
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Economics School of Economics 

1-2010 

Estimation of High-Frequency Volatility: An Autoregressive Estimation of High-Frequency Volatility: An Autoregressive 

Conditional Duration Models Approach Conditional Duration Models Approach 

Yiu Kuen Tse 
Singapore Management University, yktse@smu.edu.sg 

Tao Yang 

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research 

 Part of the Econometrics Commons 

Citation Citation 
Tse, Yiu Kuen and Yang, Tao. Estimation of High-Frequency Volatility: An Autoregressive Conditional 
Duration Models Approach. (2010). 1-47. 
Available at:Available at: https://ink.library.smu.edu.sg/soe_research/1276 

This Working Paper is brought to you for free and open access by the School of Economics at Institutional 
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School 
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For 
more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1276&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Estimation of High-Frequency Volatility:
An Autoregressive Conditional Duration Approach

Yiu-Kuen Tse
School of Economics, Singapore Management University

Tao Yang
School of Economics, Singapore Management University

May 2010

Abstract: We propose a method to estimate the intraday volatility of a stock by integrating the
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several versions of the realized volatility (RV) method, including the bipower variation realized volatility
with subsampling, the realized kernel estimate and the duration-based realized volatility. The ACD
volatility estimates correlate highly with and perform very well against the RV estimates. Our Monte
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1 Introduction

Since the seminal work of Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen, Bollerslev,

Diebold and Labys (2001), realized volatility (RV) has been widely used for the estimation of daily

volatility. The object of interest in the RV literature is the estimation of the integrated volatility

(IV) of asset returns. Suppose the logarithmic asset price at time t follows a diffusion process with

instantaneous variance per unit time σ2(t), the IV of the asset return over the time interval (0, t) is

defined as

IVt =

∫ t

0
σ2(u) du. (1)

In the RV literature, σ2(t) is typically assumed to be stochastic. The basic RV method makes use of

asset price data sampled at very high frequency, such as every five minutes or higher. As an estimator

of IV, RV is computed as the sum of the squared differenced logarithmic asset prices. However, as

the efficient prices may be contaminated by market microstructure noise and price jumps, various RV

methods incorporating some improvements and modifications have been proposed. These include the

subsampling technique due to Zhang, Mykland and Aı̈t-Sahalia (2005), the bipower variation method

by Barndorff-Nielsen and Shephard (2004), the realized kernel method by Barndorff-Nielsen, Hansen,

Lunde and Shephard (2008), and the duration-based RV method by Andersen, Dobrev and Schaumburg

(2008). An advantage of the RV methods is that no specific functional form of the instantaneous variance

σ2(t) is assumed and the method is sometimes described as nonparametric.1

In this paper we propose to estimate high-frequency (daily or intraday) return volatility parametri-

cally. The object of interest in this approach is the price duration, which is defined as the time taken

for the cumulative change in transaction price to reach or exceed a given threshold δ, called the price

range. The price duration is then analyzed as a point process. As shown by Engle and Russell (1998),

the instantaneous conditional variance per unit time of the price-duration process depends on δ and

the conditional hazard rate function of the duration distribution. We model the price-duration process

1It should be noted that many of the theoretical asymptotic results of the RV methods depend on the Brownian
semimartingale assumption. In the case of the duration-based RV method, some constants that are derived from the
Brownian-motion assumption are used for the computation of the estimates.
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parametrically using the autoregressive conditional duration (ACD) model of Engle and Russell (1998)

and the augmented ACD (AACD) model suggested by Fernandes and Grammig (2006). The paramet-

ric formulation of the ACD and AACD models determines the dynamics of the conditional expected

duration and hence the conditional hazard rate function. To estimate the volatility over a given time

interval, we integrate the estimated instantaneous conditional variance per unit time over the interval.

To adopt the above approach some econometric issues have to be resolved. First, the ACD equation

has to be appropriately specified, and a flexible functional form of the dynamics of the conditional

expected duration is desired. Fernandes and Grammig (2006) showed that the AACD model has superior

performance over its competitors, and this model will be adopted in this paper. Second, the distribution

of the standardized price duration has to be appropriately specified. In a study examining different

specifications of the conditional duration distribution, Bauwens, Giot, Grammig and Veredas (2004)

found that none of the distributions they considered pass all the tests. To overcome this difficulty

we propose to use a semiparametric (SP) method to estimate the AACD parameters, in which the

conditional duration distribution is estimated using a nonparametric technique.

