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Arrow-Fisher-Hanemann-Henry and Dixit-Pindyck option values

under strategic interactions

Abstract

We extend the Arrow-Fisher-Hanemann-Henry (AFHH) and Dixit-Pindyck (DP) option

values to game situations. By reinterpreting the AFHH option value as a change in the

surplus from conservation because of the prospect of future information, we deal with the

conceptual difficulty associated with the AFHH option value in the presence of strategic

interactions. We then introduce the DP option value into a game situation. We show that

the equivalence between the expected value of information and the DP option value in the

standard model does not hold under strategic interactions.

Keywords: Irreversibility, Quasi-option values, Biodiversity, Uncertainty, Value of Information

JEL classification codes: C72, H43, Q50.

1 Introduction

The value of the prospect of future information is often ignored in the standard analysis of net

present value. Ignoring it, however, tends to bias the decisions. In private investment analysis,

future information may allow the investors to make state-contingent decisions and thereby avoid

unnecessary sunk costs. As Dixit and Pindyck (1994) emphasize, the opportunity cost due to

the forgone opportunity to delay the investment, or the Dixit-Pindyck (DP) option value, must

be included in the cost of immediate investment in addition to direct investment costs.

The prospect of future information also plays an important role in the analysis of public

projects. Suppose, for example, that a policy maker has to choose whether to develop or conserve

a forest. The forest may (or may not) contain economically valuable plants, but such plants

may be discovered only in the future (say, by independent scientific research), if they exist

in the forest at all. Then, ignoring the possibility of the future discovery of plants will bias
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the current decision towards development. Therefore, the policy maker has to incorporate the

Arrow-Fisher-Hanemann-Henry (AFHH) option value due to Arrow and Fisher (1974), Henry

(1974), Fisher and Hanemann (1987), and Hanemann (1989), also called the quasi-option value,

into the analysis to reflect this possibility. This concept is related to but generally different from

the (unconditional) expected value of information (EVI) (Conrad, 1980; Hanemann, 1989). The

AFHH option value is also related to the DP option value. In fact, Fisher (2000) claimed that

they are identical, though this argument was subsequently proved incorrect by Mensink and

Requate (2005).

In the studies of the AFHH and DP option values, the presence of a single decision-maker is

typically assumed. For example, when there is a social planner who can stipulate the action of

each player in the society, it is sufficient to have only one decision maker in the model. Even if

this is not the case, when the market is competitive and each player has negligible impacts on

other players, a single decision-maker model would still be appropriate.

However, in many practical situations, the single decision-maker model is not appropriate.

The policy-maker may have to take the competition among firms or different public entities as

given. A firm may compete with only a few other firms in the same industry and its decision

may have non-negligible impacts on other firms.

This is important, because the AFHH option value is conceptually problematic in the pres-

ence of strategic interactions, as some outcomes may not be supported as an equilibrium, as

argued by Fujii and Ishikawa (2012). Furthermore, the EVI for the society critically depends

on how the information is held and released. They have shown that the prospect of future

information could even be harmful to everyone in the society, a situation that never happens in

a single decision-maker model. Therefore, we cannot appropriately take the prospect of future

information into account without taking into account the strategic interactions in the society.

In this study, we extend Fujii and Ishikawa (2012) in two ways. First, we provide an alter-

native interpretation to the AFHH option value. In this interpretation, the AFHH option value

is taken as the change in a surplus measure for development (or immediate investment) because

of the prospect of future information. This allows us to overcome the conceptual difficulties

pointed out by Fujii and Ishikawa (2012) and to define the AFHH option value even in the

presence of strategic interactions. However, unlike the case of a single decision-maker, studied

by Hanemann (1989), our AFHH option value cannot be interpreted as the conditional value of

information.
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Second, we also extend the discussion on the relationship between AFHH and DP option

values by Fisher (2000) and Mensink and Requate (2005) to a game situation. We argue that

whether the AFHH option value is more relevant than the DP option value would depend on

the degree of control that the regulator has on the strategic interactions in the society. We also

show that the DP option value in the single decision-maker case is identical to the EVI, but this

equivalence does not hold in the presence of strategic interactions. These points reinforce the

finding of Fujii and Ishikawa (2012) that social cost-benefit analyses require a careful assessment

of strategic interactions.

