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Abstract

Right-tailed unit root tests have proved promising for detecting exuberance in economic
and �nancial activities. Like left-tailed tests, the limit theory and test performance are
sensitive to the null hypothesis and the model speci�cation used in parameter estimation.
This paper aims to provide some empirical guidelines for the practical implementation of
right-tailed unit root tests, focussing on the sup ADF test of Phillips, Wu and Yu (2011),
which implements a right-tailed ADF test repeatedly on a sequence of forward sample
recursions. We analyze and compare the limit theory of the sup ADF test under di¤erent
hypotheses and model speci�cations. The size and power properties of the test under various
scenarios are examined in simulations and some recommendations for empirical practice are
given. An empirical application to Nasdaq data reveals the practical importance of model
speci�cation on test outcomes.
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1 Introduction

In distinguishing between two hypotheses, such as a unit root null and a stationary alternative,

results are often sensitive to model formulation. In e¤ect, the maintained hypothesis or technical

lens through which the properties of the data are explored can in�uence outcomes in a major

way. Formulating a suitable maintained hypothesis is particularly di¢ cult in the presence of

nonstationarity because of the di¤erent roles that parameters can play under the null hypothesis

of a unit root and the alternative of stationarity. Many of these issues of formulation have

already been extensively studied in unit root testing.

Suppose, for example, that the null hypothesis is that the data is di¤erence stationary and

the alternative is that the data is stationary. If we run the ADF regression

R1 : �yt = �yt�1 +
kX
i=1

�i�yt�i + "t; "t
iid�
�
0; �2

�
; (1)

and test the null � = 0 against the alternative � < 0, we also (implicitly) assume that the

mean of yt is zero under the alternative. Under this lens any evidence of a non-zero mean in

the sample is likely to be interpreted as evidence in favor of the null and the test procedure

tends to have poor power. A more suitable lens allows for a non zero mean in yt under the

alternative through the regression

R2 : �yt = �+ �yt�1 +
kX
i=1

�i�yt�i + "t; "t
iid�
�
0; �2

�
; (2)

even though � is zero under the null . Similarly, if the null is di¤erence stationarity and the

alternative trend stationarity, then the regression model (2) will be inappropriate because an

empirical trend may be misinterpreted as evidence of a unit root, leading to the augmented

formulation

R3 : �yt = �0 + �1t+ �yt�1 +
kX
i=1

�i�yt�i + "t; "t
iid�
�
0; �2

�
; (3)

where we can test the null � = 0 against the alternative � < 0, even if �1 = 0 under the

null. Use of the maintained hypothesis R3 allows for both a unit root with drift (�0 6= 0 and
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�1 = 0) under the null and trend stationarity (�0 6= 0 and �1 6= 0) under the alternative.

Similar issues, of course, arise with more complex maintained hypotheses that allow for trend

breaks and other deterministic components. The regression model of a left-tailed unit root test

(against stationary or trend stationary alternatives) needs to nest the alternative hypothesis.1

Right-tailed unit root tests are also of empirical interest, particularly in detecting exu-

berance in �nancial markets or mildly explosive alternatives (Diba and Grossman, 1988; Hall,

Psaradakis and Sola, 1999; Phillips, Wu and Yu, 2011, PWY hereafter). With these right-tailed

tests, there are related issues of model formulation. The present work examines appropriate

ways of formulating empirical regressions when the null hypothesis is di¤erence stationarity

and the alternative is a mildly explosive process (Phillips and Magdalinos, 2007) of the type

HA : yt = �T yt�1 + "t with �T = 1 + cT�� and "t
iid� N

�
0; �2

�
; (4)

where c > 0, � 2 (0; 1) and T is the sample size. HA is formulated with a zero intercept since

a non-zero intercept produces a dominating deterministic component that has an empirically

unrealistic explosive form (Phillips and Yu, 2009). S imilar characteristics apply in the case

of inclusion of a deterministic trend term in HA. Since these forms are unreasonable for most

economic and �nancial time series, the model (4) is formulated without an intercept or a

deterministic trend.

Suppose we run R1 to investigate evidence for mildly explosive behavior as in (4). Analogous

to the e¤ects in a left-tailed unit root test, in a regression of the form R1 any evidence of non-

zero mean in �yt may be misjudged as evidence in favor of the alternative - in this case, mildly

explosive behavior. To elaborate, consider the following cases where under the null the mean

of �yt is not necessarily zero:

H01 : yt = yt�1 + "t; "t
iid� N

�
0; �2

�
; (5)

H02 : yt = dT
�� + yt�1 + "t with d > 0; � > 1=2 and "t

iid� N
�
0; �2

�
; (6)

H03 : yt = ~�+ yt�1 + "t with ~� 6= 0 and "t
iid� N

�
0; �2

�
. (7)

1Similar arguments can be found in Dickey, Bell and Miller (1986) and Davidson and MacKinnon (2004).
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In all three speci�cations, yt is (asymptotically) di¤erence stationary. The mean of �yt in

H01 is zero. In H02, �yt has a local-to-zero mean (i.e dT��) which is of order of O(T��);

while in H03 the time series �yt has a non-zero constant mean and yt is a stochastic trend

with deterministic linear drift. Now suppose that the true null model under a right-tailed unit

root test is H02 or H03 and the regression model is R1. Due to the fact that the regression

model does not allow for deterministic-trend-like behavior in yt under the null, the presence

of a non-zero mean in �yt (i.e. dT�� in H02 and ~� in H03) may likely be misinterpreted as

evidence that supports an explosive alternative.

