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Chosen-Ciphertext Secure Proxy Re-Encryption Schemes

without Pairings

Abstract

Proxy re-encryption realizes delegation of decryption rights, enabling a proxy hold-
ing a re-encryption key to convert a ciphertext originally intended for Alice into an
encryption of the same message for Bob. Proxy re-encryption is a very useful prim-
itive, having many applications in distributed file systems, outsourced filtering of
encrypted spam, access control over network storage, and so on. Lately, Weng et al.
proposed the first unidirectional proxy re-encryption scheme without using bilinear
pairs. However, Weng et al.’s construction does not possess collusion resilience, in
the sense that a coalition of the proxy and the delegatee can recover the delegator’s
private key. This is a serious weakness, since a user’s private key should be strictly
not revealed in any case. In this work, we present a scheme solving this problem,
based on Weng et al.’s construction. We further extend our scheme to address several
drawbacks inherent in virtually all existing proxy re-encryption schemes.

Keywords: Proxy re-encryption, bilinear pairing, chosen-ciphertext security.

1 Introduction

Proxy re-encryption allows a proxy possessing a re-encryption key to convert a ciphertext
originally computed under Alice’s public key into an one that can be opened by Bob
using his own private key. The proxy performs the conversion without learning anything
on the underlying plaintext and either of private keys of Alice and Bob. In this context,
Alice is delegator and Bob is the delegatee. Proxy re-encryption is a very useful primitive,
having many applications. Suppose for example, Alice, the manager of the company, is
to be absent from office the whole morning for attending a meeting. She likes to entrust
Bob, the vice manager, to temporarily take over in processing her (encrypted) official
emails during her absence. By employing proxy re-encryption, Alice can configure the
email server for her official account in such a way that the server is the proxy, and Alice
gives it a re-encryption key; the server then converts Alice’s incoming emails using the re-
encryption key, and forwards the transformed ones to Bob. The use of proxy re-encryption
is clearly more advantageous than the naive method that Alice directly gives her private
key to Bob, who then in turn decrypts with Alice’s private key.

1.1 Related Work

Proxy re-encryption evolves from the idea of delegating decryption rights, which was first
proposed by Mambo and Okamoto [25] as a better-performance alternative to the trivial
approach of decrypt-then-encrypt. Shortly after that, Blaze, Bleumer and Strauss [4] fur-
thered this line of research by proposing the notion of “atomic proxy cryptography”, which
is eventually developed into proxy re-encryption. In their Elgamal-based scheme, where a
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user’s key pair is of the form (pk = gx mod p, sk = x), the re-encryption key rkA→B for
the proxy is xB/xA (mod q); therefore, a ciphertext for Alice (gxA.r mod p,m.gr mod p)
can be transformed into ((gxA.r)xB/xA mod p,m.gr mod p) for Bob. This scheme how-
ever has several drawbacks. First, it is inherently bidirectional in the sense that the
delegation key xB/xA (mod q) can also be used to convert ciphertext from Bob to Alice.
Note that bidirectional proxy re-encryption is not always desirable, as mutual delegation
is not necessarily needed in many applications. Second, delegation in their scheme is tran-
sitive: from xB/xA (mod q) and xC/xB (mod q), the proxy by itself can compute xC/xA

(mod q). Third, the scheme is not collusion resilient: if the proxy and Bob collude, they
can compute Alice’s private key xA. Last, the generation of the re-encryption key xB/xA

(mod q) seems having to be interactive by involving Bob in the process.
Dodis and Ivan [12] were the first to realize unidirectional delegation of decryption.

The basic idea for their ElGaml-based scheme is to partition the private key of Alice into
two shares, and one is given to the proxy and the other to Bob. Their scheme is not
“pure” proxy re-encryption, as decryption by Bob needs the share from Alice. Moreover,
their scheme is not key optimal, due to the fact that the number of secrets held by Bob
grows with the number of delegations he accepts. Ateniese et al. [1, 2] presented novel
unidirectional proxy re-encryption schemes based on bilinear pairings. Their schemes
are non-transitive, collusion resilient, non-interactive, and key optimal, among others.
However, Ateniese et al.’s schemes are only secure against chosen-plaintext attack (CPA).
Canetti and Hohenberger [10] gave a construction of CCA-secure bidirectional proxy re-
encryption scheme. Subsequently, Libert and Vergnaud [21] presented a unidirectional
PRE scheme with CCA security. Both of these constructions use bilinear pairings.

Proxy re-encryption has also been studied in the identity-based public key setting.
Green and Ateniese [16] proposed the first identity-based proxy re-encryption schemes,
with both CPA and CCA security in the random oracle model. They were succeeded
by Chu and Tzeng [11], who gave constructions of CPA and CCA-secure identity-based
proxy re-encryption schemes without random oracles.

All the above CCA-secure proxy re-encryption schemes are based on bilinear pairings.
Lately, Weng et al. [13] were thus motivated to construct CCA-secure proxy re-encryption
without using pairings. They proposed both unidirectional and bidirectional schemes.
Considering the fact that pairing operation is still computationally costly, despite the
recent advances in implementation techniques, Weng et al.’s constructions are of particular
interest, especially in the resource limited setting.

1.2 Desirable features of Proxy Re-Encryption

Ateniese et al. [1, 2] summarized a number of desirable features that proxy re-encryption
should possess. We reiterate them below, for a further understanding of proxy re-
encryption.

♦ Unidirectional: Delegation from A → B does not allow re-encryption from B →
A. We notice that bidirectional delegation may be required in some applications,
it is thus better to distinguish between unidirectional and bidirectional proxy re-
encryption.

♦ Noninteractive: The generation of re-encryption key should be accomplished by
Alice using Bob’s public key; no interaction involving Bob is required.

♦ Proxy invisibility: It does not require the sender who sends message to Alice to be
aware of the existence of the proxy. The same should hold for Bob, the delegatee.
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♦ Key optimality: The number of secrets Bob needs to hold should remain constant,
regardless of how many delegations he accepts.

♦ Collusion resilience: It is hard for the coalition of the proxy and Bob to compute
Alice’s private key.

♦ Nontransitive: The proxy, alone cannot redelegate decryption rights. Specifically, it
should be hard for the proxy by itself to compute rkA→C from rkA→B and rkB→C .

♦ Nontransferability: It should be hard for the coalition of the proxy and the delegatee
to redelegate decryption rights. It should note, however, that probably the best
we can expect on nontransferability is that the proxy and the delegatee cannot
generate rkA→C from rkA→B and rkB→C . The reason is that the following scenario
is unavoidable in any proxy re-encryption scheme: suppose Alice delegates to Bob;
then Bob decrypts the converted messages and gives the plaintext to Carol. In this
case, Bob is required to be online in redelegating decryption rights. In contrast, Bob
is offline if rkA→C can be generated from rkA→B and rkB→C . Anyway, in either case
transferability implies Bob’s willingness to share his privileges (i.e., access to Alice’s
messages) with Carol. Arguably, this does not often occur in practical applications.

1.3 Our Contributions

As mentioned earlier, Weng et al.’s schemes are the only CCA-secure proxy re-encryption
in the literature that does not use bilinear pairings. However, their schemes do not satisfy
collusion resilience; the proxy and the delegatee together can recover the delegator’s
private key. Collusion resilience is certainly an important feature, as exposure of private
key in any way is fatal; security of the delegator against coalition of the delegatee and
proxy should be one of the pursued goals in unidirectional proxy re-encryption [1, 2]. In
this work, we propose an improved CCA-secure unidirectional proxy re-encryption scheme
without using pairings, that satisfies all the above features except for nontransferability.
We base our construction upon Weng et al.’s, and the two have similar efficiency. We also
briefly discuss how to construct bidirectional proxy re-encryption.