An important difference between the RV estimate and our parametric estimate of volatility is that the

former estimates the integrated volatility over a time interval while the latter estimates the integrated

instantaneous conditional variance. While instantaneous variance in the RV framework is stochastic,

the instantaneous conditional variance in our approach is deterministic. The conditional information

in our method, however, consists of information available in transaction data, which is updated as and

when a trade occurs. This comparison is analogous to the stochastic volatility approach versus the

conditional heteroscedastic approach in the literature of volatility modeling.

There are some advantages in our method over the RV approach. First, in the RV approach the

sampling of prices is over fixed intervals and returns are computed as the differenced logarithmic prices.

In contrast, in our approach the sampling of the price events is random. The (absolute) returns over the

sampled intervals are the price range divided by the price at the beginning of the interval, which will be

more robust to market microstructure noise and jumps. This advantage is shared by the Andersen, Do-
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brev and Schaumburg (2008) method in a similar context. Second, when the ACD-equation parameters

are obtained, the instantaneous conditional variance can be calculated and integrated over any time

interval. The viability of this computation is not dependent on the length of the interval, as, unlike the

RV methods, our method does not depend on convergence based on a large number of squared-return

observations. Thus, our method can be used to estimate the volatility on ultra-high frequency, such as

hourly.2 Currently, many studies use absolute return as a proxy for such ultra-high-frequency volatility.

Some authors, however, found that absolute returns contain a substantial amount of measurement errors

and hence do not provide a basis for reliable inference (see, e.g., Chan and Fong (2006)).

The contributions of this paper are twofold. First, we propose a new parametric method to estimate

high-frequency volatility. We adopt the semiparametric (SP) method for the estimation of the ACD

models, and show how the results can be used to estimate high-frequency volatility. Our Monte Carlo

(MC) results demonstrate superior performance of the SP estimates over the quasi maximum likelihood

estimates (QMLE). Second, we compare empirically the performance of our estimates of daily volatility

versus several RV methods. Thus, apart from examining the performance of the new method, we also

report a comparison of some recently developed RV methods.

The balance of this paper is as follows. In Section 2 we outline the ACD models and discuss their

estimation. We conduct MC experiments to study the performance of the MLE, QMLE and SP methods.

We then discuss the use of the ACD models for the estimation of high-frequency volatility. In Section

3 we review the RV methods considered in our empirical study. Section 4 reports some MC results for

comparing the performance of the RV methods versus our method. The results show that our method

has smaller root mean-squared errors (RMSE) than the RV estimates in almost all cases. Section 5

contains an empirical study using NYSE data, which shows that the daily volatility estimates based on

the AACD model correlate highly with the RV estimates. Finally, Section 6 concludes the paper.

2Our focus is on the estimation of volatility over a time interval. For the estimation of spot volatility, see Bandi and
Renò (2008), Kristensen (2010) and Malliavin and Mancino (2009).
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2 ACD Models and High-Frequency Volatility

The ACD model was first proposed by Engle and Russell (1998) to analyze the duration of transaction

data. A recent review of the literature on the ACD models and their applications to finance can be

found in Pacurar (2008). Analogous to the generalized autoregressive conditional heteroscedasticity

(GARCH) models, which capture the clustering of volatility, the ACD model analyzes the clustering

of transaction duration. Following Engle and Russell (1998), the instantaneous conditional variance

per unit time derived from the ACD model may be integrated over a time interval (e.g., between two

trades or over a day) to obtain a measure of the volatility over the interval. We propose to estimate the

integral parametrically to obtain a high-frequency estimate of volatility.

2.1 ACD Models

Consider a sequence of times t0, t1, · · · , tN with t0 < t1 < · · · < tN , in which ti denotes the time of the ith

transaction. Thus, xi = ti− ti−1, for i = 1, 2, · · · , N , are the intervals between consecutive transactions,

called transaction durations. In this paper we consider the price duration, which is defined as the

time interval needed to observe a cumulative change in the transacted price of at least δ. Thus, from

time ti−1 to ti, the transaction price changes by at least an amount δ, whether upwards or downwards.