Table 1: Di¤erent model formulations for right-tailed unit root tests
Case 1 Case 2 Case 3 Case 4 Case 5

Null Model H01 H01 H02 H03 H01=H02=H03
Regression Model R1 R2 R2 R2 R3

Table 1 summarizes �ve scenarios that are considered in this paper. Since yt does not

have deterministic trend behavior under the null model H01, Cases 1 and 2 are expected to

be less empirically reasonable formulations given the mildly explosive alternative. Further,

although R3 has a constant as well as a deterministic trend and both of these may generate

deterministic-trend-like behavior under the null, the presence of either of these two terms is

empirically unrealistic when � > 0. Thus, Case 5 also seems inappropriate. By contrast, Cases

3 and 4 are both empirically more realistic. Diba and Grossman (1988) implemented a unit

root test based on Case 5, while the test given in PWY is based on Case 2.

This paper illustrates the practical importance of the null hypothesis and regression model

speci�cation in right-tailed unit root testing in the context of the sequential procedures of the

type proposed by PWY to detect bubbles in economic and �nancial data. This test implements

a right-tailed unit root test repeatedly on a sequence of forward expanding samples. We discuss

the asymptotic distributions of the test statistic and examine the size and the power properties

of the test under di¤erent scenarios. Based on the simulation �ndings, we provide guidelines

for the selection of an appropriate null hypothesis and a suitable regression model formulation
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with associated test critical values.

The rest of the paper is organized as follows. Section 2 reviews the respective limit dis-

tributions of the ADF statistic under Cases 1 - 5 and examines the �nite sample performance

of the right tailed unit root tests under Cases 3 and 4. Section 3 introduces several di¤erent

types of exuberant behavior for the alternative hypothesis: the periodically collapsing explosive

behavior of Evans (1991); the locally explosive behavior introduced by Phillips and Yu (2009,

PY hereafter); and a modi�cation of the PY model which produces a more realistic generating

process for locally explosive behavior. The sup ADF test (i.e., the sequential right-tailed ADF

test), along with the behavior of the sup ADF statistic (including its limiting and �nite sample

distributions), are explored in Section 4. Section 5 reports size and power properties for the

sup ADF test under Cases 3 and 4. We apply the sup ADF test using model formulations

corresponding to Cases 3 and 4 to NASDAQ market data in Section 6. Section 7 concludes.

Proofs of propositions are collected in a separate technical note which is available upon request

from the authors.

2 Right-Tailed Unit Root Tests

Right-tailed unit root tests, like their left-tailed counterparts, have asymptotic distributions

which depend on the null hypothesis and the regression model.

Proposition 2.1 Under Case 2 and Case 3 (with � > 1=2), the asymptotic distribution of the

ADF statistic is

ADF
L!

1
2

�
W 2 (1)� 1

�
�W (1)

R 1
0 W (s) ds�R 1

0 W
2 (s) ds�

hR 1
0 W (s) ds

i2�1=2 := F23 (W ) ; (8)

where W is a standard Wiener process and L! denotes the convergence in distribution. Under

Case 1, the asymptotic distribution of the ADF statistic is

ADF
L! 1

2

h
W (1)2 � 1

i �Z 1

0
W 2 (s) ds

��1=2
:= F1 (W ) ; (9)
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Under Case 4, the asymptotic ADF distribution is

ADF
L!
�Z 1

0
sdW (s)�

Z 1

0
W (s) ds

��Z 1

0
s2ds

��1=2
:= F4 (W ) ; (10)

which is identical to the standard normal; Under Case 5, the asymptotic distributions of the

ADF statistic is

ADF
L! E � 12CF � 6AF + 6CD � 4AD

(12AC � 12C2 +B � 4A2)1=2
:= F5 (W ) (11)

with A =
R 1
0 W (s) ds;B =

R 1
0 W

2 (s) ds; C =
R 1
0 W (s) sds;D = W (1) ; E = 1

2

h
W (1)2 � 1

i
and F =W (1)�

R 1
0 W (s) ds.

Remark 2.1 The asymptotic ADF distribution in Case 3 is identical to that of Case 2 despite

the inclusion of an intercept in the null hypothesis model. The reason that the inclusion of an

intercept does not a¤ect the limit distribution is that the intercept e¤ect is of a smaller order

of magnitude than the stochastic trend.

Remark 2.2 If � = 1=2 in Case 3, then the asymptotic ADF distribution is

ADF
L! (D� �A�C�)

�
B� �A2�

��1=2
:= F30 (W;�) ; (12)

with A� = 1
2 + �

R 1
0 W (s) ds;B� =

1
3 + �

2
R 1
0 W (s)2 ds + 2�

R 1
0 W (s) sds; C� = W (1) and

D� =
h
W (1)�

R 1
0 W (s) ds

i
+ 1

2�
h
W (1)2 � 1

i
. Importantly, the limit theory depends on the

nuisance parameter � and hence it is not invariant unless we include a trend in the regression

or adjust for the trend in some other way (for example, Schmidt and Phillips, 1992 and Phillips

and Lee, 1996).

Remark 2.3 Suppose � < 1=2 in Case 3, then the asymptotic ADF distribution is equivalent

to that of Case 4, (10). This result arises because the intercept is of higher order of magnitude

and behaves like a linear deterministic trend.
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Remark 2.4 The asymptotic ADF distributions under Case 1, Case 2 and Case 5 are well

documented in the unit root literature (as is the fact that the asymptotic ADF distribution under

Case 4 is standard normal); see Phillips (1987) and Phillips and Perron (1988). We provide

an alternative expression for the asymptotic ADF distribution under Case 4, (10), because this

aids the derivation below.

Remark 2.5 As discussed above, Case 3 and Case 4 are empirically more reasonable than

the other cases. This observation is in contrast to the left-tailed unit root test where Case 2

and Case 5 are found to be empirically more reasonable. In Case 3 we compare a unit root

model with an asymptotically negligible intercept with a mildly explosive model. In Case 4, we

compare a unit root model with a intercept with a mildly explosive model. In �nite samples,

the null hypothesis in both case may exhibit a linear trend but the alternative hypothesis has a

nonlinear trend behavior.