We further observe the following weaknesses in the existing proxy re-encryption models
(thus all of the existing schemes suffer from these weaknesses). First, the proxy feels free
to share the re-encryption key with Bob, such that Bob by himself can convert and access
Alice’s messages. The traceable proxy re-encryption system proposed by Libert and
Vergnaud [23] expects to deter the proxy from sharing re-encryption key, since otherwise
the proxy can be identified by the delegator. Such a “trace-after-incident” strategy is not
very effective, and a more satisfactory approach should be “prevention-before-incident”.
Second, it is hard to attain change of delegation path. For example, Alice originally
delegates to Bob through proxy 1; but later she wants to give up that delegation, and
instead delegate to Carol via proxy 2. In principle, the general “time limited delegation”
approach can mitigate this problem to some extent, such that delegation is temporary
and a re-encryption key is valid only for a short period of time [1, 2]. This approach
forces all users to periodically reestablish re-encryption keys with their proxies, which is
rather cumbersome. More importantly, it cannot entirely solve the problem, as change of
delegation path is still impossible within a period.

In view of this, we extend our basic scheme to address the above weaknesses. Our
extended scheme assumes a slightly different setting than standard proxy re-encryption:
the proxy also has a key pair. This, however, is not a unreasonable assumption, since the
proxy is anyhow an entity (like the delegator and the delegatee) within a PKI. In Figure 1,
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we compare our schemes with Ateniese et al.’s scheme [1,2], Libert and Vergnaud’s scheme
[21], and Weng et al.’s scheme [13], which are typical of pairings based CPA-secure,
pairings based CCA-secure proxy re-encryption, and CCA-secure proxy re-encryption
without pairings, respectively.
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Figure 1: Comparison results

1.4 Outline

The rest of the paper is organized as follows. In Section 2, we review the model of
unidirectional proxy re-encryption, as well as the complexity assumptions that will be used
in our security proof. In Section 3, we present a unidirectional proxy re-encryption scheme
without parings, and prove its security, and a bidirectional scheme is breifly introduced in
Section 4. We give an extended scheme in Section 5, followed by the concluding remarks
in Section 6.

2 Preliminaries

We review the formal model of unidirectional proxy re-encryption.

2.1 Model of Unidirectional Proxy Re-Encryption

Formally, a (single hop) unidirectional proxy re-encryption scheme consists of the following
seven algorithms [23]:

GlobalSetup(κ): The global setup algorithm takes as input a security parameter κ, and
outputs the global parameters param. For brevity, hereafter we assume that param
is implicitly included in the input of the following algorithms.

KeyGen(i): The key generation algorithm generates the public/secret key pair (pki, ski)
for user i.

ReKeyGen(ski, pkj): The re-encryption key generation algorithm takes as input the pri-
vate key ski of the delegator and the public key pkj of the delegatee. It outputs a
re-encryption key rki→j .

L1-Enc(pk, m): The first-level encryption algorithm takes as input a public key pk and a
message m ∈M, and it outputs a first-level ciphertext that cannot be re-encrypted
for another party. Here M denotes the message space. First-level encryption can
be viewed as standard encryption, since it is not expected to be converted.
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L2-Enc(pk, m): The second-level encryption algorithm takes as input a public key pk
and a message m, and it outputs a second-level ciphertext that can be re-encrypted
for another party using a suitable re-encryption key.

ReEnc(rki→j , ci): The re-encryption algorithm takes as input a re-encryption key rki→j

and a second-level ciphertext ci under public key pki. It outputs a first-level cipher-
text cj of the same message under public key pkj .

Dec(sk, c): The decryption algorithm takes as input of a private key sk and a ciphertext
c, and outputs a message m ∈M or the error symbol ⊥.

Correctness. Correctness requires that, for any m ∈ M and any couple of pub-
lic/private key pair (pki, ski), (pkj , skj), the following conditions hold:

Dec(ski, L1-Enc(pki,m)) = m,

Dec(ski, L2-Enc(pki,m)) = m,

Dec (skj ,ReEnc(ReKeyGen(ski, skj), L2-Enc(pki,m))) = m.

Security definition. The chosen-ciphertext security for unidirectional proxy re-encryption
scheme Π is defined via the following game between an adversary A and a challenger C:
Setup. C takes a security parameter κ and runs algorithm GlobalSetup, which outputs to

A the resulting global parameters param.

Phase 1. A adaptively issues queries q1, · · · , qm, with query qi being one of the following:

• Uncorrupted key generation query 〈i〉: C first runs algorithm KeyGen to obtain
a public/private key pair (pki, ski), and then sends pki to A.

• Corrupted key generation query 〈j〉: C first runs algorithm KeyGen to obtain a
public/private key pair (pkj , skj), and then gives (pkj , skj) to A.

• Re-encryption key generation query 〈pki, pkj〉: C first runs ReKeyGen(ski, pkj)
to generate a re-encryption key rki,j . Then C returns rki,j to A. Here ski and
skj are private keys with respect to pki and pkj , respectively. It is required
that pki and pkj were generated beforehand by algorithm KeyGen.

• Re-encryption query 〈pki, pkj , ci〉: C first runs algorithm ReKeyGen to generate
the re-encryption key rki,j . Then it runs ReEncrypt(rki,j , ci) to obtain the
resulting ciphertext cj , which is returned to A. It is required that pki and pkj

were generated beforehand by KeyGen.
• Decryption query 〈pk, c〉: C returns the result of Dec(sk, c) to A, where sk

is the private key with respect to pk. It is required that pk was generated
beforehand by KeyGen.

Challenge. Once A decides that Phase 1 is over, it outputs a target public key pk∗

and two equal-length plaintexts m0,m1 ∈ M. Here it is required that A did not
previously corrupt the private key corresponding to pk∗. C flips a random coin
δ ∈ {0, 1}, and sets the challenge ciphertext to be c∗ = L2-Enc(pk∗,mδ), which is
sent to A. Note that in the setting of proxy re-encryption, we certainly focus on
the second level encryption.

Phase 2. A issues additional queries qm+1, · · · , qmax, with each being one of the follow-
ing:

• Uncorrupted key generation query 〈i〉: C responds as in Phase 1.
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• Corrupted key generation query 〈j〉: C responds as in Phase 1, with the ex-
ception that pkj 6= pk∗. Besides, if A has obtained a derivative1 (pk′, c′) of
(pk∗, c∗), it is required that pkj 6= pk′.

• Re-encryption key generation query 〈pki, pkj〉: C responds as in Phase 1, with
the exception that if A has obtained the private key skj with respect to pkj ,
A is disallowed to issue the re-encryption key generation query 〈pk∗, pkj〉.

• Re-encryption query 〈pki, pkj , ci〉: C responds as in Phase 1, except that if A
has obtained the private key skj with respect to pkj , then (pki, ci) can not be
a derivative of (pk∗, c∗).

• Decryption query 〈pk, c〉: C responds as in Phase 1, except that (pk, c) can not
be a derivative of (pk∗, c∗).

Guess. Finally, A outputs a guess δ′ ∈ {0, 1}.
We refer to adversary A as an IND-PRE-CCA adversary, and we define his advantage

in attacking scheme Π as

AdvIND-PRE-CCA
Π,A =

∣∣Pr[δ′ = δ]− 1
2

∣∣,
where the probability is taken over the random coins consumed by the challenger and the
adversary.

Definition 1 A proxy re-encryption scheme Π is said to be (t, qu, qc, qrk, qre, qd, ε)-IND-
PRE-CCA secure, if for any t-time IND-PRE-CCA adversary A who makes at most qu

uncorrupted key generation queries, at most qc corrupted key generation queries, at most
qrk re-encryption key generation queries, at most qre re-encryption queries and at most
qd decryption queries, we have AdvIND-PRE-CCA

Π,A ≤ ε.

2.2 Complexity Assumptions

Throughout the paper, x
$← S denotes that x is chosen randomly from a finite set S with

a uniform distribution.
The security of our unidirectional proxy re-encryption scheme is based on the compu-

tational Diffie-Hellman (CDH) assumption.

Definition 2 Let G be a cyclic multiplicative group with prime order q. The CDH prob-
lem in group G is, given a tuple (g, ga, gb) ∈ G3 with unknown a, b

$← Z∗q, to compute
gab.