The occurrence of this incident is called a price event. The data for analysis in the ACD model are

the durations xi. Unlike the RV methods, which assume the transaction price follows a Brownian

semimartingale (BSM) with possible contaminations due to market microstructure noise and/or price

jumps, our object of analysis is the price duration xi resulting from a price event.3 As shown by Engle

and Russell (1998), the instantaneous conditional variance of the return defined by the point process is a

function of the conditional expected duration and the conditional intensity of the duration distribution.

Exploiting this result, we can derive a parametric method to estimate the integrated conditional variance

of the asset return over an interval.

3In the RV literature the efficient log-price of an asset is typically assumed to follow a diffusion process with a stochastic
instantaneous variance, and RV estimates the integrated variance of the efficient price. The observed transaction price,
however, is contaminated by market microstructure noise and may exhibit price jumps.
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Let Φi denote the information set upon the transaction at time ti.
4 We denote ψi = E(xi |Φi−1),

which is the conditional expectation of the price duration. We assume that

εi =
xi
ψi
, i = 1, · · · , N, (2)

are a sequence of i.i.d. positive random variables with mean 1 and density function f(·). Thus, the

hazard function of εi is

λ(·) =
f(·)
S(·)

, (3)

where S(·) is the survival function of εi. Assuming ψi to be known given Φi−1, the conditional hazard

function (also called the conditional intensity) of xi, denoted by λx(xi |Φi−1), is

λx(xi |Φi−1) = λ

(
xi
ψi

)
1

ψi

= λ

(
ti − ti−1

ψi

)
1

ψi
, (4)

which is related to the base hazard function λ(·).

To model the conditional duration ψi, Engle and Russell (1998) proposed the ACD(p, q) model

defined by

ψi = ω +

p∑
j=1

αjxi−j +

q∑
j=1

βjψi−j , (5)

where the analogous relationship with the GARCH models is obvious. For model parsimony, small

values of p and q are preferred. Setting p = q = 1, we obtain the ACD(1, 1) model

ψi = ω + αxi−1 + βψi−1, (6)

with the restrictions α, β and w ≥ 0, and α+ β < 1.

Recently, Fernandes and Grammig (2006) proposed some extensions of the ACD(1, 1) model. We

shall consider their AACD model, which is defined by

ψλi = ω + αψλi−1 [|εi−1 − b|+ c(εi−1 − b)]v + βψλi−1. (7)

4Φi may include transaction-related variables such as transaction duration, volume and order flow (buy- or sell-initiated
orders). In this paper, however, we shall only consider past transaction durations.
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The AACD model nests the ACD(1, 1) model as a special case and provides a more flexible model for the

conditional expected duration ψi. The parameters λ and v determine the shape of the transformation.

Asymmetric responses in duration shocks are permitted through the shift parameter b and the rotation

parameter c. As in the case of the ACD(1, 1) model, the parameters α, β and w are assumed to

be nonnegative. Various possible shapes of the shocks impact curve are illustrated by Fernandes and

Grammig (2006).

The empirical study reported in Fernandes and Grammig (2006) showed that the AACD model

performs better than the ACD(1, 1) model and provides a good fit for the data. Indeed, the restrictions

imposed by the simpler ACD(1, 1) model are rejected empirically. Due to its flexibility, we shall adopt

the AACD model as our operating model. In subsequent discussions we refer to the ACD(1, 1) and

AACD models generically as ACD models.5

2.2 Estimation of ACD Models

Given an assumed density function f(·), the maximum likelihood estimates (MLE) of the parameters

of the ACD equation can be computed straightforwardly. A particularly simple model is the case when

εi are assumed to be standard exponential. Under this assumption the hazard function is constant and

does not vary with the duration. Furthermore, the MLE computed using the exponential assumption is

consistent (provided the conditional expected duration equation is correctly specified), regardless of the

true distribution of the error (see Drost and Werker (2004)). The MLE computed based on the expo-

nential working assumption is called the QMLE method.6 However, under the exponential distribution

assumption, the conditional intensity is constant. When this assumption is used, misspecification errors

in the conditional intensity may induce errors in the integrated conditional variance. To resolve this

issue, we propose to use the SP method, in which the conditional duration distribution is estimated

5Some discussions of tests for and selection of ACD models can be found in Fernandes and Grammig (2005). An
alternative ACD model can be found in Grammig and Maurer (2000).