2.1 The �nite sample distributions of the unit root test

The �nite sample distributions of the ADF test under Case 1, Case 2 and Case 5 are well

documented; see, for example, Fuller (1995) and Hamilton (1994). In this Section we only

compare the �nite sample distribution of the ADF statistic with the corresponding asymptotic

distribution under Case 3 and Case 4. The �nite sample distributions are obtained from 2; 000

Monte Carlo simulations. The lag order is determined by the signi�cance test proposed by

Campbell and Perron (1991) with the maximum lag length 12. The asymptotic distribution is

obtained by numerical simulation with 2; 000 iterations. The Wiener process is approximated

by partial sums of N(0; 1) with 5; 000 steps.

Figure 1 plots the �nite sample distributions of the ADF statistic under Case 3 when

~� = T�1 (i.e. d = 1 and � = 1) and Case 4 when ~� = 1 (i.e. d = 1 and � = 0 in Case 2).

The dotted lines in the �gure correspond to the �nite sample distributions of the ADF statistic

with sample size T = f40; 80; 200; 400g and the solid lines are the asymptotic distributions.

As we can see, the �nite sample distribution of the ADF statistic converges to the asymptotic
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Figure 1: The �nite sample distribution of the ADF statistic under Case 3 and Case 4 with
T = 40; 80; 200; 400.

distribution F23(W ) under Case 3 in Figure 1a and F4 (W ) under Case 4 in Figure 1b as the

sample size increases.

Figure 2 displays the �nite sample distributions of the ADF statistic when the regression

model is R2, T = 400 and ~� = T�� (i.e. d = 1) with � = f1; 0:9; :::; 0:1; 0g. We can observe

the following phenomena. First, when � > 0:5 (Case 3) the �nite sample distribution moves

towards the asymptotic distribution F23 (W ) as � increases. Nevertheless, the discrepancy

among the �nite sample distributions with � = f0:6; 0:7; 0:8; 0:9; 1g is negligible. Second, the

�nite sample distribution of the ADF statistic with � = 0:5 is signi�cantly di¤erent from

those with � > 0:5. Third, when � < 0:5 (Case 4) the discrepancy among the �nite sample

distributions with � = f0:4; 0:3; 0:2; 0:1; 0g is quite visible. However, we observe a tendency of

convergence towards the asymptotic distribution F4 (W ) as � decreases (or the drift value ~� in

H03 increases).
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Figure 2: The �nite sample distribution of the ADF statistic when the regression model is
R2; T = 400 and ~� = T�� (i.e. d = 1) with � = 1; 0:9; :::; 0:1; 0.

3 Exuberant Behavior

Exuberance may manifest in various forms. In this Section, we focus on the periodically

collapsing explosive process of Evans (1991) and a new locally explosive process as possible

alternatives.

3.1 Periodically collapsing explosive process

The DGP proposed by Evans (1991) consists of a market fundamental component P ft , which

follows a random walk process

P ft = ~u+ P
f
t�1 + �f"t; "t

iid� N (0; 1) (13)

and a periodically collapsing explosive bubble component such that

Bt+1 = �
�1Bt"B;t+1; if Bt < b (14)

Bt+1 =
h
� + (��)�1 �t+1 (Bt � ��)

i
"B;t+1; if Bt � b ; (15)
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where ��1 > 1 and "B;t = exp
�
yt � �2=2

�
with yt

iid� N
�
0; �2

�
. �t follows a Bernoulli process

which takes the value 1 with probability � and 0 with probability 1��. � is the remaining size

after the bubble collapse. The bubble component has the property that Et (Bt+1) = ��1Bt. By

construction, the bubbles collapse completely in a single period when triggered by the Bernoulli

process realization.

The market fundamental equation, (13), is equivalent to the combination of a random walk

dividend process and the Lucas asset pricing equation

Dt = �+Dt�1 + "Dt; "Dt
iid� N

�
0; �2D

�
(16)

P ft =
��

(1� �)2
+

�

1� �Dt; (17)

where � is the drift of the dividend process, �2D is the variance of the dividend. The drift

of the market fundamental process ~u equals �� (1� �)�1 and the standard deviation �f =

�D� (1� �)�1. In Evans (1991), the parameter values for � and �2D were matched to the

sample mean and sample variance of the �rst di¤erences of real S&P500 dividends from 1871

to 1980. The value for the discount factor � is equivalent to a 5% annual interest rate. In other

words, the parameter settings in Evans (1991) correspond to a yearly frequency. In accordance

with our empirical application, we consider a set of the parameters calibrated to monthly data.

Parameters � and �2D are set to be the sample mean and the sample variance of the monthly

�rst di¤erences of real NASDAQ dividends as described in the application section (normalized

to unity at the beginning of the sample period). These are � = 0:0020 and �2D = 0:0034

respectively. The discount factor equals 0.985. We can then calculate the values of ~u, �f , P
f
0

based on those of �, �2D; D0.

The setting of parameters in the bubble component, (14) - (15), are the same as those in

Evans (1991). The asset price Pt is equal to the sum of the market fundamental component

and the bubble component, namely Pt = P
f
t + �Bt, where � controls the relative magnitudes

of these two components. These two settings are provided in Table 2 and are labeled yearly

and monthly respectively.
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Table 2: Parameter settings
~u �f P f0 � b B0 � � � �

Yearly 0.740 7.869 41.195 0.952 1 0.50 0.85 0.50 0.05 20
Monthly 0.131 3.829 94.122 0.985 1 0.50 0.85 0.50 0.05 150

Figure 3: The simulated time series based on Evans�DGP

Figure 3a illustrates a realization of this DGP with the yearly parameter settings (sample

size T = 100) and Figure 3b displays a realization of this DGP with the monthly parameter

settings (T = 200).