This paper is organized as follows. In Section 2, we set up a simple model of an irreversible

decision under strategic interactions first proposed by Fujii and Ishikawa (2012). This model

is a straightforward extension of the single decision-maker model widely used in the literature.

Because we adopt the same model and notations as Fujii and Ishikawa (2012), we only provide

a brief summary below and omit a detailed discussion on the motivation of the way the model is

formulated. In Section 3, we introduce the AFHH and DP option values in the standard single

decision-maker case. Most of the results in this section, except for Proposition 1, are not new,

but they serve as a reference case. We then extend the AFHH and DP option values to a game

situation in Section 4. Section 5 provides some discussion.

2 Setup

There are two time periods: periods 1 (current period) and period 2 (future period). The future

state is uncertain. The state s takes a good state s1 with probability π and a bad state s2

with probability 1 − π. There are two risk-neutral players α and β, each of whom cares only

about their own payoff, and a regulator. In each period, each player i ∈ {α, β} takes an action,

dit ∈ {0, 1}, where dit = 0 represents conservation (or no immediate investment in the context

of the DP option value) and dit = 1 represents development (or immediate investment). The

decision to develop is irreversible and thus di1 ≤ di2. With a slight abuse of notation, we denote the

sequence of actions taken by player i by di ≡ (di1, d
i
2). For the simplicity of argument, we assume

that each player always chooses to develop if the player is indifferent between conservation and

development.

We normalize the payoffs so that the player receives a payoff of zero in each period he

chooses conservation. We assume that the total payoff in present value for the two players from
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development is a in period 1 and b · Ind(s = s1)−c · Ind(s = s2) in period 2 for positive constants

a, b, and c, where Ind(·) is an indicator function that takes value one if the argument is true

and zero otherwise. Therefore, development is beneficial to the society in the good state and

harmful in the bad state. We assume that the total payoff is shared equally by the two players

when they take the same sequence of actions. When one player chooses a sequence (1, 1) (i.e.,

development in both periods) and the opponent chooses a sequence (0, 1) (i.e., conservation in

period 1 and development in period 2), the leader [follower] of development, who chooses the

sequence (1, 1) [(0, 0)], takes a share of k [1 − k] in the total payoff from the development in

period 2 for some constant k ∈ (0, 1).

We assume that new information becomes available to the regulator so that the regulator

knows the true state after period 1 but before actions are taken by players in period 2. We use

the hat (̂) and the asterisk (∗) notations to denote the cases with and without the prospect of

future information, respectively. Furthermore, we use the tilde (̃) notation to denote the case

where the option to delay the decision to develop is not available, which corresponds to the case

where the sequence (0, 1) is not allowed. We also assume that the game structure and probability

distribution of the states are common knowledge and that the regulator tries to maximize the

expected total payoffs in the society (i.e., the sum of the payoffs for players α and β) for the two

periods, which we refer to as the social welfare. The latter assumption can be justified when the

regulator can transfer the payoffs between the players in a lump-sum manner.

3 Case (I): Social planner

As with Fujii and Ishikawa (2012), we start with the case where the regulator is a social planner,

who can stipulate the action of each player. This is de facto a single decision-maker case. Because

the social welfare is determined only by the timing of development and not by who chooses

to develop, we simply impose dα = dβ in this section. This allows us to avoid unnecessary

complications and treat the action of player α as the action of a representative player. Given

the setup presented in Section 2 and assuming a rational choice in period 2, we can write the

value functions, or the social welfare, as a function of the current action dα1 , in the following
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manner1:

V̂ (dα1 ) = B + (a− C) · Ind(dα1 = 1) (1)

V ∗(dα1 ) = max(B − C, 0) · Ind(dα1 = 0) + (a+B − C) · Ind(dα1 = 1) (2)

Thus, the social planner chooses dα1 to maximize V̂ [V ∗] in the presence [absence] of the prospect

of future information. Using these value functions, the AFHH option value can be found as

follows:

OV AFHH
I ≡ (V̂ (0)− V̂ (1))− (V ∗(0)− V ∗(1)) = V̂ (0)− V ∗(0) = min(B,C). (3)

The AFHH option value can be interpreted as the correction term that must be added to

the net present value of conservation relative to development when the net present value is

calculated ignoring the prospect of future information. The third expression shows that the

AFHH option value is the change in the expected total payoff for the society from the prospect

of future information, given that conservation is chosen in period 1. Thus, the AFHH option

value can be interpreted as the conditional value of information (Hanemann, 1989).

