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Abstract
Identifying explosive bubbles that are characterized by periodically collapsing behavior

over time has been a major concern in the literature and is of great importance for practi-
tioners. The complexity of the nonlinear structure in multiple bubble phenomena diminishes
the discriminatory power of existing tests, as evidenced in early simulations conducted by
Evans (1991). Multiple collapsing bubble episodes within the same sample period make
bubble diagnosis particularly di¢ cult and complicate attempts at econometric dating. The
present paper systematically investigates these issues and develops new procedures for prac-
tical implementation and surveillance strategies by central banks. We show how the testing
procedure and dating algorithm of Phillips, Wu and Yu (2011, PWY) is a¤ected by multiple
bubbles and may fail to be consistent. To assist performance in such contexts, the present
paper proposes a generalized version of the sup ADF test of PWY that addresses the di¢ -
culty. The asymptotic distribution of the generalized test is provided and the test is shown
to signi�cantly improve discriminatory power in simulations. The paper advances a new
date-stamping strategy for the origination and termination of multiple bubbles that is based
on this generalized test and consistency of the date-stamping algorithm is established. The
new strategy leads to distinct power gains over the date-stamping strategy of PWY when
multiple bubbles occur. Empirical applications are conducted with both tests along with
their respective date-stamping technology to S&P 500 stock market data from January 1871
to December 2010. The new approach identi�es many key historical episodes of exuberance
and collapse over this period, whereas the strategy of PWY locates only two such episodes
in the same sample range.
Keywords: Date-stamping strategy; Generalized sup ADF test; Multiple bubbles, Rational
bubble; Periodically collapsing bubbles; Sup ADF test;
JEL classi�cation: C15, C22
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Economists have taught us that it is unwise and unnecessary to combat asset price bubbles

and excessive credit creation. Even if we were unwise enough to wish to prick an asset price

bubble, we are told it is impossible to see the bubble while it is in its in�ationary phase. (George

Cooper, 2008)

If history repeats itself, and the unexpected always happens, how incapable must Man be of

learning from experience. (George Bernard Shaw, 1903)

1 Introduction

As �nancial historians have argued recently (Ahamed, 2009; Ferguson, 2008), �nancial crises

are often preceded by an asset market bubble or rampant credit growth. The global �nancial

crisis of 2007-2009 is no exception. In its aftermath, central bank economists and policy makers

are now a¢ rming the recent Basil III accord to work to stabilize the �nancial system by way of

guidelines on capital requirements and related measures to control �excessive credit creation�. In

this process of control, an important practical issue of market surveillance involves the assessment

of what is �excessive�. But as Cooper (2008) puts it in the header cited above from his recent

bestseller, many economists have declared the task to be impossible and that it is imprudent to

seek to combat asset price bubbles. How then can central banks and regulators work to o¤set a

speculative bubble when they are unable to assess whether one exists and are considered unwise

to take action if they believe one does exist?

One contribution that econometric techniques can o¤er in this complex exercise of market

surveillance and policy action is the detection of exuberance in �nancial markets by explicit

quantitative measures. These measures are not simply ex post detection techniques but an-

ticipative dating algorithm that can assist regulators in their market monitoring behavior by

means of early warning diagnostic tests. If history has a habit of repeating itself and human

learning mechanisms do fail, as Shaw (1903) and others (notably, Ferguson, 20081) assert, then

quantitative warnings may serve as useful alert mechanisms to both market participants and

regulators.
1�Nothing illustrates more clearly how hard human beings �nd it to learn from history than the repetitive

history of stock market bubbles.�Ferguson (2008).
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Several attempts to develop econometric tests have been made in the literature going back

some decades (see Gurkaynak, 2008, for a recent review). None of these tests have had much

of an impact on empirical surveillance or policy. Most recently, Phillips, Wu and Yu (2010,

PWY hereafter) propose a method which can detect exuberance in an asset price series during

its in�ationary phase. The approach is anticipative as an early warning alert system, so that

it meets the needs of central bank surveillance teams and regulators, thereby addressing one of

the key concerns articulated by Cooper (2008). The method is especially e¤ective when there

is a single bubble episode in the sample data, as in the 1990s Nasdaq episode analyzed in the

PWY paper.

Just as historical experience con�rms the existence of many �nancial crises (Ahamed reports

60 di¤erent �nancial crises since the 17th century2), when the sample period is long enough there

will often be evidence of multiple asset price bubbles in the data. The econometric identi�cation

of multiple bubbles with periodically collapsing behavior over time is substantially more di¢ cult

than identifying a single bubble. The di¢ culty in practice arises from the complex nonlinear

structure involved in multiple bubble phenomena which typically diminishes the discriminatory

power of existing test mechanisms such as those given in PWY. These power reductions com-

plicate attempts at econometric dating and enhance the need for new approaches that do not

su¤er from this problem.

The present paper responds to this need by providing a new framework for testing and dating

bubble phenomena when there are potentially multiple bubbles in the data. The mechanisms

developed here extend those of PWY by allowing for variable window widths in the recursive

regressions on which the test procedures are based. The new mechanisms are shown in simu-

lations to substantially increase discriminatory power in the tests and dating strategies. The

paper contributes further by providing a limit theory for the new tests, by proving the consis-

tency of the dating mechanisms, and by showing the inconsistency of certain versions of the

PWY dating strategy when multiple bubbles occur. The �nal contribution of the paper is to

2�Financial booms and busts were, and continue to be, a feature of the economic landscape. These bubbles
and crises seem to be deep-rooted in human nature and inherent to the capitalist system. By one count there
have been 60 di¤erent crises since the 17th century.�Ahamed (2009).
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apply the techniques to a long historical series of US stock market data where multiple �nancial

crises and episodes of exuberance and collapse have occured.

Fig. 1 graphs the S&P 500 price-dividend ratio3 over 140 years from January 1871 to Decem-

ber 2010. This period covers many historical crises and �nancial catastrophes, most notably the

1907 banking panic, the stock market crash of 1929 and ensuing great depression, black Monday

in October 1987, the dotcom bubble of the late 1990s and the recent subprime mortgage crisis.

As evident in the �gure, the price-dividend ratio is volatile with some repeated steep peaks and

downturns over this long historical period. Of particular note is the rise in the ratio from De-

cember 1917 and the sharp rise prior to September 1929. The October 1929 crash was followed

by a continuing downturn that bottomed out in June 1932. This rise and fall or boom and bust

cycle was repeated on a smaller scale at other times. A signi�cant in�ationary episode occurred

over March 1994 to August 2000. During this period, the price-dividend ratio was 5:28 times

larger at its peak than at initiation. The ratio then dropped rapidly so that by February 2003

it was only 3:03 times its starting value. The ratio was relatively stable over March 2003 to

December 2007 but dropped a further 47:8% over the next �fteen months during the subprime

mortgage crisis.

The econometric identi�cation of these repeated episodes of exuberance and collapse is sub-

stantially more di¢ cult than identifying a single bubble. If econometric methods are to be useful

in practical work conducted by central bank surveillance teams then they need to be capable

of identifying key �nancial episodes over such periods. Of particular concern in �nancial sur-

veillance is the usefulness of a warning alert system that points to in�ationary upturns in the

market. Such warning systems ideally need to have a low false detection rate to avoid unneces-

sary policy measures and a high positive detection rate that ensures early and e¤ective policy

implementation. The techniques developed in the present paper, together with an extended ver-

sion of those in PWY, are tested empirically on the S&P 500 data shown in Fig. 1. The results

are reported in Figs. 6 and 7 and are discussed in detail in Section 6. Our empirical �ndings

con�rm the e¤ectiveness of the new testing strategy: the new approach succeeds in identifying

3The series is normalized to 100 at the �rst observation.
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the main recognized episodes of exuberance and collapse over this long historical period, while

the strategy of PWY locates only two such episodes over the same sample period.

Figure 1: S&P 500 Price-Dividend ratio January 1871 to December 2010 (normalized to 100 at
initiation).

The usual starting point in the analysis of �nancial bubbles is the standard asset pricing

equation:

Pt =
1X
i=0

�
1

1 + rf

�i
Et (Dt+i + Ut+i) +Bt; (1)

where Pt is the after-dividend price of the asset, Dt is the payo¤ received from the asset (i.e.
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dividend), rf is the risk-free interest rate, Ut represents the unobservable fundamentals and Bt is

the bubble component. The quantity P ft = Pt�Bt is often called the market fundamental. Diba

and Grossman (1988) argue that the bubble component has an explosive property characterized

by the following submartingale property:

Et (Bt+1) = (1 + rf )Bt: (2)

In the absence of bubbles (i.e. Bt = 0), the degree of nonstationarity of the asset price is

controlled by the character of the dividend series and unobservable fundamentals. For example,

if Dt is an I (1) process and Ut is either an I (0) or an I (1) process, then the asset price is at

most an I (1) process. On the other hand, given the submartingale behavior (2), asset prices will

be explosive in the presence of bubbles. Therefore, when unobservable fundamentals are at most

I (1) and Dt is stationary after di¤erencing, empirical evidence of explosive behavior in asset

prices may be used to conclude the existence of bubbles.4 Based on this argument, Diba and

Grossman (1988) suggest conducting right-tailed unit root tests (against explosive alternatives)

on the asset price and the observable fundamental (i.e. dividend) to detect the existence of

bubbles. This method is then referred to as the conventional cointegration-based bubble test.

Evans (1991) demonstrated that this conventional cointegration-based test is not capable of

detecting explosive bubbles when they manifest periodically collapsing behavior in the sample

(Blanchard, 1979).5 The Evans critique has led to a number of papers, which propose extended

versions of the conventional cointegration-based test that have some power in detecting period-

ically collapsing bubbles.

4This argument also applies to the logarithmic asset price and the logarithmic dividend under certain condi-
tions. This is due to the fact that in the absence of bubbles, equation (1) can be rewritten as

(1� �) pft = �+ �e
�d��pdt + �e

�u��put + e
�d��p

1X
j=1

�jEt [4dt+j ] + e�u��p
1X
j=1

�jEt [4ut+j ] ;

where pft = log(P ft ), dt = log(Dt), ut = log (Ut) ; � = (1 + rf )
�1, � is a constant, �p; �d and �u are the respective

sample means of pft ; dt and ut. The degree of nonstationary of p
f
t is determined by that of dt and ut. Lee

and Phillips (2011) provide a detailed analysis of the accuracy of this log linear approximation under various
conditions.

5The failure of the cointegration based test is further studied in Charemza and Deadman (1995) within the
setting of bubbles with stochastic explosive roots.
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The approach of PWY (2011) is the sup ADF test (or forward recursive right-tailed ADF

test). PWY suggest implementing the right-tailed ADF test repeatedly on a forward expanding

sample sequence and performing inference based on the sup value of the corresponding ADF

statistic sequence. They show that the sup ADF (SADF) test signi�cantly improves power

compared with the conventional cointegration-based test. This test gives rise to an associated

dating strategy which identi�es points of origination and termination of a bubble. When there

is a single bubble in the data, it is known that this dating strategy is consistent, as �rst shown

in the working paper by Phillips and Yu (2009). Extensive simulations conducted by Homm and

Breitung (2010) indicate that the PWY procedure works well against other procedures such as

CUSUM tests for structural breaks and is particularly e¤ective as a real time bubble detection

algorithm.

The present paper demonstrates that when the sample period includes multiple episodes of

exuberance and collapse, the SADF test may su¤er from reduced power and can be inconsistent,

failing to reveal the existence of bubbles. This weakness is a particular drawback in analyzing

long time series, like that in Fig. 1, or rapidly changing market data where more than one

episode of exuberance is suspected. To overcome this weakness, we propose an alternative

approach named the generalized sup ADF (GSADF) test. The GSADF test is also based on the

idea of repeatedly implementing a right-tailed ADF test, but the new test extends the sample

sequence to a broader and more �exible range. Instead of �xing the starting point of the sample

(namely, on the �rst observation of the sample), the GSADF test extends the sample sequence

by changing both the starting point and the ending point of the sample over a feasible range of

�exible windows.

The sample sequences used in the SADF and GSADF tests are designed to: (a) capture any

explosive behavior manifested within the overall sample; and (b) ensure that there are su¢ cient

observations to achieve estimation e¢ ciency. Since the GSADF test covers more subsamples

of the data and has greater window �exibility, it is expected to outperform the SADF test in

detecting explosive behavior in multiple episodes. This enhancement in performance by the

GSADF test is demonstrated in simulations which compare the two tests in terms of their
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size and power in bubble detection. The paper also derives the asymptotic distribution of the

GSADF statistic in comparison with that of the SADF statistic.

A further contribution of the paper is to develop a new dating strategy. The recursive ADF

test is used in PWY to date stamp the origination and termination of a bubble. More speci�cally,

the recursive procedure compares the ADF statistic sequence against critical values for the

standard right-tailed ADF statistic and uses a �rst crossing time occurrence to date origination

and collapse. For the generalized sup ADF test, we recommend a new date-stamping strategy,

which compares the backward sup ADF (BSADF) statistic sequence with critical values for the

sup ADF statistic, where the BSADF statistics are obtained from implementing the right-tailed

ADF test on backward expanding sample sequences.

For a data generating process with only one bubble episode in the sample period, we show

that both date-stamping strategies successfully estimate the origination and termination of a

single bubble consistently. We then consider a situation in which there are two bubbles in the

sample period and allow the duration of the �rst bubble to be longer or shorter than the second

one. We demonstrate that the date-stamping strategy of PWY cannot consistently estimate

the origination and termination of a (shorter) second bubble, whereas the strategy proposed in

this paper can consistently estimate the origination and termination of each bubble. The same

technology is applicable and similar results apply in multiple bubble scenarios.

The organization of the paper is as follows. The two sup ADF tests along with their limit

distributions, are given in Section 2. Section 3 demonstrates the shortcomings of the SADF

test in simulations. Size and power comparisons are conducted in Section 4. Section 5 proposes

a date-stamping strategy based on the GSADF test and derives the consistency properties of

this strategy and the PWY strategy under both single bubble and twin bubble alternatives. An

alternative sequential implementation of the PWY procedure is developed which is shown to be

capable of consistent date estimation in a twin bubble scenario. Both SADF and GSADF test

procedures are applied to the S&P 500 price-dividend ratio data in Section 6. Both �nd evidence

of bubbles but the new date-stamping strategy reveals many more crisis episodes over the 140

year time period and these correspond very closely with historical evidence. Section 7 concludes
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and summarizes the key steps involved in the implementation of these methods in practice. Two

appendices contain supporting lemmas and derivations for the limit theory presented in the

paper covering both single and multiple bubble scenarios. A technical supplement to the paper

(Phillips, Shi and Yu, 2011)6 provides a complete set of mathematical derivations of the limit

theory presented here.

2 Sup ADF Tests

A common issue that arises in unit root testing is the speci�cation of the model used for esti-

mation purposes, not least because of its impact on the appropriate asymptotic theory and the

critical values that are used in testing. Related issues arise in right-tailed unit root tests of the

type used in bubble detection. The impact of hypothesis formulation and model speci�cation

on right-tailed unit root tests has been studied recently in Shi, Phillips and Yu (2010). Their

analysis allowed for a null random walk process with an asymptotically negligible drift, namely

yt = dT�� + �yt�1 + "t; "t
iid� N

�
0; �2

�
; � = 1 (3)

where d is a constant, T is the sample size and � > 1=2; and their recommended empirical

regression model for bubble detection follows (3) and therefore includes an intercept but no

�tted time trend in the regression. Suppose a regression sample starts from the rth1 fraction of

the total sample and ends at the rth2 fraction of the sample, where r2 = r1 + rw and rw is the

(fractional) window size of the regression. The empirical regression model is

�yt = �r1;r2 + �r1;r2yt�1 +
kX
i=1

 ir1;r2�yt�i + "t; (4)

where k is the lag order and "t
iid� N

�
0; �2r1;r2

�
. The number of observations in the regression is

Tw = bTrwc ; where b:c signi�es the integer part of the argument. The ADF statistic (t-ratio)

based on this regression is denoted by ADF r2r1 .

