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Optimal Jackknife for Discrete Time and Continuous Time

Unit Root Models�

Ye Chen and Jun Yu

Singapore Management University

September 27, 2011

Abstract

Maximum likelihood estimation of the persistence parameter in the discrete time unit root

model is known for su¤ering from a downward bias. The bias is more pronounced in the continuous

time unit root model. Recently Chambers and Kyriacou (2010) introduced a new jackknife method

to remove the �rst order bias in the estimator of the persistence parameter in a discrete time unit

root model. This paper proposes an improved jackknife estimator of the persistence parameter that

works for both the discrete time unit root model and the continuous time unit root model. The

proposed jackknife estimator is optimal in the sense that it minimizes the variance. Simulations

highlight the performance of the proposed method in both contexts. They show that our optimal

jackknife reduces the variance of the jackknife method of Chambers and Kyriacou by at least 10%

in both cases.

Keywords: Bias reduction, Variance reduction, Vasicek model, Long-span Asymptotics, Autore-

gression

JEL classi�cation: C11, C15

1 Introduction

As a subsampling method, the jackknife estimator was �rst proposed by Quenouille (1949) for reducing

the bias in the estimation of the serial correlation coe¢ cient. Tukey (1958) used the jackknife method to

estimate the variance. Miller (1974) reviewed the literature of the jackknife, emphasizing its properties

in bias reduction and interval estimation. More recently, the jackknife method has been found useful

�Ye Chen, School of Economics and Sim Kee Boon Institute for Financial Economics, Singapore Management Univer-
sity, 90 Stamford Road, Singapore, 178903; Email: chenye.2009@phdecons.smu.edu.sg. Jun Yu, Sim Kee Boon Institute
for Financial Economics, School of Economics and Lee Kong Chian School of Business, Singapore Management Univer-
sity, 90 Stamford Road, Singapore 178903. Email: yujun@smu.edu.sg. We acknowledge comments from Peter Phillips
and Denis Leung.
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in econometrics. Hahn and Newey (2003) demonstrated the use of the jackknife to reduce the bias

arising from the incidental parameters problem in the dynamic panel model with �xed e¤ects. Phillips

and Yu (2005, PY hereafter) introduced a jackknife method based on non-overlapping subsamples,

and showed that it can be applied to the coe¢ cients in continuous time models as well as the asset

prices directly. Chiquoine and Hjalmarsson (2009) provided the evidence that the jackknife can be

successfully applied to stock return predictability regressions.

In the time series context, the jackknife method proposed by PY is very easy to implement and also

quite e¤ective in reducing the bias. In e¤ect, this jackknife estimator removes the �rst order bias in the

original estimator by taking a linear combination of the full sample estimator and a set of subsample

estimators. The validity for removing the �rst order bias can be explained by the Nagar approximation

of the moments of the original estimator, in terms of the moments of the estimator�s Taylor expansion

as a polynomial of the sample moments of the data. In particular, under regular conditions, the �rst

order bias is a reciprocal function of the sample size with a common coe¢ cient. Consequently, the

weights used for the subsamples are the same and are proportional to the weight used for the full

sample. For stationary autoregressive models, Chambers (2010) obtained the limit distribution of the

jackknife estimator of PY and examined its performance relative to alternative jackkni�ng procedures.

However, in the context of a discrete time unit root model, Chambers and Kyriacou (2010, CK

hereafter) pointed out that the jackknife estimator of PY cannot completely remove the �rst order

bias. This is because the �rst order bias of the least squares (LS) or maximum likelihood (ML)

estimator of the autoregressive coe¢ cient has distinctive functional forms in di¤erent subsamples.

This distinctiveness is manifest in the fact that the limit distribution of the LS/ML estimator depends

on the initial condition. A revised jackknife estimator with new weights was proposed in CK. Unlike

the PY estimator, the weight used in CK for the full sample is no longer proportional to those for the

subsamples. However, the weights used for the subsamples are required to be identical to each other

in CK. CK showed that the modi�ed jackknife estimate performs better than the PY estimator for

bias reduction.

While the jackknife method of CK reduces the bias of the original estimator, it always increases

the variance. This is not surprising because subsample estimators are used in the construction of

the jackknife. As a result, the trade-o¤ between the bias reduction and the increase in variance is

important. Simulation results in CK suggest that their jackknife method sometimes gains enough in

bias reduction without a signi�cant increase in variance, so that there may be an overall gain in root

mean square error (RMSE) for the discrete time unit root model.

In this paper, we propose an improved jackknife estimator for unit root models. Our estimator is

optimal in the sense that it not only removes the �rst order bias, but also minimizes the variance, and

hence, has better �nite sample properties than the CK estimator. Like the estimators of PY and CK,
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our optimal jackknife estimator is a linear combination of the full sample estimator and the subsample

estimators. However, we do not require the weight for the full sample to be proportional to those for

the subsample, nor do we require the weights for the subsample be the same. Indeed, all the weights

are obtained by minimizing the variance under the condition that the �rst order bias is removed.

The calculation of the weights involves obtaining the covariances between the full sample estimator

and the subsample estimators, and the covariances between the subsample estimators. To do so, we

employ the joint moment generating function (MGF) of the limit distributions of these estimators. The

idea is applied to both the discrete time and the continuous time unit root models. Optimal weights

are derived and the �nite sample performance of the new estimator is examined for both models. It is

found that the optimal jackknife estimator o¤ers over 10% reduction in variance over the CK estimator

without compromising bias reduction in both cases.

The paper is organized as follows. Section 2 derives the general form of the optimal jackknife

estimator in the discrete time unit root model. Section 3 extends the results to the continuous time

unit root model where the bias of the persistent parameter is known to be more serious. Section 4

presents the Monte Carlo simulation results. Section 5 concludes. Appendix collects all the proofs.

Throughout the paper, we adopt the following notations. The full sample size is denoted by n,

the time span of data by T , the parameter of interest by � (or � or �), and the true value of it by

�0 (or �0 or �0). The signal �)� is used to indicate the convergence of the associated probability
measures as n or T goes to in�nity while ���denotes the equality in distribution, and m the number

of subsamples. e�j means the LS/ML estimator of � from the jth subsample of sample length l (i.e.,

m�l = n), e�PY is the jackknife estimator of � proposed by PY, e�CK is the jackknife estimator proposed
by CK, and e�CY is the jackknife estimator proposed in the present paper. Following CK, we de�ne

Z =
R 1
0
WdW=

R 1
0
W 2, Zj =

R j=m
(j�1)=mWdW=

R j=m
(j�1)=mW

2, � = E(Z) and �j = E(Zj), where W is a

standard Brownian motion.

2 Optimal Jackknife for the Discrete Time Unit Root Model

In this section, we �rst brie�y review the literature, focusing especially on the approach of CK (2010).

We then introduce our optimal jackknife estimator in the context of the discrete time unit root model.

2.1 A Literature Review

Considering a simple unit root model with initial value y0 = Op(1):

yt = yt�1 + "t; "t � iid(0; �2"); t = 1; 2; : : : ; n: (2.1)
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The LS estimator of the autoregressive (AR) parameter of, say, �, is e� = Pn
t=1 yt�1yt=

Pn
t=1 y

2
t�1.