It is also possible to give the AFHH option value an alternative interpretation. We can

interpret θ̂I ≡ V̂ (0) − V̂ (1) as a surplus measure of conservation relative to development when

future information is available. This is the minimum transfer of payoff that must be given to

the regulator to ensure development takes place in period 1. In the current setup, this is the

smallest number that has to be added to a to make the regulator indifferent between conservation

and development in period 1. This number is negative if the regulator prefers development to

conservation. We can similarly define θ∗I for the case without the prospect of future information.

Given these definitions, we have OV AFHH
I = θ̂I − θ∗I . As we argue in the next section, this

alternative interpretation allows us to define the AFHH option value in a game situation.

Mensink and Requate (2005) argue that the DP option value can be defined as follows:

OV DP
I ≡ max

(
V̂ (0), V̂ (1)

)
−max

(
B̄0, V

∗(1)
)
, (4)

where B̄0 is the default value in the net present value decision rule. It reflects the present value

of the stream of payoffs that would emerge if no investment decision is made at any time. In our

1See Fujii and Ishikawa (2012) for the derivation of this result.
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model, this is equal to choosing conservation in both periods, which implies that B̄0 = 0. In this

definition, the regulator is assumed to commit in period 1 to either conservation or development

for both periods under the net present value decision rule. Thus, the DP option value can be

thought of as the value arising from the flexibility to delay the decision to develop (or invest).

A concept related to the AFHH and DP option values is the EVI defined as follows:

EV II ≡ max
(
V̂ (0), V̂ (1)

)
−max (V ∗(0), V ∗(1)) . (5)

The EVI is the additional expected total payoff from the future information. If we define

ŴI ≡ max
(
V̂ (0), V̂ (1)

)
and W ∗

I ≡ max (V ∗(0), V ∗(1)), they can be interpreted as the social

welfare when the regulator behaves rationally given the availability of future information. Thus,

EV II = ŴI −W ∗
I is the change in the social welfare from future information. Similarly, if we

define W̃ ∗
I ≡ max(B̄0, V

∗(1)), OV DP = ŴI − W̃ ∗
I . It turns out, however, that the DP option

value is identical to the EVI in the current setup:

Proposition 1 Given the setup in Section 2, we have the following:

OV DP
I = EV II = (C − a) · Ind(a ≤ C < a+B) +B · Ind(a+B ≤ C) (6)

We omit the formal proof because it is straightforward. Intuitively, the result can be understood

in the following manner. When there is no prospect of future information, the social planner

simply loses the opportunity cost, a, when he chooses to conserve in period 1. Therefore, a

rational social planner chooses either (0, 0) or (1, 1); he never chooses (0, 1). Therefore, even

though V ∗(0) ̸= 0 in general, this occurs only when V ∗(1) = V̂ (1) > V ∗(0) > 0, in which case

we have max(V ∗(0), V ∗(1)) = max(0, V ∗(1)) = V ∗(1) = V̂ (1).

Put differently, the prospect of future information can only make conservation more attractive

in period 1. Hence, if development is more attractive than conservation in period 1 in the absence

of information, then development is certainly more attractive in period 1 in the presence of

information. In this case, the DP option value and EVI are both zero because it does not help

the regulator to have flexible decision or the prospect of future information. In the absence of

information, conservation must be more attractive than development in period 2, if it is more

attractive in period 1. In this case, V (0) = 0 must hold, equating OV DP
I with EV II.