6Following the work of Lee and Hansen (1994), Engle and Russell (1998) showed that the MLE of the ACD(1, 1) model
is consistent and asymptotically normal. For the AACD model, Fernandes and Grammig (2006) established sufficient
conditions for the existence of higher-order moments, stationarity and β-mixing. While a rigorous proof of the asymptotic
normality of the MLE of the AACD model has not been established, Fernandes and Grammig (2006) used the asymptotic
normal approximation and computed the standard errors based on the outer-product of the gradient.
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nonparametrically.

Engle and Gonzalez-Rivera (1991) introduced the use of the SP method for the ARCH model. They

showed that the SP estimator is consistent and more efficient than the QMLE, which assumes normal

errors. Drost and Werker (2004) discussed the conditions under which the QMLE of the ACD model is

consistent. They also derived conditions under which the SP method is adaptive and efficient. Although

the SP method is only efficient under very restrictive conditions, there may yet be improvements in effi-

ciency over the QMLE. Furthermore, the empirical distribution of the conditional duration distribution

is required for the computation of the conditional hazard function.

To compute the SP estimates of the ACD model, we perform the computation as follows. First, we

estimate the ACD model using the QMLE method (i.e., assuming εi are i.i.d. standard exponential).

We denote the parameter vector of the ACD model by θ and its QMLE by θ̂. Next, we calculate the

estimated conditional expected duration ψ̂i using θ̂ and the standardized duration ε̂i as

ε̂i =
xi

ψ̂i
. (8)

The unknown density function f(·) of εi is then estimated using ε̂i by the discrete maximum penalized

likelihood estimation (DMPLE) technique (see Tapia and Thompson (1978) for the details), which was

also used by Engle and Gonzalez-Rivera (1991).7 The empirical density function of ε̂i is denoted by f̂(·)

and the parameters of the ACD equation are then estimated again assuming εi to be i.i.d. with density

function f̂(·), resulting in the SP estimates of the ACD model, denoted by θ∗.

2.3 Some Monte Carlo Results for the Estimation of ACD Models

To examine the performance of the estimators of θ in the ACD models, we conduct a MC experiment.

We consider both the ACD(1, 1) model and the AACD model. For the conditional duration distribution,

we consider the Weibull distribution and the Burr distribution. The Weibull distribution has density

7The sample of estimated standardized durations ε̂i are scaled to have unit sample mean before the application of the
DMPLE procedure. Apart from the DMPLE method, an alternative is to use the gamma kernel method (see Chen (2000)).
We find, however, that the gamma kernel method is generally computationally more costly and is inferior to the DMPLE
method for its relative instability. Thus, the DMPLE method is adopted in the computation of the SP estimates in this
paper.
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function

f(ε) =
κ

µ

(
ε

µ

)κ−1

e
−
(
ε
µ

)κ
, ε > 0, (9)

with parameters µ and κ > 0. We let κ = 2 and µ = 1/Γ(1.5) so that the mean of ε is unity.8 In the

MLE computation we constrain the expected value of ε to be unity by setting µ̂ equal to 1/Γ(1 + 1/κ̂).

The density function of the Burr distribution is

f(ε) = µκεκ−1(1 + µγεκ)
− 1
γ
−1
, ε > 0, (10)

with positive parameters µ, κ and γ. We let κ = 2, γ = 0.2906 and µ = 1, so that the expected value of

ε is unity. In the MLE computation, we set the free parameters to be κ and γ, and constrain the value

of µ so that the mean of ε is unity.

As the results for the ACD and AACD models are similar, we report the results of the AACD model

only. We consider samples of N = 1,000, 10,000 and 50,000 price observations generated from the

AACD models. The MC replications are 500, 100 and 50, depending on the values of N . The following

estimators are considered: the MLE (assuming the true density function), the QMLE (assuming f(·) is

standard exponential) and the SP method (as described in Section 2.2).