The SADF test estimates the ADF model repeatedly on a forward expanding sample sequence

and conducts a hypothesis test based on the sup value of the corresponding ADF statistic
6 It is downloadable from https://sites.google.com/site/shupingshi/TN_GSADF.pdf?attredirects=0&d=1.
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Figure 2: The sample sequences and window widths of the SADF test and the GSADF test

sequence. The window size rw expands from r0 to 1; where r0 is the smallest sample window

(selected to ensure estimation e¢ ciency) and 1 is the largest sample window (the total sample

size). The starting point r1 of the sample sequence is �xed at 0; so the ending point of each

sample r2 is equal to rw, changing from r0 to 1. The ADF statistic for a sample that runs from 0

to r2 is denoted by ADF
r2
0 . The SADF statistic is de�ned as supr22[r0;1]ADF

r2
0 ; and is denoted

by SADF (r0).

The GSADF test continues the idea of repeatedly estimating the ADF test regression (4) on a

sample sequence. However, the sample sequence is broader than that of the SADF test. Besides

varying the end point of the regression r2 from r0 to 1, the GSADF test allows the starting

points r1 to change within a feasible range, which is from 0 to r2 � r0. Figure 2 illustrates the

sample sequences of the SADF test and the GSADF test. We de�ne the GSADF statistic to be

the largest ADF statistic over the feasible ranges of r1 and r2, and we denote this statistic by

GSADF (r0) : That is,

GSADF (r0) = sup
r22[r0;1]

r12[0;r2�r0]

�
ADF r2r1

	
:
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Proposition 1 When the regression model includes an intercept and the null hypothesis is a

random walk with an asymptotically negligible drift (i.e. dT�� with � > 1=2 and constant d),

the limit distribution of the GSADF test statistic is:

sup
r22[r0;1]

r12[0;r2�r0]

8>>><>>>:
1
2rw

h
W (r2)

2 �W (r1)
2 � rw

i
�
R r2
r1
W (r) dr [W (r2)�W (r1)]

r
1=2
w

�
rw
R r2
r1
W (r)2 dr �

hR r2
r1
W (r) dr

i2�1=2
9>>>=>>>; ; (5)

where rw = r2 � r1 and W is a standard Wiener process.

The proof of Proposition 1 is similar to that of PWY and is therefore given in a separate tech-

nical supplement which is downloadable from https://sites.google.com/site/shupingshi/

TN_GSADF.pdf?attredirects=0&d=1. The technical note of Shi, Phillips and Yu (2010) pro-

vides further details. Note that the limit distribution of the GSADF statistic is identical to that

of the case when the regression model includes an intercept and the null hypothesis is a random

walk without drift. The usual limit distribution of the ADF statistic is a special case of equation

(5) with r1 = 0 and r2 = rw = 1 while the limit distribution of the SADF statistic is a further

special case of equation (5) with r1 = 0 and r2 = rw 2 [r0; 1] (see Shi, Phillips and Yu, 2010).

Similar to the SADF statistic, the asymptotic GSADF distribution depends on the smallest

window size r0. In practice, r0 needs to be chosen according to the total number of observations

T: If T is small, r0 needs to be large enough to achieve estimation e¢ ciency. If T is large, r0

can be set to be a smaller number so that the test does not miss any opportunity to detect an

early explosive episode. In our empirical application we use r0 = 36=1680.

Critical values of the SADF and GSADF statistics are displayed in Table 1. The asymptotic

critical values are obtained by numerical simulations, where the Wiener process is approximated

by partial sums of 2; 000 independent N(0; 1) variates and the number of replications is 2; 000.

The �nite sample critical values are obtained from 5; 000 Monte Carlo replications. The lag

order k is set to zero. The parameters, d and �, in the null hypothesis are set to unity.7

7From Shi, Phillips and Yu (2010), we know that when d = 1 and � > 1=2, the �nite sample distribution of
the SADF statistic is almost invariant to the value of �.
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Table 1: Critical values of the SADF and GSADF tests against an explosive alternative
(a) The asymptotic critical values

r0 = 0:4 r0 = 0:2 r0 = 0:1
SADF GSADF SADF GSADF SADF GSADF

90% 0.86 1.25 1.04 1.66 1.18 1.89
95% 1.18 1.56 1.38 1.92 1.49 2.14
99% 1.79 2.18 1.91 2.44 2.01 2.57

(b) The �nite sample critical values
T = 100 and r0 = 0:4 T = 200 and r0 = 0:4 T = 400 and r0 = 0:4
SADF GSADF SADF GSADF SADF GSADF

90% 0.72 1.16 0.75 1.21 0.78 1.27
95% 1.05 1.48 1.08 1.52 1.10 1.55
99% 1.66 2.08 1.75 2.18 1.75 2.12

(c) The �nite sample critical values
T = 100 and r0 = 0:4 T = 200 and r0 = 0:2 T = 400 and r0 = 0:1
SADF GSADF SADF GSADF SADF GSADF

90% 0.72 1.16 0.97 1.64 1.19 1.97
95% 1.05 1.48 1.30 1.88 1.50 2.21
99% 1.66 2.08 1.86 2.46 1.98 2.71

Note: the asymptotic critical values are obtained by numerical simulations with 2,000 iterations. The
Wiener process is approximated by partial sums of N(0; 1) with 2; 000 steps. The �nite sample critical
values are obtained from the 5; 000 Monte Carlo simulations. The parameters, d and �, are set to unity.

We observe the following phenomena. First, as the minimum window size r0 decreases,

critical values of the test statistic (including the SADF statistic and the GSADF statistic)

increase. For instance, when r0 decreases from 0:4 to 0:1, the 95% asymptotic critical value of

the GSADF statistic rises from 1:56 to 2:14 and the 95% �nite sample critical value of the test

statistic with sample size 400 increases from 1:48 to 2:21. Second, for a given r0, the �nite sample

critical values of the test statistic are almost invariant. Third, critical values for the GSADF

statistic are larger than those of the SADF statistic. As a case in point, when T = 400 and

r0 = 0:1, the 95% critical value of the GSADF statistic is 2:21 while that of the SADF statistic

is 1:50. Figure 3 shows the asymptotic distribution of the ADF , SADF (0:1) and GSADF (0:1)

statistics. The distributions move sequentially to the right and have greater concentration in

12



the order ADF , SADF (0:1) and GSADF (0:1).

Figure 3: Asymptotic distributions of the ADF and supADF statistics (r0 = 0:1)

3 Simulation Study

This section investigates the performance of the SADF and GSADF tests when the test sample

contains multiple collapsing episodes.

3.1 Generating the test sample

We �rst simulate an asset price series based on the Lucas asset pricing model and the Evans

(1991) bubble model. The simulated asset prices consist of a market fundamental component

P ft , which combines a random walk dividend process and equation (1) with Ut = 0 and Bt = 0

13



for all t to obtain8

Dt = �+Dt�1 + "Dt; "Dt � N
�
0; �2D

�
(6)

P ft =
��

(1� �)2
+

�

1� �Dt; (7)

and the Evans bubble component

Bt+1 = ��1Bt"B;t+1; if Bt < b (8)

Bt+1 =
h
� + (��)�1 �t+1 (Bt � ��)

i
"B;t+1; if Bt � b : (9)

This series has the submartingale property Et (Bt+1) = (1 + rf )Bt: Parameter � is the drift

of the dividend process, �2D is the variance of the dividend, ��1 = 1 + rf > 1 and "B;t =

exp
�
yt � �2=2

�
with yt � NID

�
0; �2

�
. The quantity � is the re-initializing value after the

bubble collapse. The series �t follows a Bernoulli process which takes the value 1 with probability

� and 0 with probability 1 � �. Equations (8) - (9) state that a bubble grows explosively at

rate ��1 when its size is less than b while if the size is greater than b, the bubble grows at a

faster rate (��)�1 but with a 1� � probability of collapsing. The asset price is the sum of the

market fundamental and the bubble component, namely Pt = P ft + �Bt, where � > 0 controls

the relative magnitudes of these two components.

The parameter settings used by Evans (1991) are displayed in the top line of Table 2 and

labeled yearly. The parameter values for � and �2D were originally obtained by West (1988),

by matching the sample mean and sample variance of �rst di¤erenced real S&P 500 stock price

index dividends from 1871 to 1980. The value for the discount factor � is equivalent to a 5%

yearly interest rate.

Due to the availability of higher frequency data, we apply the SADF test and the GSADF

test to monthly data. The parameters � and �2D are set to correspond to the sample mean

8An alternative data generating process, which assumes that the logarithmic dividend is a random walk with
drift, is as follows:

lnDt = �+ lnDt�1 + "t; "t � N
�
0; �2d

�
P ft =

� exp
�
�+ 1

2
�2d
�

1� � exp
�
�+ 1

2
�2d
�Dt:
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Table 2: Parameter settings
� �2D D0 � b B0 � � � �

Yearly 0.0373 0.1574 1.3 0.952 1 0.50 0.85 0.50 0.05 20
Monthly 0.0024 0.0010 1.0 0.985 1 0.50 0.85 0.50 0.05 50

and sample variance of the �rst di¤erenced monthly real S&P 500 stock price index dividend

described in the application section below, so that the settings are in accordance with our

empirical application. The discount value � equals 0:985 (we allow � to vary from 0.975 to 0.999

in the size and power comparisons section). The new setting is labeled monthly in Table 2.

Figure 4 depicts one realization of the data generating process with the monthly parameter

settings. As we observe in this graph, there are several obvious collapsing episodes of di¤erent

magnitudes within this particular sample trajectory.

100

150

200

250

300

350

50 100 150 200 250 300 350 400

Figure 4: Simulated time series with sample size 400.

3.2 Performing the sup ADF test and the generalized sup ADF test

We �rst implement the SADF test on the whole sample range. We repeat the test on a sub-

sample which contains fewer collapsing episodes to illustrate the instability of the SADF test.

Furthermore, we conduct the test on the same simulated data series (over the whole sample
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range) to show the advantage of the GSADF test.

The lag order k is set to zero for all tests in this paper.9 The smallest window size considered

in the SADF test for the whole sample contains 40 observations (r0 = 0:1). The SADF statistic

for the simulated data series is 0:71, which is smaller than the 10% �nite sample critical value

1:19 (see Table 1). Therefore, we conclude that there are no bubbles in this sample. Now suppose

that the SADF test starts from the 201st observation, and the smallest regression window also

contains 40 observations (r0 = 0:2). The SADF statistic obtained from this sample is 1:39 and

it is greater than 1:30 (Table 1). In this case, we reject the null hypothesis of no bubble at the

5% signi�cance level.

Evidently the SADF test fails to �nd bubbles when the whole sample is utilized, whereas by

re-selecting the starting point of the sample to exclude some of the collapse episodes, it succeeds

in �nding evidence of bubbles. Each of the above experiments can be viewed as special cases

of the GSADF test in which the sample starting points are �xed. In the �rst experiment, the

sample starting point of the GSADF test r1 is set to 0. The sample starting point r1 of the

second experiment is �xed at 0:502. The con�icting results obtained from these two experiments

demonstrates the importance of using variable starting points, as is done in the GSADF test.

We then apply the GSADF test to the simulated asset prices. The GSADF statistic of the

simulated data is 8:59, which is substantially greater than the 1% �nite sample critical value 2:71

(Table 1). Thus, the GSADF test �nds strong evidence of bubbles. Compared to the SADF test,

the GSADF identi�es bubbles without re-selecting the sample starting point, giving an obvious

improvement that is particularly useful in empirical applications.10

9 In PWY, the lag order is determined by signi�cance testing, as in Campbell and Perron (1991). However,
we demonstrate in the size and power comparison section that this lag selection criteria results in signi�cant size
distortion and reduces the power of both the SADF and GSADF tests.
10We observe similar phenomena from the alternative data generating process where the logarithmic dividend

is a random walk with drift. Parameters in the alternative data generating process (monthly) are set as follows:
B0 = 0:5; b = 1; � = 0:85; � = 0:5; � = 0:985; � = 0:05; � = 0:001; lnD0 = 1, �2lnD = 0:0001, and Pt = P

f
t + 500Bt.
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4 Size and Power Comparisons

This section compares the sizes and powers of the SADF and GSADF tests. The data generating

process for the size comparison is the null hypothesis in equation (3) with d = � = 1. We

calculate size based on the asymptotic critical values displayed in Table 1. The nominal size is

5%. The number of replications is 5; 000. We observe from Table 3 that the size distortion of the

GSADF test is smaller than that of the SADF test. For example, when T = 400 and r0 = 0:1,

the size distortion of the GSADF test is 0:9% whereas that of the SADF test is 1:6%.11

Table 3: Sizes of the SADF and GSADF tests with asymptotic critical values. The data gener-
ating process is equation (3) with d = � = 1. The nominal size is 5%.

T = 100 T = 200 T = 400
r0 = 0:4 r0 = 0:4 r0 = 0:2 r0 = 0:4 r0 = 0:1

SADF 0.043 0.040 0.038 0.041 0.034
GSADF 0.048 0.041 0.044 0.045 0.059

Note: size calculations are based on 5000 replications..

Powers in Table 4 and 5 are calculated with the 95% quantiles of the �nite sample distribu-

tions (Table 1), and the number of iterations for the calculation is 5; 000. The smallest window

size for both the SADF test and the GSADF test has 40 observations. The data generating

process of the power comparison is the periodically collapsing explosive process, equation (6)

- (9). For comparison with the literature, we �rst set the parameters in the DGP as in Evans

(1991) with sample sizes of 100 and 200. From the left panel of Table 4 (labeled yearly), the

power of the GSADF test is 7% and 15:2% higher than those of the SADF test when the sample

size is 100 and 200.12

Table 4 also displays powers of the SADF and GSADF tests under the DGP with monthly

parameter settings and with sample sizes 100, 200 and 400. From the right panel of the table,

11Suppose the lag order is determined by signi�cance testing as in Campbell and Perron (1991) with a maximum
lag order of 12. When T = 400 and r0 = 0:1, the sizes of the SADF test and the GSADF test are 0:130 and 0:790
(the nominal size is 5%), indicating size distortion in both tests and a particularly large size distortion for the
GSADF test.
12Suppose the lag order is determined by signi�cance testing as in Campbell and Perron (1991) with a maximum

lag order of 12. When T = 200 and r0 = 0:2, the powers of the SADF test and the GSADF test are 0:565 and
0:661, which are smaller than those in Table 4.
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Table 4: Powers of the SADF and GSADF tests. The data generating process is equation (6)-(9).
Yearly Monthly

SADF GSADF SADF GSADF
T = 100 and r0 = 0:4 0.408 0.478 0.509 0.556
T = 200 and r0 = 0:2 0.634 0.786 0.699 0.833
T = 400 and r0 = 0:1 - - 0.832 0.977

Note: power calculations are based on 5000 replications.

when the sample size T = 400, the GSADF test raises test power from 83:2% to 97:7%, giving a

14:5% improvement. The power improvement of the GSADF test is 4:7% and 13:4% when the

sample size is 100 and 200. Due to the fact that, for any given bubble collapsing probability

� in the Evans model, the sample period is more likely to include multiple collapsing episodes

when the sample size T is larger, the advantage of the GSADF test is more evident under these

circumstances.

In Table 5, we compare powers of the SADF and GSADF tests with the discount factor �

varying from 0:975 to 0:990, under the DGP with the monthly parameter settings. First, due

to the fact that the rate of bubble expansion is inversely related to the discount factor, powers

of both SADF test and GSADF tests are expected to decrease as � increases. The power of

the SADF (GSADF) test declines from 84:5% to 76:9% (from 99:3% to 91:0%) as the discount

factor rises from 0:975 to 0:990 (see Table 5). Second, we observe from Table 5 that the GSADF

test has greater discriminatory power for detecting bubbles than the SADF test. The power

improvement is 14:8%, 14:8%, 14:5% and 14:1% for � = f0:975; 0:980; 0:985; 0:990g.