When "t is normally distributed, e� is also the ML estimator of �, conditional on y0. The limit

distribution of e� was obtained by Phillips (1987a) using the functional central limit theory and the
continuous mapping theorem:

n
�e� � 1�) R 1

0
WdWR 1
0
W 2

: (2.2)

The limit distribution is skewed for two reasons. First,
R 1
0
WdW is not centered around zero. Second,R 1

0
WdW and

R 1
0
W 2 are dependent. This skewness gives rise to the �rst order bias in the LS/ML

estimator, even asymptotically.

Under the assumption that the initial value y0 is 0, Phillips (1987a) obtained the asymptotic

expansion of the limit distribution of n
�e� � 1�:

n
�e� � 1� = R 10 WdWR 1

0
W 2

� 1=
p
2n�R 1

0
W 2

+Op(n
�1); (2.3)

where � � N(0; 1), and is independent of W . Taking the expectation of (2.3) and noting that � =

E(Z) = �1:781, we have
E
�e��� 1 = �1:781

n
+O(n�2): (2.4)

This result is in contrast to the Kendall bias formula for the stationary AR(1) model (i.e. when

�0 < 1):

E
�e��� �0 = �2�0n +O(n�1): (2.5)

Following the original work of Quenouille, PY (2005) utilized the subsample estimators of � to

achieve bias reduction with the following linear combination:

e�PYm =
m

m� 1
e� � � 1

m� 1

�0@ 1

m

mX
j=1

e�j
1A ; (2.6)

where e� is the LS/ML estimator of � based on the full sample, i.e., y1; : : : ; yn; e�j is the LS/ML
estimator of � based on the jth subsample, i.e., y(j�1)l+1; : : : ; yjl. There are two important features in

this estimator. First, the weight given to the full sample estimator is proportional to (i.e. m times as

large as) that assigned to the average of the subsample estimators. Second, the weights are the same

for all the subsample estimators. The validity of this jackknife method can be explained by a general

result based on the Nagar expansion:

E
�e�� = �0 + b1n +O �n�2� ; (2.7)
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which is assumed to hold for some constant b1. Two observations can be made from this general result.

First, to the �rst order, the bias is a reciprocal function of the sample size. This explains why in the

PY method, the weight assigned to the full sample estimator is m times as big as that assigned to

the subsample estimators. Second, to the �rst order, the bias is the same across di¤erent subsamples.

This explains why in the PY method, the weights are the same for all the subsample estimators. It is

easy to show that the jackknife estimator removes the �rst order bias, i.e., E
�e�PYm �

= �0 +O
�
n�2

�
,

when (2.7) holds true.

Particularly e¤ective bias reduction can be achieved by choosing m = 2. In this case, this estimator

becomes: e�PY = 2e� � 1
2

�e�1 + e�2� : (2.8)

Both PY and Chambers (2010) have reported evidence to support this method for the purpose of bias

reduction in di¤erent contexts. It should be pointed out that many jackknife procedures have been

proposed, including the delete-1 jackknife of Tukey (1958), the delete-d jackknife of Wu (1986), and

the moving-block jackknife of Chambers (2010).

The Nagar approximation is a general result and may be veri�ed by Sargan�s (1976) theorem. Given

the mild conditions under which Sargan�s (1976) theorem hold, it is perhaps rather surprising that the

jackknife method fails to remove the �rst order bias in a unit root model. This failure was �rst docu-

mented in CK (2010). The basic argument of CK is that in (2.7), b1 is not a constant any more in the

unit root model. Instead, it depends on the initial condition. As the initial condition varies across di¤er-

ent subsamples, the jackknife cannot eliminate the �rst order bias term. To be more speci�c, the limit

distribution of the normalized subsamples estimator, l(e�j � 1), is R j=m(j�1)=mWdW=
�
m
R j=m
(j�1)=mW

2
�
.

CK showed that �j = E
�R j=m

(j�1)=mWdW=
R j=m
(j�1)=mW

2
�
depends on j. To eliminate the �rst order

asymptotic bias, CK proposed the following modi�ed jackknife estimator:

e�CKm = bCKm
e� � mX

j=1

�CKm
e�j ; (2.9)

where

bCKm =

Pm
j=1 �jPm

j=1 �j � �
; �CKm =

�

m
�Pm

j=1 �j � �
� : (2.10)

When �1 = � � � = �m = �, bCKm = m=(m�1) = bPYm , and �CKm = 1=
�
m2 �m

�
, the CK estimator is the

same as the PY estimator. Under model (2.1), CK showed that � = �1 = �1.781430, �2 = �1.138209,
�3 = �0.931929, �4 = �0.814330, etc. That is, the bias becomes smaller and smaller as we go deeper
and deeper into subsampling. Substituting these expected values into the formulae (2.10), we can

calculate the weights. Table 1 reports the weights when m = 2. We also report the weights of PY

for comparison. As �2 is closer to zero than �1 and �, a larger weight is assigned to the full sample
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Table 1: Weights assigned to the full sample and subsample estimators for alternative jackknife methods

m bPYm �PYm bCKm �CKm bCYm aCY1;m aCY2;m
2 2 0:5 2:5651 0:7825 2:8390 0:6771 1:1619

estimator, compared to the PY estimator.

The dependence of the bias on the initial condition is a very interesting �nding which is explained by

a recent result obtained in Phillips and Magdalinos (2009, PM hereafter). In PM, the initial condition,

y0, is assumed to be:

y0(n) =

knX
j=0

"�j ; (2.11)

with

kn=n! � 2 [0;+1]: (2.12)

When � = 0, y0(n) is said to be a recent past initialization, which obviously includes y0 = 0 as a

special case. When � = (0;+1), y0(n) is said to be a distant past initialization. When � =1, y0(n)
is said to be an in�nite past initialization. PM showed that when � 2 [0;+1), the limit distribution
of the LS/ML estimator of � under the unit root model is given by:

n
�e� � 1�) R 1

0
W+
� dWR 1

0

�
W+
�

�2 ;
where W+

� (t) = W (t) +
p
�W0(t), and W0 is another standard Brownian motion but independent of

W . If � = 0, the limit distribution is the same as in (2.2). When � = +1, the limit distribution of
the LS/ML estimator of � under the unit root model is given by:

p
knn

�e� � 1�) C;

where C stands for a Cauchy variate. The dependence of the limit distribution and hence its �rst

moment on the initial condition are clearly seen from the above results. The larger the value of � , the

greater is the importance of the initial condition, and the bigger is the share of
p
�W0(t) in W+

� (t).

For Model (2.1), � = 0 applied for the �rst sample and � = jl=n, for the (j + 1)th subsample.

That is, for j = 1; 2; : : : ;m� 1, we have � = 0; 1=m; : : : ; (m� 1)=m. As we go deeper and deeper into
subsampling, the bigger and bigger is the in�uence of the initial condition on the limit distribution.

Not surprisingly, all the moments, including the mean and the variance, are di¤erent for di¤erent

subsamples.
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2.2 Optimal Jackknife

It is known that the jackknife estimator of PY increases the variance, when compared to the LS/ML

estimator. The same feature is seen in the estimator of CK. In this paper, we introduce a new jackknife

estimator, which can remove the �rst order bias as well as minimize the variance for a given m. The

reason why it is possible to reduce the variance of the estimator of CK is that it is not necessary

to assign an identical weight to di¤erent subsamples, given that the biases of these estimators are

di¤erent.