Definition 3 For a polynomial-time adversary B, we define his advantage in solving the
CDH problem in group G as

AdvCDH
B , Pr

[
B(g, ga, gb) = gab

]
,

1Derivative of (pk∗, c∗) is inductively defined in [10] as below:
1. (pk∗, c∗) is a derivative of itself;
2. If (pk, c) is a derivative of (pk∗, c∗), and (pk′, c′) is a derivative of (pk, c), then (pk′, c′) is a derivative

of (pk∗, c∗).
3. If A has issued a re-encryption query 〈pk, pk′, c〉 and obtained the resulting re-encryption ciphertext

c′, then (pk′, c′) is a derivative of (pk, c).
4. If A has issued a re-encryption key generation query 〈pk, pk′〉, and Dec(sk′, c′) ∈ {m0, m1} (here sk′

is the private key with respect to pk′), then (pk′, c′) is a derivative of (pk, c).
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where the probability is taken over the randomly choices of a, b and the random coins
consumed by B. We say that the (t, ε)-CDH assumption holds in group G if no t-time
adversary B has advantage at least ε in solving the CDH problem in group G.

Bao et al. [5] introduced a variant of the CDH problem named divisible computation
Diifie-Hellman (DCDH) problem. The DCDH problem in group G is, given (g, g

1
a , gb) ∈

G3 with unknown a, b
$← Z∗q , to compute gab. In [5], Bao et al. showed the relation

between CDH problem and DCDH problem in the following lemma:

Lemma 1 The DCDH problem in group G is equivalent to the CDH problem in the same
group.

We also give a construction of bidirectional proxy re-encryption, whose security is
based on the modified computational Diffie-Hellman (mCDH) assumption, a combination
of the CDH problem and the DCDH problem. The mCDH assumption has been recently
used to construct multi-use unidirectional proxy re-signatures [22].

Definition 4 Let G be a cyclic multiplicative group with prime order q. The mCDH
problem in group G is, given a tuple (g, g

1
a , ga, gb) ∈ G4 with unknown a, b

$← Z∗q, to
compute gab.

Definition 5 For a polynomial-time adversary B, we define his advantage in solving the
mCDH problem in group G as

AdvmCDH
B , Pr

[
B(g, g

1
a , ga, gb) = gab

]
,

where the probability is taken over the randomly choices of a, b and the random bits con-
sumed by B. We say that the (t, ε)-mCDH assumption holds in group G if no t-time
adversary B has advantage at least ε in solving the mCDH problem in group G.

3 Unidirectional Proxy Re-Encryption Scheme

In this section, based on Weng et al.’s construction, we propose a CCA-secure unidirec-
tional proxy re-encryption scheme without parings, denoted ΠUni.

3.1 Overview

To facilitate understanding of our scheme, we first outline the basic idea underlying our
construction.

CCA-secure ElGamal encryption Figure 2 shows the CCA-secure “hashed” El-
Gamal encryption scheme [8, 14, 15]. However, note that, in the ciphertext component
F = H2(pkr)⊕ (m‖ω), the recipient’s public key pk is embedded in the hash function H2.
This makes it impossible for the proxy to convert the ciphertext, and hence this original
scheme cannot be directly used for proxy re-encryption. Fortunately, the modified scheme
shown in Figure 3 (see the bolded parts) has the potential. The reason is that the cipher-
text component F does not involve the recipient’s public key, and the part E = pkr = gxr

involving the public key is not hashed; so it can be re-encrypted into another ciphertext
component E′ = E

4
x = g4.r(4 involves another public key pk′ = gy in a certain manner),

given that the re-encryption key is of the form rkpk→pk′ = 4
x .
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Setup(κ): Encrypt(pk, m): Decrypt((E, F ), sk):

x
$← Z∗q ; pk = gx; sk = x ω

$← {0, 1}l1 ; r = H1(m,ω) m‖ω = F ⊕H2(Esk)
Return (pk, sk) E = gr;F = H2(pkr)⊕ (m‖ω) If E = gH1(m,ω) return m

Return c = (E, F ) Else return ⊥
Note: H1 and H2 are hash functions such that H1 : {0, 1}l0 × {0, 1}l1 → Z∗q ,H2 : G→ {0, 1}l0+l1 .

The massage space is M = {0, 1}l0 .

Figure 2: CCA-secure “hashed” ElGamal encryption scheme

Setup(κ): Encrypt(pk, m): Decrypt((E, F ), sk):

x
$← Z∗q ; pk = gx; sk = x ω

$← {0, 1}l1 ; r = H1(m,ω) m‖ω = F ⊕H2(E
1

sk )
Return (pk, sk) E = pkr;F = H2(gr)⊕ (m‖ω) If E = pkH1(m,ω) return m

Return c = (E, F ) Else return ⊥

Figure 3: Modified CCA-secure “hashed” ElGamal encryption scheme

Indeed, the modified scheme can achieve the chosen-ciphertext security as a tradi-
tional public key encryption. However, it does not satisfy the chosen-ciphertext secu-
rity for proxy re-encryptions. To see this, let’s take the following attack as an exam-
ple: suppose A is given a challenged ciphertext under a target public key pk∗ = gx,
say c∗ = (E∗, F ∗) =

(
gxr∗ ,H2(gr∗)⊕ (mδ‖ω∗)

)
. Then adversary A can win the IND-

PRE-CCA game as follows: He first picks z
$← {0, 1}l0+l1 , and modifies the challenged

ciphertext to get a new, although invalid, ciphertext c′ = (E′, F ′) = (E∗, F ∗ ⊕ z) =
(gxr∗ ,H2(gr∗)⊕ (mδ‖ω∗)⊕ z). Next, he issues a corrupted key generation query to obtain
a public/secret key pair (pk, sk) = (gy, y), and then issues a re-encryption query to obtain
a re-encrypt ciphertext, say c′′ = (E′′, F ′′) = (g4.r∗ ,H2(gr∗) ⊕ (mδ‖ω∗) ⊕ z), under the
public key pk = gy. Finally, using the secret key sk = y, A can recover (mδ‖ω∗) as
(mδ‖ω∗) = F ′′⊕H2((E′′)

1
4 )⊕ z, and eventually obtain the bit δ. Note that according to

the constraints described in the IND-PRE-CCA game, it is legal for A to issue the above
queries.

Combining with Schnorr signature The above attack succeeds due to the fact that,
the validity of second-level ciphertexts can only be checked by the recipient, not any other
parties including the proxy, i.e., the ciphertexts are not publicly verifiable. So, to achieve
the IND-PRE-CCA security for a proxy re-encryption scheme, the proxy must be able
to check the validity of the ciphertexts without seeing the plaintexts. It is not an easy
task to achieve this without using linear pairings (e.g., all existing CCA-secure proxy
re-encryption schemes are pairing based).

We get over this obstacle by resorting to the Schnorr signature scheme [26], which
is given in Figure 4. In particular, given the ciphertext components (E, F ) =

Setup(κ): Sign(sk, m): Verify(pk, (D, s),m):

x
$← Z∗q ; pk = gx; sk = x u

$← Z∗q ;D = gu If gs = D · pkH(m,D) return 1
Return (pk, sk) e = H(m,D); s = (u + sk · e) mod q Else return 0

Return σ = (D, s)

Figure 4: Schnorr signature scheme

(pkr,H2(gr) ⊕ (m‖ω)), we generate the Schnorr signature as follows: viewing F as the
message to be signed, and (E, r) = (pkr, r) as the verification/signing key pair (here the

base pk in pkr is similarly viewed as the base g in gx), we pick u
$← Z∗q and output the

signature as (D, s) = (pku, u + rH3(D, E, F )). The final ciphertext is (D, E, F, s).
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Generation of Re-encryption key It remains to decide the format of re-encryption
key. Recall that in the above, we assume that the re-encryption key takes the form of
rkpk→pk′ = 4

x . To ensure that only the delegatee can decrypt the converted ciphertext,
4 should be a quantity that can be generated by any one using public key pk′ = gx′ , but
once generated, can only be re-generated using x′. To this end, we choose 4 to be of the
form pk′v (please see the scheme below for the actual format of 4), where v is a random
number; consequently, only the delegatee can compute 4, given gv. However, it does not
suffice for the re-encryption key to be in the current form, as it is not collusion resilient.
It is easy to see that the proxy and the delegatee together can recover x. This is one the
main issues we want to address. Our solution is to mask x using another value x′, such
that rkpk→pk′ = 4

x+x′ . As such, the coalition of the proxy and the delegatee can only get
x + x′.

