�
exp

�ev (2c) e�cA (; c) + eu (2c)2 e�2cB (; c)��
=

1

f1� 2eu� ev2g1=2 exp
�

d2 [2eu+ ev2]
2 (1� 2eu� ev2)

�
:

(b) Letting � and � be independent N (0; 1) random variables, then�
(2c) e�cA (; c) ; (2c)2 e�2cB (; c)

�
=)

�
� [d+ �] ; [d+ �]2

�
:

(c)

lim
N!1

lim
h!0

e�N (bah(�)� ah(�))
2�h

= lim
c!1

(2c) e�cA (; c)

(2c)2 e�2cB (; c)
=
� [d+ �]

[d+ �]2
=

�

d+ �
;

lim
N!1

lim
h!0

e�N
�b� � ��
2�

=
�

d+ �
:

Remark 4 The new sequential limiting distribution wherein h ! 0 is followed by

N ! 1 is the same as the simultaneous double asymptotic distribution derived in

Section 2 and the sequential limiting distribution wherein N !1 is followed by h! 0

derived in Section 3.

Remark 5 Anderson (1959) proved that, when the error term in the explosive AR(1)

model is independent over time and the initial condition is a constant, the limit distrib-

ution for the LS estimator should be a ratio of two independent random variables. Our
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new sequential limiting distributions reported in Theorem 4 and Theorem 3, and the

double asymptotic distribution are consistent with this result. However, the asymptotic

distribution developed in Perron (1991) is at odds with Anderson�s result.

Remark 6 It is easy to show that the joint MGF of d� + �� and [d+ �]2 is

1

f1� 2eu� ev2g1=2 exp
�
d2 [2eu� 2euev2 + 4euev + ev2]

2 (1� 2eu� ev2)
�
; (23)

which is di¤erent from the limiting joint MGF of (2c) e�cA (; c) and (2c)2 e�2cB (; c).

This supports the conclusion that the limiting distribution developed in Corollary 1 in

Perron (1991) is not correct.

Theorem 5 Let Jc (r) =
R 1
0
exp fc (r � s)g dW (s), � and � be independent N (0; 1)

variates, N ! +1; and c = �N ! +1. Then
(a)

(2c)2 e�2c
Z 1

0

Jc (r)
2 dr ) �2; (24)

(b)

(2c) e�c
Z 1

0

Jc (r) dW (r)) ��; (25)

(c) �
(2c)3=2 e�2c

Z 1

0

exp fcrg Jc (r) dr
�2
) �2; (26)

(d)

(2c)1=2 e�c
Z 1

0

exp fcrg dW (r)) �: (27)

Comparing results in Theorem 5 to those in (ii), (iv), (vi) and (viii) of Lemma

A.2 in Perron, we notice that we disagree on the limit of (2c)1=2 e�c
R 1
0
exp fcrg dW (r).

While Perron argued the limit is the same as that of (2c)3=2 e�2c
R 1
0
exp fcrg Jc (r) dr,

they should be independent. This di¤erence is the source of the discrepancy in the

sequential limits. Interestingly, the sequential limiting distribution holds true even

when y0 is a random variable. This is reported in the following Corollary. Therefore,

the simultaneous and sequential double asymptotic distributions are identical to each

other no matter what the initial condition is, �xed or random.
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d Limit Theory 0.5% 1% 2.5% 5% 10% 90% 95% 97.5% 99% 99.5%