By comparing Eq. (3) and Eq. (6), we have the following proposition:
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Proposition 2 OV AFHH
I , OV DP

I , and EV II satisfy the following relationship:

EV II = OV DP
I = OV AFHH

I · Ind(a < C) + PPV · Ind(a+B > C > a) (≥ 0), (7)

where PPV ≡ V ∗(0)−V ∗(1) = −a+max(0, C−B) is what Mensink and Requate (2005) call the

pure postponement value. Clearly, EV II = OV DP
I = OV AFHH

I when a + B < C. However, as

Hanemann (1989) has shown, OV AFHH
I ̸= EV II(= OV DP

I ) in general. In fact, Eq. (7) is simply

a restatement of Eq. (17) in his paper and the generalization of the results presented by Mensink

and Requate (2005). Thus, the results presented here are not new, except for Proposition 1.

However, the case of the social planner serves as a reference case.

4 Case (II): Strategic interactions

In this section, we let the players interact strategically with each other. That is, each player

chooses his action so as to maximize his payoff for the two periods. As with Fujii and Ishikawa

(2012), we take the efficient subgame perfect Nash equilibrium as the relevant solution concept.

The subgame played in period 2 is determined by the action profile (dα1 , d
β
1 ) in period 1.

Given the setup in Section 2, each player i ∈ {α, β} has three possible pure strategies

di ∈ {(0, 0), (0, 1), (1, 1)} when future information is not available. When information is available

in period 2, each player can take a state-contingent action. Therefore, if conservation is chosen

in period 1, the set of strategies for player i in the subgame in period 2 is {0, Ind(s = s1), Ind(s =

s2), 1}. However, because Ind(s = s1) dominates the other strategies, we only need to consider

the following two strategies di ∈ {(0, Ind(s = s1)), (1, 1)}. The payoff matrices for these cases

are given in Table 1.

With some slight abuse of terminology, we shall use the cell index in Table 1 to specify a

profile of the sequence of actions. For example, b∗) refers to the profile (dα, dβ) = ((0, 0), (0, 1)).

The equilibrium profile in the absence of future information is: a∗) if C − B > a; e∗) if a <

(1/2 − k)(B − C) and k < 1/2; i∗) if a ≥ C − B ≥ 0 or a ≥ (1 − 2k)(B − C) ≥ 0; and f∗) or

h∗) otherwise. In the presence of future information, the equilibrium is: â) if a < (1 + Ind(k ≥

1/2))(k − 1/2)B + C; d̂) if a ≥ (1− 2k)B + C; and b̂) or ĉ) otherwise.2

We can now introduce the EVI and the AFHH and DP option values for the society in the

2When we have multiple asymmetric equilibria, we can choose an arbitrary equilibrium because the choice
does not affect the social welfare.

7



T
ab

le
1:

T
h
e
ex

a
n
te

ex
p
ec
te
d
p
ay
off

m
at
ri
x
fo
r
tw

o
p
er
io
d
s
w
h
en

n
o
in
fo
rm

a
ti
o
n
is
av
a
il
a
b
le

in
p
er
io
d
2
(t
o
p
)
a
n
d
th
e
co
rr
es
p
o
n
d
in
g
m
a
tr
ix

w
h
en

in
fo
rm

at
io
n
is

av
ai
la
b
le

in
p
er
io
d
2
(b
ot
to
m
).

T
h
e
b
or
d
er
s
d
efi
n
e
th
e
su
b
g
a
m
e
to

b
e
p
la
ye
d
in

p
er
io
d
2
.

H
H
H

H
H H

d
α

d
β

(0
,0
)

(0
,1
)

(1
,1
)

(0
,0
)

a
∗ )

(0
,0
)

b
∗ )

(0
,B

−
C
)

c∗
)

(0
,a

+
B

−
C
)

(0
,1
)

d
∗ )

(B
−

C
,0
)

e∗
)

((
B

−
C
)/
2
,(
B

−
C
)/
2
)

f∗
)

((
1
−

k
)(
B

−
C
),
a
+

k
(B

−
C
))

(1
,1
)

g
∗ )

(a
+

B
−

C
,0
)

h
∗ )