In Tables 1 and 2 we report the means of the MC samples as well as the standard errors (the standard

deviations of the MC samples) and root mean-squared error (RMSE) of the parameter estimates. Only

results for the parameters of the AACD equation are summarized. For the Weibull errors we observe

that the RMSE of all estimators decreases as N increases, suggesting the estimators are consistent. The

RMSE of the SP estimator is uniformly lower than that of the QMLE, showing that the SP estimator

is more efficient than the QMLE. For the Burr errors, the results show that the RMSE of all estimators

generally decreases as N increases (when N increases from 10,000 to 50,000 the only exception is for

the MLE value of c; when N increases from 1,000 to 10,000 the only exception is for the SP estimate of

α). This again suggests the consistency of all estimators. The superiority of the SP estimator over the

QMLE is quite clear, although not as strong as for the case of the Weibull errors.

8Γ(·) denotes the gamma function.
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2.4 Estimation of High-Frequency Volatility using ACD Models

Given the information Φi at time ti, the conditional intensity function defined in equation (4) charac-

terizes the probability that the next price event will occur at time t > ti. Specifically, λx(x |Φi)∆x is

the probability that the next price event after time ti occurs in the interval (ti + x, ti + x+ ∆x) given

the information at time ti. The instantaneous return variance per unit time at time t is defined as

σ2(t) = lim
∆t→0

{
1

∆t
Var

[
s(t+ ∆t)− s(t)

s(t)

]}
, (11)

where s(t) is the price at time t. From Engle and Russell (1998), we see that the instantaneous

conditional variance per unit time given information Φi at time ti, denoted by σ2(t |Φi), is

σ2(t |Φi) =

(
δ

si

)2

λx(x |Φi), (12)

where x = t− ti, t > ti and si = s(ti).
9 Using equation (4), we have

σ2(t |Φi) =

(
δ

si

)2

λ

(
t− ti
ψi+1

)
1

ψi+1
, t > ti, (13)

where ψi+1 = E(xi+1 |Φi) is the conditional expected duration of the next price event given Φi. Thus,

the integrated conditional variance (ICV) over the interval (ti, ti+1), denoted by ICVi, is

ICVi =

∫ ti+1

ti

σ2(t |Φi) dt

=

(
δ

si

)2 1

ψi+1

∫ ti+1

ti

λ

(
t− ti
ψi+1

)
dt. (14)

If εi are i.i.d. standard exponential variates, then λ(·) ≡ 1 and we have

ICVi =

(
δ

si

)2 [ ti+1 − ti
ψi+1

]
. (15)

Thus, if t0 < t1 < · · · < tN denote the price events on a day, the ICV of the day is

ICV = δ2
N−1∑
i=0

ti+1 − ti
ψi+1s2

i

. (16)

9Note that s(t) is equal to the price recorded in the last trade prior to time t. Hence, conditional on Φi, s(t) is a
constant. On the other hand, the price difference s(t+ ∆t) − s(t) is either the price range δ or zero. Thus, equation (12)
can be obtained by evaluating the variance of the price difference and deleting terms smaller than ∆t.
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In the general case when εi takes an arbitrary distribution, the daily ICV derived from equation (14) is

ICV = δ2
N−1∑
i=0

1

ψi+1s2
i

∫ ti+1

ti

λ

(
t− ti
ψi+1

)
dt. (17)

To estimate ICV, we first use the SP estimate θ∗ of the ACD-equation parameters to calculate ψ∗i , the

estimate of ψi. Our proposed ACD estimate of ICV (ACD-ICV), denoted by VA, is then given by

VA = δ2
N−1∑
i=0

1

ψ∗i+1s
2
i

∫ ti+1

ti

λ̂

(
t− ti
ψ∗i+1

)
dt, (18)

where λ̂(·) is the base hazard function computed using the empirical density function f̂(·), i.e.,

λ̂(·) =
f̂(·)
Ŝ(·)

, (19)

and Ŝ(·) is the survival function of f̂(·).10 If the exponential assumption is made and the QMLE θ̂ is

adopted, the ACD-ICV estimate is simplified to

VA = δ2
N−1∑
i=0

ti+1 − ti
ψ̂i+1s2

i

. (20)

We conclude this section with some remarks. First, stock prices may have jumps and market

frictions may produce price discreteness. Thus, price events may occur with the actual price range

exceeding the threshold. We shall replace δ in equations (18) and (20) by the average price range of

the sample observations conditional on the threshold being exceeded. For comparison, the quantities

in these equations for which the nominal threshold is used will also be computed and denoted by V ∗A.