3.2 Locally explosive process

Locally explosive behavior can be expressed in terms of an AR process with time-varying

coe¢ cients such that

yt = ut + �tyt�1 + �t"t; "t
iid� N (0; 1) ; (18)

where ut is the intercept, �t is the autoregressive coe¢ cient and �t is the disturbance standard

deviation.

In PY, it is assumed that ut = 0 and �t = � for all t = 1; � � � ; T . The autoregressive
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coe¢ cient �t is greater than 1, namely �t = 1+ cT
�� with c > 0 and � 2 (0; 1), for the bubble

expansion period, but otherwise equals unity, viz., �t = 1. More speci�cally,

yt = yt�11 (t < Te) + �T yt�11 (Te � t � Tf )

+

0@ tX
k=Tf+1

"k + y
�
Tf

1A1 (t > Tf ) + "t1 (t � Tf ) (19)

where �T = 1 + cT
��; y�Tf = yTe + y

� with y� = Op (1), 1 (�) is an indicator function, Te is the

origination date of the bubble and Tf is the termination date.

Notice that yt is re-initialized to yTe (with a small perturbation) upon the bubble collapse.

Although bubbles frequently collapse rapidly, in many cases it is unrealistic to require complete

collapse within one period. For instance, according to PWY, the dot-com bubble began to

collapse in March 2000 and the termination date was between September 2000 and March

2001. Therefore, instead of a sudden collapse as in equation (19), we assume that yt switches

to a (mildly) stationary regime when the bubble starts to burst. The new DGP can be speci�ed

as

yt =

8<:
u1 + yt�1 + �1"t; t 2 [1; Te) [ (Tc; T ]
�T yt�1 + �2"t; t 2 [Te; Tf ]

T yt�1 + �3"t; t 2 (Tf ; Tc]

; (20)

where Tc marks the conclusion of the bubble collapse, �T = 1+c1T
�� and 
T = 1�c2T�� with

c1; c2 > 0 and �; � 2 [0; 1). The formulation of the AR coe¢ cients �T and 
T both involve

mild deviations from unity in the sense of Phillips and Magdalinos (2007), one in the explosive

direction for the bubble expansion, the other in the stationary direction for the bubble collapse.

Equation (20) corresponds with (18) if we set

ut = sntu1;

�t = snt + sbt�T + sct
T ;

�t = snt�1 + sbt�2 + sct�3;

where snt = 1 (t 2 [0; Te) [ (Tc; T ]) ; sbt = 1 (t 2 [Te; Tf ]) ; sct = 1 (t 2 (Tf ; Tc]), which are the

12



Figure 4: The simulated time series based on equation (20)

regime indicators for the market fundamental, the bubble expansion and the bubble collapse

respectively.

We illustrate the process (20) by setting the market fundamental regime as in Table 2

(monthly): y0 = 94:122; u0 = 0:131; �1 = 3:829. We set other parameters relating to the

bubble expansion and collapsing regime to be: c1 = c2 = 1; � = 0:6; � = 0:5; �2 = �1;

�3 = 2�1; Te = [0:6T ] ; Tf = [0:70T ] ; Tc = [0:75T ](we explore di¤erent settings for parameters

�; �; Te; Tf ; Tc in the size and power comparison Section). The sample size T is equal to 200.

The implied autoregressive coe¢ cients �200 = 1:042 and 
200 = 0:929. Figure 4 illustrates one

realization of the DGP. Compared with the PY and Evans DGPs, a distinguishing feature of

this DGP is that the bubble collapsing process is a gradual one and hence it is more realistic.

4 The Sup ADF Test

The sup ADF (SADF) test of PWY was suggested to test the existence of exuberant behavior

in economic and �nancial time series. The alternative hypothesis of the test therefore includes

both periodically collapsing explosive behavior and locally explosive behavior. The null hy-

13



potheses are exactly the same as those for the right-tailed unit root test in equation (5) - (7).

In the sup ADF test, the right-tailed unit root test is implemented repeatedly on a forward

expanding sample sequence and inference is based on the sup value of the corresponding ADF

sequence.

Suppose r is the window size of the regression (proportional to the full sample size) for

the right-tailed unit root test. In the sup ADF test, the window size r expands from r0 to 1

through the recursive calculations. The smallest window size r0 is selected to ensure that there

are su¢ cient observations to achieve estimation e¢ ciency. The number of observations in the

regression is Tr = [Tr] ; where [�] signi�es the integer part of its argument and T is the total

number of observations.

The regression models for the sup ADF test are:

Rs1 : �yt = �ryt�1 +
kX
i=1

�ir�yt�i + "t; (21)

Rs2 : �yt = �r + �ryt�1 +
kX
i=1

�ir�yt�i + "t; (22)

Rs3 : �yt = �r + �ryt�1 + 
rt+
kX
i=1

�ir�yt�i + "t; (23)

where t = 1; � � � ; Tr and k is the lag order, which is determined by a signi�cance test (Campbell

and Perron, 1991). The corresponding ADF t-statistic is denoted by ADFr. To test for the

existence of bubbles, inferences are made based on the sup ADF statistic, which is de�ned as

supr2[r0;1]ADFr and denoted by SADF (r0). It is important to highlight the dependence of

SADF on r0 although little attention has been paid to this dependency in the literature.