(a
+

k
(B

−
C
),
(1

−
k
)(
B

−
C
))

i∗
)

((
a
+

B
−

C
)/
2
,(
a
+

B
−

C
)/
2
)

P
P
P
P

P
P
P
P P

d
α 2
(s
)

d
β 2
(s
)

(0
,I
n
d
(s

=
s 1
))

(1
,1
)

(0
,I
n
d
(s

=
s 1
))

â)
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current context. As Fujii and Ishikawa (2012) argue, the EVI in this case is simply the change

in the expected total payoff for the two periods due to the information. Let ŴII and W ∗
II be the

equilibrium social welfare (i.e., the expected total payoff in the equilibrium for the two players

summed over the two periods). For example, when C − B > a, the equilibrium is â) and a∗)

with and without information in period 2, respectively, and thus we have ŴII = B and W ∗
II = 0.

Using ŴII and W ∗
II, we can define and compute the EVI for the current case as follows:

EV IS ≡ ŴII −W ∗
II (8)

=



C − a if (a+ (2k − 1)B < C ≤ a+B and k ≥ 1
2 ,

or if max
(
a+ (k − 1

2)B,B − 2a
1−2k

)
< C < B + a and k < 1

2

B if C > B + a

C if C < B − 2a
1−2k and k < 1

2

0 if otherwise.

(9)

To apply the DP option value in the current case, we need to consider the change in the

social welfare due to the flexibility to delay the decision. When the players can choose a state-

contingent action, the social welfare is clearly ŴII. The question is, therefore, what the relevant

social welfare is under the net present value decision rule, when the flexibility is ignored. We

argue that the regulator in this case would be able to distribute a development right free to the

players in period 1. This right can be exercised only in period 1. Thus, the player has to commit

to development or conservation in period 1. They cannot choose the sequence (0, 1). Therefore,

the equilibrium in the absence of future information is a∗) if C > a+ B and i∗) otherwise. We

denote the equilibrium social welfare by W̃ ∗
II(= max(0, a+B −C)). With these considerations,

we can now define the DP option value for the current case.

OV DP
S ≡ ŴII − W̃ ∗

II. (10)

Notice that this definition coincides with OV DP
I , if the regulator can stipulate the action of each

player. It is straightforward to show the following:

Proposition 3 From Eqs. (9) and (10), we have:

EV IS = OV DP
S + a · Ind(a < (1/2− k)(B − C) and k < 1/2). (11)

9



Proposition 3 shows that the equivalence between the EVI and DP option values does not

hold when a < (1/2− k)(B −C) and k < 1/2. This is because development takes place only in

period 2 under this condition, a result that is not expected from Case (I). This also underscores

the point that cost-benefit analysis calls for a careful assessment of the default value in the

presence of strategic interactions.

A notable point here is that both EVI and DP option value can be negative. Fujii and

Ishikawa (2012) have shown that EVI is negative if and only if k < 1/2, C < a, and 2(a−C)/(1−

2k) < B < C+2a/(1−2k). The DP option value is negative if and only if 0 > C−a > (k−1/2)B,

which holds only if k < 1/2. Therefore, having additional information or flexibility to delay the

decision can actually harm the social welfare.

Now, let us turn to the AFHH option value in the current case. Fujii and Ishikawa (2012)

have shown that the AFHH option value has a conceptual difficulty in the presence of strategic

interactions because the value function is not meaningful when a particular outcome (i.e., de-

velopment or conservation) is not supported as an equilibrium. To circumvent this problem, we

adopt the alternative interpretation of the AFHH option value and extend it to a game situation

by first considering surplus measures θ̂ and θ∗ of conservation. We define them as the minimum

amount of payoff that can be added to a to support development as an equilibrium. Notice that

a is positive [non-positive] when the equilibrium outcome is conservation [development].

According to this definition, the surplus measure can be found by looking at the difference

in the individual payoffs between conservation and development when the opponent is choosing

development. When the information about the state becomes available in period 2, this can be

done by taking the difference of the payoff for player α [player β] between cells â) and ĉ) [cells

â) and b̂)].