Second, the volatility of the efficient prices is often the object of interest. As we use transaction prices

to compute the price durations, measurement errors will be incurred in the estimation of the volatility.

Third, we compute the squared return over each interval by (δ/si)
2, which will have lower fluctuations

than the squared returns computed as the squared differenced logarithmic prices. Indeed, if we sample

the price events based on the cumulative change in the logarithmic prices exceeding the threshold, the

returns over each interval will be constant. In this paper, however, we follow Engle and Russell (1998)

10We use the MATLAB function “quadv” to compute the integrals in equation (18). The algorithm used is a recursive
adaptive Simpson quadrature. This procedure is applied sequentially, as the survival function is required for the com-
putation of the hazard function. Thus, “quadv” is first applied to compute the survival function and then calculate the
integrals of the hazard function.
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and Engle (2000) to model durations of prices. Fourth, in our sampling scheme the price events are

sampled more frequently when the market is more active and prices are more volatile. In contrast, the

RV methods typically sample prices at equal time intervals.

3 Review of RV Methods

Since the first appearance of the basic RV method in the literature many enhanced methods have been

proposed, with the purpose of overcoming the contamination due to the market microstructure noise

(see Aı̈t-Sahalia, Mykland and Zhang (2009)) and jumps (see Aı̈t-Sahalia (2004) and Barndorff-Nielsen

and Shephard (2004)). Many of these methods are dependent on specific algorithmic choices such as

the sampling interval, subsampling frequency, smoothing function and price range. Although knowledge

has been gained in the properties of these methods, the technique that would generally be preferred

in empirical applications has yet to emerge. We shall do an empirical comparison of some selected

RV estimators and investigate the performance of the parametric ACD-ICV estimates against these

methods.11

We first define some notations before summarizing various RV methods. Let s0, s1, · · · , sN denote

the prices of a stock at times t0, t1, · · · , tN , for N + 1 prices on the day. Thus, ti denotes the time when

price si is observed, and xi = ti− ti−1 is the duration of the trade. The definition of ti will be specified

in each method below. In line with many studies in the literature, we use the mid-quote at the time of

trade ti as si.
12

The basic RV estimate, denoted by VR, is defined as

VR =

N∑
i=1

(log si − log si−1)2. (21)

Aı̈t-Sahalia, Mykland and Zhang (2005) discussed the optimal sampling frequency of the price data

in the presence of market microstructure noise. Further results based on finite-sample properties can

11Empirical comparison of different RV estimates is lacking in the literature. A notable exception is the study by
Andersen, Dobrev and Schaumburg (2008), who compared the VB , VD and VR estimates (see the definitions to follow)
using the blue-chip companies of the Dow Jones Index. They also reported some MC comparisons of the efficiency of the
these RV estimators. Our results will add to this empirical literature.

12For the realized kernel method we use the transaction prices instead, which follows the practice of Barndorff-Nielsen,
Hansen, Lunde and Shephard (2008).
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be found in Bandi and Russell (2006a, 2006b and 2008). In our empirical study, we fix the sampling

interval to be 5 minutes and adopt the practice of using the mid-quote at the time of trade immediately

prior to the end of each 5-min interval.

The bipower variation RV estimate, suggested by Barndorff-Nielsen and Shephard (2004), is denoted

by VB. It is computed as

VB = µ2
1

N−1∑
i=1

| log si − log si−1|| log si+1 − log si|, (22)

where µ1 =
√

2/Γ(1/2). This method is found to be robust to rare jumps in prices. Following the

suggestion of Andersen, Dobrev and Schaumburg (2008), we sample the price data over 2-min intervals.

In addition, we apply the subsampling method proposed by Zhang, Mykland and Aı̈t-Sahalia (2005) to

VB using subsampling intervals of 5 seconds.

The realized kernel estimate, denoted by VK , is proposed by Barndorff-Nielsen, Hansen, Lunde and

Shephard (2008). It is computed as

VK = γ0 +
H∑
h=1

k

(
h− 1

H

)
(γh + γ−h), (23)

where

γh =
N∑

i=h+1

(log si − log si−1)(log si−h − log si−h−1), h = 0, · · · , H, (24)

and the non-stochastic function k(x) for x ∈ [0, 1] is a weight function. In this paper we adopt the

Tukey-Hanning weighting function.