N(0; 1) Correct -45.0 -22.5 -9.0 -4.5 -2.2 2.2 4.5 9.0 22.5 45.0

Perron -3583 -895 -143 -35.4 -8.6 1.0 2.6 8.8 51.9 205

N(0; 4) Correct -28.5 -14.2 -5.7 -2.8 -1.4 1.4 2.8 5.7 14.2 28.5

Perron -2280 -570 -91.0 -22.6 -5.5 0.5 1.1 3.3 18.0 70.3

N(0; 1=4) Correct -56.9 -28.5 -11.4 -5.6 -2.8 2.8 5.6 11.4 28.5 56.9

Perron -2470 -617 -99.0 -24.9 -6.4 1.7 4.7 16.0 94.3 374

N(5; 1) Correct -0.75 -0.62 -0.47 -0.37 -0.28 0.28 0.37 0.47 0.62 0.75

Perron -3.82 -2.36 -1.30 -0.82 -0.49 0.16 0.20 0.23 0.26 0.29

N(5; 0) Correct -0.60 -0.53 -0.43 -0.35 -0.27 0.27 0.35 0.43 0.53 0.60

Perron -2.25 -1.66 -1.07 -0.73 -0.46 0.16 0.19 0.22 0.24 0.26

Table 1: This table reports various percentiles of the two limiting distributions, (22)

and (16), for �ve initial conditions. The last initial condition is simply a constant 5.

Corollary 6 Let y0 be any random variable whose distribution is �xed and independent
of sampling interval h or be a constant. Then

lim
N!1

lim
h!0

e�N (bah(�)� ah(�))
2�h

d
= lim

c!1

(2c) e�cA (; c)

(2c)2 e�2cB (; c)

d
=
� [d+ �]

[d+ �]2
=

�

d+ �
;

lim
N!1

lim
h!0

e�N
�b� � ��
2�

=
�

d+ �
:

To understand the di¤erence between the two limiting distributions, (22) and (16),

in Table 1, we report the 0.5%, 1%, 2.5%, 5%, 10%, 90%, 95%, 97.5%, 99%, 99.5%

percentiles of the two distributions for �ve di¤erent initial conditions. Several con-

clusions can be made. First, in all cases, the di¤erence between two distributions are

very substantial. For example when d � N(0; 1), the 99% con�dence interval for Per-

ron�s distribution is more than 40 times wider than that for the distribution derived

in the present paper. Second, the di¤erence in the left tail is more substantial. Third,

Perron�s distribution is skewed to the left.
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5 Conclusion

This paper develops the double asymptotic limit theory for the persistent parameter

in an explosive continuous time model with a large number of time span (N) and a

small number of sampling interval (h). The simultaneous limits and the alternative

sequential limits have been considered. The three limiting distributions are identi-

cal and the expression works for both the �xed and the random initial condition.

However, they are di¤erent from the sequential limit theory derived in Perron (1991).

We have identi�ed the source of the discrepancy. While Perron argued the limit of

(2c)1=2 e�c
R 1
0
exp fcrg dW (r) is the same as that of (2c)3=2 e�2c

R 1
0
exp fcrg Jc (r) dr, the

two limits should actually be independently distributed.

Notations
:= de�nition
iid� independent and identically distributed

op(1) tends to zero in probability

Op(1) bounded in the limit in probability
p! converge in probability
Lp! converge in Lp norm

) weak convergence
d
= distributional equivalence

Appendix

Proof of Lemma 1 is similar to that in PM and is omitted.

Proof of Theorem 2:
(a) Denote ah(�) = ah when there is no confusion. From Model (6) we get

xt = ahxt�1 + "t =

tX
j=1

at�jh "j + a
t
hx0;

11



and
TX
t=1

xt�1"t =
TX
t=1

"
t�1X
j=1

at�j�1h "j + a
t�1
h x0

#
"t

=
TX
t=1

"
t�1X
j=1

at�j�1h "j

#
"t + x0

TX
t=1

at�1h "t

=

TX
t=1

"
TX
j=1

at�j�1h "j

#
"t �

TX
t=1

"
TX
j=t

at�j�1h "j

#
"t + x0

TX
t=1

at�1h "t

=

"
TX
t=1

at�1h "t

#"
TX
j=1

a�jh "j

#
�

TX
t=1

"
TX
j=t

at�j�1h "j

#
"t + x0

TX
t=1

at�1h "t:

From Lemma 1 (b), we have a�Th
kT

TP
t=1

"
TP
j=t

at�j�1h "j

#
"t

L1�! 0, and hence,

a�Th
kT

TX
t=1

xt�1"t

=

"
1p
kT

TX
t=1

a
�(T�t)�1
h "t

#"
1p
kT

TX
j=1

a�jh "j

#
+

x0p
kT

1p
kT

TX
t=1

a
�(T�t)�1
h "t + op(1)

= XTYT +
x0p
kT
XT + op(1)

) XY +
y0
�
X

=
1

2�

hp
2�X

i hp
2�Y

i
+

y0

�
p
2�

hp
2�X

i
=
1

2�
�� +

y0

�
p
2�
�

=
1

2�
�

"
� +

y0
p
2�

�

#
=
1

2�
� [� + d] ;

where by Lemma 1 (c) � and � are independent N (0; 1) variates. The convergence rate

is a�Th =kT = h
�
e�h
��T

= he�N .

(b) Since xt = ahxt�1 + "t, we get

x2t = a
2
hx

2
t�1 + 2ahxt�1"t + "

2
t ;

and

x2t � x2t�1 =
�
a2h � 1

�
x2t�1 + 2ahxt�1"t + "

2
t :

Hence, �
a2h � 1

� TX
t=1

x2t�1 =
�
x2T � x20

�
� 2ah

TX
t=1

xt�1"t �
TX
t=1

"2t ;

12



and

kT
�
a2h � 1

� a�2Th

k2T

TX
t=1

x2t�1 =
a�2Th

kT
x2T�a�2Th

x20
kT
�2a�T+1h

a�Th
kT

TX
t=1

xt�1"t�
Ta�2Th

kT

1

T

TX
t=1

"2t :

x20
kT
!
�
y0
�

�2
implies that a�2Th

x20
kT
! 0. The proof of Part (a) suggests that a

�T
h

kT

TP
t=1

xt�1"t

is Op(1) because a�T+1h ! 0, and hence, the third term of the right side goes to 0. Since
Ta�2Th

kT
! 0 by Lemma 1 (a) and 1

T

TP
t=1

"2t
p! 1 by the law of large numbers, the last term

of the right side goes to 0. Hence,

kT
�
a2h � 1

� a�2Th

k2T

TX
t=1

x2t�1 =
a�2Th

kT
x2T + op(1)

=
a�2Th

kT

 
TX
j=1

aT�jh "j + a
T
hx0

!2
+ op(1)

=

 
1p
kT

TX
j=1

a�jh "j +
x0p
kT

!2
+ op(1)

=

�
YT +

x0p
kT

�2
+ op(1)

)
�
Y +

y0
�

�2
=

1

2�

 
p
2�Y +

y0
p
2�

�

!2
=
1

2�
(� + d)2 :

Note that kT (a2h � 1) =
�
e2�h � 1

�
=h! 2� as h! 0 and we get

2�
a�2Th

k2T

TX
t=1

x2t�1 )
1

2�
(� + d)2 : (28)

(c) This is an immediate consequence of (a) and (b).

(d) Since � = (1=h) ln (ah (�)) and b� = (1=h) ln (bah(�)), by the mean value theorem,
h
�b� � �� = ln (bah(�))� ln (ah(�)) = 1eah(�) (bah(�)� ah(�)) (29)

for some eah(�) whose value is between bah(�) and ah(�). The Delta method is not
directly applicable since ah(�) is a not constant but a real sequence that goes to 1 as

13



h! 0. However, if we can show eah(�) p! 1, we can obtain the limiting distribution forb�. For any " > 0,
Pr fjeah(�)� 1j > "g = Pr fjeah(�)� ah(�) + ah(�)� 1j > "g

� Pr fjeah(�)� ah(�)j+ jah(�)� 1j > "g
� Pr fjbah(�)� ah(�)j+ jah(�)� 1j > "g
�

E
�
[jbah(�)� ah(�)j+ jah(�)� 1j]2�

"2

=
E
�
jbah(�)� ah(�)j2�+ jah(�)� 1j2 + 2 jah(�)� 1jE (jbah(�)� ah(�)j)