Table 5: Powers of the SADF and GSADF tests. The data generating process is equation (6)-(9)
with the monthly parameter settings and sample size 400 (r0 = 0:1).
� 0.975 0.980 0.985 0.990
SADF 0.845 0.840 0.832 0.769
GSADF 0.993 0.988 0.977 0.910

Note: power calculations are based on 5000 replications.
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5 Date-stamping Strategies for Bubble Episodes

Suppose that one is interested in knowing whether any particular observation, such as the point

bTr2c, belongs to a bubble phase in the trajectory. PWY suggest conducting a right-tailed ADF

test recursively using information up to this observation (i.e. IbTr2c =
�
y1; y2; � � � ; ybTr2c

	
).

Since it is possible that IbTr2c includes one or more collapsing episodes of bubbles, like the

conventional cointegration-based test for bubbles, the ADF test may result in �nding pseudo

stationary behavior. We therefore recommend performing a backward sup ADF test on IbTr2c

to improve identi�cation accuracy.

The backward SADF test performs a sup ADF test on a backward expanding sample se-

quence, where the ending points of the samples are �xed at r2 and the starting point varies

from 0 to r2 � r0. Suppose we label the ADF statistic for each regression using its starting

point r1 and ending point r2 to obtain BADF r2r1 . The corresponding ADF statistic sequence is�
BADF r2r1

	
r12[0;r2�r0]. The backward SADF statistic is de�ned as the sup value of the ADF

statistic sequence, denoted by

BSADFr2 (r0) : BSADFr2 (r0) = sup
r12[0;r2�r0]

�
BADF r2r1

	
:

The backward ADF test is a special case of the backward sup ADF test with r1 = 0. We

denote the backward ADF statistic by BADFr2 . Figure 5 illustrates the di¤erence between

the backward ADF test and the backward SADF test. PWY proposes comparing BADFr2

with the (right-tail) critical values of the standard ADF statistic to identify the explosiveness

of observation bTr2c. The feasible range of r2 runs from r0 to 1. The origination date of a

bubble bTrec is calculated as the �rst chronological observation whose backward ADF statistic

exceeds the critical value. We denote the calculated origination date by bT r̂ec. The estimated

termination date of a bubble bT r̂fc is the �rst chronological observation after bT r̂ec + log (T )

whose backward ADF statistic goes below the critical value. PWY impose the condition that

the duration of a bubble is longer than log (T ). Namely,

r̂e = inf
r22[r0;1]

n
r2 : BADFr2 > cv

�T
r2

o
and r̂f = inf

r22[r̂e+log(T )=T;1]

n
r2 : BADFr2 < cv

�T
r2

o
; (10)
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Figure 5: The sample sequences of the backward ADF test and the backward SADF test

where cv�Tr2 is the 100�T% critical value of the backward ADF statistic based on bTr2c obser-

vations. The signi�cance level �T depends on the sample size T and we assume that �T ! 0 as

T !1.

Instead of using the backward ADF statistic, the new strategy suggests making inferences on

the explosiveness of observation bTr2c based on the backward sup ADF statistic, BSADFr2 (r0).

We de�ne the origination date of a bubble as the �rst observation whose backward sup ADF

statistic exceeds the critical value of the backward sup ADF statistic. The termination date

of a bubble is calculated as the �rst observation after bT r̂ec + � log (T ) whose backward sup

ADF statistic falls below the critical value of the backward sup ADF statistic. We assume

that the duration of the bubble is longer than � log (T ), where � is frequency dependent.13

The (fractional) origination and termination points of a bubble (i.e. re and rf ) are calculated

according to the following �rst crossing time equations:

r̂e = inf
r22[r0;1]

n
r2 : BSADFr2 (r0) > scv

�T
r2

o
;

13For instance, one may believe that the duration of bubbles should be longer than one year. Then, when the
sample size is 30 years (360 months), � is 0:7 for the yearly data and 5 for the monthly data.
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r̂f = inf
r22[r̂e+� log(T )=T;1]

n
r2 : BSADFr2 (r0) < scv

�T
r2

o
;

where scv�Tr2 is the 100�T% critical value of the sup ADF statistic based on bTr2c observations.

Analogously, the signi�cance level �T depends on the sample size T and it goes to zero as the

sample size approaches in�nity.

In addition, the SADF test can be viewed as a repeated implementation of the backward

ADF test for each r2 2 [r0; 1]. The GSADF test is equivalent to a test which implements the

backward sup ADF test repeatedly for each r2 2 [r0; 1] and makes inferences based on the sup

value of the backward sup ADF statistic sequence, fBSADFr2 (r0)gr22[r0;1]. Hence, the SADF

and GSADF statistics can respectively be rewritten as

SADF (r0) = sup
r22[r0;1]

fBADFr2g ,

GSADF (r0) = sup
r22[r0;1]

fBSADFr2 (r0)g :

Thus, the PWY date-stamping strategy corresponds to the SADF test and the new strategy

corresponds to the GSADF test.

5.1 The null hypothesis: no bubbles

In order to derive the consistency properties of these date-stamping strategies, we �rst need

to obtain the asymptotic distributions of the ADF statistic and the SADF statistic with bTr2c

observations under the null hypothesis (3). We know that the backward ADF test with obser-

vation bTr2c is a special case of the GSADF test with r1 = 0 and a �xed r2 and the backward

sup ADF test is a special case of the GSADF test with a �xed r2 and r1 = r2 � rw. Therefore,

based on equation (5), we can derive the asymptotic distributions of these two statistics, namely

Fr2 (W ) :=

1
2r2

h
W (r2)

2 � r2
i
�
R r2
0 W (r) drW (r2)

r
1=2
2

n
r2
R r2
0 W (r)2 dr �

�R r2
0 W (r) dr

�2o1=2 ;

F r0r2 (W ) := sup
r12[0;r2�r0]
rw=r2�r1

8>>><>>>:
1
2rw

h
W (r2)

2 �W (r1)
2 � rw

i
�
R r2
r1
W (r) dr [W (r2)�W (r1)]

r
1=2
w

�
rw
R r2
r1
W (r)2 dr �

hR r2
r1
W (r) dr

i2�1=2
9>>>=>>>; :
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We, therefore, de�ne cv�Tr2 as the 100 (1� �T )% quantile of Fr2 (W ) and scv
�T
r2 as the 100 (1� �T )%

quantile of F r0r2 (W ). We know that cv
�T
r2 !1 and scv�Tr2 !1 as �T ! 0.

Notice that given cv�Tr2 ! 1 and scv�Tr2 ! 1, under the null hypothesis of no bubbles, the

probabilities of (falsely) detecting the origination of bubble expansion and the termination of

bubble collapse using the backward ADF statistic and the backward sup ADF statistic tend to

zero, so that Pr fr̂e 2 [r0; 1]g ! 0 and Pr fr̂f 2 [r0; 1]g ! 0.

5.2 The alternative hypothesis: a single bubble

Consider the data generating process of Phillips and Yu (2009)

Xt = Xt�11 ft < � eg+ �TXt�11 f� e � t � � fg

+

0@ tX
k=�f+1

"k +X
�
�f

1A 1 ft > � fg+ "t1 fj � � fg ; (11)

where �T = 1 + cT�� with c > 0 and � 2 (0; 1) ; "t
iid� N

�
0; �2

�
, X�

�f
= X�e +X� with X� =

Op (1), � e = bTrec is the origination of bubble expansion and � f = bTrfc is the termination

of bubble collapse. The pre-bubble period N0 = [1; � e) is assumed to be a pure random walk

process. The bubble expansion period B = [� e; � f ] is a mildly explosive process with expansion

rate �T . The process then collapses to X�
�f
, which equals X�e plus a small perturbation, and

continues its pure random walk path in the period N1 = (� f ; � ].

Notice that there is only one bubble episode in the data generating process (11). Under this

mechanism we have the following consistency results, whose proofs are collected in Appendix A.

Theorem 1 Suppose r̂e and r̂f are obtained from the backward DF test based on the t statistic.

Given an alternative hypothesis of mildly explosive behavior in model (11), if

1

cv
�T
r2

+
cv
�T
r2

T 1=2
! 0; (12)

we have r̂e
p! re as T !1; and if

cv
�T
r2

T 1=2
+
T (1��)=2

cv
�T
r2

! 0 (13)
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and r̂f > r̂e + log (T ) =T , we have r̂f
p! rf as T !1.

Theorem 2 Suppose r̂e and r̂f are obtained from the backward sup DF test based on the t

statistic. Given an alternative hypothesis of mildly explosive behavior in model (11), if

1

scv
�T
r2

+
scv

�T
r2

T 1=2
! 0; (14)

we have r̂e
p! re as T !1; and if

scv
�T
r2

T 1=2
+
T (1��)=2

scv
�T
r2

! 0 (15)

and r̂f > r̂e + � log (T ) =T , we have r̂f
p! rf as T !1.

These results show that both strategies consistently estimate the origination and termination

points when there is only a single bubble episode in the sample period. Suppose cv�Tr2 = Op (T

)

and scv�Tr2 = Op (T

s). The regularity condition (12) in Theorem 1 implies that the order of

magnitude (
) of cv�Tr2 needs to be greater than 0 and smaller than 1=2, namely 
 2 (0; 1=2).

Condition (13) suggests that 
 should fall between (1� �) =2 and 1=2. Theorem 2 requires

the order of magnitude (
s) of scv
�T
r2 to be greater than 0 and smaller than 1=2 to obtain the

consistency of r̂e and 
s needs to satisfy the condition 
s 2
�
1��
2 ; 1=2

�
to ensure the consistency

of r̂f .

5.3 The alternative hypothesis: two bubbles

Consider a data generating process with two bubble episodes:

Xt = Xt�11 ft 2 N0g+ �TXt�11 ft 2 B1 [B2g+

0@ tX
k=�1f+1

"k +X
�
�1f

1A 1 ft 2 N1g
+

0@ tX
l=�2f+1

"l +X
�
�2f

1A 1 ft 2 N2g+ "t1 fj 2 N0 [B1 [B2g ; (16)

where N0 = [1; �1e); B1 = [�1e; �1f ] ; N1 = (�1f ; �2e); B2 = [�2e; �2f ] and N2 = (�2f ; � ]. �1e =

bTr1ec, �1f = bTr1fc are the origination and termination dates of the �rst bubble, �2e = bTr2ec,
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�2f = bTr2fc are the origination and termination dates of the second bubble and � is the last

observation of the sample. After the collapse of the �rst bubble, Xt continues its pure random

walk path until �2e�1 and starts another expansion process at �2e. The expansion process lasts

until �2f and collapses to a value of X�
�2f
. It then continues its pure random walk path until

the end of the sample period � . We assume that the expansion duration of the �rst bubble is

longer than that of the second bubble, namely �1f � �1e > �2f � �2e.

The date-stamping strategy of PWY suggests calculating r1e, r1f , r2e and r2f from the

following equations (based on the ADF statistic):

r̂1e = inf
r22[r0;1]

n
r2 : BADFr2 > cv

�T
r2

o
and r̂1f = inf

r22[r̂1e+log(T )=T;1]

n
r2 : BADFr2 < cv

�T
r2

o
;

(17)

r̂2e = inf
r22[r̂1f ;1]

n
r2 : BADFr2 > cv

�T
r2

o
and r̂2f = inf

r22[r̂2e+log(T )=T;1]

n
r2 : BADFr2 < cv

�T
r2

o
;

(18)

where the duration of the bubble periods is restricted to be longer than log (T ).

The new strategy recommends using the backward sup ADF test and calculating the origi-

nation and termination points according to the following equations:

r̂1e = inf
r22[r0;1]

n
r2 : BSADFr2 (r0) > scv

�T
r2

o
; (19)

r̂1f = inf
r22[r̂1e+� log(T )=T;1]

n
r2 : BSADFr2 (r0) < scv

�T
r2

o
; (20)

r̂2e = inf
r22[r̂1f ;1]

n
r2 : BSADFr2 (r0) > scv

�T
r2

o
; (21)

r̂2f = inf
r22[r̂2e+� log(T )=T;1]

n
r2 : BSADFr2 (r0) < scv

�T
r2

o
: (22)

An alternative implementation of the PWY procedure is to use that procedure sequentially,

namely detect one bubble at a time. The dating criteria for the �rst bubble remains the same

(i.e. equation (17)). Conditional on the �rst bubble having been found and terminated at r̂1f ,

the following dating criteria is used for a second bubble:

r̂2e = inf
r22(r̂1f+"T ;1]

n
r2 :r̂1f BDFr2 > cv

�T
r2

o
and r̂2f = inf

r22[r̂2e+log(T )=T;1]

n
r2 :r̂1f BDFr2 < cv

�T
r2

o
;

(23)
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where r̂1fBDFr2 is the ADF statistic calculated over (r̂1f ; r2]. Note that we need a few obser-

vations to initialize the procedure (i.e. r2 2 (r̂1f + "T ; 1] for some "T > 0).14

We have the following asymptotic results for these dating estimates. Proofs of the theorems

are given in Appendix B.

Theorem 3 Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from the backward DF test based on the

t statistic, (17) - (18). Given an alternative hypothesis of mildly explosive behavior of model

(16) with �1f � �1e > �2f � �2e, if

1

cv
�T
r2

+
cv
�T
r2

T 1=2
! 0;

we have r̂1e
p! r1e as T !1; if

cv
�T
r2

T 1=2
+
T (1��)=2

cv
�T
r2

! 0

and r̂1f > r̂1e + log (T ) =T , we have r̂1f
p! r1f as T ! 1; and r̂2e and r̂2f are not consistent

estimators of r2e and r2f .

Theorem 4 Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from the backward sup DF test based on

the t statistic, (19) - (22). Given an alternative hypothesis of mildly explosive behavior of model

(16) with �1f � �1e > �2f � �2e, if

1

scv
�T
r2

+
scv

�T
r2

T 1=2
! 0;

we have r̂1e
p! r1e as T !1; if

scv
�T
r2

T 1=2
+
T (1��)=2

scv
�T
r2

! 0;

r̂1f > r̂1e + � log (T ) =T , we have r̂1f
p! r1f , r̂2e

p! r2e and r̂2f
p! r2f as T !1.

14For example, "T = log T=T or T�� with some � 2 (0; 1).
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Theorem 5 Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from the backward DF test based on the

t statistic, (17) and (23). Given an alternative hypothesis of mildly explosive behavior of model

(16) with �1f � �1e > �2f � �2e, if

1

scv
�T
r2

+
scv

�T
r2

T 1=2
! 0;

we have r̂1e
p! r1e and r̂2e

p! r2e as T !1; if

scv
�T
r2

T 1=2
+
T (1��)=2

scv
�T
r2

! 0;

r̂1f > r̂1e + log (T ) =T , we have r̂1f
p! r1f and r̂2f

p! r2f as T !1.

A restatement of Theorem 3 is useful. Suppose the sample period includes two bubble

episodes and the duration of the �rst bubble is longer than the second. The strategy of PWY

(corresponding to the SADF test) can consistently estimate the origination and termination of

the �rst bubble but does not consistently estimate those of the second bubble. In contrast, The-

orem 4 and Theorem 5 say that the new date-stamping strategy (corresponding to the GSADF

test) and the alternative implementation of the PWY strategy can calculate the origination and

termination of both bubbles consistently in this scenario.

We also analyze the consistency properties of these two date-stamping strategies when there

are two bubbles and the duration of the �rst bubble is shorter than the second bubble. Un-

der this circumstance, it turns out that all strategies consistently estimate the origination and

termination dates of the two bubbles.

Theorem 3, 4 and 5 can be extended to a multiple bubbles scenario. Suppose there are N

bubbles (N > 2). If the duration of the ith bubble is longer than that of the jth bubble, where

i; j 2 f1; 2; � � � ; Ng and i < j, then, the PWY strategy can consistently estimate the origination

and termination dates of the ith bubble but not those associated with the jth bubble. In contrast,

the new strategy and the alternative implementation of the PWY strategy can estimate dates

associated with both bubbles consistently.
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6 Empirical Application

The data comprise the real S&P 500 stock price index and the real S&P 500 stock price index

dividend, both obtained from Robert Shiller�s website. The data are sampled monthly over the

period from January 1871 to December 2010, constituting 1,680 observations.