To �x the idea, the new jackknife estimator is de�ned as:

e�CYm = bCYm
e� � mX

j=1

aCYj;m
e�j ;

where bCYm and faCYj;mgmj=1 are the weights assigned to the full sample estimator and the subsample
estimators, respectively. Unlike the jackknife estimators of PY and CK, we do not require the weights

for di¤erent subsamples to be the same. Our objective is to select the weights bCYm ; faCYj;mgmj=1, to
minimize the variance of the new estimator, i.e.:

min
bCYm ;faCYj;mgmj=1

V ar

0@bCYm e� � mX
j=1

aCYj;m
e�j
1A ; (2.13)

subject to two constraints:

bCYm =
mX
j=1

aCYj;m + 1; (2.14)

bCYm � = m

mX
j=1

aCYj;m�j ; (2.15)

where � = �1. These two constraints are used to ensure the �rst order bias of the LS/ML estimator is

fully removed.

From the two constraints, we can express bCYm and aCY1;m as functions of aCY2;m; : : : ; a
CY
m;m:

bCYm = aCY2;m
m(�� �2)
(m� 1)� + � � �+ aCYm;m

m(�� �m)
(m� 1)� +

m

m� 1 ;

aCY1;m = aCY2;m
��m�2
(m� 1)� + � � �+ a

CY
m;m

��m�m
(m� 1)� +

1

m� 1 :

Substituting bCYm and aCY1;m into the objective function (2.13), and then taking the derivative with

respect to aCYj;m, we get:
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0 = bCYm

�
2
m(�� �j)
(m� 1)� V ar(

e�)� 2 ��m�j
(m� 1)�Cov(

e�; e�1)� 2Cov(e�; e�j)�
+aCY1;m

�
2
��m�j
(m� 1)�V ar(

e�1)� 2m(�� �j)(m� 1)� Cov(
e�; e�1) + 2Cov(e�; e�j)�+ � � �

+
mX
i=2

aCYi;m

�
�2m(�� �i)

(m� 1)� Cov(
e�; e�i) + 2 ��m�i(m� 1)�Cov(

e�1; e�i) + 2Cov(e�i; e�j)� ,
for j = 2; � � � ;m. These �rst order conditions can be used to obtain analytical expressions for

aCY2;m; : : : ; a
CY
m;m and hence b

CY
m and aCY1;m, all as functions of �; �2; : : : ; �m, the variances and the covari-

ances of the full sample and subsample estimators.

To eliminate the �rst order bias, one must �rst obtain �; �2; : : : ; �m, as CK did. To minimize the

variance of the new estimator, one must also calculate the exact variances and covariances of the �nite

sample distributions. However, it is known in the literature that the exact moments are analytically

very di¢ cult to obtain in dynamic models. To simplify the derivations, we approximate the moments

of the �nite sample distributions by those of the limit distributions. We shall check the quality of these

approximations in the simulation studies. While the techniques proposed in White (1961) and in CK

can be combined to compute the variances, additional e¤ort is needed to compute the covariances. A

technical contribution of the present paper is to show how to compute these covariances.

We now illustrate the optimal jackknife method in a special case where m = 2, that is, we split the

full sample into two non-overlapping subsamples. The �rst subsample is made with the observations

from y1 to yl, with l = n=2 and the initial condition 0, and the remainder belongs to the second

subsample with the initial condition yl.

Under the two non-overlapping subsample scheme, we have:

e�CYm = bCY e� � ( aCY1 e�1 + aCY2
e�2 ):

The objective function and the constraints are:

minbCY ;aCY1 ;aCY2

�
bCY

�2
V ar(e�) + 2X

j=1

�
aCYj

�2
V ar(e�j)� 2bCY 2X

j=1

aCYj Cov(e�; e�j) + 2aCY1 aCY2 Cov(e�1; e�2);
s:t: bCY = aCY1 + aCY2 + 1;

bCY � = 2aCY1 �1 + 2a
CY
2 �2.

From the two constraints, we express bCY and aCY1 in terms of aCY2 , that is:

8



bCY =
aCY2 (2�� 2�2)

�
+ 2; (2.16)

aCY1 =
aCY2 (�� 2�2)

�
+ 1: (2.17)

From CK, we know that � = �1 = �1:781430, and �2 = �1:138209, and hence, we have bCY =
0:7221aCY2 + 2 and aCY1 = �0:2779aCY2 + 1. The �rst order condition with respect to aCY2 gives:

aCY2 = � 2:8884V ar(e�)� 0:5558V ar(e�1)� 0:3326Cov(e�; e�1)� 4Cov(e�; e�2) + 2Cov(e�1; e�2)
1:0429V ar(e�) + 0:1545V ar(e�1) + 2V ar(e�2) + 0:8026Cov(e�; e�1)� 2:8884Cov(e�; e�2)� 1:1116Cov(e�1; e�2) :

(2.18)

It is straightforward to check that this is the global minimizer as the objective function is quadratic

and convex.

To calculate the weights, it is imperative to obtain V ar(e�), V ar(e�1), V ar(e�2), Cov(e�; e�1), Cov(e�; e�2),
and Cov(e�1; e�2). Instead of obtaining the variances and the covariances from the �nite sample distri-

butions, we will calculate them from the corresponding asymptotic distributions.

First, the variances can be computed by combining the techniques of White (1961) and CK. Note

that:

n2V ar(e�) = n2
h
E
�e�2�� E2 �e��i

= n2

2641 + 2E
�R 1

0
WdW=

R 1
0
W 2
�

n
+
E
�R 1

0
WdW=

R 1
0
W 2
�2

n2
+ o(n�2)

375
�n2

2641 + 2E
�R 1

0
WdW=

R 1
0
W 2
�

n
+

h
E
�R 1

0
WdW=

R 1
0
W 2
�i2

n2
+ o(n�2)

375
= E

 R 1
0
WdWR 1
0
W 2

!2
� �2 + o(1) ;

l2V ar(e�j) = E
0@R j=m(j�1)=mWdW

m
R j=m
(j�1)=mW

2

1A2

� �2j + o(1); j = 1; 2:

We need to compute the �rst term on the right hand side of these two equations.

LetN(a; b) =
R b
a
WdW , D(a; b) =

R b
a
W 2 (0 6 a < b 6 1), andMa;b(�1; �2) denote the joint moment

generating function (MGF) of N(a; b) and D(a; b). White (1961) gave the formula for calculating the
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second moment of N(a; b)=D(a; b) as:

E

�
N(a; b)

D(a; b)

�2
=

Z 1

0

Z 1

w

@2Ma;b(�1;��2)
@�21

j�1=0 d�2dw:

Following Phillips (1987b), CK obtained the expression for Ma;b(�1; �2):

Ma;b(�1;��2) = exp
�
��1
2
(b� a)

��
cosh [�(b� a)]� 1

�

�
�1 + a(�

2
1 � �2)

�
sinh [�(b� a)]

��1=2
;

(2.19)

where � =
p
�2�2. The following proposition calculates the variances.