Like the ADF test, there are �ve cases for the SADF test, summarized in Table 2, by

replacing regression models (1)-(3) with (21)-(23).
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Table 3: Di¤erent cases for the sequential right-tailed unit root test.
Case 1 Case 2 Case 3 Case 4 Case 5

Null Hypothesis H01 H01 H02 H03 H01=H02=H03
Regression Model Rs1 Rs2 Rs2 Rs2 Rs3

4.1 The limiting distribution of sup ADF

Proposition 4.1 Under Case 2 and Case 3 (with � > 1=2), the asymptotic distribution of the

sup ADF statistic is

SADF (r0)
L! sup
r2[r0;1]

8><>:
1
2r
h
W (r)2 � r

i
�
R r
0 W (s) dsW (r)

r1=2
n
r
R r
0 W (s)2 ds�

�R r
0 W (s) ds

�2o1=2
9>=>; := F78 (W; r0) ; (24)

Under Case 1, the sup ADF statistic converges to

SADF (r0)
L! sup
r2[r0;1]

(
1

2

h
W (r)2 � r

i �Z r

0
W (s)2 ds

��1=2)
:= F6 (W; r0) ; (25)

Under Case 4, the sup ADF statistic converges to

SADF (r0)
L! sup
r2[r0;1]

(�Z r

0
sdW (s)�

Z r

0
W (s) ds

��Z r

0
s2ds

��1=2)
:= F9 (W; r0) ; (26)

Under Case 5, the sup ADF statistic converges to

SADF (r0)
L! sup
r2[r0;1]

(
Err

3 � 6Fr (2Cr �Arr) + 2Drr (3Cr � 2Arr)
r3=2 (12ArCrr � 12C2r +Brr3 � 4A2rr2)

1=2

)
:= F10 (W; r0) ; (27)

with Ar =
R r
0 W (s) ds;Br =

R r
0 W (s)2 ds; Cr =

R r
0 W (s) sds;Dr =W (r) ; Er =

1
2

h
W (r)2 � r

i
and Fr = rW (r)�

R r
0 W (s) ds.

Remark 4.1 The asymptotic SADF distributions are obtained by applying the sup function

to the asymptotic ADFr distributional space (based on the continuous mapping theorem). It

implies that the lim sup and the sup lim operations are equivalent, namely

lim
T!1

sup
r2[r0;1]

fADFrg = sup
r2[r0;1]

�
lim
T!1

ADFr

�
, (28)

for all cases.
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Remark 4.2 If � = 1=2 in Case 3, then the asymptotic distribution of the SADF statistic is

SADF (r0)
L! sup
r2[r0;1]

h
r�1=2 (rDr;�r �Ar;�rCr;�r)

�
rBr;�r �A2r;�r

��1=2i
:= F62 (W; r0) ;

with Ar;�r =
1
2r+�r

R r
0 W (s) ds;Br;�r =

1
3r
3+�2r

R r
0 W (s)2 ds+2�r

R r
0 W (s) sds; Cr;�r =W (r)

and Dr;�r =
�
rW (r)�

R r
0 W (s) ds

�
+ 1
2�r

h
W (r)2 � r

i
. Similar to the ADF statistic, the limit

theory depends on the nuisance parameters �r for all r 2 [r0; 1].

Remark 4.3 The asymptotic ADFr distribution under Case 4 is

ADFr
L!
�Z r

0
sdW (s)�

Z r

0
W (s) ds

��Z r

0
s2ds

��1=2
; (29)

which is identically distributed as standard normal. Suppose rA; rB 2 [r0; 1] and rA 6= rB, the

asymptotic ADFrA distribution and the asymptotic ADFrB distribution are correlated due to

the fact that both of them are functions of a standard Wiener process.

Remark 4.4 The asymptotic SADF distribution in Case 2, (24), is identical to that in PWY.

The asymptotic SADF distributions under the other four cases have not been discussed in the

literature. However, as pointed out in Remark 2.5, we believe that only Case 3 and Case 4 are

empirically reasonable for economic and �nancial time series.

In Figures 5 we examine the sensitivity of the asymptotic distributions of SADF with

respect to r0. In both cases, the asymptotic distributions are obtained by numerical simulation

based on 2; 000 iterations. The Wiener process is approximated by partial sums of N(0; 1) with

5; 000 steps. The smallest window size r0 is set to be f0:2; 0:15; 0:10; 0:05g :

Figure 5a displays the asymptotic distributions under Case 3 while Figure 5b is for Case

4. Under both cases, the asymptotic distributions of the SADF statistic move sequentially

to the right as r0 decreases.2 In addition, like the left-tailed unit root test, the asymptotic

2 Intuitively, when r0 is smaller, the feasible range of r (i.e. [r0; 1]) becomes wider and hence the distributional
space of limT!1ADFr expands. The asymptotic SADF distribution, which applies the sup function to the
aforementioned distributional space, should move sequentially towards the right as r0 decreases.
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Figure 5: The asymptotic distributions of the SADF statistic with r0 = 0:20; 0:15; 0:10; 0:05.

distribution under Case 4 has larger values for the 90%, 95% and 99% quantiles. For example,

the 95% asymptotic critical values for Case 3 with r0 = f0:2; 0:15; 0:10; 0:05g are respectively

1:39; 1:44; 1:54; 1:58 and those for Case 4 are respectively 2:79; 2:86; 2:91; 2:96. Obviously, the

critical values are sensitive to r0.

4.2 The �nite sample distribution of sup ADF

The �nite sample distribution of the SADF statistic depends on the sample size T; the value

of the drift in the null hypothesis (d; � in Case 3 and ~� in Case 4) and the smallest window

size r0. Figure 6 displays the �nite sample distributions of the SADF statistic when r0 = 0:1

and the sample sizes are 400; 600; 800; 1000. The parameters d and � in Case 3 and ~� in Case

4 are set to unity. As we can see, the �nite sample distribution of SADF moves towards the

asymptotic distribution F78 (W; 0:1) under Case 3 and moves towards F9 (W; 0:1) under Case 4

as the sample size T increases.