Finally, a duration-based estimate of RV, denoted by VD, has been proposed recently by Andersen,

Dobrev and Schaumburg (2008). We adopt the event of price exiting a range δ for the definition of the

passage-time duration. VD is then computed as

VD =

N−1∑
i=0

σ̂2
δ (ti)(ti+1 − ti), (25)

where σ̂2
δ (ti) is the local variance estimate given in Andersen, Dobrev and Schaumburg (2008).

The similarity between equations (25) and (20) should be noted. While the grid points t0, t1, · · · , tN

in VD are fixed, these values are the observed price-event times in VA. In VD, σ̂2
δ (ti) estimates the local
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variance, whereas in VA the time-scaled squared return (i.e., (δ/si)
2 scaled by the estimated expected

conditional duration ψ̂i+1) estimates the instantaneous conditional variance per unit time.

4 Monte Carlo Comparison of ACD-ICV and RV Estimates

We conduct some MC experiments to compare the performance of the ACD-ICV estimates and various

RV estimates. As the two approaches are based on different notions of volatility, we consider both

deterministic and stochastic volatility models. We report the results of a deterministic volatility set-up

in Section 4.1, followed by some results on stochastic volatility models in Section 4.2. Our focus is on

the estimation of daily volatilities.13

4.1 Deterministic Volatility Models

We consider a deterministic volatility set-up in which the volatility function is fixed with intraday

variation. Following the assumptions underlying the theoretical derivation of the RV estimates that the

logarithmic stock prices follow a Brownian semimartingale (BSM), we set up an artificial data generation

process along this line. We assume that the observed price s(u) at time u (we now use u for time, for

reasons to be made clearer later) consists of a BSM component sB(u) and a jump component sJ(u).

Let s̃B(u) = log sB(u), which is generated from the following BSM

s̃B(u) =

∫ u

0
µ(u) du+

∫ u

0
σ(u) dW (u), (26)

where µ(u) is the instantaneous drift, σ2(u) is the instantaneous variance and W (u) is a standard

Brownian process. We assume s̃B(u) has no drift so that µ(u) ≡ 0. To specify the time u, we denote t

as the day of trade and τ as the intraday time. Thus, we write σ(u) = σ(t, τ) and let σ(t, τ) = σ1(t)σ2(τ),

so that the instantaneous volatility at time u depends on the component σ1(t) (representing the average

volatility of day t) and the component σ2(τ) (capturing the intraday variations). In our MC study,

we consider a period of 150 days. We set σ1(t) = 20% (annualized standard deviation of returns) for

t = 1, which increases linearly with t over 50 days to reach 30%. It then remains level for 50 days, and

13Aı̈t-Sahalia and Mancini (2008) considered the forecasting performance of the VR estimates with subsampling. In our
MC study we focus on the estimation performance of various methods.

14



after that decreases linearly to 20% over 50 days. The intraday variation function σ2(τ) is estimated

empirically from the data.14

Having determined σ1(t) and σ2(τ), and thus σ(u), we generate observations of s̃B(u) by the equation

s̃B(u+ ∆u) = s̃B(u) + σ(u)ε, (27)

where ε ∼ N(0, 1) and are independent for different values of u. We take ∆u to be one second and use

equation (27) to compute a second-by-second series of observations of sB(u) = exp(s̃B(u)), with the

starting price of $65. We further add to the series sB(u) a jump component sJ(u), which is assumed

to follow a Poisson process with a mean of 0.4 per five minutes. When a jump occurs, it takes value

of –$0.05, –$0.03, $0.03 and $0.05 with probabilities of 0.25 each. We also consider a jump component

with a higher jump frequency of 2.72 per five minutes and jump sizes of –$0.02, –$0.01, $0.01 and $0.02

with equal probabilities. Finally, we consider a price process consisting of a BSM and a white noise. In

sum, we consider four experiments. Experiment 1 has a pure BSM price process, Experiment 2 consists

of a BSM process plus infrequent jumps of large sizes, Experiment 3 uses a BSM with more frequent

jumps and smaller jump sizes, and Experiment 4 has a BSM process with white noise.