3.2 Proposed Scheme ΠUni

Details of the proposed scheme ΠBi are the following:

GlobalSetup(κ): Given a security parameter κ, choose two big primes p and q such that
q|p − 1 and the bit-length of q is κ. Let g be a generator of group G, which is a
subgroup of Z∗q with order q. Besides, choose four hash functions H1,H2,H3,H4,
and H5 such that H1 : {0, 1}l0 × {0, 1}l1 → Z∗q ,H2 : G→ {0, 1}l0+l1 ,H3 : {0, 1}∗ →
Z∗q ,H4 : Z∗q × G → Z∗q , and H5 : G3 → Z∗q . l0 and l1 in the above are security
parameters, and the message space is {0, 1}l0 . The global parameters are

param = (q,G, g, H1,H2,H3,H4,H5, l0, l1).

KeyGen(i): To generate the public/private key pair for user i, this key generation algo-

rithm picks randomly xi, x
′
i

$← Z∗q , and then sets pki = (pk
〈1〉
i , pk

〈2〉
i ) = (gxi , gx′i) and

ski = (xi, x
′
i).

ReKeyGen(ski, pkj): On input user i’s secret key ski and user j’s public key pkj , this
algorithm generates the re-encryption key rki→j from user i to j as below:

1. Pick v′ $← Z∗q . Compute v = H4(v′, pk
〈1〉
j ).

2. Compute V = gv, and hj = H5(V, pk
〈1〉
j , (pk

〈1〉
j )v).

3. Define rk
〈1〉
i→j = hj

xi+x′i
. Return rki→j = (rk〈1〉i→j , V ).

L1-Enc(pk, m):] On input a public key pk and a plaintext m ∈ {0, 1}l0 , first-level en-
cryption works as below:

1. Pick v′ $← Z∗q . Compute v = H4(v′, pk〈1〉).
2. Compute V = gv, and h = H5(V, pk〈1〉, (pk〈1〉)v).

3. Pick ω
$← {0, 1}l1 , and compute r = H1(m,ω).

4. Compute E = (gh)r, F = H2(gr)⊕ (m‖ω).
5. Output the ciphertext c = (E, F, V ).

L2-Enc(pk, m): On input a public key pk and a plaintext m ∈ {0, 1}l0 , second-level
encryption works as below:

1. Pick u
$← Z∗q , ω

$← {0, 1}l1 , and compute r = H1(m,ω).
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2. Compute D = (pk〈1〉)u, E = (pk〈1〉.pk〈2〉)r, F = H2(gr) ⊕ (m‖ω), s = u + r ·
H3(D, E, F ) mod q.

3. Output the ciphertext c = (D, E, F, s).

ReEnc(rki→j , ci): On input a re-encryption key rki→j , a second-level ciphertext ci under
public key pki, this algorithm re-encrypts the ciphertext as follows:

1. Parse ci as ci = (D, E, F, s) and rki→j as rki→j = (rk〈1〉i→j , V ).

2. Check whether (pk
〈1〉
i )s = D · EH3(D,E,F ) holds. If not, output ⊥.

3. Otherwise, compute E′ = Erk
〈1〉
i→j = g

(r·(xi+x′i))·
hj

xi+x′
i = gr·hj , and output ci-

phertext c′j = (E′, F, V ).

Dec(c, sk): On input a secret key sk = (x, x′) and ciphertext c, this algorithm works
according to two cases:

• c is a first-level ciphertext c = (E, F, V ): Compute h = H5(V, pk〈1〉, V x) and
(m‖ω) = F ⊕H2(E

1
h ), and check whether E = gH1(m,ω)·h holds. If yes, return

m; otherwise, return ⊥.

• c is a second-level ciphertext c = (D, E, F, s): If
(
g(x+x′)

)s
= D · EH3(D,E,F )

does not hold, output ⊥. Otherwise, compute (m‖ω) = F ⊕ H2(E
1

x+x′ ), and
return m if E =

(
pk〈1〉

)H1(m,ω)
holds; else return ⊥.

It can be verified that, given the re-encryption key rki→j = (
H5(V,pkj ,pkv

j )

xi+x′i
, V ), the

proxy is unable to generate the re-encryption key rkj→i for the opposite direction, and
hence it is impossible for him to convert a ciphertext intended for user j into a ciphertext
for user i. Our scheme is thus unidirectional.

Remark 1 (Certification of public key). In our scheme, a user’s key material includes
two components (gx, x) and (gx′ , x′), both are standard ElGamal key pairs. In practice,
the certificate for the public key does not necessarily cover both components. More
specifically, we can treat (gx, x) as the main key, with usage beyond the setting of proxy
re-encryption, e.g., they are a key pair in the regular sense, used for encryption and digital
signature. Indeed, the first-level encryption defined as such in the above is solely to be
in consistent with the converted ciphertext; otherwise, it can be simply the standard
ElGamal encryption in Figure 2 or 3. In contrast, we see (gx′ , x′) as an ancillary key,
specific to the proxy re-encryption setting. Consequently, it suffices to only certify (gx, x)
under the PKI, while (gx′ , x′) is certified by (gx, x).

Remark 2 (Time limited delegation). Ateniese et al. [1,2] suggested time limited delegation,
such that a delegation is temporary, only valid for a short period of time. Temporary
delegation facilitates revocation of delegation. They proposed an efficient mechanism to
renew delegation by assuming a trusted universal server that periodically broadcasts a
new system parameter, using which all users re-establish re-encryption keys with their
respective proxies. A drawback of this method is that all users’s delegations are forced
to expire after a period. A more satisfactory solution should be that only the delegation
of the user who wants to revoke expires, while others’ remain. In general, users renewing
their keys can trivially achieve this objective, but it is clearly not satisfactory either. Our
scheme can well implement the general approach by renewing the ancillary key, while
keeping the main key intact; after renewal, the main key certifies the new ancillary key.
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3.3 Performance Comparison

Next, we compare our scheme ΠUni with existing CCA-secure unidirectional PRE schemes.
Till now, there exist two such schemes: one is in public key scenarios [21] and the other
is in identity-based settings [1,2]. To conduct a fair comparison, we compare our scheme
ΠUni with Libert-Vergnaud’s scheme [21] (denoted by LV Scheme), since both are in public
key scenarios. The comparison results indicate that our scheme ΠUni is much more efficient
than LV Scheme. It is worth noting that the computational cost and the ciphertext length
in our scheme decrease with re-encryption, while those in LV Scheme increase with re-
encryption. The security of our scheme is related to the standard and well-studied CDH
assumption, while LV Scheme is proved under a stronger and less-studied assumption,
named 3-quotient decision bilinear Diffie-Hellman (3-QDBDH) assumption. A limitation
of our scheme is that it is proved in the random oracle model, while LV Scheme is proved
in the standard model.

Schemes Libert-Vergnaud’s Scheme Our ΠBi

Encrypt 2te + 1tme + 1ts 3te
Comput. Re-Encrypt 2tp + 4te + 1tv 3te

Cost 2nd-level CiphTxt 3tp + 2te + 1tv 4teDecrypt
1st-level CiphTxt 5tp + 2te + 1tv 3te

CiphTxt 2nd-level CiphTxt 1|pks|+2|Ge|+1|GT |+1|σs| 3|G|+1|Zq|
Length 1st-level CiphTxt 1|pks|+4|Ge|+1|GT |+1|σs| 3|G|

Without Random Oracles? X ×
Underlying Assumptions 3-QDBDH CDH

Table 1: Efficiency Comparison between Scheme ΠUni and Libert-Vergnaud’s Scheme

3.4 Security Analysis

In this subsection, we prove the chosen-ciphertext security for scheme ΠUni under the
CDH assumption.