The convergence illustrates the validity of interposing the lim sup and sup lim operations

in equation (28) under Case 3 and Case 4. The left-hand side variable in this equation can be
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Figure 6: The �nite sample distributions of the SADF statistic when r0 = 0:1 and the sample
sizes are 400; 600; 800; 1000. The parameters d and � in Case 3 and ~� in Case 4 are set to 1.

approximated by the �nite sample SADF distribution with a reasonably large sample size (i.e.

T � 1000) while F78 (W; 0:1) and F9 (W; 0:1) are the right-hand side variables for Case 3 and

Case 4.

Figure 7 describes the �nite sample distributions of the SADF statistic when the regres-

sion model is Rs2, T = 400, r0 = 0:1 and the drift value ~�T = T�� (i.e. d = 1) with

� = f1; 0:9; :::; 0:1; 0g. The solid line on the left is the F78 (W; 0:1) distribution, and that

on the right hand side is F9 (W; 0:1). The dotted lines in between are the �nite sample distri-

butions. We observe a similar pattern as in Figure 2. For a given T and r0, the �nite sample

distribution moves towards F78 (W; 0:1) as � increases and shifts towards F9 (W; 0:1) as � de-

creases. An obvious separation occurs when � = 0:5. The discrepancy among the �nite sample

distributions is negligible with � = f0:6; 0:7; 0:8; 0:9; 1g, but becomes considerably large with

� = f0:4; 0:3; 0:2; 0:1; 0g.

Like the �nite sample ADF distribution described in Figure 2, the �nite sample SADF

distribution is invariant to � under Case 3 (when � > 0:5) while it varies signi�cantly with
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Figure 7: The �nite sample distributions of the SADF statistic when the regression model is
Rs2, T = 400; r0 = 0:1 and ~� = T

�� (i.e. d = 1) with � = f1; 0:9; :::; 0:1; 0g.

� when it is less than 0:5 (which is equivalent to Case 4). Combining with the fact that the

true value of � is usually unknown in practice, we may not be able to obtain an accurate �nite

sample distribution under Case 4 and hence an exact implementation of the test (using the

�nite sample critical values) under this case may not be feasible.

5 Size and Power Comparison

The 90%, 95% and 99% quantiles of the asymptotic and �nite sample distributions of the SADF

statistic under Cases 3 and Case 4 are presented in Table 4. The asymptotic critical values are

obtained by numerical simulations with 2,000 iterations. The Wiener process is approximated

by partial sums of N(0; 1) with 5; 000 steps. The �nite sample critical values are obtained from

the 2; 000 Monte Carlo simulations. The parameters d and � in Case 3 and ~� in Case 4 are

equal to unity.

Table 5 gives sizes for the SADF test based on nominal asymptotic critical values for Cases

3 and 4 and with sample sizes T = 100; 200 and 400. The nominal size is 5%. The DGP
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Table 4: Critical values of the SADF statistic (against explosive alternative)
Case 3 Case 4

90% 95% 99% 90% 95% 99%

The asymptotic critical values of the SADF statistic
r0 = 0:4 0.88 1.20 1.87 2.27 2.62 3.20
r0 = 0:2 1.10 1.39 1.95 2.48 2.79 3.39
r0 = 0:1 1.23 1.54 2.04 2.58 2.92 3.42

The �nite sample critical values of the SADF statistic
T = 100 and r0 = 0:4 1.32 1.77 2.87 2.80 3.25 4.05
T = 200 and r0 = 0:2 1.49 1.93 2.83 2.95 3.36 4.17
T = 400 and r0 = 0:1 1.63 2.01 2.85 3.04 3.44 4.25

Note: the asymptotic critical values are obtained by numerical simulations with 2,000 iterations. The
Wiener process is approximated by partial sums of N(0; 1) with 5; 000 steps. The �nite sample critical
values are obtained from the 2; 000 Monte Carlo simulations. The parameters d and � in Case 3 and ~�
in Case 4 are set to unity.

Table 5: Sizes of the SADF test (using asymptotic critical values). The data generating process
is speci�ed according to the respective null hypothesis. Parameters d; � in Case 3 and ~� in
Case 4 are set to unity. The nominal size is 5%.

Case 3 Case 4
T = 100 and r0 = 0:4 0.117 0.127
T = 200 and r0 = 0:2 0.126 0.118
T = 400 and r0 = 0:1 0.118 0.122

Note: the number of iterations for size calculation equals 2,000.

is speci�ed according to the respective null hypotheses (d = � = 1 in Case 3 and ~� = 1 in

Case 4). The number of iterations for size calculations is 2,000. The smallest window size

has 40 observations. Table 5 shows that there are signi�cant size distortions under both cases

when using the asymptotic critical values.3 The size distortions (when the sample size is 400)

can also be observed from the discrepancy between the �nite sample distributions and their

3Suppose one keeps the smallest fractional window size r0 unchanged for all sample sizes. The size of the
SADF test will decrease as the sample size increases. For example, if r0 = 0:4, the size of SADF test under Case
3 is 0.077 when sample size is 200 and it is 0.062 when sample size is 400. However, when T is large, there is
some advantage to using a small value for r0 so that the sup ADF test does not miss any opportunity to capture
an explosive phase.
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corresponding asymptotic distributions in Figure 7.

5.1 Periodically collapsing explosive behavior

To calculate the power of the tests, we need to specify the alternative hypothesis. First, we

assume the DGP is Evans (1991) periodically collapsing explosive process, with both yearly

and monthly parameters settings (see Table 2). For the yearly parameters setting, we calculate

powers of the sup ADF test under Cases 3 and 4 with sample sizes 100 and 200. The sample

size is set to 100, 200 and 400 for the DGP with the monthly parameter setting. The power

calculations are based on the 95% quantiles of the �nite sample distributions.