We apply the SADF test and the GSADF test to the price-dividend ratio (displayed earlier

in Figure 1). Table 6 presents critical values for these two tests and these were obtained from

2; 000 Monte Carlo simulations with a sample size of 1; 680. In performing the ADF regressions

and calculating critical values, the smallest window comprised 36 observations. From Table 6,

the SADF and GSADF statistics for the full data series are 3:30 and 4:21. Both exceed their

respective 1% right-tail critical values (i.e. 3:30 > 2:17 and 4:21 > 3:31), giving strong evidence

that the S&P 500 price-dividend ratio had explosive subperiods. We conclude from both tests

that there is evidence of bubbles in the S&P 500 stock market data.

Table 6: The SADF test and the GSADF test of the S&P 500 stock market
SADF GSADF

S&P500 Price-Dividend Ratio 3.30 4.21
Finite sample critical values

90% 1.45 2.55
95% 1.70 2.80
99% 2.17 3.31

Note: Critical values of both tests are obtained from 2,000 Monte Carlo simulations with a sample size
of 1,680. The smallest window has 36 observations.

To locate speci�c bubble periods, we compare the backward SADF statistic sequence with

the 95% SADF critical value sequence, which is obtained as a by-product when simulating the

critical values for the GSADF statistic. The top panel of Fig. 6 displays results for the date-

stamping strategy over the period from January 1871 to December 1949 and the bottom panel

displays results over the rest of the sample period. The identi�ed exuberance and collapse

periods include the explosive recovery phase following the panic of 1873 (1878M07-1880M04),

the banking panic of 1907 (1907M09-1908M02), the great crash episode (1928M11-1929M09), the

postwar boom in 1954 (1954M09-1956M04), the 1974 stock market crash (1974M07-M12), black
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Figure 6: Date-stamping bubble periods in the S&P 500 price-dividend ratio: the GSADF test

Monday in October 1987 (1986M03-1987M09), the dot-com bubble (1995M07-2001M08) and the

subprime mortgage crisis (2008M10-2009M04). Notice that the new date-stamping strategy

not only locates the explosive expansion periods but also identi�es explosive collapse periods.

Such market collapses have occured in the past when bubbles in other markets crashed and the

collapse spread to the S&P 500 as, for instance, in the banking panic of 1893 and the subprime

mortgage crisis.

For comparison, we also plot the ADF statistic sequence against the 95% ADF critical value

sequence. As seen in Fig. 7, the strategy of PWY (based on the SADF test) identi�es only
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Figure 7: Date-stamping bubble periods in the S&P 500 price-dividend ratio: the SADF test.

two explosive periods � the recovery phase of the panic of 1873 (1879M10-1880M04) and the

dot-com bubble (1997M07-2001M08). In both cases, the estimated duration is shorter than that

found by the GSADF dating strategy.

7 Conclusion and Implementation

The SADF test, which is also referred to as the forward recursive ADF test, implements the

ADF test repeatedly on a sequence of forward expanding samples. The GSADF test can be
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viewed as a rolling window ADF test with a double-sup window selection criteria.15 That is, we

select a window size using the double-sup criteria and implement the ADF test repeatedly on

a sequence of samples, which moves the window frame gradually toward the end of the sample.

Experimenting on simulated asset prices reveals one of the shortcomings of the SADF test - its

inability to �nd and locate bubbles when there are multiple collapsing episodes within the sample

range. The GSADF test surmounts this problem and our simulation �ndings demonstrate that

the GSADF test signi�cantly improves discriminatory power in detecting bubbles.

The date-stamping strategy of PWY and the new date-stamping strategy are shown to have

quite di¤erent behavior under the alternative of multiple bubbles. In particular, when the sample

period includes two bubbles and the duration of the �rst bubble is longer than the second, the

strategy of PWY fails to consistently estimate the timing of the second bubble while the new

strategy consistently estimates and dates both bubbles.

We apply both SADF and GSADF tests, along with their date-stamping algorithms, to the

S&P 500 price-dividend ratio from January 1871 to December 2010. Both tests �nd con�rmatory

evidence of bubble existence. The price-dividend ratio over this historical period contains many

individual peaks and troughs, a trajectory that is similar to the multiple bubble scenario for

which the PWY date-stamping strategy was found to be inconsistent. The empirical test results

con�rm the greater discriminatory power of the GSADF strategy found in the simulations and

evidenced in the asymptotic theory. The new date-stamping strategy identi�es all the well

known historical episodes of banking crises and �nancial bubbles over this long period, whereas

the SADF procedure locates only two episodes of exuberance and collapse.

To aid practitioners, we here provide a brief outline of the main steps involved in the empirical

implementation of the new GSADF test and dating strategies. The Gauss and Matlab programs

for implementing this algorithm are available for download from https://sites.google.com/

site/shupingshi/PrgGSADF.zip?attredirects=0\&d=1.

(i) Select a sample size (T0) as a minimum sample size for the within-windows recursive

15First, we calculate the sup value of the ADF statistic over the feasible ranges of the window starting points
for a �xed window size. Then, we calculate the sup value of the SADF statistic over the feasible range of window
sizes.
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regressions. In our empirical application to the S&P data we used T0 = 36 (equivalent to 3

years) for which the ratio r0 = T0=T = 36=1860:

(ii) From observation T0+i, where i = 0; 1; : : : ; T�T0, gather a backward expanding sequence

of samples with end point at observation T0 + i and start point selected from fi+ 1; i; : : : ; 1g :

(iii) Conduct a right-tailed ADF unit root test on the backward expanding sample sequence

to obtain an ADF statistic sequence;

(iv) Calculate the maximum value of the ADF statistic sequence. This is the BSADF sta-

tistic.

(v) Repeat steps (iii) to (iv) for each i = 0; 1; : : : ; T � T0 to obtain the BSADF statistic

sequence.

(vi) Calculate the GSADF statistic, which is the maximum value of the BSADF statistic

sequence, and test signi�cance of this statistic against its critical values for inference about

bubble existence.

(vii) If the GSADF test shows evidence of bubble existence, compare the BSADF statistic

sequence obtained in (v) with the critical values for the sup ADF statistic to locate bubble

episodes.
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APPENDIX A. The date-stamping strategies (a single bubble)

Notation and useful preliminary lemmas

We de�ne the following notation:

� The bubble period B = [� e; � f ], where � e = bTrec and � f = bTrfc.

� The normal market periods N0 = [1; � e) and N1 = [� f + 1; � ], where � = bTrc is the last

observation of the sample.

� The starting point of the regression �1 = bTr1c, the ending point of the regression �2 =

bTr2c, the regression sample size �w = bTrwc with rw = r2�r1 and observation t = bTpc .

� B (p) � �W (p) ; where W is a Wiener process.

We use the data generating process

Xt =

8<:
Xt�1 + "t for t 2 N0
�TXt�1 + "t for t 2 B

X�
�f
+
Pt
k=�f+1

"k for t 2 N1
; (24)

where �T = 1 + cT�� with c > 0 and � 2 (0; 1) ; "t
iid� N

�
0; �2

�
and X�

�f
= X�e + X� with

X� = Op (1). Under (24) we have the following lemmas.

Lemma 8.1 Under the generating process (24),
(1) For t 2 N0, Xt=bTpc �a T 1=2B (p).
(2) For t 2 B, Xt=bTpc = �t��eT X�e f1 + op (1)g �a T 1=2�t��eT B (re) :

(3) For t 2 N1, Xt=bTpc �a T 1=2 [B (p)�B (rf ) +B (re)] :

Proof. (1) For t 2 N0, Xt is a unit root process. We know that T�1=2Xt=bTpc
L! B (p) as

T !1. (2) For t 2 B; the generating mechanism is

Xt = �TXt�1 + "t = �t��eT X�e +

t��e�1X
j=0

�jT "t�j :

Based on Phillips and Magdalinos (2007, lemma 4.2), we know that for � < 1;

T��=2
t��e�1X
j=0

�
�(t��e)+j
T "t�j

L! Xc � N
�
0; �2=2c

�
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as t� � e !1. Furthermore, we know that T�1=2X�e�1
L! B (re) and hence

�
�(t��e)
T T�1=2Xt = T�1=2X�e�1 + T

�(1��)=2T��=2
t��e�1X
j=0

�
�(t��e)+j
T "t�j

L! B (re) :

This implies that the �rst term has a higher order than the second term and hence,

Xt = �t��eT X�e

(
1 +

Pt��e�1
j=0 �jT "t�j

�t��eT X�e

)
= �t��eT X�e f1 + op (1)g �a T 1=2�t��eT B (re) :

(3) For t 2 N1,

Xt =
tX

k=�f+1

"k +X
�
�f
=

tX
k=�f+1

"k +X�e +X
� �a T 1=2 [B (p)�B (rf ) +B (re)]

due to the fact that X�e �a T 1=2B (re),
Pt
k=�f+1

"k �a T 1=2 [B (p)�B (rf )] and X� = Op (1).

Lemma 8.2 Under the data generating process (24),
(1) For �1 2 N0 and �2 2 B;

1

�w

�2X
j=�1

Xj =
T���2��eT

�wc
X�e f1 + op (1)g �a T��1=2��2��eT

1

rwc
B (re) :

(2) For �1 2 B and �2 2 N1;

1

�w

�2X
j=�1

Xj =
T��

�f��1
T

�wc
X�e f1 + op (1)g �a T��1=2�

�f��1
T

1

rwc
B (re) :

(3) For �1 2 N0 and �2 2 N1;

1

�w

�2X
j=�1

Xj = X�e
T��

�f��e
T

�wc
f1 + op (1)g �a T��1=2�

�f��e
T

1

rwc
B (re) :

Proof. (1) For �1 2 N0 and �2 2 B, we have

1

�w

�2X
j=�1

Xj =
1

�w

�e�1X
j=�1

Xj +
1

�w

�2X
j=�e

Xj :

The �rst term is

1

�w

�e�1X
j=�1

Xj = T 1=2
� e � �1
�w

0@ 1

� e � �1

�e�1X
j=�1

Xjp
T

1A �a T 1=2
re � r1
rw

Z re

r1

B (s) ds: (25)
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The second term is

1

�w

�2X
j=�e

Xj =
X�e
�w

�2X
j=�e

�j��eT f1 + op (1)g from Lemma 8.1

=
1

�w

��2��e+1T � 1
�T � 1

X�e f1 + op (1)g

=
T���2��eT + c��2��eT � T�

�wc
X�e f1 + op (1)g

=
T���2��eT

�wc
X�e f1 + op (1)g �a T��1=2��2��eT

1

rwc
B (re) : (26)

Since
T��1=2��2��eT

T 1=2
=
��2��eT

T 1��
=
ec(r2�re)T

1��

T 1��
> 1;

��1w
P�2
j=�e

Xj has a higher order than ��1w
P�e�1
j=�1

Xj and hence

1

�w

�2X
j=�1

Xj =
T���2��eT

�wc
X�e f1 + op (1)g �a T��1=2��2��eT

1

rwc
B (re) :

(2) For �1 2 B and �2 2 N1, we have

1

�w

�2X
j=�1

Xj =
1

�w

�fX
j=�1

Xj +
1

�w

�2X
j=�f+1

Xj .

The �rst term is

1

�w

�fX
j=�1

Xj =
T��

�f��1
T

�wc
X�e f1 + op (1)g �a T��1=2�

�f��1
T

1

rwc
B (re) :

The second term is

1

�w

�2X
j=�f+1

Xj

=
1

�w

�2X
j=�f+1

24 jX
k=�f+1

"k +X�e

35
= T 1=2

�2 � � f
�w

24 1

�2 � � f

�2X
j=�f+1

0@T�1=2 jX
k=�f+1

"k

1A35+ T 1=2 �2 � � f
�w

�
T�1=2X�e

�
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�a T 1=2
r2 � rf
rw

Z r2

rf

[B (s)�B (rf )] ds+ T 1=2
r2 � rf
rw

B (re)

= T 1=2
r2 � rf
rw

(Z r2

rf

[B (s)�B (rf )] ds�B (re)
)
: (27)

We know that ��1w
P�f
j=�1

Xj has a higher order than ��1w
P�2
j=�f+1

Xj and hence

1

�w

�2X
j=�1

Xj =
T��

�f��1
T

�wc
X�e f1 + op (1)g �a T��1=2�

�f��1
T

1

rwc
B (re) :

(3) For �1 2 N0 and �2 2 N1;

1

�w

�2X
j=�1

Xj =
1

�w

�e�1X
j=�1

Xj +
1

�w

�fX
j=�e

Xj +
1

�w

�2X
j=�f+1

Xj :

Since

1

�w

�e�1X
j=�1

Xj �a T 1=2
re � r1
rw

Z re

r1

B (s) ds from (25),

1

�w

�fX
j=�e

Xj =
T��

�f��e
T

�wc
X�e f1 + op (1)g �a T��1=2�

�f��e
T

1

rwc
B (re) ;

1

�w

�2X
j=�f+1

Xj �a T 1=2
r2 � rf
rw

(Z r2

rf

[B (s)�B (rf )] ds�B (re)
)

from (27),

it follows that ��1w
P�f
j=�e

Xj dominates ��1w
P�e�1
j=�1

Xj and ��1w
P�2
j=�f+1

Xj and hence

1

�w

�2X
j=�1

Xj =
T��

�f��e
T

�wc
X�e f1 + op (1)g �a T��1=2�

�f��e
T

1

crw
B (re) :

Lemma 8.3 De�ne the centered quantity ~Xt = Xt � ��1w
P�2
j=�1

Xj.
(1) For �1 2 N0 and �2 2 B;

~Xt =

8><>:
�T��

�2��e
T
�wc

X�e f1 + op (1)g if t 2 N0�
�t��eT � T��

�2��e
T
�wc

�
X�e f1 + op (1)g if t 2 B

:
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(2) For �1 2 B and �2 2 N1;

~Xt =

8><>:
�
�t��eT � T��

�f��1
T
�wc

�
X�e f1 + op (1)g if t 2 B

�T��
�f��1
T
�wc

X�e f1 + op (1)g if t 2 N1
:

(3) For �1 2 N0 and �2 2 N1;

~Xt =

8><>:
�T��

�f��e
T
�wc

X�e f1 + op (1)g if t 2 N0 [N1�
�t��eT � T��

�f��e
T
�wc

�
X�e f1 + op (1)g if t 2 B

:

Proof. (1) Suppose �1 2 N0 and �2 2 B. If t 2 N0;

~Xt = Xt � ��1w
�2X
j=�1

Xj = �
T���2��eT

�wc
X�e f1 + op (1)g ; (28)

where the second term dominates the �rst term due to the fact that

Xt �a T 1=2B (p) from Lemma 8.1

1

�w

�2X
j=�1

Xj �a T��1=2��2��eT

1

rwc
B (re) from Lemma 8.2.

If t 2 B;

~Xt = Xt � ��1w
�2X
j=�1

Xj =

"
�t��eT � T���2��eT

�wc

#
X�e f1 + op (1)g :

(2) Suppose �1 2 B and �2 2 N1. If t 2 B;

~Xt = Xt � ��1w
�2X
j=�1

Xj =

"
�t��eT � T��

�f��1
T

�wc

#
X�e f1 + op (1)g :

If t 2 N1;
~Xt = Xt � ��1w

�2X
j=�1

Xj = �
T��

�f��1
T

�wc
X�e f1 + op (1)g ;

where the second term dominates the �rst term due to the fact that

Xt=bTpc �a T 1=2 [B (p)�B (rf ) +B (re)] from Lemma 8.1

1

�w

�2X
j=�1

Xj �a T��1=2�
�f��1
T

1

rwc
B (re) from Lemma 8.2.
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(3) Suppose �1 2 N0 and �2 2 N1. If t 2 N0;

~Xt = Xt � ��1w
�2X
j=�1

Xj = �
T��

�f��e
T

�wc
X�e f1 + op (1)g ;

where the second term dominates the �rst term due to the fact that

Xt=bTpc �a T 1=2B (p) from Lemma 8.1

1

�w

�2X
j=�1

Xj �a T��1=2�
�f��e
T

1

rwc
B (re) from Lemma 8.2.