Theorem 1 Our scheme ΠUni is IND-PRE-CCA secure in the random oracle model,
assuming the CDH assumption holds in group G and the Schnorr signature is EUF-CMA
secure. Concretely, if there exists an adversary A, who asks at most qHi random oracle
quires to Hi with i ∈ {1, · · · , 5}, and breaks the (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA of
our scheme ΠUni, then, for any 0 < ν < ε, there exists

• either an algorithm B which can solve the (t′, ε′)-CDH problem in G with

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 2qrk + 5qre + qd + qH1qre + (qH4 + 2qH1)qd)te,

ε′ ≥ 1
qH2

(
2(ε− ν)

e(1 + qrk)
− qH1 + (qH1 + qH2 + qH4)qd

2l0+l1
− qre + 3qd

q

)
,

where te denotes the running time of an exponentiation in group G.

• or an attacker who breaks the EUF-CMA security of the Schnorr signature with
advantage ν within time t′.

Proof. Without loss of generality, we assume that the Schnorr signature is (t′, ν)-EUF-
CMA secure for some probability 0 < ν < ε. Since the CDH problem is equivalent to the
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DCDH problem, for convenience, we here prove this theorem under the DCDH problem.
Suppose there exists a t-time adversary A who can break the IND-PRE-CCA security of
scheme ΠUni with advantage ε− ν. Then we show how to construct an algorithm B which
can solve the (t′, ε′)-DCDH problem in group G.

Suppose B is given as input a DCDH challenge tuple (g, g
1
a , gb) with unknown a, b

$←
Z∗q . Algorithm B’s goal is to output gab. Algorithm B acts as the challenger and plays
the IND-PRE-CCA game with adversary A in the following way.

Setup. Algorithm B gives (q,G, g, H1,H2,H3,H4,H5, l0, l1) to A. Here H1,H2,H3, H4

and H5 are random oracles controlled by B.

Hash Oracle Queries. At any time adversary A can issue the random oracle queries
Hi with i ∈ {1 · · · , 5}. Algorithm B maintains five hash lists H list

i with i ∈ {1 · · · , 5},
which are initially empty. B responds H2 and H3 queries in the same way as in Theorem
2, and responds the other hash queries as below:

• H1 queries: On receipt of an H1 queries on (m,ω), if this query has appeared on
the H list

1 in a tuple (m,ω, r), return the predefined value r as the result of the query.

Otherwise, choose r
$← Z∗q , add the tuple (m,ω, r) to the list H list

1 and respond with
H1(m,ω) = r.

• H4 queries: On receipt of an H4 query (v′, pk) ∈ Z∗q ×G, if this query has appeared
on the H list

4 in a tuple (v′, pk, v), return the predefined value v as the result of the

query. Otherwise, choose v
$← Z∗q , add the tuple (v′, pk, v) to the list H list

4 and
respond with H4(v′, pk) = v.

• H5 queries: On receipt of an H5 query (V, pk, S) ∈ G3, if this query has appeared
on the H list

5 in a tuple (V, pk, S, µ), return the predefined value µ as the result of

the query. Otherwise, choose µ
$← Z∗q , add the tuple (V, pk, S, µ) to the list H list

5

and respond with H5(V, pk, S) = µ.

Phase 1. In this phase, adversary A issues a series of queries as in the definition of the
IND-PRE-CCA game. B maintains two lists K list and Rlist which are initially empty, and
answers these queries for A as follows:

• Uncorrupted key generation query 〈i〉. Algorithm B first picks xi
$← Z∗q and flips a

biased coin ci ∈ {0, 1} that yields 0 with probability θ and 1 with probability 1− θ.
If ci = 0, it defines pki =

(
g1/a

)xi ; else defines pki = gxi . Next, it adds the tuple
(pki, xi, ci) to K list and returns pki to adversary A.

• Corrupted key generation query 〈j〉. Algorithm B first picks xj
$← Z∗q and defines

pkj = gxj , cj = ‘−’. Next, it adds the tuple (pkj , xj , cj) to K list and returns (pkj , xj)
to adversary A.

• Re-encryption key generation query 〈pki, pkj〉: If Rlist has contains a tuple for this
entry (pki, pkj), return the predefined re-encryption key to A. Otherwise, algorithm
B acts as follows:

1. Recover tuples (pki, xi, ci) and (pkj , xj , cj) from K list.

2. Pick v′ $← Z∗q . Compute v = H4(v′, pkj), V = gv and hj = H5(V, pkj , pkv
j ).

3. Construct the first component rk
〈1〉
i,j according to the following cases:
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– ci = 1 or ci = ‘−’: define rk
〈1〉
i,j = hj

xi
, and add (pki, pkj , (rk

〈1〉
i,j , V ), hj , 1)

into list Rlist.
– (ci = 0 ∧ cj = 1) or (ci = 0 ∧ cj = 0): pick rk

〈1〉
i,j

$← Z∗q , and add

(pki, pkj , (rk
〈1〉
i,j , V ), hj , 0) into list Rlist.

– (ci = 0 ∧ cj = ‘−’): output “failure” and abort.

4. Finally, return rki,j = (rk〈1〉i,j , V ) to A.

• Re-encryption query 〈pki, pkj ,CTi(= (D, E, F, s))〉: If pks
i 6= D · EH3(D,E,F ), then

output ⊥. Otherwise, algorithm B responds to this query as follows:

1. Recover tuples (pki, xi, ci) and (pkj , xj , cj) from K list.
2. If (ci = 0∧ cj = ‘−’) does not hold, issue a re-encryption key generation query
〈pki, pkj〉 to obtain rki,j , and then return ReEncrypt(rki,j ,CTi, pkj) to A.

3. Else, search whether there exists a tuple (m,ω, pki, r) ∈ H list
1 such that pkr

i =

E. If there exists no such tuple, return ⊥. Otherwise, first choose v′ $← Z∗q .
Next, compute v = H4(v′, pkj), V = gv and hj = H5(V, pkj , pkv

j ). Finally,
define E′ = ghjr, and return (E′, F, V ) to A.

• Decryption query 〈pk, CT〉: B first recovers tuple (pk, x, c) from K list. If c = 1 or
c = ‘−’, algorithm B runs Decrypt(CT, x) and returns the result to A. Otherwise,
algorithm B works according to the following two cases:

– CT is a second-level ciphertext CT = (D, E, F, s): If pks 6= D · EH3(D,E,F ),
return ⊥ to A indicating that CT is an invalid ciphertext. Otherwise, search
lists H list

1 and H list
2 to see whether there exist (m,ω, pk, r) ∈ H list

1 and (R, β) ∈
H list

2 such that

pkr = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A. Otherwise, return ⊥.
– CT is a first-level ciphertext CT = (E′, F, V ) re-encrypted from pk′: Algorithm
B first recovers tuples (pk, x, c) and (pk′, x′, c′) from K list, and then responds
according to the following three cases:
∗ If there exist a tuple (pk′, pk, (rk〈1〉, V ), h, 1) in Rlist: Compute (m‖ω) =

F ⊕H2(E′ 1
h ). If E′ = gH1(m,ω)·h holds, return m, else return ⊥.