Proposition 2.1 The second derivative of Ma;b with respect to �1, evaluated at �1 = 0, is given by

1

4
(b� a)2H�1=2

0 +
1

2
H
�3=2
0 [(b� a)H 0(0)�H 00(0)] +

3

4
H
�5=2
0 (H 0(0))

2
:= v(a; b); (2.20)

where H, H0, H 0(0), H 00(0) are given in the Appendix.

When [a; b] = [0; 1],

v(0; 1) =
1

4
cosh�1=2 (�)� 1

2�
cosh�3=2 (�) sinh (�) +

3

4�2
cosh�5=2 (�) sinh2 (�) :

This leads to the approximate variance for the full sample estimator and the �rst subsample estimator

in the discrete time unit root model:

n2V ar(e�) = l2V ar(e�1) = 10:1123 +O(n�1): (2.21)

When [a; b] = [1=2; 1],

v(1=2; 1) =
1

16

�
cosh

�
�

2

�
+
�

2
sinh

�
�

2

���1=2
� 1

4�

�
cosh

�
�

2

�
+
�

2
sinh

�
�

2

���3=2
sinh

�
�

2

�
+
3

4�2

�
cosh

�
�

2

�
+
�

2
sinh

�
�

2

���5=2
sinh2

�
�

2

�
:

This leads to the approximate variance for the second subsample estimator in the discrete time unit

root model:

l2V ar(e�2) = 5:3612 +O(n�1): (2.22)

Remark 2.2 The variance of the full sample estimator, e�, normalized by n2, is 10:1123. Interestingly,
it is the same as that of the �rst subsample estimator, normalized by l2. This equality arises because

the full sample has the same initial value as the �rst subsample.

Remark 2.3 The variance of the �rst subsample estimator is about twice as large as that of the second

subsample estimator. This di¤erence is due to the distinctive initial conditions and may be made clearer
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Table 2: Variances of subsample estimators

j Variance normalized by l2

1 10.1122
2 5.3612
3 4.2839
4 3.7065
5 3.3268
6 3.0507
7 2.8375
8 2.6660
9 2.5238
10 2.4034
11 2.2995
12 2.2087

by examining the limit distribution of l(e�j � 1),
l(e�j � 1))

R j=m
(j�1)=mWdW

m
R j=m
(j�1)=mW

2
: (2.23)

In (2.23), the numerator plays an insigni�cant role in the variance calculation since it can be rewritten

as a di¤erence between two chi-square variates. The important part is in the denominator, which is a

partial sum of chi-square variates. For the �rst subsample estimator, the denominator starts with the

square of zero. However, the denominator of the second subsample begins with the square of a random

variable whose magnitude is Op(
p
n). This random initialization of the second subsample increases the

magnitude of the denominator and, hence, tends to reduce the absolute value of the ratio. To con�rm

our explanation, we carried out a simple Monte Carlo study, in which data were simulated from the

Brownian motion with the sample length being set at 5000, and the number of replications set at 10,000.

The mean of
R 1=2
0

W 2 is 0:1243, whereas the mean of
R 1
1=2
W 2 is 0:3694. Not only is the mean a¤ected,

but also the variance and the entire distribution. In this case, the two variances are 0:0202 and 0:2169,

respectively.

Remark 2.4 Table 2 lists the variances of all the subsample estimators when m = 12. It can be seen

that the variance of the subsample estimator decreases as j increases. The largest di¤erence occurs

between j = 1 and j = 2. If m is allowed to go to in�nity, the limit distribution of the jackknife

estimator will be the same as that of the LS estimator, as pointed out by CK.
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Second, to calculate the covariances, we note that:

n2Cov(e�; e�j) = E
0@R 10 WdWR 1

0
W 2

R j=m
(j�1)=mWdWR j=m
(j�1)=mW

2

1A�m��j +O(n�1); j = 1; 2;

n2Cov(e�1; e�2) = E
0@R 1=20

WdWR 1=2
0

W 2

R 1
1=2
WdWR 1

1=2
W 2

1A�m2�1�2 +O(n
�1) :

It is required to obtain the expected value of the cross product of random variables. As for the

variances, we also calculate these expected values from the joint MGF given in the following lemma.

Lemma 2.5 Let Ma;b;c;d(�1; �2; '1; '2) denote the MGF of N(a; b), N(c; d), D(a; b) and D(c; d) with

(0 6 a < b 6 1) and (0 6 c < d 6 1). Then the expectation of N(a;b)D(a;b)
N(c;d)
D(c;d) is given by:

E

�
N(a; b)

D(a; b)

N(c; d)

D(c; d)

�
=

Z 1

0

Z 1

0

@Ma;b;c;d(�1;��2; '1;�'2)
@�1@'1

j�1=0;'1=0 d�2d'2: (2.24)

The following proposition obtains the expression for the MGF of N(a; b), N(c; d), D(a; b) and

D(c; d), and the covariances when m = 2.

Proposition 2.6 The MGF M0;1;0;1=2(�1; �2; '1; '2) is given by("
cosh

�
�
0;1;0;1=2

2

�
� �1
�
0;1;0;1=2

sinh

�
�
0;1;0;1=2

2

�#"
cosh

�
�
0;1;0;1=2

2

�
�
�
0;1;0;1=2

�
0;1;0;1=2

sinh

�
�
0;1;0;1=2

2

�#)�1=2
exp

�
��1
2
� '1
4

�
;

the MGF M0;1;1=2;1(�1; �2; '1; '2) is given by:("
cosh

�
�
0;1;1=2;1

2

�
� �1 + '1
�
0;1;1=2;1

sinh

�
�
0;1;1=2;1

2

�#"
cosh

�
�
0;1;1=2;1

2

�
�
�
0;1;1=2;1

�
0;1;1=2;1

sinh

�
�
0;1;1=2;1

2

�#)�1=2
exp

�
��1
2
� '1
4

�
;

and the MGF M0;1=2;1=2;1(�1; �2; '1; '2) is given by:("
cosh

�
�
0;1=2;1=2;1

2

�
� '1
�
0;1=2;1=2;1

sinh

�
�
0;1=2;1=2;1

2

�#"
cosh

�
�
0;1=2;1=2;1

2

�
�
�
0;1=2;1=2;1

�
0;1=2;1=2;1

sinh

�
�
0;1=2;1=2;1

2

�#)�1=2
exp

�
��1
4
� '1
4

�
;

where �
a;b;cd

, �
a;b;c;d

and �
a;b;c;d

are given in the Appendix. These MGFs, together with formula (2.24),
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Table 3: Approximate values for the variances and covariances for the full sample and subsamples
when m = 2

Variance n2V ar(e�) l2V ar(e�1) l2V ar(e�2)
10.1123 10.1123 5.3612

Covariance n2Cov(e�; �1) n2Cov(e�; e�2) n2Cov(�1;
e�2)

10.0376 11.5863 4.4212

lead to the approximate covariances between the full sample estimator and the two subsample estimators:

n2Cov(e�; e�1) = 10:0376 +O(n�1); (2.25)

n2Cov(e�; e�2) = 11:5863 +O(n�1); (2.26)

n2Cov(e�1; e�2) = 4:4212 +O(n�1): (2.27)

Remark 2.7 There are several interesting �ndings in Proposition 2.6. First, the covariances between

the full sample estimator and the second subsample estimator are similar to, but slightly larger than

that between the full sample estimator and the �rst subsample estimator, although the variance of

the second subsample estimator is smaller. This is because the correlation between the full sample

estimator and the second subsample estimator is larger due to the increased order of magnitude of the

initial condition. Second, these two covariances are much larger than the covariance between the two

subsample estimators. This is not surprising as the data used in the two subsamples estimators do not

overlap.