If t 2 B;

~Xt = Xt � ��1w
�2X
j=�1

Xj =

"
�t��eT � T��

�f��e
T

�wc

#
X�e f1 + op (1)g :

If t 2 N1;
~Xt = Xt � ��1w

�2X
j=�1

Xj = �
T��

�f��e
T

�wc
X�e f1 + op (1)g ;

due to the fact that Xt=bTpc �a T 1=2 [B (p)�B (rf ) +B (re)].

Lemma 8.4 The sample variance terms involving ~Xt behave as follows.
(1) For �1 2 N0 and �2 2 B;

�2X
j=�1

~X2
j�1 =

T��
2(�2��e)
T

2c
X2
�e f1 + op (1)g �a

T 1+��
2(�2��e)
T

2c
B (re)

2 :

(2) For �1 2 B and �2 2 N1;

�2X
j=�1

~X2
j�1 =

T��
2(�f��e)
T

2c
X2
�e f1 + op (1)g �a

T�+1�
2(�f��e)
T

2c
B (re)

2 :

(3) For �1 2 N0 and �2 2 N1;

�2X
j=�1

~X2
j�1 =

T��
2(�f��e)
T

2c
X2
�e f1 + op (1)g �a

T�+1�
2(�f��e)
T

2c
B (re)

2 :

Proof. (1) For �1 2 N0 and �2 2 B,
�2X
j=�1

~X2
j�1 =

�eX
j=�1

~X2
j�1 +

�2X
j=�e

~X2
j�1.
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The �rst term is

�e�1X
j=�1

~X2
j�1 =

�e�1X
j=�1

T 2��
2(�2��e)
T

�2wc
2

X2
�e f1 + op (1)g from Lemma 8.3

=
� e � �1
�2wc

2
T 2��

2(�2��e)
T X2

�e f1 + op (1)g �a
re � r1
r2wc

T 2��
2(�2��e)
T B (re) :

Given that
�2X
j=�e

�
2(j�1��e)
T =

�
2(�2��e)
T � ��2T

�2T � 1
=
T��

2(�2��e)
T

2c
f1 + op (1)g

�2X
j=�e

�j�1��eT =
��2��eT � ��1T

�T � 1
=
T���2��eT

c
f1 + op (1)g ;

the second term is
�2X
j=�e

~X2
j�1

=

�2X
j=�e

"
�j�1��eT � T���2��eT

�wc

#2
X2
�e f1 + op (1)g

=

�2X
j=�e

"
�
2(j�1��e)
T � 2�j�1��eT

T���2��eT

�wc
+
T 2��

2(�2��e)
T

�2wc
2

#
X2
�e f1 + op (1)g

=

"
T��

2(�2��e)
T

2c
� 2T

2��1�
2(�2��e)
T

rwc2
+
r2 � re + 1

T

r2wc
2

T 2��1�
2(�2��e)
T

#
X2
�e f1 + op (1)g

=
T��

2(�2��e)
T

2c
X2
�e f1 + op (1)g (since � > 2�� 1)

�a
T 1+��

2(�2��e)
T

2c
B (re)

2 :

Since 1 + � > 2�,
P�2
j=�e

~X2
j�1 dominates

P�e
j=�1

~X2
j�1 and hence

�2X
j=�1

~X2
j�1 =

T��
2(�2��e)
T

2c
X2
�e f1 + op (1)g �a

T 1+��
2(�2��e)
T

2c
B (re)

2 :

(2) For �1 2 B and �2 2 N1,
�2X
j=�1

~X2
j�1 =

�fX
j=�1

~X2
j�1 +

�2X
j=�f+1

~X2
j�1.
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Since

�fX
j=�1

~X2
j�1 =

�fX
j=�1

"
�j�1��eT � T��

�f��1
T

�wc

#2
X2
�e f1 + op (1)g �a

T�+1�
2(�f��e)
T

2c
B (re)

2 ;

�2X
j=�f+1

~X2
j�1 =

�2X
j=�f+1

T 2��
2(�f��1)
T

�2wc
2

X2
�e f1 + op (1)g �a

r2 � rf
r2wc

2
T 2��

2(�f��1)
T B (re)

2 ;

the quantity
P�f
j=�1

~X2
j�1 dominates

P�2
j=�f+1

~X2
j�1 and hence

�2X
j=�1

~X2
j�1 =

T��
2(�f��e)
T

2c
X2
�e f1 + op (1)g �a

T�+1�
2(�f��e)
T

2c
B (re)

2 :

(3) For �1 2 N0 and �2 2 N1,
�2X
j=�1

~X2
j�1 =

�e�1X
j=�1

~X2
j�1 +

�fX
j=�e

~X2
j�1 +

�2X
j=�f+1

~X2
j�1.

Since

�e�1X
j=�1

~X2
j�1 =

�e�1X
j=�1

T 2��
2(�f��e)
T

�2wc
2

X2
�e f1 + op (1)g �a T

2��
2(�f��e)
T

re � r1
r2wc

2
B (re)

2 ;

�fX
j=�e

~X2
j�1 =

�fX
j=�e

"
�j�1��eT � T��

�f��e
T

�wc

#2
X2
�e f1 + op (1)g �a T

�+1�
2(�f��e)
T

B (re)
2

2c
;

�2X
j=�f+1

~X2
j�1 =

�2X
j=�f+1

T 2��
2(�f��e)
T

�2wc
2

X2
�e f1 + op (1)g �a

r2 � rf
r2wc

2
T 2��

2(�f��e)
T B (re)

2 ;

the component
P�f
j=�e

~X2
j�1 dominates the other two terms and hence

�2X
j=�1

~X2
j�1 =

T��
2(�f��e)
T

2c
X2
�e f1 + op (1)g �a

T�+1�
2(�f��e)
T

2c
B (re)

2 :

Lemma 8.5 The sample covariance of ~Xt and "t behaves as follows.
(1) For �1 2 N0 and �2 2 B;

�2X
j=�1

~Xj�1"j =
�2X
j=�e

~Xj�1"j f1 + op (1)g �a T (�+1)=2��2��eT XcB (re) :
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(2) For �1 2 B and �2 2 N1;

�2X
j=�1

~Xj�1"j =

�fX
j=�1

~Xj�1"j f1 + op (1)g �a T (�+1)=2�
�f��e
T XcB (re) :

(3) For �1 2 N0 and �2 2 N1;

�2X
j=�1

~Xj�1"j =

�fX
j=�e

~Xj�1"j f1 + op (1)g �a T (�+1)=2�
�f��e
T XcB (re) :

Proof. (1) For �1 2 N0 and �2 2 B;

�2X
j=�1

~Xj�1"j =
�e�1X
j=�1

~Xj�1"j +
�2X
j=�e

~Xj�1"j .

The �rst term is

�e�1X
j=�1

~Xj�1"j =
�e�1X
j=�1

�T
���2��eT

�wc
X�e"j f1 + op (1)g

= �T
���2��eT

rwc

�
T�1=2X�e

�0@T�1=2 �e�1X
j=�1

"j

1A f1 + op (1)g
�a �

T���2��eT

rwc
B (re) [B (re)�B (r1)] :

The second term is

�2X
j=�e

~Xj�1"j

=

�2X
j=�e

"
�j�1��eT � T���2��eT

�wc

#
X�e"j f1 + op (1)g

=

24T�=2��2��eT

0@ 1

T�=2

�2X
j=�e

�
�(�2�j+1)
T "j

1A� ��2��eT

T 1=2��rwc

0@ 1p
T

�2X
j=�e

"j

1A35X�e f1 + op (1)g
= T�=2��2��eT

0@T��=2 �2X
j=�e

�
�(�2�j+1)
T "j

1AX�e f1 + op (1)g (since �=2 > �� 1=2)

�a T (�+1)=2��2��eT XcB (re) :
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Since (�+ 1) =2 > �,
P�2
j=�e

~Xj�1"j dominates
P�e�1
j=�1

~Xj�1"j and hence

�2X
j=�1

~Xj�1"j =
�2X
j=�e

~Xj�1"j f1 + op (1)g �a T (�+1)=2��2��eT XcB (re) :

(2) For �1 2 B and �2 2 N1,
�2X
j=�1

~Xj�1"j =

�fX
j=�1

~Xj�1"j +
�2X

j=�f+1

~Xj�1"j .

Since
�fX
j=�1

~Xj�1"j =

�fX
j=�1

"
�j�1��eT � T��

�f��1
T

�wc

#
X�e"j f1 + op (1)g �a T (�+1)=2�

�f��e
T XcB (re) ;

�2X
j=�f+1

~Xj�1"j =
�2X

j=�f+1

�T
��
�f��1
T

�wc
X�e"j f1 + op (1)g �a �

T��
�f��1
T

rwc
B (re) [B (r2)�B (rf )] ;

the quantity
P�f
j=�1

~Xj�1"j dominates
P�2
j=�f+1

~Xj�1"j and hence

�2X
j=�1

~Xj�1"j =

�fX
j=�1

~Xj�1"j f1 + op (1)g �a T (�+1)=2�
�f��e
T XcB (re) :

(3) For �1 2 N0 and �2 2 N1,
�2X
j=�1

~Xj�1"j =
�e�1X
j=�1

~Xj�1"j +

�fX
j=�e

~Xj�1"j +
�2X

j=�f+1

~Xj�1"j :

Since
�e�1X
j=�1

~Xj�1"j =
�e�1X
j=�1

�T
��
�f��e
T

�wc
X�e"j f1 + op (1)g �a �

T��
�f��e
T

rwc
B (re) [B (re)�B (r1)] ;

�fX
j=�e

~Xj�1"j =

�fX
j=�e

"
�j�1��eT � T��

�f��e
T

�wc

#
X�e"j f1 + op (1)g �a T (�+1)=2�

�f��e
T XcB (re) ;

�2X
j=�f+1

~Xj�1"j =
�2X

j=�f+1

�T
��
�f��e
T

�wc
X�e"j f1 + op (1)g �a �

T��
�f��e
T

rwc
B (re) [B (r2)�B (rf )] ;

and (�+ 1) =2 > �; the component
P�f
j=�e

~Xj�1"j dominates the other two terms and hence

�2X
j=�1

~Xj�1"j =

�fX
j=�e

~Xj�1"j f1 + op (1)g �a T (�+1)=2�
�f��e
T XcB (re) :
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Lemma 8.6

The sample covariance of ~Xj�1 and Xj � �TXj�1 behaves as follows.
(1) For �1 2 N0 and �2 2 B;

�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a
re � r1
rw

T��2��eT B (re)

Z re

r1

B (s) ds:

(2) For �1 2 B and �2 2 N1;
�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a T (�+1)=2�
�f��e
T XcB (re) :

(3) For �1 2 N0 and �2 2 N1;

�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a T�
�f��e
T B (re)

"
r2 � rf
rw

Z r2

rf

B (s) ds+
re � r1
rw

Z re

r1

B (s) ds

#
:

Proof. (1) When �1 2 N0 and �2 2 B;

�2X
j=�1

~Xj�1 (Xj � �TXj�1) =
�2X
j=�e

~Xj�1"j +
�e�1X
j=�1

~Xj�1
�
"j �

c

T�
Xj�1

�

=

�2X
j=�1

~Xj�1"j �
c

T�

�e�1X
j=�1

~Xj�1Xj�1: (29)

The �rst term is

�2X
j=�1

~Xj�1"j �a T (�+1)=2��2��eT XcB (re) from Lemma 8.5.

The second term is

c

T�

�e�1X
j=�1

~Xj�1Xj�1

=
c

T�

�e�1X
j=�1

�T
���2��eT

�wc
X�eXj�1 f1 + op (1)g

= �� e � �1
�w

T��2��eT

�
T�1=2X�e

�24 1

� e � �1

�e�1X
j=�1

�
T�1=2Xj�1

�35 f1 + op (1)g
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�a �
re � r1
rw

T��2��eT B (re)

Z re

r1

B (s) ds:

Since (�+ 1) =2 < 1, the quantity c
T�
P�e�1
j=�1

~Xj�1Xj�1 dominates
P�2
j=�1

~Xj�1"j and hence

�2X
j=�1

~Xj�1 (Xj � �TXj�1) = �
c

T�

�e�1X
j=�1

~Xj�1Xj�1 f1 + op (1)g �a
re � r1
rw

T��2��eT B (re)

Z re

r1

B (s) ds:

(2) When �1 2 B and �2 2 N;
�2X
j=�1

~Xj�1 (Xj � �TXj�1) =
�2X
j=�1

~Xj�1"j �
c

T�

�2X
j=�f+1

~Xj�1Xj�1:

Since

�2X
j=�1

~Xj�1"j �a T (�+1)=2�
�f��e
T XcB (re) from Lemma 8.5,

c

T�

�2X
j=�f+1

~Xj�1Xj�1 =
c

T�

�2X
j=�f+1

�T
��
�f��1
T

�wc
X�eXj�1 f1 + op (1)g �a �

r2 � rf
rw

T�
�f��1
T B (re)

Z r2

rf

B (s) ds;

and
T (�+1)=2�

�f��e
T

T�
�f��1
T

=
��1��eT

T (1��)=2
=
ec(r1�re)T

1��

T (1��)=2
> 1;

the component
P�2
j=�1

~Xj�1"j dominates c
T�
P�2
j=�f+1

~Xj�1Xj�1 and hence

�2X
j=�1

~Xj�1 (Xj � �TXj�1) =
�2X
j=�1

~Xj�1"j f1 + op (1)g �a T (�+1)=2�
�f��e
T XcB (re) :

(3) When �1 2 N0 and �2 2 N1;

�2X
j=�1

~Xj�1 (Xj � �TXj�1) =
�fX
j=�e

~Xj�1"j +
�e�1X
j=�1

~Xj�1
�
"j �

c

T�
Xj�1

�
+

�2X
j=�f+1

~Xj�1
�
"j �

c

T�
Xj�1

�

=

�2X
j=�1

~Xj�1"j �
c

T�

�e�1X
j=�1

~Xj�1Xj�1 �
c

T�

�2X
j=�f+1

~Xj�1Xj�1:

Since

�2X
j=�1

~Xj�1"j �a T (�+1)=2�
�f��e
T XcB (re) from Lemma 8.5,
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c

T�

�e�1X
j=�1

~Xj�1Xj�1 =
c

T�

�e�1X
j=�1

�T
��
�f��e
T

�wc
X�eXj�1 f1 + op (1)g �a �

re � r1
rw

T�
�f��e
T B (re)

Z re

r1

B (s) ds;

c

T�

�2X
j=�f+1

~Xj�1Xj�1 =
c

T�

�2X
j=�f+1

�T
��
�f��e
T

�wc
X�eXj�1 f1 + op (1)g �a �

r2 � rf
rw

T�
�f��e
T B (re)

Z r2

rf

B (s) ds;

and (�+ 1) =2 < 1; c
T�
P�e�1
j=1

~Xj�1Xj�1 and c
T�
P�2
j=�f+1

~Xj�1Xj�1 dominate
P�2
j=�1

~Xj�1"j

and hence

�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a T�
�f��e
T B (re)

"
r2 � rf
rw

Z r2

rf

B (s) ds+
re � r1
rw

Z re

r1

B (s) ds

#
:

Test asymptotics

The regression model used for the Dickey-Fuller test is

Xt = �r1;r2 + �r1;r2Xt�1 + "t; "t
iid� N

�
0; �2r2:rw

�
:

First, we calculate the asymptotic distribution of the Dickey-Fuller statistic under the alternative

hypothesis. Based on Lemma 8.4 and Lemma 8.6, we can obtain the limit distribution of

�̂r1;r2 � �T . When �1 2 N0 and �2 2 B;

T���2��eT

2c

�
�̂r1;r2 � �T

�
=

1

T�
�2��e
T

P�
j=1

~Xj�1 (Xj � �TXj�1)
2c

T 1+��
2(�2��e)
T

P�2
j=�1

~X2
j�1

L!
(re � r1)

R re
r1
B (s) ds

rwB (re)
;

when �1 2 B and �2 2 N1;

T (�+1)=2�
�f��e
T

2c

�
�̂r1;r2 � �T

�
=

1

T (�+1)=2�
�f��e
T

P�
j=1

~Xj�1 (Xj � �TXj�1)

2c

T�+1�
2(�f��e)
T

P�2
j=�1

~X2
j�1

L! Xc
B (re)

;

when �1 2 N0 and �2 2 N1;

T��
�f��e
T

2c

�
�̂r1;r2 � �T

�
=

1

T�
�f��e
T

P�
j=1

~Xj�1 (Xj � �TXj�1)

2c

T�+1�
2(�f��e)
T

P�2
j=�1

~X2
j�1
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L!
(r2 � rf )

R r2
rf
B (s) ds+ (re � r1)

R re
r1
B (s) ds

rwB (re)
:

The asymptotic distribution of Dickey-Fuller coe¢ cient statistic (denoted DF z) is as follows.