θ̂II =
B

2
− (a+ kB − C) =

(
1

2
− k

)
B + C − a. (12)

When the information is not available, we can compute θ∗ in the following manner. Using

the backward induction, the reduced payoff matrix consists of e∗), f∗), h∗), and i∗) when B > C,

and a∗), c∗), g∗), and i∗) when B ≤ C. Therefore, we have:

θ∗II = ((1/2− k)(B − C)− a) · Ind(B > C)− (a+B − C) Ind(B ≤ C). (13)

10



Using Eqs. (12) and (13), we can define the AFHH option value for the current case as follows:

OV AFHH
S ≡ θ̂II − θ∗II = (3/2− k)min(B,C) = (3/2− k)OV AFHH

I (> 0). (14)

There are five points to note here. First, our definition of OV AFHH
S is a direct extension of

OV AFHH
I . If the regulator can stipulate the actions of the two players, OV AFHH

S coincides with

OV AFHH
I .

Second, Eq. (14) clearly shows that the change in the surplus measure of development because

information is influenced by strategic interactions. It also shows that OV AFHH
S = OV AFHH

I

if and only if k = 1/2. This is because the strategy taken by the opponent does not change

the incentive structure when k = 1/2. For example, in the absence of the prospect of future

information, each player chooses to develop in this case if and only if a+B − C ≥ 0 regardless

of the opponent’s strategy.

Third, while we have successfully extended the definition of AFHH option value, the point

made by Fujii and Ishikawa (2012) is still valid. That is, some outcomes are not supported as

an equilibrium, and thus the standard value functions used in Case (I) are not meaningful. This

also means that it is not possible to interpret OV AFHH
S as the conditional value of information,

unlike the single decision-maker case studied by Hanemann (1989).

Fourth, Eq. (14) shows that the AFHH option value is positive. The AFHH option value in

the current case is the change of payoff needed to induce development in light of the prospect of

future information. Since the prospect of future information makes conservation more attractive

in period 1, the results are intuitive. Option value tends to be higher when k is lower, because the

players face stronger incentives to conserve in period 1 when information will become available

in period 2. That is, in addition to the fact that they can choose to develop only when the state

is good, they can also enjoy a higher share of b if they are the follower in development. Fifth,

the AFHH option value is different from the DP option values and the EVI, which would not

be surprising given Proposition 2.

5 Discussion

In this study, we have extended the AFHH and DP option values to a game situation. One

novelty of this study is that, by reinterpreting the AFHH option value as the change in the

surplus of development because of future information, we have overcome the conceptual difficulty
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of the AFHH option value pointed by Fujii and Ishikawa (2012). While the AFHH and DP

option values and the EVI discussed above are related to each other, the appropriate choice of

these measures in a practical application of cost-benefit analysis would depend on the policy

instruments that are available to the regulator. For example, if the regulator simply passes

information to the players with no additional policy instruments, the EVI would be the measure

that the regulator would ultimately be interested in. The regulator can choose to pass on the

information if and only if EVI is positive.

The AFHH option value will be relevant if the cost-benefit analyst wants to measure the value

of development. Unlike the single decision-maker case, this measurement may be complicated in

a game situation because the regulator cannot directly implement development. Our approach

is to use a minimum hypothetical transfer to induce development. We chose the parameter a

for this transfer because this parameter directly changes the net present value of development.

However, under some circumstances, the regulator may be able to make, for example, state-

contingent transfers. In such a case, the AFHH option value may be altered.

The DP option value is most relevant in a situation where the regulator can choose whether

the players have to make a commitment to either conservation or development in period 1,

for example, by distributing free development rights in period 1, which can be exercised only

immediately. Such a situation may arise in practice because the regulator may be short-lived,

in the sense that the opportunity to develop is lost for ever when the person in charge in the

regulating body changes.

This study has highlighted the fact that the AFHH and DP option values and the EVI all

depend on the way players interact with each other, a point that has largely been neglected in the

literature. Therefore, social cost-benefit analyses under strategic interactions require a careful

assessment of the information and policy instruments that may be available to the regulator in

the future.
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