From Table 6 power of the test evidently increases with sample size. Under the yearly

parameter setting and T = 200, power under Cases 3 and 4 is 21% and 17% higher than when

T = 100:

Table 6: Powers of the SADF test under Evans (1991) periodically collapsing explosive behavior
Yearly Monthly

Case 3 Case 4 Case 3 Case 4
T = 100 and r0 = 0:4 0.39 0.27 0.54 0.33
T = 200 and r0 = 0:2 0.60 0.44 0.73 0.53
T = 400 and r0 = 0:1 - - 0.86 0.72

Note: the number of iterations for power calculation equals 2,000.

Furthermore, Case 3 always outperforms Case 4 in terms of power. From the left panel of

Table 6 (yearly parameters setting), the power of the SADF test under Case 3 is 12% and 16%

higher than Case 4 when T = 100 and 200. With the monthly parameters setting (right panel),

when T = 100, 200 and 400, the power of the SADF test under Case 3 is 21%, 20% and 14%

higher than Case 4.

5.2 Locally explosive behavior

Second, we let the DGP be the locally explosive model de�ned by equation (20). The parameter

settings are the same as in Section 3.2. As we mentioned, this DGP is more realistic than both
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PY and Evans in the sense that the explosive behavior does not collapse completely within one

period. Instead, the bubble collapsing process is assumed to be a (mildly) stationary process.

The parameter � controls the contraction rate of the bubble, the duration of which is Tc � Tf .

To explore the sensitivity of the SADF test to these two coe¢ cients, we calculate powers of the

test by setting � equal to 0:4; 0:5 and 0:6 (see Table 7) and Tc � Tf equal to [0:05T ] ; [0:10T ]

and [0:15T ] (Table 8). In general, we �nd that the power of the SADF test is invariant to the

contraction rate and the contraction duration of the bubble.

Table 7: Powers of the SADF test for the locally explosive behavior (the rates of bubble
expansion and contraction). Parameters are set as: y0 = 94:122; u0 = 0:131; c1 = c2 = 1; �1 =
�2 = 3:829; �3 = 2�1; Te = [0:6T ] ; Tf = [0:7T ] ; Tc = [0:75T ] ; T = 200; r0 = 0:2.
� 0:4 0:50 0:60

Case 3 Case 4 Case 3 Case 4 Case 3 Case 4
� = 0:60; �T = 1:04 0.63 0.42 0.62 0.42 0.62 0.42
� = 0:55; �T = 1:05 0.67 0.47 0.67 0.47 0.67 0.46
� = 0:50; �T = 1:07 0.72 0.49 0.72 0.48 0.71 0.47

Note: the number of iterations for power calculation equals 2,000.

Table 8: Powers of the SADF test for the locally explosive behavior (the duration of bubble
expansion and contraction). Parameters are set as: y0 = 94:122; u0 = 0:131; c1 = c2 = 1; �1 =
�2 = 3:829; �3 = 2�1; � = 0:6; � = 0:5; T = 200; r0 = 0:2; Te = [0:6T ].
Tc � Tf [0:05T ] [0:10T ] [0:15T ]

Case 3 Case 4 Case 3 Case 4 Case 3 Case 4
Tf � Te = [0:10T ] 0.63 0.43 0.61 0.42 0.62 0.42
Tf � Te = [0:15T ] 0.79 0.61 0.79 0.63 0.79 0.62
Tf � Te = [0:20T ] 0.87 0.71 0.88 0.72 0.88 0.72

Note: the number of iterations for power calculation equals 2,000.

The explosive rate of the bubble is determined by parameter � and the duration of the

bubble expansion Tf � Te. In simulations, we allow � to be 0:6; 0:55 and 0:5 (Table 7) and

Tf � Te to be [0:10T ] ; [0:15T ] and [0:20T ] (see Table 8). From Table 7, we can see that,

ceteris paribus, the power of the SADF test increases as � decreases. That is, the frequency of
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successfully detecting the existence of exuberant behavior is higher when the expansion rate

is faster. For example, under Case 3, when T = 200, � = 0:5 and � takes the values 0:6; 0:55

and 0:5, the power is 62%, 67% and 72% respectively. Moreover, we can see from Table 8 that

the power of the SADF test is higher when the duration of the bubble expansion is longer. For

instance, when T = 200 and Tc�Tf = [0:10T ], the power under Case 3 with Tf �Te = [0:10T ] ;

[0:15T ] ; [0:20T ] is 61%, 79% and 88% respectively.

Table 9: Powers of the SADF test for the locally explosive behavior (the location of the bubble
episode). Parameters are set as: y0 = 41:195; u0 = 0:740; c1 = c2 = 1; �1 = �2 = 7:869; �3 =
2�1; � = 0:6; � = 0:5; T = 200; r0 = 0:2; Tc � Tf = [0:05T ].
Te [0:2T ] [0:4T ] [0:6T ]

Case 3 Case 4 Case 3 Case 4 Case 3 Case 4
Tf � Te = [0:10T ] 0.78 0.61 0.68 0.51 0.63 0.42
Tf � Te = [0:15T ] 0.89 0.79 0.82 0.67 0.79 0.62
Tf � Te = [0:20T ] 0.94 0.86 0.90 0.78 0.88 0.72

Note: the number of iterations for power calculation equals 2,000.

Table 10: Powers of the SADF test for the locally explosive behavior (the sample size). Para-
meters are set as: y0 = 41:195; u0 = 0:740; c1 = c2 = 1; �1 = �2 = 7:869; �3 = 2�1; � = 0:6; � =
0:5; Te = [0:6T ]; Tf � Te = [0:10T ]; Tc � Tf = [0:05T ].