When �1 2 N0 and �2 2 B;

DF zr1;r2 = �w

�
�̂r1;r2 � 1

�
= �w (�T � 1) + �w

�
�̂r1;r2 � �T

�
= �w (�T � 1) + op

 
2crw

T 1��

��2��eT

!
= rwcT

1�� + op (1)!1;

when �1 2 B and �2 2 N1;

DF zr1;r2 = �w

�
�̂r1;r2 � 1

�
= �w (�T � 1) + �w

�
�̂r1;r2 � �T

�
= �w (�T � 1) + op

 
2crw

T (1��)=2

�
�f��e
T

!
= rwcT

1�� + op (1)!1;

when �1 2 N0 and �2 2 N1;

DF zr1;r2 = �w

�
�̂r1;r2 � 1

�
= �w (�T � 1) + �w

�
�̂r1;r2 � �T

�
= �w (�T � 1) + op

 
2crw

T

T��
�f��e
T

!
= rwcT

1�� + op (1)!1:

Therefore, for all cases, we have �̂r1;r2 � 1 �a T��c or T�
�
�̂r1;r2 � 1

�
L! c:

To obtain the asymptotic distribution of the Dickey-Fuller t-statistic, we need to estimate

the standard error of �̂r1;r2 . (1) When �1 2 N0 and �2 2 B;

V ar
�
�̂r1;r2

�
= ��1w

�2X
j=�1

�
~Xj � �̂r1;r2 ~Xj�1

�2

= ��1w

24�e�1X
j=�1

h
"j �

�
�̂r1;r2 � 1

�
~Xj�1

i2
+

�2X
j=�e

h
"j �

�
�̂r1;r2 � �T

�
~Xj�1

i235
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= ��1w

�2X
j=�1

"2j +
�
�̂r1;r2 � 1

�2
�w

�1
�e�1X
j=�1

~X2
j�1 +

�
�̂r1;r2 � �T

�2
��1w

�2X
j=�e

~X2
j�1

� 2
�
�̂r1;r2 � 1

�
��1w

�e�1X
j=�1

~Xj�1"j � 2
�
�̂r1;r2 � �T

�
��1w

�2X
j=�e

~Xj�1"j

=
�
�̂r1;r2 � �T

�2
��1w

�2X
j=�e

~X2
j�1 �a

2c

T�
(re � r1)2

r3w

�Z re

r1

B (s) ds

�2
:

The term
�
�̂r1;r2 � �T

�2
��1w

P�2
j=�e

~X2
j�1 dominates the other terms due to the fact that

�
�̂r1;r2 � 1

�2
�w

�1
�e�1X
j=�1

~X2
j�1 = Op

�
T�2�

�
Op

�
T 2��1�

2(�2��e)
T

�
= Op

�
T�1�

2(�2��e)
T

�
;

�
�̂r1;r2 � �T

�2
��1w

�2X
j=�e

~X2
j�1 = Op

 
1

T 2��
2(�2��e)
T

!
Op

�
T��

2(�2��e)
T

�
= Op

�
T��

�
;

2
�
�̂r1;r2 � 1

�
��1w

�e�1X
j=�1

~Xj�1"j = Op
�
T��

�
Op

 
��2��eT

T 1��

!
= Op

�
T�1��2��eT

�
;

2
�
�̂r1;r2 � �T

�
��1w

�2X
j=�e

~Xj�1"j = Op

 
1

T���2��eT

!
Op

 
��2��eT

T (1��)=2

!
= Op

�
T�(1+3�)=2

�
:

(2) When �1 2 B and �2 2 N1; we know that

~X�f+1 � �̂r1;r2 ~X�f � "�f+1

=
�
X�f+1 � �X

�
� �̂r1;r2

�
X�f � �X

�
� "�f+1

=
�
"�f+1 +X�e +X

� � �X
�
� �̂r1;r2

�
X�f � �X

�
� "�f+1

= X�e +X
� � ~X�f �

h
�̂r1;r2 � 1

i
~X�f

= Op

�
T 1=2

�
+Op (1)�Op

�
T 1=2�

�f��e
T

�
�Op

�
T 1=2���

�f��e
T

�
= � ~X�f = ��

�f��e
T X�e f1 + op (1)g from Lemma 8.3.

The variance of �̂r1;r2 is

V ar
�
�̂r1;r2

�
= ��1w

�2X
j=�1

�
~Xj � �̂r1;r2 ~Xj�1

�2
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= ��1w

8<:
�2X

j=�f+2

h
"j �

�
�̂r1;r2 � 1

�
~Xj�1

i2
+

�fX
j=�1

h
"j �

�
�̂r1;r2 � �T

�
~Xj�1

i2
+
h
~X�f+1 � �̂r1;r2 ~X2

�f
� "�f+1 + "�f+1

i2�
= ��1w

�2X
j=�1

"2j +
�
�̂r1;r2 � 1

�2
�w

�1
�2X

j=�f+2

~X2
j�1 +

�
�̂r1;r2 � �T

�2
��1w

�fX
j=�1

~X2
j�1

� 2
�
�̂r1;r2 � 1

�
��1w

�2X
j=�f+2

~Xj�1"j � 2
�
�̂r1;r2 � �T

�
��1w

�fX
j=�1

~Xj�1"j + �
�1
w
~X2
�f

= ��1w ~X2
�f
= ��1w �

2(�f��e)
T X2

�e f1 + op (1)g �a
1

rw
�
2(�f��e)
T B (re)

2 :

The term ��1w ~X2
�f
dominates the other terms due to the fact that�

�̂r1;r2 � 1
�2
�w

�1
�2X

j=�f+2

~X2
j�1 = Op

�
T�1�

2(�f��1)
T

�
;

�
�̂r1;r2 � �T

�2
��1w

�fX
j=�1

~X2
j�1 = Op

�
T�1

�
;

2
�
�̂r1;r2 � 1

�
��1w

�2X
j=�f+2

~Xj�1"j = Op

�
T�1�

�f��1
T

�
;

2
�
�̂r1;r2 � �T

�
��1w

�fX
j=�1

~Xj�1"j = Op
�
T�1

�
;

��1w ~X2
�f
= Op

�
�
2(�f��e)
T

�
:

(3) When �1 2 N0 and �2 2 N1;

~X�f+1 � �̂r1;r2 ~X�f � "�f+1

= X�e +X
� � ~X�f �

h
�̂r1;r2 � 1

i
~X�f

= Op

�
T 1=2

�
+ op (1)�Op

�
T 1=2�

�f��e
T

�
�Op

�
T 1=2���

�f��e
T

�
= � ~X�f = ��

�f��e
T X�e f1 + op (1)g from Lemma 8.3.

The variance of �̂r1;r2 is

V ar
�
�̂r1;r2

�
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= ��1w

�2X
j=�1

�
~Xj � �̂r1;r2 ~Xj�1

�2

= ��1w

8<:
�2X

j=�f+2

h
"j �

�
�̂r1;r2 � 1

�
~Xj�1

i2
+

�e�1X
j=�1

h
"j �

�
�̂r1;r2 � 1

�
~Xj�1

i2

+

�fX
j=�e

h
"j �

�
�̂r1;r2 � �T

�
~Xj�1

i2
+ ~X�f+1 � �̂r1;r2 ~X2

�f

9=;
2

= ��1w

�2X
j=�1

"2j +
�
�̂r1;r2 � 1

�2
�w

�1

24 �2X
j=�f+2

~X2
j�1 +

�e�1X
j=�1

~X2
j�1

35+ ��̂r1;r2 � �T�2 ��1w �fX
j=�e

~X2
j�1

� 2
�
�̂r1;r2 � 1

�
��1w

24 �2X
j=�f+2

~Xj�1"j +
�e�1X
j=�1

~Xj�1"j

35� 2��̂r1;r2 � �T� ��1w �fX
j=�e

~Xj�1"j + �
�1
w �2f

= ��1w ~X2
�f
=
�
2(�f��e)
T

�w
X2
�e f1 + op (1)g �a

�
2(�f��e)
T

rw
B (re)

2 :

The term ��1w ~X2
�f
dominates the other terms due to the fact that

�
�̂r1;r2 � 1

�2 1
�w

24 �2X
j=�f+2

~X2
j�1 +

�e�1X
j=�1

~X2
j�1

35 = Op

0@�2(�f��e)T

T

1A ;

�
�̂r1;r2 � �T

�2 1
�w

�fX
j=�e

~X2
j�1 = Op

�
1

T�

�
;

2
�
�̂r1;r2 � 1

� 1

�w

24 �2X
j=�f+2

~Xj�1"j +
�e�1X
j=�1

~Xj�1"j

35 = Op

 
�
�f��e
T

T

!
;

2
�
�̂r1;r2 � �T

� 1

�w

�fX
j=�e

~Xj�1"j = Op

�
1

T (1+�)=2

�
;

��1w ~X2
�f
= Op

�
�
2(�f��e)
T

�
:

The asymptotic distribution of the DF t-statistic can be calculated as follows. When �1 2 N0
and �2 2 B;

DF tr1;r2 =

 P�2
j=�1

~X2
j�1

�̂2

!1=2 �
�̂r1;r2 � 1

�
�a

T 1=2��2��eT r
3=2
w B (re)

2 (re � r1)
R re
r1
B (s) ds

!1:
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When �1 2 B and �2 2 N1;

DF tr1;r2 =

 P�2
j=�1

~X2
j�1

�̂2

!1=2 �
�̂r1;r2 � 1

�
�a
�
1

2
crw

�1=2
T (1��)=2 !1:

When �1 2 N0 and �2 2 N1;

DF tr1;r2 =

 P�2
j=�1

~X2
j�1

�̂2

!1=2 �
�̂r1;r2 � 1

�
�a
�
1

2
crw

�1=2
T (1��)=2 !1:

The date-stamping strategy of PWY

The origination of the bubble expansion and the termination of the bubble collapse based on

the backward DF test are identi�ed as

r̂e = inf
r22[r0;1]

n
r2 : BDFr2 > cv

�T
r2

o
and r̂f = inf

r22[r̂e+log(T )=T;1]

n
r2 : BDFr2 < cv

�T
r2

o
:

We know that when �T ! 0, cv�Tr2 !1.

The asymptotic distributions of the backward DF statistic under the alternative hypothesis

are

BDFr2 �a

8>><>>:
Fr2 (W ) if r2 2 N0

T 1=2�
�2��e
T r

3=2
w B(re)

2(re�r1)
R re
r1
B(s)ds

!1 if r2 2 B

T (1��)=2
�
1
2crw

�1=2 !1 if r2 2 N1

:

It is obvious that if r2 2 N0;

lim
T!1

Pr
n
BDFr2 > cv

�T
r2

o
= Pr fFr2 (W ) =1g = 0:

If r2 2 B, limT!1 Pr
n
BDFr2 > cv

�T
r2

o
= 1 provided that

cv
�T
r2

T 1=2�
�2��e
T

! 0. It implies that pro-

vided
cv
�T
r2

T 1=2
! 0, limT!1 Pr

n
BDFr2 > cv

�T
r2

o
= 1 for any r2 2 B. If r2 2 N1, limT!1 Pr

n
BDFr2 > cv

�T
r2

o
=

0 provided that T
(1��)=2

cv
�T
r2

! 0.

It follows that for any �; 
 > 0,

Pr fr̂e > re + �g ! 0 and Pr fr̂f < rf � 
g ! 0
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due to the fact that Pr
n
BDFre+a� > cv

�T
r2

o
! 1 for all 0 < a� < � and Pr

n
BDFrf�a
 > cv

�T
r2

o
!

1 for all 0 < a
 < 
. Since �; 
 > 0 is arbitrary and Pr fr̂e < reg ! 0 and Pr fr̂f > rfg ! 0

(given T (1��)=2

cv
�T
r2

! 0), we deduce that Pr fjr̂e � rej > �g ! 0 as T !1, provided that

1

cv
�T
r2

+
cv
�T
r2

T 1=2
! 0

and Pr fjr̂f � rf j > 
g ! 0, provided that

cv
�T
r2

T 1=2
+
T (1��)=2

cv
�T
r2

! 0.

Therefore, r̂e and r̂f are consistent estimators of re and rf .

The new date-stamping strategy

The origination of the bubble expansion and the termination of the bubble collapse based on

the backward sup DF test are identi�ed as

r̂e = inf
r22[r0;1]

n
r2 : BSDFr2 (r0) > scv

�T
r2

o
;

r̂f = inf
r22[r̂e+� log(T )=T;1]

n
r2 : BSDFr2 (r0) < scv

�T
r2

o
:

We know that when �T ! 0, scv�Tr2 !1.

The asymptotic distributions of the backward sup DF statistic under the alternative hypoth-

esis are

BSDFr2 (r0) �a

8>>><>>>:
F r0r2 (W ) if r2 2 N0

T 1=2��2��eT supr12[0;r2�r0]

�
r
3=2
w B(re)

2(re�r1)
R re
r1
B(s)ds

�
if r2 2 B

T (1��)=2 supr12[0;r2�r0]

n�
1
2crw

�1=2o!1 if r2 2 N1

:

It is obvious that if r2 2 N0;

lim
T!1

Pr
n
BSDFr2 (r0) > scv

�T
r2

o
= Pr

�
F r0r2 (W ) =1

	
= 0:

If r2 2 B, limT!1 Pr
n
BSDFr2 (r0) > scv

�T
r2

o
= 1 provided that

scv
�T
r2

T 1=2�
�2��e
T

! 0. It implies

that provided
scv

�T
r2

T 1=2
! 0, limT!1 Pr

n
BSDFr2 (r0) > scv

�T
r2

o
= 1 for any r2 2 B. If r2 2 N1,

limT!1 Pr
n
BSDFr2 (r0) > scv

�T
r2

o
= 0 provided that T

(1��)=2

scv
�T
r2

! 0.
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It follows that for any �; 
 > 0,

Pr fr̂e > re + �g ! 0 and Pr fr̂f < rf � 
g ! 0;

since Pr
n
BSDFre+a� (r0) > scv

�T
r2

o
! 1 for all 0 < a� < � and Pr

n
BSDFrf�a
 (r0) > scv

�T
r2

o
!

1 for all 0 < a
 < 
. Since �; 
 > 0 is arbitrary and Pr fr̂e < reg ! 0 and Pr fr̂f > rfg ! 0

(given T (1��)=2

scv
�T
r2

! 0), we deduce that Pr fjr̂e � rej > �g ! 0 as T !1, provided that

1

scv
�T
r2

+
scv

�T
r2

T 1=2
! 0

and Pr fjr̂f � rf j > 
g ! 0, provided that

scv
�T
r2

T 1=2
+
T (1��)=2

scv
�T
r2

! 0.

Therefore, r̂e and r̂f are consistent estimators of re and rf .