∗ If there exist a tuple (pk′, pk, (rk〈1〉, V ), h, 0) in Rlist: First, compute E =

E
′ 1

rk〈1〉 . Next, search lists H list
1 and H list

2 to see whether there exist (m,ω, r) ∈
H list

1 and (R, β) ∈ H list
2 such that

pk′r = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A, else return ⊥.
∗ Otherwise: First search list H list

4 to see whether there exist a tuple (v′, pk, v) ∈
H list

4 such that gv = V . If no such tuple exists, return ⊥. Otherwise, com-
pute h = H5(V, pk, pkv), and then search lists H list

1 and H list
2 to see whether

there exist (m,ω, r) ∈ H list
1 and (R, β) ∈ H list

2 such that

pkh = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A, else return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a target public key pk∗ and
two equal-length messages m0,m1 ∈ {0, 1}l0 . Algorithm B responds as follows:
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1. Recover tuple (pk∗, x∗, c∗) from K list. Note that according to the constraints de-
scribed in IND-PRE-CCA game, c∗ must be equal to 1 or 0. If c∗ = 1, B outputs
“failure” and abort. Otherwise, it means that c∗ = 0, and B proceeds to execute
the rest steps.

2. Pick e∗, s∗ $← Z∗q , and compute D∗ =
(
gb

)−e∗x∗
(
g

1
a

)x∗s∗
and E∗ =

(
gb

)x∗ .

3. Pick F ∗ $← {0, 1}l0+l1 and define H3(D∗, E∗, F ∗) = e∗.

4. Pick δ
$← {0, 1}, ω∗ $← {0, 1}l1 , and implicitly define H2(gab) = (mδ‖ω∗) ⊕ F ∗ and

H1(mδ, ω
∗) = ab (Note that algorithm B knows neither ab nor gab).

5. Return CT∗ = (D∗, E∗, F ∗, s∗) as the challenged ciphertext to adversary A.

Again, let u∗ , s∗ − abe∗ and r∗ , ab, it can be easily verified that the challenged
ciphertext CT∗ has the same distribution as the real one.

Phase 2. Adversary A continues to issue the rest of queries as in Phase 1, with the
restrictions described in the IND-PRE-CCA game. Algorithm B responds to these queries
for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to B. Algorithm B randomly
picks a tuple (R, β) from the list H list

2 and outputs R as the solution to the given DCDH
instance.

Analysis: Similar to the analysis in Theorem 2, we can have that algorithm B’s advantage
against the DCDH challenge is at least

ε′ ≤ 1
qH2

(
2(ε− ν)

e(1 + qrk)
− qH1 + (qH1 + qH2 + qH4)qd

2l0+l1
− qre + 3qd

q

)
,

and its time complexity is bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 2qrk + 5qre + qd + qH1qre + (qH4 + 2qH1)qd)te.

This completes the proof of Theorem 1. tu

4 Bidirectional Proxy Re-Encryption

While unidirectional proxy re-encryption is often desirable, in some cases bidirectional
delegation may also be useful. We thus next give a bidirectional proxy re-encryption
scheme, based on the idea of the earlier unidirectional scheme.

Proposed Scheme ΠBi :

GlobalSetup(κ): Let p, q, g, l0, l1 be the same as in ΠUni. Define H1 : {0, 1}l0 × {0, 1}l1 ×
G→ Z∗q ,H2 : G→ {0, 1}l0+l1 ,H3 : {0, 1}∗ → Z∗q and H4 : G×G→ {0, 1}l0+l1 . The
global parameters are

param = (q,G, g, H1,H2,H3,H4, l0, l1).

KeyGen(i): Generate the public/privatet key pair for user i as pki = (gxi , gx′i) and

ski = (xi, x
′
i), where xi, x

′
i

$← Z∗q .
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ReKeyGen(ski, skj): On input two secret keys ski = xi and skj = xj , the bidirectional

re-encryption key is defined to be rki→j =
xj+x′j
xi+x′i

mod q.

L1-Enc(pk, m): The first level encryption is the following:

1. Pick ω
$← {0, 1}l1 , and compute r = H1(m,ω, gx).

2. Compute E = (gx)r, F = H2(gr)⊕ (m‖ω).
3. Output the ciphertext c = (E, F ).

L2-Enc(pk, m): The second level encryption works as follows:

1. Pick u
$← Z∗q , ω

$← {0, 1}l1 , and compute r = H1(m,ω, pk).
2. Compute D = (gx+x′)u, E = (gx+x′)r, F = H2(gr) ⊕ (m‖ω), s = u + r ·

H3(D, E, F ) mod q.
3. Output the ciphertext c = (D, E, F, s).

ReEnc(rki→j , ci, pkj): On input a re-encryption key rki→j =
xj+x′j
xi+x′i

, a second-level ci-
phertext ci under public key pki, this algorithm re-encrypts the ciphertext under
public key pkj as follows:

1. Parse ci as ci = (D, E, F, s).
2. Check whether (gxi .gx′i)s = D · EH3(D,E,F ) holds. If not, output ⊥.
3. Otherwise, compute E′ = Erki,j = g(r·(xi+x′i)·xj+x′j/xi+x′i = gr·(xj+x′j), F ′ =

F ⊕H4(E′, grki→j ), and output c′j = (pki, E
′, F ′).

Dec(c, sk): On input a secret key sk = (x, x′) and ciphertext c, decryption works ac-
cording to three cases:

• c is the first-level ciphertext c = (E, F ): (m‖ω) = F ⊕ H2(E1/x); if E =
(gx)H1(m,ω,gx) return m, otherwise return ⊥.

• c is a second-level ciphertext c = (D, E, F, s): If (gx.gx′)s = D · EH3(D,E,F )

does not hold, output ⊥, else compute m‖ω = F ⊕H2(E
1

x+x′ ), and return m
if E = (gx.gx′)H1(m,ω,pk) holds and ⊥ otherwise.

• c is a re-encrypted ciphertext c = (pki = (gxi , gx′i), E′, F ′): First compute
m‖ω = F ⊕H2(E

′ 1
x+x′ )⊕H4(E′, (gxi .gx′i)1/x+x′). If E′ = (gx)H1(m,ω,pki) holds

return m; otherwise return ⊥.

Security For the security of the above construction, we have the following theorem
under Weng et al.’s model [13], assuming random oracles. The security proof can be
found in Appendix.

Theorem 2 Our PRE scheme ΠBi is IND-PRE-CCA secure in the random oracle model,
assuming the mCDH assumption holds in group G and the Schnorr signature is existential
unforgeable against chosen message attack (EUF-CMA). Concretely, if there exists an
adversary A, who asks at most qHi random oracle quires to Hi with i ∈ {1, · · · , 4}, and
breaks the (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA security of our scheme ΠBi, then, for
any 0 < ν < ε, there exists
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• either an algorithm B which can solve the (t′, ε′)-mCDH problem in G with

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 4qre + 3qd + (2qd + qre)qH1)te,

ε′ ≥ 1
qH2

(
2(ε− ν)− qH1 + (qH1 + qH2)qd

2l0+l1
− qre + 2qd

q

)
,

where te denotes the running time of an exponentiation in G;

• or an attacher who breaks the EUF-CMA security of the Schnorr signature with
advantage ν within time t′.

5 Extension

In this section, we extend our unidirectional scheme to address the problems of re-
encryption key sharing and change of delegation path, which have not been well solved
thus far in all existing proxy re-encryption schemes (See Section 1). We assume that
the proxy has a key pair (pkp, skp) for standard encryption. We stress again that this
assumption is reasonable, considering that the proxy, like the delegator and the delegatee,
is anyhow an entity within the PKI. We also like to point out that we do not see other
proxy re-encryption schemes can straightforwardly solve the problems even they have the
same assumption.

The extended scheme simply slightly modifies L2-Enc and ReEnc in the basic scheme
ΠUni, and all other steps and algorithms remain unchanged. In particular, recall that in
our basic scheme, the second-level encryption L2-Enc generates E = (pk〈1〉.pk〈2〉)r. In the
extension, we separate E into E1 = (pk〈1〉)r and E′

2 = (pk〈2〉)r; then encrypts E′
2 using

the proxy’s public key pkp, which yields E2 = Encpkp(E
′
2). As such, the resulting second-

level ciphertext is (D, E = (E1, E2), F, s). In the ReEnc algorithm, after verification of
(pk

〈1〉
i )s = D · EH3(D,E,F ), the proxy then decrypts E2 using its private key skp to get

E′
2 = (pk〈2〉)r, and computes E1.E

′
2, which is exactly (pk〈1〉.pk〈2〉)r.