"2

! 0;

where the �rst inequality is the triangular inequality, the second comes from the fact

that eah(�) is between bah(�) and ah(�), the third is Chebyshev�s inequality. Hence,eah(�) p! 1 and

e�N

2�

�b� � �� = e�N

2�h

1eah(�) (bah(�)� ah(�))) �

� + d
: (30)

Proof of Theorem 4:
(a) Letting  = b=

�
�
p
N
�
, Perron (1991) derived the joint MGF of A (; c) and

B (; c) as

M (v; u)

= E [exp (vA (; c) + uB (; c))]

= 	c (v; u) exp

�
�
�
2

2

�
(v + c� �)

�
1� exp (v + c+ �)	2c (v; u)

��
= 	c (v; u)| {z }

I

exp

�
�
�
2

2

�
(v + c� �)

�
| {z }

II

exp

��
2

2

�
(v + c� �) exp (v + c+ �)	2c (v; u)

�
| {z }

III

;

where

� =
�
c2 + 2cv � 2u

�1=2
;

	c (v; u) =

�
2� exp f� (v + c)g

(�+ (v + c)) exp f��g+ (�� (v + c)) exp f�g

�1=2
:

Let v = ev(2c)e�c and u = eu(2c)2e�2c. The joint MGF of (2c) e�cA (; c) and (2c)2 e�2cB (; c)
is

M (ev; eu) = E �exp �ev(2c)e�cA (; c) + eu(2c)2e�2cB (; c)�� :
14



We get

� =
�
c2 + (2c)2e�cev � 2(2c)2e�2ceu	1=2

=
n�
c+ (2c)e�cev � 2(2c)e�2ceu� (2c) e�2cev2�2 +O �e�3c�o1=2

= c+ (2c)e�cev � 2(2c)e�2ceu� (2c) e�2cev2 +O �e�3c� ;
�+ (v + c) = 2c+ 2(2c)e�cev � 2(2c)e�2ceu� (2c)e�2cev2 +O �e�3c� ;

�� (v + c) = �2 (2c) e�2ceu� (2c) e�2cev2 +O �e�3c� ;
e�� = e�c � (2c)e�2cev +O �e�3c� ;

and

(�� (v + c)) e� = � (2c) e�c
�
2eu+ ev2�+O �e�2c� :

The denominator of 	2c (v; u) is

(�+ (v + c)) e�� + (�� (v + c)) e� = (2c) e�c
�
1� 2eu� ev2�+O �e�2c� :

The numerator of 	2c (v; u) is

2� exp f� (v + c)g = 2� exp
�
�(2c)e�cev � c	 = (2c) e�c +O �e�2c� :

Hence,

I = 	c (v; u) =

�
(2c) e�c +O (e�2c)

(2c) e�c [1� 2eu� ev2] +O (e�2c)
�1=2

!
�

1

1� 2eu� ev2
�1=2

:

It is easy to show that II ! 1 because

�
�
2

2

�
(v + c� �) =

�
b2�

2�2c

��
�2 (2c) e�2ceu� (2c) e�2cev2 +O �e�3c��! 0:

Since

exp f�+ v + cg = e2c exp
�
2(2c)e�cev � 2(2c)e�2ceu� (2c)e�2cev2 +O �e�3c�	 ;

letting d = b
p
2�=�, we get (2c) 2 = d2 and�

2

2

�
(v + c� �) exp f�+ v + cg

=
d2

2

�
2eu+ ev2 +O �e�c�� exp�2(2c)e�cev � 2(2c)e�2ceu� (2c)e�2cev2 +O �e�3c�	

! d2

2

�
2eu+ ev2� :

15



Therefore,

III ! exp

�
d2 [2eu+ ev2]
2 [1� 2eu� ev2]

�
:

The limiting behavior of I, II and III gives rise to the limiting joint MGF of (2c) e�cA (; c)

and (2c)2 e�2cB (; c).