APPENDIX B. Date-stamping strategies (two bubbles)

Notation and lemmas

� The two bubble periods are B1 = [�1e; �1f ] and B2 = [�2e; �2f ] , where �1e = bTr1ec,

�1f = bTr1fc, �2e = bTr2ec and �2f = bTr2fc.

� The normal periods are N0 = [1; �1e); N1 = (�1f ; �2e); N2 = (�2f ; � ], where � = bTrc is

the last observation of the sample.

� We assume that �1f � �1e > �2f � �2e.

We use the data generating process

Xt =

8<:
Xt�1 + "t for t 2 N0
�TXt�1 + "t for t 2 Bi with i = 1; 2

X�
� if
+
Pt
k=� if+1

"k for t 2 Ni with i = 1; 2
; (30)

where �T = 1 + cT�� with c > 0 and � 2 (0; 1) ; "t
iid� N

�
0; �2

�
and X�

� if
= X� ie + X� with

X� = Op (1) for i = 1; 2. We have the following lemmas.
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Lemma 8.7 Under the data generating process (30),
(1) For t 2 N0, Xt=bTpc �a T 1=2B (p).
(2) For t 2 Bi with i = 1; 2, Xt=bTpc = �t�� ieT X� ie f1 + op (1)g �a T 1=2�

t�� ie
T B (rie) :

(3) For t 2 Ni with i = 1; 2, Xt=bTpc �a T 1=2 [B (p)�B (rif ) +B (rie)] :

Lemma 8.8 Under the data generating process (30),
(1) For �1 2 Ni�1 and �2 2 Bi with i = 1; 2,

1

�w

�2X
j=�1

Xj =
T���2�� ieT

�wc
X� ie f1 + op (1)g �a T��1=2�

�2�� ie
T

1

rwc
B (rie) :

(2) For �1 2 Bi and �2 2 Ni with i = 1; 2,

1

�w

�2X
j=�1

Xj =
T��

� if��1
T

�wc
X� ie f1 + op (1)g �a T��1=2�

� if��1
T

1

rwc
B (rie) :

(3) For �1 2 Ni�1 and �2 2 Ni with i = 1; 2,

1

�w

�2X
j=�1

Xj = X� ie
T��

� if�� ie
T

�wc
f1 + op (1)g �a T��1=2�

� if�� ie
T

1

rwc
B (rie) :

(4) For �1 2 N0 and �2 2 N2;

1

�w

�2X
j=�1

Xj =
T��

�1f��1e
T

�wc
X�1e f1 + op (1)g �a T��1=2�

�1f��1e
T

1

rwc
B (r1e) :

(5) For �1 2 B1 and �2 2 B2;

1

�w

�2X
j=�1

Xj =

8<:
T��

�1f��1
T
�wc

X�1e f1 + op (1)g �a T��1=2�
�1f��1
T

1
rwc

B (r1e) if �1f � �1 > �2 � �2e
T��

�2f��2e
T
�wc

X�2e f1 + op (1)g �a T��1=2�
�2f��2e
T

1
rwc

B (r2e) if �1f � �1 � �2 � �2e
:

(6) For �1 2 B1 and �2 2 N2;

1

�w

�2X
j=�1

Xj =

8<:
T��

�1f��1
T
�wc

X�1e f1 + op (1)g �a T��1=2�
�1f��1
T

1
rwc

B (r1) if �1f � �1 > �2f � �2e
T��

�2f��2e
T
�wc

X�2e f1 + op (1)g �a T��1=2�
�2f��2e
T

1
rwc

B (r2e) if �1f � �1 � �2f � �2e
:

(7) For �1 2 N0 and �2 2 B2;

1

�w

�2X
j=�1

Xj =
T��

�1f��1e
T

�wc
X�1e f1 + op (1)g �a T��1=2�

�1f��1e
T

1

rwc
B (r1e) :
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Lemma 8.9 De�ne the centered quantity ~Xt = Xt � ��1w
P�2
j=�1

Xj.
(1) For �1 2 Ni�1 and �2 2 Bi with i = 1; 2,

~Xt =

8><>:
�T��

�2��ie
T
�wc

X� ie f1 + op (1)g if t 2 Ni�1�
�t�� ieT � T��

�2��ie
T
�wc

�
X� ie f1 + op (1)g if t 2 Bi

:

(2) For �1 2 Bi and �2 2 Ni with i = 1; 2,

~Xt =

8><>:
�
�t�� ieT � T��

�if��1
T
�wc

�
X� ie f1 + op (1)g if t 2 Bi

�T��
�if��1
T
�wc

X� ie f1 + op (1)g if t 2 Ni
:

(3) For �1 2 Ni�1 and �2 2 Ni with i = 1; 2,

~Xt =

8><>:
�T��

�if��ie
T
�wc

X� ie f1 + op (1)g if t 2 Ni�1 [Ni�
�t�� ieT � T��

�if��ie
T
�wc

�
X� ie f1 + op (1)g if t 2 Bi

:

(4) For �1 2 N0 and �2 2 N2;

~Xt =

8><>:
�T��

�1f��1e
T
�wc

X�1e f1 + op (1)g if t 2 Ni�
�t�� ieT X� ie �

T��
�1f��1e
T
�wc

X�1e

�
f1 + op (1)g if t 2 Bi; i = 1; 2;

:

(5) For �1 2 B1 and �2 2 B2, if �1f � �1 > �2 � �2e;

~Xt =

8><>:
�
�t�� ieT X� ie �

T��
�1f��1
T
�wc

X�1e

�
f1 + op (1)g if t 2 Bi; i = 1; 2;

�T��
�1f��1
T
�wc

X�1e f1 + op (1)g if t 2 N1

and if �1f � �1 � �2 � �2e

~Xt =

8><>:
�
�t�� ieT X� ie �

T��
�2��2e
T
�wc

X�2e

�
f1 + op (1)g if t 2 Bi; i = 1; 2;

�T��
�2��2e
T
�wc

X�2e f1 + op (1)g if t 2 N1
:

(6) For �1 2 B1 and �2 2 N2; if �1f � �1 > �2f � �2e;

~Xt =

8><>:
�
�t�� ieT X� ie �

T��
�1f��1
T
�wc

X�1e

�
f1 + op (1)g if t 2 Bi; i = 1; 2;

�T��
�1f��1
T
�wc

X�1e f1 + op (1)g if t 2 Ni; i = 1; 2;
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and if �1f � �1 � �2f � �2e;

~Xt =

8><>:
�
�t�� ieT X� ie �

T��
�2f��2e
T
�wc

X�2e

�
f1 + op (1)g if t 2 Bi; i = 1; 2;

�T��
�2f��2e
T
�wc

X�2e f1 + op (1)g if t 2 Ni; i = 1; 2;
:

(7) For �1 2 N0 and �2 2 B2;

~Xt =

8><>:
�T��

�1f��1e
T
�wc

X�1e f1 + op (1)g if t 2 Ni; i = 1; 2;�
�t�� ieT X� ie �

T��
�1f��1e
T
�wc

X�1e

�
f1 + op (1)g if t 2 Bi; i = 1; 2;

:

Lemma 8.10 The sample variance of ~Xt has the following limit form:
(1) For �1 2 Ni�1 and �2 2 Bi with i = 1; 2,

�2X
j=�1

~X2
j�1 =

T��
2(�2�� ie)
T

2c
X2
� ie f1 + op (1)g �a

T 1+��
2(�2�� ie)
T

2c
B (rie)

2 :

(2) For �1 2 Bi and �2 2 Ni with i = 1; 2,

�2X
j=�1

~X2
j�1 =

T��
2(� if�� ie)
T

2c
X2
� ie f1 + op (1)g �a

T�+1�
2(� if�� ie)
T

2c
B (rie)

2 :

(3) For �1 2 Ni�1 and �2 2 Ni with i = 1; 2,

�2X
j=�1

~X2
j�1 =

T��
2(� if�� ie)
T

2c
X2
� ie f1 + op (1)g �a

T�+1�
2(� if�� ie)
T

2c
B (rie)

2 :

(4) For �1 2 N0 and �2 2 N2;

�2X
j=�1

~X2
j�1 =

T��
2(�1f��1e)
T

2c
X2
�1e f1 + op (1)g �a

T�+1�
2(�1f��1e)
T

2c
B (r1e)

2 :

(5) For �1 2 B1 and �2 2 B2;

�2X
j=�1

~X2
j�1 =

T��
2(�1f��1e)
T

2c
X2
�1e f1 + op (1)g �a

T�+1�
2(�1f��1e)
T

2c
B (r1e)

2 :

(6) For �1 2 B1 and �2 2 N2; if ;

�2X
j=�1

~X2
j�1 =

8><>:
T��

2(�1f��1e)
T
2c X2

�1e f1 + op (1)g �a
T�+1�

2(�1f��1e)
T
2c B (r1e)

2 if �1f � �1 > �2f � �2e
T��

2(�2f��2e)
T
2c X2

�2e f1 + op (1)g �a
T�+1�

2(�2f��2e)
T
2c B (r2e)

2 if �1f � �1 � �2f � �2e
:
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(7) For �1 2 N0 and �2 2 B2;

�2X
j=�1

~X2
j�1 =

T��
2(�1f��1e)
T

2c
X2
�1e f1 + op (1)g �a

T�+1�
2(�1f��1e)
T

2c
B (r1e)

2 :

Lemma 8.11 The sample covariance of ~Xt and "t has the following limit form:
(1) For �1 2 Ni�1 and �2 2 Bi with i = 1; 2,

�2X
j=�1

~Xj�1"j �a T (�+1)=2��2�� ieT XcB (rie) :

(2) For �1 2 Bi and �2 2 Ni with i = 1; 2,
�2X
j=�1

~Xj�1"j �a T (�+1)=2�
� if�� ie
T XcB (rie) :

(3) For �1 2 Ni�1 and �2 2 Ni with i = 1; 2,
�2X
j=�1

~Xj�1"j �a T (�+1)=2�
� if�� ie
T XcB (rie) :

(4) For �1 2 N0 and �2 2 N2;
�2X
j=�1

~Xj�1"j �a T (1+�)=2�
�1f��1e
T XcB (r1e) :

(5) For �1 2 B1 and �2 2 B2;
�2X
j=�1

~Xj�1"j �a T (�+1)=2�
�1f��1e
T XcB (r1e) :

(6) For �1 2 B1 and �2 2 N2; ;

�2X
j=�1

~Xj�1"j �a

(
T (1+�)=2�

�1f��1e
T XcB (r1e) if �1f � �1 > �2f � �2e

T (�+1)=2�
�2f��2e
T XcB (r2e) if �1f � �1 � �2f � �2e

:

(7) For �1 2 N0 and �2 2 B2;
�2X
j=�1

~Xj�1"j �a T (�+1)=2�
�1f��1e
T XcB (r1e) :
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Lemma 8.12 The sample covariance of ~Xj�1 and Xj � �TXj�1 has the following limit form:
(1) For �1 2 Ni�1 and �2 2 Bi with i = 1; 2;

�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a
rie � r1
rw

T��2�� ieT B (rie)

Z rie

r1

B (s) ds:

(2) For �1 2 Bi and �2 2 Ni with i = 1; 2;
�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a T (�+1)=2�
� if�� ie
T XcB (rie) :

(3) For �1 2 Ni�1 and �2 2 Ni with i = 1; 2;
�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a T�
� if�� ie
T B (rie)

"
r2 � rif
rw

Z r2

rif

B (s) ds+
rie � r1
rw

Z rie

r1

B (s) ds

#
:

(4) For �1 2 N0 and �2 2 N2;
�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a T�
�1f��1e
T B (r1e)

"
r2e � r1f

rw

Z r2e

r1f

B (s) ds

+
r2e � r1f

rw

Z r2e

r1f

B (s) ds+
r2 � r2f
rw

Z r2

r2f

B (s) ds

#
:

(5) For �1 2 B1 and �2 2 B2,
�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a T (�+1)=2�
�1f��1e
T XcB (r1e) :

(6) For �1 2 B1 and �2 2 N2; if �1f � �1 > �2f � �2e;
�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a

"
r2e � r1f

rw

Z r2e

r1f

B (s) ds+
r2 � r2f
rw

Z r2

r2f

B (s) ds

#
T�

�1f��1
T B (r1e)

and if �1f � �1 � �2f � �2e;
�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a

"
r2e � r1f

rw

Z r2e

r1f

B (s) ds+
r2 � r2f
rw

Z r2

r2f

B (s) ds

#
T�

�2f��2e
T B (r2e) :

(7) For �1 2 N0 and �2 2 B2;
�2X
j=�1

~Xj�1 (Xj � �TXj�1) �a T�
�1f��1e
T B (r1e)

"
r1e � r1
rw

Z r1e

r1

B (s) ds+
r2e � r1f

rw

Z r2e

r1f

B (s) ds

#
:

We refer to Appendix A for the proof of Lemma 8.7, Lemma 8.8, Lemma 8.9, Lemma 8.10,

Lemma 8.11 and Lemma 8.12. A more detailed proof of Appendix B is available online at

https://sites.google.com/site/shupingshi/TN_GSADF.pdf?attredirects=0&d=1.
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Test asymptotics

The regression model for the Dickey-Fuller test is

Xt = �r1;r2 + �r1;r2Xt�1 + "t; "t
iid� N

�
0; �2r2:rw

�
:

First, we calculate the asymptotic distribution of the Dickey-Fuller statistic under the alternative

hypothesis. Based on Lemma 8.10 and Lemma 8.12, we can obtain the limit distribution of

�̂r1;r2 � �T . When �1 2 Ni�1 and �2 2 Bi with i = 1; 2,

T���2�� ieT

2c

�
�̂T � �T

�
L!
(rie � r1)

R rie
r1

B (s) ds

rwB (rie)
;

when �1 2 Bi and �2 2 Ni with i = 1; 2,

T (�+1)=2�
� if�� ie
T

2c

�
�̂T � �T

�
L! Xc
B (rie)

;

when �1 2 Ni�1 and �2 2 Ni with i = 1; 2,

T��
� if�� ie
T

2c

�
�̂T � �T

�
L!
(r2 � rif )

R r2
rif
B (s) ds+ (rie � r1)

R rie
r1

B (s) ds

rwB (rie)
;

when �1 2 N0 and �2 2 N2;

T��
�1f��1e
T

2c

�
�̂T � �T

�
L!
(r2e � r1f )

R r2e
r1f

B (s) ds+ (r2e � r1f )
R r2e
r1f

B (s) ds+ (r2 � r2f )
R r2
r2f

B (s) ds

rwB (r1e)
;

when �1 2 B1 and �2 2 B2,

T (�+1)=2�
�1f��1e
T

�
�̂T � �T

�
L! 2cXcB (r1e)

�1 ;

when �1 2 B1 and �2 2 N2; if �1f � �1 > �2f � �2e;

T (�+1)=2�
�1f��1
T

�
�̂T � �T

�
L!
(r2e � r1f )

R r2e
r1f

B (s) ds+ (r2 � r2f )
R r2
r2f

B (s) ds

rwB (r1e)

and if �1f � �1 � �2f � �2e;

T (�+1)=2�
�2f��2e
T

�
�̂T � �T

�
L!
(r2e � r1f )

R r2e
r1f

B (s) ds+ (r2 � r2f )
R r2
r2f

B (s) ds

rwB (r2e)
;
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when �1 2 N0 and �2 2 B2;

T��
�1f��1e
T

2c

�
�̂T � �T

�
L!
(r1e � r1)

R r1e
r1

B (s) ds+ (r2e � r1f )
R r2e
r1f

B (s) ds

rwB (r1e)
:

The asymptotic distribution of Dickey-Fuller coe¢ cient statistic is

DF zr1;r2 = rwcT
1�� + op (1)!1:

for all cases, which implies that �̂r1;r2 � 1 �a T��c or T�
�
�̂r1;r2 � 1

�
L! c:

To obtain the asymptotic distribution of the Dickey-Fuller t-statistic, we need to estimate

the standard error of �̂r1;r2 . When �1 2 Ni�1 and �2 2 Bi with i = 1; 2,

V ar
�
�̂r1;r2

�
�a

2c

T�
(rie � r1)2

r3w

�Z rie

r1

B (s) ds

�2
;

when �1 2 Bi and �2 2 Ni with i = 1; 2;

V ar
�
�̂r1;r2

�
�a �

2(� if�� ie)
T r�1w B (rie)

2 ;

when �1 2 Ni�1 and �2 2 Ni with i = 1; 2;

V ar
�
�̂r1;r2

�
�a �

2(� if�� ie)
T r�1w B (rie)

2 ;

when �1 2 N0 and �2 2 N2,

V ar
�
�̂r1;r2

�
�a �

2(�1f��1e)
T r�1w B (r1e)

2 ;

when �1 2 B1 and �2 2 B2,

V ar
�
�̂r1;r2

�
�a �

2(�1f��1e)
T r�1w B (r1e)

2 ;

when �1 2 B1 and �2 2 N2,

V ar
�
�̂r1;r2

�
�a

8<: T�
2(�1f��1e)
T B (r2e)

2 if �1f � �1 > �2f � �2e
T�

2(�2f��2e)
T B (r2e) if �1f � �1 � �2f � �2e

;

when �1 2 N0 and �2 2 B2;

V ar
�
�̂r1;r2

�
�a

1

rw
�
2(�1f��1e)
T B (r1e)

2 :
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The asymptotic distributions of the DF t-statistic can be calculated as follows. When �1 2

Ni�1 and �2 2 Bi with i = 1; 2;

DF tr1;r2 �a T
1=2��2�� ieT

r
3=2
w B (rie)

2 (rie � r1)
R rie
r1

B (s) ds
!1;

and for all other cases considered,

DF tr1;r2 =

 P�2
j=�1

~X2
j�1

�̂2

!1=2 �
�̂r1;r2 � 1

�
�a
�
1

2
crw

�1=2
T (1��)=2 !1:

The date-stamping strategy of PWY

The origination of the bubble expansion r1e; r2e and the termination of the bubble collapse

r1f ; r2f based on the backward DF test are identi�ed as

r̂1e = inf
r22[r0;1]

n
r2 : BDFr2 > cv

�T
r2

o
;

r̂1f = inf
r22[r̂1e+log(T )=T;1]

n
r2 : BDFr2 < cv

�T
r2

o
;

r̂2e = inf
r22(r̂1f ;1]

n
r2 : BDFr2 > cv

�T
r2

o
;

r̂2f = inf
r22[r̂2e+log(T )=T;1]

n
r2 : BDFr2 < cv

�T
r2

o
:

We know that when �T ! 0, cv�Tr2 !1.

The asymptotic distributions of the backward DF statistic under the alternative hypothesis

are (given r1 2 N0 and �1f � �1e > �2f � �2e)

BDFr2 �a

8>>>>>>><>>>>>>>:

Fr2 (W ) if r2 2 N0
T 1=2��2��1eT

r
3=2
w B(r1e)

2(r1e�r1)
R r1e
r1

B(s)ds
if r2 2 B1

T (1��)=2
�
1
2crw

�1=2
if r2 2 N1

T (1��)=2
�
1
2crw

�1=2
if r2 2 B2

T (1��)=2
�
1
2crw

�1=2
if r2 2 N2

:

It is obvious that if r2 2 N0;

lim
T!1

Pr
n
BDFr2 > cv

�T
r2

o
= Pr fFr2 (W ) =1g = 0:
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If r2 2 B1, limT!1 Pr
n
BDFr2 > cv

�T
r2

o
= 1 provided that

cv
�T
r2

T 1=2�
�2��1e
T

! 0. It implies that

provided that
cv
�T
r2

T 1=2
! 0, limT!1 Pr

n
BDFr2 > cv

�T
r2

o
= 1 for any r2 2 B1. If r2 2 N1 [ N2,

limT!1 Pr
n
BDFr2 > cv

�T
r2

o
= 0 provided that T

(1��)=2

cv
�T
r2

! 0. If r2 2 B2, limT!1 Pr
n
BDFr2 > cv

�T
r2

o
=

1 provided that
cv
�T
r2

T (1��)=2
! 0.

It follows that for any �; 
 > 0,

Pr fr̂1e > r1e + �g ! 0 and Pr fr̂1f < r1f � 
g ! 0;

due to the fact that Pr
n
BDFr1e+a� > cv

�T
r2

o
! 1 for all 0 < a� < � and Pr

n
BDFr1f�a
 > cv

�T
r2

o
!

1 for all 0 < a
 < 
. Since �; 
 > 0 is arbitrary and Pr fr̂1e < r1eg ! 0 (given 1

cv
�T
r2

) and

Pr fr̂1f > r1fg ! 0 (given T (1��)=2

cv
�T
r2

! 0), we deduce that Pr fjr̂1e � r1ej > �g ! 0 as T ! 1,

provided that
1

cv
�T
r2

+
cv
�T
r2

T 1=2
! 0

and Pr fjr̂1f � r1f j > 
g ! 0, provided that

cv
�T
r2

T 1=2
+
T (1��)=2

cv
�T
r2

! 0.

We can see that the date-stamping strategy can consistently estimate r1e and r1f .

For any �; � > 0,

Pr fr̂2e > r2e + �g ! 0 and Pr fr̂2f < r2f � �g ! 0;

due to the fact that Pr
n
BDFr2e+a� > cv

�T
r2

o
! 1 for all 0 < a� < � and Pr

n
BDFr2f�a� > cv

�T
r2

o
!

1 for all 0 < a� < �. Since �; � > 0 is arbitrary and Pr fr1f < r̂2e < r2eg ! 0 (given
T (1��)=2

cv
�T
r2

! 0) and Pr fr̂2f > r2fg ! 0 (given T (1��)=2

cv
�T
r2

), we deduce that Pr fjr̂2e � r2ej > �g ! 0

and Pr fjr̂2f � r2f j > 
g ! 0 as T !1, provided that

T (1��)=2

cv
�T
r2

+
cv
�T
r2

T (1��)=2
! 0:

Since T (1��)=2

cv
�T
r2

and
cv
�T
r2

T (1��)=2
can not converge to zero simultaneously, the strategy can not esti-

mate r2e and r2f consistently when �1f � �1e > �2f � �2e.
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The new date-stamping strategy

The origination of the bubble expansion r1e; r2e and the termination of the bubble collapse

r1f ; r2f based on the backward sup DF test are identi�ed as

r̂1e = inf
r22[r0;1]

n
r2 : BSDFr2 (r0) > scv

�T
r2

o
;

r̂1f = inf
r22[r̂1e+� log(T )=T;1]

n
r2 : BSDFr2 (r0) < scv

�T
r2

o
;

r̂2e = inf
r22(r̂1f ;1]

n
r2 : BSDFr2 (r0) > scv

�T
r2

o
,

r̂2f = inf
r22[r̂2e+� log(T )=T;1]

n
r2 : BSDFr2 (r0) < scv

�T
r2

o
:

We know that when �T ! 0, scv�Tr2 !1.

The asymptotic distributions of the backward sup DF statistic under the alternative hypoth-

esis are (given �1f � �1e > �2f � �2e)

BSDFr2 (r0) �a

8>>>>>>>>>>>><>>>>>>>>>>>>:

F r0r2 (W ) if r2 2 N0
T 1=2��2��1eT sup

r12[0;r2�r0]

�
r
3=2
w B(r1e)

2(r1e�r1)
R r1e
r1

B(s)ds

�
if r2 2 B1

T (1��)=2 sup
r12[0;r2�r0]

�
1
2crw

�1=2
if r2 2 N1

T 1=2��2��2eT sup
r12[0;r2�r0]

�
r
3=2
w B(r2e)

2(r2e�r1)
R r2e
r1

B(s)ds

�
if r2 2 B2

T (1��)=2 sup
r12[0;r2�r0]

�
1
2crw

�1=2
if r2 2 N2

:

It is obvious that if r2 2 N0;

lim
T!1

Pr
n
BSDFr2 (r0) > scv

�T
r2

o
= Pr

�
F r0r2 (W ) =1

	
= 0:

If r2 2 B1, limT!1 Pr
n
BSDFr2 (r0) > scv

�T
r2

o
= 1 provided that

scv
�T
r2

T 1=2�
�2��1e
T

! 0. It implies

that provided that
scv

�T
r2

T 1=2
! 0, limT!1 Pr

n
BSDFr2 (r0) > scv

�T
r2

o
= 1 for any r2 2 B1. If

r2 2 B2, limT!1 Pr
n
BSDFr2 (r0) > scv

�T
r2

o
= 1 provided that

scv
�T
r2

T 1=2�
�2��2e
T

! 0. It implies

that provided that
scv

�T
r2

T 1=2
! 0, limT!1 Pr

n
BSDFr2 (r0) > scv

�T
r2

o
= 1 for any r2 2 B2. If

r2 2 N1 [N2, limT!1 Pr
n
BSDFr2 (r0) > scv

�T
r2

o
= 0 provided that T

(1��)=2

scv
�T
r2

! 0.

63



It follows that for any �; 
 > 0,

Pr fr̂1e > r1e + �g ! 0 and Pr fr̂1f < r1f � 
g ! 0;

since Pr
n
BSDFr1e+a� (r0) > scv

�T
r2

o
! 1 for all 0 < a� < � and Pr

n
BSDFr1f�a
 (r0) > scv

�T
r2

o
!

1 for all 0 < a
 < 
. Since �; 
 > 0 is arbitrary and Pr fr̂1e < r1eg ! 0 (given 1

scv
�T
r2

) and

Pr fr̂1f > r1fg ! 0 (given T (1��)=2

scv
�T
r2

! 0), we deduce that Pr fjr̂1e � r1ej > �g ! 0 as T ! 1,

provided that
1

scv
�T
r2

+
scv

�T
r2

T 1=2
! 0

and Pr fjr̂1f � r1f j > 
g ! 0, provided that

scv
�T
r2

T 1=2
+
T (1��)=2

scv
�T
r2

! 0;

For any �; � > 0,

Pr fr̂2e > r2e + �g ! 0 and Pr fr̂2f < r2f � �g ! 0;

since Pr
n
BSDFr2e+a� (r0) > scv

�T
r2

o
! 1 for all 0 < a� < � and Pr

n
BSDFr2f�a� (r0) > scv

�T
r2

o
!

1 for all 0 < a� < �. Since �; � > 0 is arbitrary and Pr fr̂2e < r2eg ! 0 (given T (1��)=2

scv
�T
r2

!

0) and Pr fr̂2f > r2fg ! 0 (given T (1��)=2

scv
�T
r2

), we deduce that Pr fjr̂2e � r2ej > �g ! 0 and

Pr fjr̂2f � r2f j > 
g ! 0 as T !1, provided that

T (1��)=2

scv
�T
r2

+
scv

�T
r2

T 1=2
! 0:

Therefore, the date-stamping strategy based on the generalized sup ADF test can consistently

estimate r1e, r1f , r2e and r2f .

Sequential implementation of the date-stamping strategy of PWY

The origination of the bubble expansion r1e; r2e and the termination of the bubble collapse

r1f ; r2f based on the backward DF test are identi�ed as

r̂1e = inf
r22[r0;1]

n
r2 : BDFr2 > cv

�T
r2

o
;
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r̂1f = inf
r22[r̂1e+log(T )=T;1]

n
r2 : BDFr2 < cv

�T
r2

o
;

r̂2e = inf
r22(r̂1f+"T ;1]

n
r2 :r̂1f BDFr2 > cv

�T
r2

o
;

r̂2f = inf
r22[r̂2e+log(T )=T;1]

n
r2 :r̂1f BDFr2 < cv

�T
r2

o
:

where r̂1fBDFr2 is the backward DF statistic calculate over (r̂1f ; r2]. We know that when

�T ! 0, cv�Tr2 !1.

The asymptotic distributions of the backward DF statistic under the alternative hypothesis

are (given �1f � �1e > �2f � �2e)

BDFr2 �a

8>><>>:
Fr2 (W ) if r1 2 N0 and r2 2 N0

T 1=2��2��1eT
r
3=2
w B(r1e)

2(r1e�r1)
R r1e
r1

B(s)ds
if r1 2 N0 and r2 2 B1

T (1��)=2
�
1
2crw

�1=2
if r1 2 N0 and r2 2 N1

and

r̂1fBDFr2 �a

8>><>>:
Fr2 (W ) if r2 2 N1

T 1=2��2��2eT
r
3=2
w B(rie)

2(rie�r1)
R rie
r1

B(s)ds
if r2 2 B2

T (1��)=2
�
1
2crw

�1=2
if r2 2 N2

:

It is obvious that if r2 2 N0;

lim
T!1

Pr
n
BDFr2 > cv

�T
r2

o
= Pr fFr2 (W ) =1g = 0:

If r2 2 B1, limT!1 Pr
n
BDFr2 > cv

�T
r2

o
= 1 provided that

cv
�T
r2

T 1=2�
�2��1e
T

! 0. So, provided that

cv
�T
r2

T 1=2
! 0, limT!1 Pr

n
BDFr2 > cv

�T
r2

o
= 1 for any r2 2 B1. If r2 2 N1, limT!1 Pr

n
BDFr2 > cv

�T
r2

o
=

0 provided that T
(1��)=2

cv
�T
r2

! 0 and limT!1 Pr
n
r̂1fBDFr2 > cv

�T
r2

o
= Pr fFr2 (W ) =1g = 0: If

r2 2 B2, limT!1 Pr
n
r̂1fBDFr2 > cv

�T
r2

o
= 1 provided that

cv
�T
r2

T 1=2�
�2��2e
T

! 0. It implies that

provided that
cv
�T
r2

T 1=2
! 0, limT!1 Pr

n
r̂1fBDFr2 > cv

�T
r2

o
= 1 for any r2 2 B2. If r2 2 N2,

limT!1 Pr
n
r̂1fBDFr2 > cv

�T
r2

o
= 0 provided that T

(1��)=2

cv
�T
r2

! 0.

It follows that for any �; 
 > 0,

Pr fr̂1e > r1e + �g ! 0 and Pr fr̂1f < r1f � 
g ! 0;
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since Pr
n
BDFr1e+a� > cv

�T
r2

o
! 1 for all 0 < a� < � and Pr

n
BDFr1f�a
 > cv

�T
r2

o
! 1

for all 0 < a
 < 
. Since �; 
 > 0 is arbitrary and Pr fr̂1e < r1eg ! 0 (given 1

cv
�T
r2

) and

Pr fr̂1f > r1fg ! 0 (given T (1��)=2

cv
�T
r2

! 0), we deduce that Pr fjr̂1e � r1ej > �g ! 0 as T ! 1,

provided that
1

cv
�T
r2

+
cv
�T
r2

T 1=2
! 0

and Pr fjr̂1f � r1f j > 
g ! 0, provided that

cv
�T
r2

T 1=2
+
T (1��)=2

cv
�T
r2

! 0.

Thus, this date-stamping strategy consistently estimates r1e and r1f .

For any �; � > 0,

Pr fr̂2e > r2e + �g ! 0 and Pr fr̂2f < r2f � �g ! 0;

since Pr
n
r̂1fBDFr2e+a� > cv

�T
r2

o
! 1 for all 0 < a� < � and Pr

n
r̂1fBDFr2f�a� > cv

�T
r2

o
! 1

for all 0 < a� < �. Since �; � > 0 is arbitrary and Pr fr1f < r̂2e < r2eg ! 0 and Pr fr̂2f > r2fg !

0, we deduce that Pr fjr̂2e � r2ej > �g ! 0 as T !1, provided that

1

cv
�T
r2

+
cv
�T
r2

T 1=2
! 0

and Pr fjr̂2f � r2f j > 
g ! 0, provided that

cv
�T
r2

T 1=2
+
T (1��)=2

cv
�T
r2

! 0:

Therefore, the alternative sequential implementation of the PWY procedure consistently esti-

mates r2e and r2f :
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