Remark 2.8 Table 3 summarizes the approximate values of the variances and covariances when m =

2.

Theorem 2.9 The optimal weights for the jackknife estimator of � in the discrete time unit root

model when m = 2 are bCY = 2:8390, aCY1 = 0:6771, and aCY2 = 1:1619. Hence, the optimal jackknife

estimator is e�CYJK = 2:8390e� � (0:6771e�1 + 1:1619e�2): (2.28)

Remark 2.10 The optimal jackknife estimator compares interestingly to the estimator of CK:

e�CKJK = 2:5651e� � (0:7825e�1 + 0:7825e�2): (2.29)
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Relative to the CK estimator, our estimator gives a larger weight to the full sample estimator, and

more so, to the second subsample estimator. The weight for the second subsample is nearly twice as

much as that for the �rst subsample. Since the variance of the second subsample estimator is nearly

half as that of the �rst sample estimator, not surprisingly, the variance of our estimator is smaller

than that of CK�s.

3 Optimal Jackknife for the Continuous Time Unit RootModel

In the section, we extend the result to a continuous time unit root model. In the continuous time

stationary models, it is well known that the estimation bias of the mean reversion parameter depends

on the span of the data, but not the number of observations. In empirically realistic situations, the

time span (measured in number of years) is often small. Consequently, the bias can be much more

substantial than that in the discrete time models; see for example, PY (2005) and Yu (2011).

Considering the following Vasicek model with y0 = 0:

dyt = ��ydt+ �dWt: (3.1)

The parameter of interest here is � that captures the persistence of the process. When � > 0, the

process is stationary and � determines the speed of mean reversion. The observed data are assumed to

be recorded discretely at (h; 2h; � � � ; nh(= T )) in the time interval (0; T ]. So h is the sample interval,

n is the total number of observations and T is the time span. In this case, Yu (2010) showed that the

bias of the ML estimator of � is:

E(e�)� �0 = 1

2T

�
3 + e2�h

�
+ o(T�1): (3.2)

It is clear from (3.2) that the bias depends on T , �, and h. When � is close to 0, or h is close to

0, which is empirically realistic, the bias is about 2=T . When T is not too big, this bias is very big,

relative to the true value of �. The result can be extended to the Vasicek model with an unknown

mean and to the square root model; see Tang and Chen (2009). The large bias motivated PY (2005)

to use the jackknife method.

When � = 0, the model has a unit root, and the exact discrete time representation is a random

walk. In this case, it can be shown that the bias of the ML estimator of � is:

1:7814

T
+ o(T�1): (3.3a)

The bias formula for e� is similar to that for e� in (2.4). However, the direction of the bias is opposite
and the bias depends on T , not n. When T is not big, this bias is very big relative to the true value
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of �. If T !1, the so-called long span limit distribution of e� is given by:
T (e�� 1)) �

R 1
0
WdWR 1
0
W 2

:

See, for example, Phillips (1987b) and Zhou and Yu (2010). Similarly, the long span limit distributions

of the sub-sample estimators are:

T (e�j � 1)) �
R j=m
(j�1)=mWdW

T
R j=m
(j�1)=mW

2
; j = 1; : : : ;m:

Obviously, the only di¤erence between these limit distributions and those in the discrete time unit root

model is the minus sign. Hence, the variances and covariances of the two sets of limit distribution are

the same but the expected values of them change the sign. Of course, the rate of convergence changes

from n to T . Consequently, we have the following theorem.

Theorem 3.1 When m = 2, the approximate variance for the full sample estimator and the �rst

subsample estimator in the continuous time unit root model is:

T 2V ar(e�) = 1

4
T 2V ar(e�1) = 13:2867 +O(T�1): (3.4)

Similarly, the approximate variance for the second subsample estimator in the continuous time unit

root model is:
1

4
T 2V ar(e�2) = 5:3612 +O(T�1): (3.5)

The approximate covariances between the full sample estimator and the two subsample estimators are:

T 2Cov(e�; e�1) = 10:0376 +O(T�1); (3.6)

T 2Cov(e�; e�2) = 11:5863 +O(T�1); (3.7)

T 2Cov(e�1; e�2) = 4:4212 +O(T�1): (3.8)

The optimal jackknife estimator of � in the continuous time unit root model when m = 2 is:

e�CYm = 2:8390e� � ( 0:6771e�1 + 1:1619e�2 ): (3.9)

Remark 3.2 The optimal jackknife estimator of � in the continuous time unit root model has the same

weights and the expression as that of � in the discrete time unit root model. This is not surprising

because there are only two di¤erences in the limit theory, the sign of the bias and the rate of convergence.

These di¤erences do not have any impact on the weights as they are canceled out.
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Remark 3.3 The e¤ect of the initial condition on the bias in the continuous time model was recently

pointed out in Yu (2011). When the initial value is 0 in Model (3.1) with � > 0, Yu showed that the

bias of the ML estimator of � is:

E(e�)� �0 = 1

2T

�
3 + e2�h

�
+ o(T�1): (3.10)

However, when the initial value is N(0; �2=2�) in Model (3.1) with �& 0, the bias of the ML estimator

of � is:

E(e�)� �0 = 1

2T

�
3 + e2�h

�
� 2(1� e�2n�h)
Tn(1� e�2�h) + o(T

�1): (3.11)

4 Monte Carlo Studies

In this section, we check the �nite sample properties of the proposed jackknife against the CK jackknife

using simulated data. This is important for two reasons. First, it is important to measure the e¢ -

ciency gain of the proposed method. Second, the weights are obtained based on the variances and the

covariances of the limit distributions but not based on the �nite sample distributions. These approx-

imations may or may not have impacts on the optimal weights. Hence, it is informative to examine

the importance of the approximation error. Although it is di¢ cult to obtain the analytical expressions

for the variances and the covariances of the �nite sample distribution, we can compute them from

simulated data in a Monte Carlo study, provided the number of replications is large enough. In this

paper, we always set the number of replications at 5,000.

4.1 Discrete Time Unit Root Model

First, we simulate data from the following discrete time unit root model with initial value y0 = 0:

yt = yt�1 + "t; "t � iid N(0; 1); t = 1; 2; : : : ; n:

We evaluate the performance of alternative jackknife methods by applying them to �ve di¤erent sample

sizes, i.e. n = 12; 24; 48; 96; 108. In particular, we compare three methods when m = 2, the CK

jackknife method based on (2.29), the CY jackknife method based on (2.28) where the weights are

derived from the approximate variances and covariances, the CY jackknife method where the weights

are calculated from the exact variances and covariances obtained from the �nite sample distributions.