(b) Since � and � are independent N (0; 1) random variables and d = b
p
2�=� is a

constant, we have

M (ev; eu) = E
�
exp

�
� [d+ �] ev + [d+ �]2 eu�	

= E
�
E
�
exp

�
� [d+ �] ev + [d+ �]2 eu���z��	

= E

(
exp

�
[d+ �]2 eu� exp [d+ �]2 ev2

2

!)

=
1

f1� 2eu� ev2g1=2 exp
�

d2 [2eu+ ev2]
2 [1� 2eu� ev2]

�
:

This is the joint MGF of � [d+ �] and [d+ �]2 and is equivalent to the result in (a).

(c) This is an immediate consequence of (b).

Proof of Theorem 5:
(a) and (b) are the classical results from Phillips (1987) and also identical to (ii)

and (iv) of Lemma A.2 in Perron (1991).

(c) Note that 2c
R 1
0
exp fcrg Jc (r) dr = ecJc(1)�

R 1
0
exp fcrg dW (r) and hence,�

(2c)3=2 e�2c
Z 1

0

exp fcrg Jc (r) dr
�2

= (2c) e�4c
�
ecJc(1)�

Z 1

0

exp fcrg dW (r)
�2

= (2c) e�2cJc(1)
2 + e�2c

�
(2c)1=2 e�c

Z 1

0

exp fcrg dW (r)
�2

�2e�c
h
(2c)1=2 e�cJc(1)

i �
(2c)1=2 e�c

Z 1

0

exp fcrg dW (r)
�
:

By stochastic di¤erentiation of
�R r

0
exp f�csg dW (s)

	2
, we deduce the following useful

relationship, as pointed out in Phillips (1987),

fJc(1)g2 = 1 + 2c
Z 1

0

Jc (r)
2 dr + 2

Z 1

0

Jc (r) dW (r):

16



From (a) and (b), we getn
(2c)1=2 e�cJc(1)

o2
= (2c) e�2c + (2c)2 e�2c

Z 1

0

Jc (r)
2 dr + 2 (2c) e�2c

Z 1

0

Jc (r) dW (r)) �2:

As
R 1
0
exp fcrg dW (r) � N

�
0; expf2cg�1

2c

�
, (2c)1=2 e�c

R 1
0
exp fcrg dW (r) is Op(1), we

have �
(2c)3=2 e�2c

Z 1

0

exp fcrg Jc (r) dr
�2
=
n
(2c)1=2 e�cJc(1)

o2
+ op(1)) �2:

(d) Based on the results in (a), (b), (c), and 2c2 = 2�b2=�2 = d2, we get

(2c) e�cA (; c)

(2c)2 e�2cB (; c)

=
(2c)1=2 

h
(2c)1=2 e�c

R 1
0
exp fcrg dW (r)

i
+ (2c) e�c

R 1
0
Jc (r) dW (r)

2 (2c) [1� e�2c] + 2 (2c)1=2
h
(2c)3=2 e�2c

R 1
0
exp fcrg Jc (r) dr

i
+ (2c)2 e�2c

R 1
0
Jc (r)

2 dr

=
d
h
(2c)1=2 e�c

R 1
0
exp fcrg dW (r)

i
+ [�� + op (1)]

[d2 + o (1)] + 2d [�2 + op (1)]
1=2 + [�2 + op (1)]

=
d
h
(2c)1=2 e�c

R 1
0
exp fcrg dW (r)

i
+ [�� + op (1)]

[d+ �]2 + op (1)
:

From Theorem 4 we have�
(2c) e�cA (; c) ; (2c)2 e�2cB (; c)

�
=)

�
� [d+ �] ; [d+ �]2

�
:

Therefore, (2c)1=2 e�c
R 1
0
exp fcrg dW (r)) �.
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