Case 3 Case 4
T = 100 and r0 = 0:4 0.57 0.36
T = 200 and r0 = 0:2 0.62 0.42
T = 400 and r0 = 0:1 0.73 0.52

Note: the number of iterations for power calculation equals 2,000.

The location of the bubble episode is indicated by Te. Table 9 illustrates the power of the

SADF test with Te = [0:2T ]; [0:4T ]; [0:6T ]. We observe that given an identical expansion rate

and expansion duration of the bubble, if the bubble episode occurs at an earlier stage of the

sample period, the frequency of successfully detecting a bubble episode is higher. For instance,

when T = 200; � = 0:6 and Tf � Te = [0:15T ], the power under Case 3 is 89%, 82% and 79%

for Te = [0:2T ] ; [0:4T ] ; [0:6T ] respectively.
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Figure 8: NASDAQ stock market sampled from February 1973 to September 2009 (normalized
to 100 at the beginning of data series).

Table 10 illustrates the power of the SADF with di¤erent sample sizes under Cases 3 and

Case 4. First, it is clear that the power of the test is higher when the sample size is larger.

The power under Case 3 are 57%, 62% and 73% for T = 100; 200; 400. Second, Case 3 is

always superior to Case 4 in terms of power. For example, when the sample size T equals 200,

the power under Case 3 is 20% greater than that under Case 4. Most importantly, the last

observation apply to Table 7, Table 8, Table 9 and Table 10.

6 Application to the NASDAQ

We apply the sup ADF test with di¤erent hypotheses and model speci�cations to the NASDAQ

stock market over the period from February 1973 to July 2009 (constituting 438 observations).

The NASDAQ composite index and the NASDAQ dividend yield are obtained from DataStream

International. The consumer price index, which is used to convert stock prices and dividends

into real series, is downloaded from the Federal Reserve Bank of St. Louis.

Figure 8 illustrates the dynamics of the real NASDAQ index and the real NASDAQ dividend
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(normalized to 100 at the beginning of the data series) during the sample period. The real

NASDAQ index grows steadily, manifesting an upward drift, until the early 90s. This is followed

by a rapid increase to a peak that is 944.4 times bigger than the starting point of the series.

The NASDAQ index, then dropped quickly to a level of less than 248 times of the starting

point at April 2003. It recovers gradually until October 2008, however, followed by another

sudden crash. Relative to the NASDAQ index, the dividend process changes are of a much

smaller magnitude (although it is volatile throughout the sample period).

Table 11: The sup ADF test of the NASDAQ stock market
Case 3 Case 4

Log Real NASDAQ Index 1.90 1.90
Log Real NASDAQ Dividend -1.07 -1.07

Finite sample critical values
90% 1.60 3.02
95% 1.97 3.41
99% 2.89 4.18

Note: Critical values of the sup ADF test are obtained from 2,000 Monte Carlo simulations with
sample size 438. The parameters d and � in Case 2 and ~� in Case 3 are set to 1. The smallest window
is set to have 40 observations.

Table 11 displays the SADF statistics for the logarithmic real NASDAQ index and the

logarithmic real NASDAQ dividend, along with respective �nite sample critical values, under

Case 3 and Case 4. The critical values are obtained from 2,000 Monte Carlo simulations with

sample size 348. The parameters d and � in Case 3 and ~� in Case 4 are set to 1. The smallest

window is set to have 40 observations. For the logarithmic real NASDAQ index, we reject the

unit root null hypothesis against the explosive alternative at the 10% signi�cance level under

Case 3 whereas we fail to reject the null hypothesis at the 10% signi�cance level under Case 4.

Furthermore, we cannot reject the null hypothesis of unit root at the 10% signi�cance level for

the logarithmic real NASDAQ dividend under both cases.

In other words, with the speci�cation of Case 3, we �nd evidence of exuberance in the

NASDAQ stock market using the sup ADF test. However, if the null hypothesis and the
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regression model are speci�ed as in Case 4, the sup ADF suggests no evidence of bubble

existence in the NASDAQ stock market during the sample period. These results reveal that

the empirical evidence of exuberance in the NASDAQ is sensitive to model speci�cation.

7 Conclusion

This paper has investigated various formulations of the null and alternative hypotheses and

the e¤ect of the chosen regression model on the detection of exuberance in economic and

�nancial time series. In particular, we identify two empirically reasonable setups and neither

setup includes a linear deterministic trend in the regression. In both cases, we estimate the

autoregressive coe¢ cient from the following model:

�yt = �+ �yt�1 +
kX
i=1

�i�yt�i + "t:

In one case the null hypothesis has an asymptotically negligible intercept while in the other

case the intercept is a constant. The limiting distributions of the ADF statistic and the SADF

statistic are derived in both cases. The asymptotic critical values are obtained via simulations.

The size and power properties have been examined and compared. When asymptotic critical

values are used, the SADF test shows signi�cant size distortions under both cases. Therefore,

when the sample size is small (i.e. T � 400), we suggest using �nite sample critical values,

instead of the asymptotic critical values, for the SADF test.

For the power calculation, we consider two DGPs: Evans (1991) periodically collapsing

explosive process (with both yearly and monthly parameter settings) and the locally explosive

process proposed in this paper (with monthly parameters setting). The conclusion drawn

from these two DGPs is consistent. Our �ndings indicate that the preferred procedure for

practical implementation is to estimate the regression model of equation (2) and specify the

null hypothesis to be an asymptotically negligible intercept in the right-tailed unit root test.

The empirical application of these methods to the NASDAQ stock market demonstrates the

importance of hypothesis and model speci�cation in the right-tailed unit root test, revealing
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some sensitivity in the outcomes of the test to these modeling decisions.
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