The results are reported in Table 4, where for each case we calculate the mean, the variance and

the RMSE for the estimates of �, all across 5,000 sample paths. In addition, we calculate the ratio

of the variances and the RMSEs for the CK estimates and the proposed CY estimates to measure the

e¢ ciency loss in using the CK estimate.
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Table 4: Finite sample performance of alternative jackknife estimators for the discrete time unit root
model when m = 2

n Statistics CK CY E¢ ciency of Exact CY
CK relative to CY

12 Bias -0.0637 -0.0665 � -0.0671
Var*100 17.9035 16.1215 0.9005 16.0522
RMSE*10 4.2789 4.0698 0.9511 4.0624

36 Bias -0.0073 -0.0078 � -0.0079
Var*100 1.5185 1.3181 0.8680 1.3060
RMSE*10 1.2344 1.1507 0.9322 1.1456

48 Bias -0.0064 -0.0062 � -0.0061
Var*100 0.8648 0.7570 0.8753 0.7534
RMSE*10 0.9322 0.8723 0.9357 0.8701

96 Bias -0.0012 -0.0014 � -0.0014
Var*100 0.2266 0.1989 0.8777 0.1982
RMSE*10 0.4762 0.4462 0.9370 0.4454

108 Bias -0.0015 -0.0015 � -0.0016
Var*100 0.1761 0.1566 0.8892 0.1564
RMSE*10 0.4199 0.3960 0.9432 0.3958

Several interesting results emerge from the table. First, the bias in the estimate of � for the CK

method and the CY method is very similar in every case. Second, the variance in the estimate of � for

the CY method is signi�cantly smaller than that for the CK method in each case. The reduction in

the variance is over 10% in all cases. Consequently, the RMSE is smaller for the CY method. Third,

although the exact CY method provides a smaller variance, the di¤erence between the two CY methods

is so small, suggesting that the proposed CY works well, and it is not necessary to bear the additional

computational cost associated with calculating the variances and covariances from the �nite sample

distributions. It is worth pointing out that even when n = 12, a very small sample size that could

have bigger implications for the approximation error, the di¤erence between the two CY methods is

still negligible in terms of the bias, variance and RMSE.

To understand why the two CY estimates are so similar, Table 5 reports the weights obtained from

the �nite sample distributions. For the purpose of comparison, we also report the weights obtained

from the limit distribution. It can be clearly seen that when n!1, all the weights converge. When
n is as small as 12, the weights are not very di¤erent from those obtained when n is in�nite.

4.2 Continuous Time Unit Root Model

Second, we simulate data from the following continuous time unit root model with initial value y0 = 0:

dyt = ��ydt+ dWt;
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Table 5: Jackknife weights based on the �nite sample distributions and the limit distribution for the
discrete time unit root model.

n bCY aCY1 aCY2
12 2.9044 0.6494 1.2525
36 2.9244 0.6442 1.2802
48 2.8993 0.6539 1.2453
96 2.8915 0.6569 1.2346
108 2.8699 0.6652 1.2047
1 2.8390 0.6771 1.1619

Table 6: Finite sample performance of alternative jackknife estimators for the continuous time unit
root model when m = 2.

n h T Statistics CK CY E¢ ciency of CK Exact CY
relative to CY

104 1/52 2 Bias 0.0026 0.0109 � 0.0116
Var 6.0625 5.3898 0.8890 5.3832
RMSE 2.4622 2.3216 0.9429 2.3202

260 1/52 5 Bias -0.0080 -0.0069 � -0.0069
Var 0.9737 0.8779 0.9016 0.8778
RMSE 0.9868 0.9370 0.9495 0.9369

504 1/252 2 Bias -0.0071 -0.0101 � -0.0107
Var 6.0505 5.3099 0.8776 5.2893
RMSE 2.4598 2.3043 0.9368 2.2999

1260 1/252 5 Bias 0.0055 0.0015 � 0.0008
Var 0.9292 0.8199 0.8823 0.8178
RMSE 0.9640 0.9055 0.9393 0.9043

with � = 0. Here, we generate data based on its exact discrete form as yt+h = yt+"t, with "t � N(0; h).
As for the discrete time model, we employ the three jackknife method to estimate �. Table 6 shows

the results based on two sampling intervals h = 1=52; 1=252, corresponding to the weekly and daily

frequency. The time span, T , is set at 2 years and 5 years. These settings are empirically realistic for

modeling interest rates and volatility.

Several interesting results also emerge from the table. First. the bias in the estimate of � for the

CK method and the CY method is very similar in each case. Second, the variance in the estimate of

� for the CY method is always signi�cantly smaller than those for the CK method. The reduction

in the variance is at least 10%. Consequently, the RMSE is smaller for the CY method. Third, the

di¤erence between the two CY methods is very small, suggesting that the proposed CY works well and

it is not necessary to bear the additional computational cost associated with calculating the variances

and covariances from the �nite sample distributions.
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Table 7: Weights based on the �nite sample distributions and the limit distribution

n h T bCY aCY1 aCY2
104 1/52 2 2.8684 0.6658 1.2027
260 1/52 5 2.8483 0.6735 1.1748
504 1/252 2 2.8931 0.6563 1.2368
1260 1/252 5 2.8823 0.6605 1.2218
1 �xed 1 2.8390 0.6771 1.1619

To understand why the two CY estimates are so similar in the continuous time model, Table 7

reports the weights obtained from the �nite sample distributions. For the purpose of comparison, we

also report the weights obtained from the limit distribution. It can be clearly seen, as T (but not n)

increases, all the weights get close to those obtained from the limit distribution. When T is as small

as 2, the weights are not di¤erent from those obtained when T is in�nite.

5 Conclusion

This paper has introduced a new jackknife procedure for unit root models that o¤ers improvement

over the jackknife methodology of CK (2010). The proposed estimator is optimal in the sense that

it minimizes the variance of the jackknife estimator while maintaining the desirable property of being

able to remove the �rst order bias. The new method is applicable to both discrete time and continuous

time unit root models. Simulation studies have shown that this new method reduces the variance by

more than 10% relative to the estimator of CK without compromising the bias.

Although it is not pursued in the present paper, it may be useful to further improve our method

by using alternative values for m, and hence, further reduce the variance and RMSE. Furthermore,

there are other models where the asymptotic theory is critically dependent on the initial condition.

Examples would include near unit root models and explosive processes. It may be interesting to extend

the results in the present paper to these models. We plan to report these results in our later work.

APPENDIX

A Proof of Proposition 2.1

The notations in the proposition are de�ned as follows.

H = H(�1) = cosh[�(b� a)]�
1

�
[�1 + a(�

2
1 � �2)] sinh[�(b� a)];
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H0 = H(0), i.e.:

H0 = cosh[�(b� a)] + a� sinh[�(b� a)];

H
0
(0) denotes the �rst derivative of H(�1) with respect to �1, evaluated at �1 = 0, i.e.:

H
0
(0) =

@H

@�1
j�1=0= �

1

�
sinh[�(b� a)]:

Similarly, H
00
(0) denotes the second derivative of H(�1) with respect to �1, evaluated at �1 = 0, i.e.:

H
00
(0) =

@2H

@�21
j�1=0= �

2a

�
sinh[�(b� a)]:

The �rst derivative of Ma;b with respect to �1 can be written as:

@Ma;b

@�1
=

�
�b� a

2

�
exp

�
��1(b� a)

2

�
H�1=2 � 1

2
exp

�
��1(b� a)

2

�
H�3=2 @H

@�1
:

The second derivative of Ma;b with respect to �1 is:

@2Ma;b

@�21
=

1

4
(b� a)2 exp

�
��1(b� a)

2

�
H�1=2 +

1

2
exp

�
��1(b� a)

2

�
H�3=2

�
(b� a) @H

�1
� @

2H

@�21

�
+
3

4
exp

�
��1(b� a)

2

�
H�5=2

�
@H

@�1

�2
Setting �1 = 0 and by standard numerical integration techniques, we can obtain the results in Propo-

sition 2.1.