We next see how the extended scheme solves the re-encryption key sharing problem
and the change of delegation path problem. For the former, the proxy can still share the
re-encryption key with the delegatee, but such a sharing does not help the delegatee, since
E2 is an encryption under the proxy’s public key. Unless the proxy shares its private key
with the delegatee, the delegatee still cannot convert the ciphertext. Here, the assumption
is that the proxy does not afford disclosing its private key, which is a general assumption
in PKI. For the second problem, to enable change of delegation path, the sender who
sends messages to the delegator simply encrypts E′

2 using the new proxy’s public key.

Remark 3 (Proxy invisibility). It is evident that in the extended scheme, the sender needs
to be aware of the delegator’s proxy, and needs to check the validity of the proxy’s public
key. We can mitigate this problem by treating the proxy’s public key in a way similar to
handling the delegator’s ancillary key (see Remark 1). In particular, the delegator certifies
her proxy’s public key using her main private key, and includes it into her public key as an
application specific component (besides the ancillary key). In this way, the sender does
not need to verify the proxy’s public key as a regular key in the PKI, and only needs to
trust the delegator’s public key. In changing delegation path, the delegator removes the
old proxy’s public key, and certifies and includes the new one’s.

Remark 4 (Direct encryption to delegatee?) One may argue that as the (second-level)
encryption involves encrypting to another party (i.e., the proxy), besides the delegator,
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why not simply encrypt to the delegator as well as the delegatee. We have two reasons in
favor of our strategy. First, in practical applications it seems that proxies are more stable
than the delegatees. So the relatively less-frequent-changes of proxy save the sender’s
effort in checking public key validity. Second, in the case of two or more delegatees
under a proxy, our strategy clearly has both better computation and communication
performances.

6 Conclusions

Recently, Weng et al. proposed the first unidirectional proxy re-encryption scheme with-
out using costly bilinear pairings. A drawback of their construction, however, is that a
coalition of the proxy and the delegatee can recover the delegator’s private key. In this
work, we improved over their scheme by offering collusion resilience. Furthermore, we
extend our scheme to address the re-encryption key sharing problem and the change of
delegation path problem, which exist in all previous proxy re-encryption schemes.
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Proof for Theorem 2

Without loss of generality, we assume that the Schnorr signature is (t′, ν)-EUF-CMA
secure for some probability 0 < ν < ε. Suppose there exists a t-time adversary A who can
break the IND-PRE-CCA security of scheme ΠBi with advantage ε − ν. Then we show
how to construct an algorithm B which can solve the (t′, ε′)-mCDH problem in group G.

Suppose B is given as input an mCDH challenge tuple (g, g
1
a , ga, gb) ∈ G4 with un-

known a, b
$← Z∗q . Algorithm B’s goal is to output gab. Algorithm B acts as the challenger

and plays the IND-PRE-CCA game with adversary A in the following way.

Setup. Algorithm B gives (q,G, g, H1,H2,H3,H4, l0, l1) to A. Here H1,H2,H3 and H4

are random oracles controlled by B.

Hash Oracle Queries. At any time adversary A can issue the random oracle queries
H1,H2, H3 and H4. Algorithm B maintains four hash lists H list

1 ,H list
2 , H list

3 and H list
4

which are initially empty, and responds as below:

• H1 queries: On receipt of an H1 queries on (m,ω, pk), if this query has appeared
on the H list

1 in a tuple (m,ω, pk, r), return the predefined value r as the result of

the query. Otherwise, choose r
$← Z∗q , add the tuple (m,ω, pk, r) to the list H list

1

and respond with H1(m,ω, pk) = r.

• H2 queries: On receipt of an H2 query R ∈ G, if this query has appeared on the
H list

2 in a tuple (R, β), return the predefined value β as the result of the query.

Otherwise, choose β
$← {0, 1}l0+l1 , add the tuple (R, β) to the list H list

2 and respond
with H2(R) = β.

• H3 queries: On receipt of an H3 query (D, E, F ), if this query has appeared on the
H list

3 in a tuple (D, E, F, γ), return the predefined value γ as the result of the query.

Otherwise, choose γ
$← Z∗q , add the tuple (D, E, F, γ) to the list H list

3 and respond
with H3(D, E, F ) = γ.

• H4 queries: On receipt of an H4 query (E′, U), if this query has appeared on the
H list

4 in a tuple (E′, U, λ), return the predefined value λ as the result of the query.

Otherwise, choose λ
$← {0, 1}l0+l1 , add the tuple (E′, U, λ) to the list H list

4 and
respond with H4(E′, U) = λ.

Phase 1. In this phase, adversary A issues a series of queries as in the definition of the
IND-PRE-CCA game. B maintains a list K list which is initially empty, and answers these
queries for A as follows:

• Uncorrupted key generation query 〈i〉. Algorithm B first picks xi
$← Z∗q and defines

pki =
(
g1/a

)xi
, ci = 0. Next, it adds the tuple (pki, xi, ci) to K list and returns pki to

adversary A. Here the bit ci is used to denote whether the secret key with respect
to pki is corrupted, i.e., ci = 0 indicates uncorrupted and ci = 1 means corrupted.

• Corrupted key generation query 〈j〉. Algorithm B first picks xj
$← Z∗q and defines

pkj = gxj , cj = 1. Next, it adds the tuple (pkj , xj , cj) to K list and returns (pkj , xj)
to adversary A.
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• Re-encryption key generation query 〈pki, pkj〉: Recall that according to the defini-
tion of IND-PRE-CCA game, it is required that pki and pkj were generated before-
hand, and either both of them are corrupted or alternately both are uncorrupted.
Algorithm B first recovers tuples (pki, xi, ci) and (pkj , xj , cj) from K list, and then
returns the re-encryption key xj/xi to A.

• Re-encryption query 〈pki, pkj ,CTi(= (D, E, F, s))〉: If pks
i 6= D · EH3(D,E,F ), then

output ⊥. Otherwise, algorithm B responds to this query as follows:

1. Recover tuples (pki, xi, ci) and (pkj , xj , cj) from K list.
2. If ci = cj , compute E′ = Exj/xi , F ′ = F ⊕ H4(E′, gxi/xj ) and return (E′, F ′)

as the first-level ciphertext to A.
3. Else, search whether there exists a tuple (m,ω, pki, r) ∈ H list

1 such that pkr
i =

E. If there exists no such tuple, return ⊥. Otherwise, first compute E′ = pkr
j .

Next, if ci = 1 ∧ cj = 0, define F ′ = F ⊕ H4(E′, g
xia

xj ); else if ci = 0 ∧ cj =

1, define F ′ = F ⊕ H4(E′, g
xi

axj ). Finally, return (E′, F ′) as the first-level
ciphertext to A.

• Decryption query 〈pk, CT〉: Algorithm B first recovers tuple (pk, x, c) from list K list.
If c = 1, algorithm B runs Decrypt(CT, x) and returns the result to A. Otherwise,
algorithm B works according to the following two cases:

– CT is a second-level ciphertext CT = (D, E, F, s): If pks 6= D · EH3(D,E,F ),
return ⊥ to A. Otherwise, search lists H list

1 and H list
2 to see whether there

exist (m,ω, pk, r) ∈ H list
1 and (R, β) ∈ H list

2 such that

pkr = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A. Otherwise, return ⊥.
– CT is a first-level ciphertext CT = (pk′′, E′, F ′): Algorithm B acts as follows:

1. Recover tuples (pk, x, c) and (pk′′, x′′, c′′) from K list.
2. Define U according to the following three cases:

∗ If c = c′′: Define U = g
x′′
x ;

∗ If c = 0 ∧ c′′ = 1: Define U = g
x′′a

x ;
∗ If c = 1 ∧ c′′ = 0: Define U = g

x′′
ax .

3. search lists H list
1 and H list

2 to see whether there exist (m,ω, pk, r) ∈ H list
1

and (R, β) ∈ H list
2 such that

pkr = E′, β ⊕ (m‖ω)⊕H4(E′, U) = F ′ and R = gr.