B Proof of Lemma 2.5

Taking the derivative of MGF with respect to �1, we get:

@Ma;b;c;d(�1;��2; '1;�'2)
@�1

= E [N(a; b) exp(�1N(a; b)� �2D(a; b) + '1N(c; d)� '2D(c; d))] :

Setting �1 = 0, taking the derivative with respect to '1, and then evaluating it at '1 = 0, we have,�
@

�
@Ma;b;c;d(�1;��2; '1;�'2)

@�1
j�1=0

�
=@'1

�
j'1=0= E fN(a; b)N(c; d) exp [��2D(a; b)� '2D(c; d)]g :
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Consequently, Z 1

0

Z 1

0

�
@

�
@Ma;b;c;d(�1;��2; '1;�'2)

@�1
j�1=0

�
=@'1 j'1=0

�
d�2d'2

=

Z 1

0

Z 1

0

E fN(a; b)N(c; d) exp [��2D(a; b)� '2D(c; d)]g d�2d'2

= E

Z 1

0

N(c; d) exp[�'2D(c; d)]d'2
Z 1

0

N(a; b) exp[��2D(a; b)]d�2

= E

�
N(a; b)

D(a; b)

N(c; d)

D(c; d)

�
:

C Proof of Proposition 2.6

To prove this proposition, we follow CK.

(1) STEP 1: Deriving the MGF for E

� R 1
0
WdWR 1
0
W 2

R 1=2
0 WdWR 1=2
0 W 2

�
.

Let X(t) and Y (t) (t 2 [0; 1]) be the OU process de�ned by

dX(t) = 
X(t)dt+ dW (t); X(0) = 0;

dY (t) = �Y (t)dt+ dW (t); Y (0) = 0:

The measures induced by X and Y are denoted as �X and �Y , respectively. By Girsanov�s Theorem,

d�X
d�Y

(s) = exp

�
(
 � �)

Z 1

0

s(t)ds(t)� 

2 � �2

2

Z 1

0

s(t)2dt

�
;

where the left side is the Radon-Nikodym derivative evaluated at s(t).

Let the MGF of E
� R 1

0
WdWR 1
0
W 2

R 1=2
0 WdWR 1=2
0 W 2

�
be M0;1;0;1=2(�1; �2; '1; '2) so that

M0;1;0;1=2(�1; �2; '1; '2) = E

"
exp

 
�1

Z 1

0

WdW + �2

Z 1

0

W 2 + '1

Z 1=2

0

WdW + '2

Z 1=2

0

W 2

!#
:

With the change of measure , we have the following formula by setting 
 = 0:

M0;1;0;1=2(�1; �2; '1; '2)

= E

"
exp

 
�1

Z 1

0

Y dY + �2

Z 1

0

Y 2 + '1

Z 1=2

0

Y dY + '2

Z 1=2

0

Y 2 � �
Z 1

0

Y dY +
�2

2

Z 1

0

Y 2

!#
:
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By Ito�s calculus, we get:

M0;1;0;1=2 (�1; �2; '1; '2)

= exp

�
��1
2
� '1
4
+
�

2

�
E

(
exp

"�
�1 � �
2

�
Y (1)2 +

'1
2
Y

�
1

2

�2
+

�
'2 + �2 +

�2

2

�Z 1=2

0

Y 2 +

�
�2 +

�2

2

�Z 1

1=2

Y 2

#)

= exp

�
��1
2
� '1
4
+
�

2

�
E

(
exp

"�
�1 � �
2

�
Y (1)2 +

'1
2
Y

�
1

2

�2
+ '2

Z 1=2

0

Y 2

#)

where � =
p
�2�2. To calculate the expectation, we �rst take the expectation ofM0;1;0;1=2(�1; �2; '1; '2)

conditional on z1=20 , which is the sigma �eld generated by W on [0; 12 ], and then change the measure

by Girsanov�s Theorem with introducing another OU process.

Note that,

M0;1;0;1=2(�1; �2; '1; '2;z
1=2
0 ) = E

h
M0;1;0;1=2(�1; �2; '1; '2) j z

1=2
0

i
= exp

�
��1
2
� '1
4
+
�

2

�
exp

"
'1
2
Y

�
1

2

�2
+ '2

Z 1=2

0

Y 2

#
E

�
exp

��
�1 � �
2

�
Y (1)2 j Y

�
1

2

���
:

The MGF of the noncentral �2 distribution, ( �1��2 )Y (1)2, is [1� (�1� �)$2]�1=2 exp
h
(�1��)

2 �Y
�
1
2

�2i
with $2 = exp(�)�1

2� and � =
�
1� (�1 � �)$2

��1
exp(�). Therefore,

M0;1;0;1=2

�
�1; �2; '1; '2;z

1=2
0

�
= [1� (�1 � �)$2]�1=2 exp

�
��1
2
� '1
4
+
�

2

�
E

 
exp

(�
(�1 � �)

2
� +

'1
2

�
Y

�
1

2

�2
+ '2

Z 1=2

0

Y 2

)!
:

Now we introduce another process Z(t) on [0; 12 ], given by dZ(t) = �Z(t)dt+ dW (t); Z(0) = 0. By

changing the measure and setting '2 =
�
�2 � �2

�
=2 to cancel out

R 1=2
0

Z2, we have

E

 
exp

(�
(�1 � �)

2
� +

'1
2

�
Y

�
1

2

�2
+ '2

Z 1=2

0

Y 2

)!

= E

 
exp

(�
(�1 � �)

2
� +

'1
2

�
Z

�
1

2

�2
+ (�� �)

Z 1=2

0

ZdZ

)!

= exp

�
� � �
4

�
E

 
exp

"
�Z

�
1

2

�2#!
;
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with � = (�1��)
2 � + '1

2 +
���
2 . Considering Z( 12 ) � N(0; $

2
z) where $

2
z =

exp(�)�1
2� , we have

E

 
exp

(�
(�1 � �)

2
� +

'1
2

�
Y

�
1

2

�2
+ '2

Z 1=2

0

Y 2

)!
= [1� 2�$2

z]
�1=2 exp

�
� � �
4

�
:

Finally by combining the equations above, we obtain

M0;1;0;1=2(�1; �2; '1; '2) =

�
[1� (�1 � �)$2][1� 2�$2

z] exp

�
� + �

�2

���1=2
exp

�
��1
2
� '1
4

�
:

Note that,

[1�(�1��)$2] exp

�
�

�2

�
=
exp

�
�
2

�
+ exp

�
��
2

�
2

��1
�

exp
�
�
2

�
� exp

�
��
2

�
2

= cosh

�
�

2

�
��1
�
sinh

�
�

2

�
;

and that

[1� 2�$2
z] exp

�
�

�2

�
=
exp

�
�
2

�
+ exp

�
��
2

�
2

� �
�

exp
�
�
2

�
� exp

�
��
2

�
2

= cosh
��
2

�
� �
�
sinh(

�

2
);

where � = (�1 � �)� + '1 + �. Thus,

M0;1;0;1=2(�1; �2; '1; '2) = H0;1;0;1=2(�1; �2; '1; '2)
�1=2 exp

�
��1
2
� '1
4

�
;

with H0;1;0;1=2(�1; �2; '1; '2) =
�
cosh

�
�
2

�
� �1

� sinh
�
�
2

�� h
cosh

�
�
2

�
� �

� sinh
�
�
2

�i
.