If yes, return m to A. Otherwise, return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a target public key pk∗ and
two equal-length messages m0,m1 ∈ {0, 1}l0 . Algorithm B responds as follows:

1. Recover tuple (pk∗, x∗, c∗) from K list. Recall that according to the constraints de-
scribed in IND-PRE-CCA game, K list should contain this tuple, and c∗ is equal to
0 (indicating that pk∗ = g

x∗
a ).

2. Pick e∗, s∗ $← Z∗q , and compute D∗ =
(
gb

)−e∗x∗
(
g

1
a

)x∗s∗
and E∗ =

(
gb

)x∗ .

3. Pick F ∗ $← {0, 1}l0+l1 and define H3(D∗, E∗, F ∗) = e∗.

4. Pick δ
$← {0, 1}, ω∗ $← {0, 1}l1 , and implicitly define H2(gab) = (mδ‖ω∗) ⊕ F ∗ and

H1(mδ, ω
∗, pk∗) = ab (Note that algorithm B knows neither ab nor gab).
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5. Return CT∗ = (D∗, E∗, F ∗, s∗) as the challenged ciphertext to adversary A.

Note that by the construction given above, by letting u∗ , s∗ − abe∗ and r∗ , ab,
we can see that the challenged ciphertext CT∗ has the same distribution as the real one,
since H2 acts as a random oracle, and

D∗ =
(
gb

)−e∗x∗ (
g

1
a

)x∗s∗
=

(
g

x∗
a

)s∗−abe∗

= (pk∗)s∗−abe∗ = (pk∗)u∗ ,

E∗ =
(
gb

)x∗
=

(
g

x∗
a

)ab
= (pk∗)ab = (pk∗)r∗ ,

F ∗ = H2(gab)⊕ (mδ‖ω∗) = H2(gr∗)⊕ (mδ‖ω∗),
s∗ = (s∗ − abe∗) + abe∗ = u∗ + ab ·H3(D∗, E∗, F ∗) = u∗ + r∗ ·H3(D∗, E∗, F ∗).

Phase 2. Adversary A continues to issue the rest of queries as in Phase 1, with the
restrictions described in the IND-PRE-CCA game. Algorithm B responds to these queries
for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to B. Algorithm B randomly
picks a tuple (R, β) from the list H list

2 and outputs R as the solution to the given mCDH
instance.

Analysis: Now let’s analyze the simulation. The main idea of the analysis is borrowed
from [8]. We first evaluate the simulations of the random oracles. From the constructions
of H3 and H4, it is clear that the simulations of H3 and H4 are perfect. As long as
adversary A does not query (mδ, ω

∗, pk∗) to H1 nor gab to H2, where δ and ω∗ are chosen
by B in the Challenge phase, the simulations of H1 and H2 are perfect. By AskH∗1 we
denote the event that (mδ, ω

∗) has been queried to H1. Also, by AskH∗2 we denote the
event that gab has been queried to H2.

As argued before, the challenged ciphertext provided for A is identically distributed
as the real one from the construction. From the description of the simulation, it can be
seen that the responses to A’s re-encryption key queries are also perfect.

Next, we analyze the simulation of the re-encryption oracle. The responses to ad-
versary A’s re-encryption queries are perfect, unless A can submit valid second-level
ciphertexts without querying hash function H1(denote this event by ReEncErr). However,
since H1 acts as a random oracle and adversary A issues at most qre re-encryption queries,
we have

Pr[ReEncErr] ≤ qre

q
.

Now, we evaluate the simulation of the decryption oracle. The simulation of the de-
cryption oracle is perfect, with the exception that simulation errors may occur in rejecting
some valid ciphertexts. Fortunately, these errors are not significant as shown below: Sup-
pose that (pk, CT), where CT = (D, E, F, s) or CT = (E, F ), has been issued as a valid
ciphertext. Even CT is valid, there is a possibility that CT can be produced without
querying gr to H2, where r = H1(m,ω, pk). Let Valid be an event that CT is valid,
and let AskH2 and AskH1 respectively be events that gr has been queried to H2 and
(m,ω, pk) has been queried to H1 with respect to (E, F ) = (pkr,H2(gr)⊕ (m‖ω)), where
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r = H1(m,ω, pk). We then have

Pr[Valid|¬AskH2] = Pr[Valid ∧ AskH1|¬AskH2] + Pr[Valid ∧ ¬AskH1|¬AskH2]
≤ Pr[AskH1|¬AskH2] + Pr[Valid|¬AskH1 ∧ ¬AskH2]

≤ qH1

2l0+l1
+

1
q
,

and similarly Pr[Valid|¬AskH1] ≤ qH2

2l0+l1
+

1
q
. Thus we have

Pr[Valid|(¬AskH1 ∨ ¬AskH2)] ≤ Pr[Valid|¬AskH1] + Pr[Valid|¬AskH2] ≤ qH1 + qH2

2l0+l1
+

2
q
.

Let DecErr be the event that Valid|(¬AskH1 ∨ ¬AskH2) happens during the entire
simulation. Then, since qd decryption oracles are issued, we have

Pr[DecErr] ≤ (qH1 + qH2)qd

2l0+l1
+

2qd

q
.

Now let Good denote the event AskH∗2 ∨ (AskH∗1|¬AskH∗2) ∨ ReEncErr ∨ DecErr. If
event Good does not happen, it is clear that adversary A can not gain any advantage in
guessing δ due to the randomness of the output of the random oracle H2. Namely, we
have Pr[δ = δ′|¬Good] = 1

2 . Hence, by splitting Pr[δ′ = δ], we have

Pr[δ′ = δ] = Pr[δ′ = δ|¬Good]Pr[¬Good] + Pr[δ′ = δ|Good]Pr[Good]

≤ 1
2
Pr[¬Good] + Pr[Good]

=
1
2
(1− Pr[Good]) + Pr[Good]

=
1
2

+
1
2
Pr[Good]

and

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Good]Pr[¬Good] =
1
2
(1− Pr[Good]) =

1
2
− 1

2
Pr[Good].

Then we have
∣∣Pr[δ′ = δ]− 1

2

∣∣ ≤ 1
2
Pr[Good].

By definition of the advantage (ε−ν) for the IND-PRE-CCA adversary, we then have

ε− ν =
∣∣Pr[δ′ = δ]− 1

2

∣∣

≤ 1
2
Pr[Good] =

1
2

(Pr[AskH∗2 ∨ (AskH∗1|¬AskH∗2) ∨ ReEncErr ∨ DecErr])

≤ 1
2

(Pr[AskH∗2] + Pr[AskH∗1|¬AskH∗2] + Pr[ReEncErr] + Pr[DecErr]) .

Since Pr[ReEncErr] ≤ qre

q , Pr[DecErr] ≤ (qH1
+qH2

)qd

2l0+l1
+ 2qd

q and Pr[AskH∗1|¬AskH∗2] ≤
qH1

2l0+l1
, we obtain

Pr[AskH∗2] ≥ 2(ε− ν)− Pr[AskH∗1|¬AskH∗2]− Pr[DecErr]− Pr[ReEncErr]

≥ 2(ε− ν)− qH1

2l0+l1
− (qH1 + qH2)qd

2l0+l1
− 2qd

q
− qre

q

= 2(ε− ν)− qH1 + (qH1 + qH2)qd

2l0+l1
− qre + 2qd

q
.
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Meanwhile, if event AskH∗2 happens, algorithm B will be able to solve the mCDH
instance, and consequently, we obtain

ε′ ≥ 1
qH2

(
2(ε− ν)− qH1 + (qH1 + qH2)qd

2l0+l1
− qre + 2qd

q

)
.

From the description of the simulation, the running time of algorithm B can be
bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 4qre + 3qd + (2qd + qre)qH1)te.

This completes the proof of Theorem 2.

23


	Chosen-ciphertext secure bidirectional proxy re-encryption schemes without pairings
	Citation

	tmp.1421499640.pdf.ZzMAx