(2) STEP 2: Compute @
h
@Ma;b;c;d(�1;��2;'1;�'2)

@�1
j�1=0

i
=@'1 j'1=0.

Denote H0;1;0;1=2(�1;��2; '1;�'2) and M0;1;0;1=2(�1;��2; '1;�'2) by H and M . Note that M =

H�1=2 exp
�
� �1

2 �
'1
4

�
where � =

p
2�2 and � =

p
2�2 + 2'2. Taking the partial derivative with

respect to �1 and evaluating it at �1 = 0, we have,

@M

@�1
j�1=0= �

1

2
exp

�
�'1
4

�
H
�1=2
0 � 1

2
exp

�
�'1
4

�
H
�3=2
0

�
@H

@�1
j�1=0

�
:

Then taking the second derivative with respect to '1 and evaluating it at '1 = 0, we obtain"
@(@M@�1 j�1=0)

@'1
j'1=0

#

=
1

8
H
�1=2
00 +H

�3=2
00

8<:14
�
@H0
@'1

j'1=0
�
+
1

8

�
@H

@�1
j�1=0;'1=0

�
� 1
2

24@
�
@H
@�1

j�1=0
�

@'1
j'1=0

359=;
+
3

4
H
�5=2
00

�
@H0
@'1

j'1=0
��

@H

@�1
j�1=0;'1=0

�
;
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from which we require the following four expressions

H00 = H j�1=0;'1=0= cosh
�
�

2

�
cosh

��
2

�
+
�

�
sinh

��
2

�
sinh

�
�

2

�
;

@H0
@'1

j'1=0=
�1
�
cosh

�
�

2

�
sinh

��
2

�
;

@H

@�1
j�1=0;'1=0= �

1

�
sinh

�
�

2

�
cosh

��
2

�
� 1

�
sinh

��
2

�
cosh

�
�

2

�
;

@( @H@�1 j�1=0)
@'1

j'1=0=
1

��
sinh

�
�

2

�
sinh

��
2

�
:

Finally, we have the following expression that is amenable for numerical integrations."
@(@M@�1 j�1=0)

@'1
j'1=0

#

=
1

8
H
�1=2
00 +H

�3=2
00

�
� 1

8�
sinh

�
�

2

�
cosh

��
2

�
� 3

8�
sinh

��
2

�
cosh

�
�

2

�
+

1

2��
sinh

�
�

2

�
sinh

��
2

��
+
3

4
H
�5=2
00

�
�1
�
sinh

��
2

�
cosh

�
�

2

���
� 1
�
sinh

�
�

2

�
cosh

��
2

�
� 1

�
sinh

��
2

�
cosh

�
�

2

��
:

By the same argument, we have the MGFs ofM0;1;1=2;1(�1; �2; '1; '2) andM0;1=2;1=2;1(�1; �2; '1; '2).

To distinguish �, � and � in the three cases, we use subscripts.

To sum up:

The MGF M0;1;0;1=2(�1; �2; '1; '2) is given by("
cosh

�
�
0;1;0;1=2

2

�
� �1
�
0;1;0;1=2

sinh

�
�
0;1;0;1=2

2

�#"
cosh

�
�
0;1;0;1=2

2

�
�
�
0;1;0;1=2

�
0;1;0;1=2

sinh
��
2

�#)�1=2
exp

�
��1
2
� '1
4

�
;

where �
0;1;0;1=2

=
p
�2�2, �0;1;0;1=2 =

p
�2�2 � 2'2, and �0;1;0;1=2 =

�
�1 � �0;1;0;1=2

�
�
0;1;0;1=2

+ '1 +

�
0;1;0;1=2
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0;1;0;1=2

= exp
�
�
0;1;0;1=2

�
[1 �

�
�1 � �0;1;0;1=2

�
$2

0;1;0;1=2
]�1, $2

0;1;0;1=2
=

exp
�
�
0;1;0;1=2

�
�1

2�
0;1;0;1=2

,

�
0;1;0;1=2

=
�1��0;1;0;1=2

2 �
0;1;0;1=2

+ '1
2 +

�
0;1;0;1=2

��
0;1;0;1=2

2 , and $2
z;0;1;0;1=2

=
exp

�
�
0;1;0;1=2

�
�1

2�
0;1;0;1=2

.

The MGF M0;1;1=2;1(�1; �2; '1; '2) is given by("
cosh

�
�
0;1;1=2;1

2

�
� �1 + '1
�
0;1;1=2;1
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�
�
0;1;1=2;1

2

�#"
cosh

�
�
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2

�
�
�
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�
�
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2
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�
��1
2
� '1
4

�
;
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where �
0;1;1=2;1

=
p
�2�2 � 2'2, �

0;1;1=2;1
=
p
�2�2 and �

0;1;1=2;1
=
�
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�
�
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�
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=
h
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�
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�
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i�1
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�
�
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�
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=
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�
�
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�
�1

2�
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�
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=
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2 �
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� '1
2 +

�
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��
0;1;1=2;1

2 , and $2
z;
0;1;1=2;1

=
exp

�
�
0;1;1=2;1

�
�1

2�
0;1;1=2;1

.

The MGF M0;1=2;1=2;1(�1; �2; '1; '2) is given by("
cosh

�
�
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2

�
� '1
�
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�
�
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2
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2

�
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�
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sinh
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2
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�
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4
� '1
4

�
;

where $2 =
exp

�
�
0;1=2;1=2;1

�
�1

2�
0;1=2;1=2;1

, �
0;1=2;1=2;1

=
p�2'2, �0;1=2;1=2;1 =

p
�2�2, and �0;1=2;1=2;1 = ('1 �

�
0;1=2;1=2;1

)�
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h
1�

�
�1 � �0;1=2;1=2;1

�
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�
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2 �
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.

The computation of the second derivative of the MGF simply follows step 2.

For example, the second derivative of MGF M0;1;0;1=2(�1;��2; '1;�'2) is24@(@M0;1;0;1=2(�1;��2;'1;�'2)
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�
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2�2 and �
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=
p
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The second derivative of MGF M0;1;1=2;1(�1;��2; '1;�'2) is24@(@M0;1;1=2;1(�1;��2;'1;�'2)
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The second derivative of MGF M
0;1=2;1=2;1
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and H
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2
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2

�
+

�
0;1=2;1=2;1

�
0;1=2;1=2;1

sinh
��

0;1=2;1=2;1

2

�
sinh

�
�
0;1=2;1=2;1

2

�
with �
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p
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D Proof of Theorem 2.9

Using the results from Propositions 2.1 and 2.6, and substituting the values in Equation (2.18), we

have the stated result.
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