We calculate ICV using the AACD model with SP estimates for a price range of δ = $0.08, and

compare it against the RV methods. Figure 1 presents the daily volatility estimates of one MC sample

of Experiments 1 and 2.15 It can be seen that the VA estimates track the true daily volatilities quite

closely. The RV estimates also follow the volatility trends, albeit apparently with larger variations. We

further simulate 50 samples of 150-day data and estimate the daily volatilities.16 The mean error (ME)

and RMSE of the volatity estimates are summarized in Table 3. It can be seen that VA performs the

best, with a RMSE of less than 0.009 for all experiments. In contrast, VR have the largest RMSE,

which is more than double that of VA in all experiments. Among the RV estimates, VK produces the

best results and is marginally better than VB, although its RMSE is still about 50% higher than that of

14See Figure 2 for a plot of the intraday variation function.
15All volatilities are expressed as annualized standard deviation of returns.
16As the SP estimation of the AACD model is very computer intensive, the MC sample size is maintained to be small.

Increasing the sample size for some of the models showed that the results are qualitatively similar. Larger MC sample size
is more feasible for QMLE estimates, and will be used in Section 5.2.
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VA. For comparison, we also consider V ∗A, which uses the SP method with the nominal threshold, and

V ′A, which uses the QMLE method with the conditional price range. It can be seen that V ′A performs

better than the RV estimates, while V ∗A ranks behind V ′A. The results suggest that the conditional price

range should be adopted, and the use of the QMLE estimate performs quite well albeit inferior to the

SP estimate.

We further estimate intraday ICV using VA. Figure 2 presents the results of the intraday ICV

estimates on days 1, 75 and 150 of a simulated sample based on Experiment 2 (BSM with infrequent

large jumps). We consider ICV over two time intervals: 15 minutes and one hour, beginning from 9:45

and ending at 15:45. The graphs show that VA performs very well, in particular, for t = 1 and 75. In

contrast, the absolute returns over the intervals, which are often used as proxies for intraday volatilities,

are unable to trace the true instantaneous volatility accurately. Indeed, many of the absolute return

plots are outside the range of the graphs and are not shown.

4.2 Stochastic Volatility Models

We now consider the set-up when the volatility function is stochastic. We follow closely the experiments

designed by Aı̈t-Sahalia and Mancini (2008). For completeness, we describe briefly the models adopted.

Further details can be found in Aı̈t-Sahalia and Mancini (2008).

4.2.1 Heston Model

We assume the following price generation process where the stochastic volatility process follows Heston’s

(1993) model

d log s(t) =

(
µ− σ2(t)

2

)
dt+ σ(t) dW1(t), (28)

dσ2(t) = κ
(
α− σ2(t)

)
dt+ γσ(t) dW2(t). (29)

The parameters are set as follows: µ = 0.05, κ = 5, α = 0.04 and γ = 0.5. The correlation coefficient

between the two Brownian motions W1(t) and W2(t), ρ, is −0.5. We generate 100-day data second by

second with initial value of σ(t) equalling 0.3. We also consider the inclusion of a jump component into
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the volatility process. Thus, equation (29) is modified as follows:

dσ2(t) = κ
(
α− σ2(t)

)
dt+ γσ(t) dW2(t) + J(t) dq(t), (30)

where q(t) is a Poisson process with intensity λ = 2/(6.5×3600) and J(t) is assumed to be exponentially

distributed with intensity ξ = 0.0007.

4.2.2 Log-volatility (LV) Model

Let IV
(d)
t denote the integrated daily volatility so that IV

(d)
t =

∫ t
t−1 σ

2(u) du and l(t) = 1
2 log(IV

(d)
t ),

where d denotes daily measure. We let l(t) follow an AR(5) process so that

l(t) = φ0 +

5∑
i=1

φi l(t− i) + u(t), (31)

where u(t) is a white noise. The log-return r(t) is computed as r(t) = [IV
(d)
t ]

1
2 z(t), where z(t) is normal

with mean zero and standard deviation 1/(3600×6.5×252)
1
2 . The parameters are set as: φ0 = −0.0161,

φ1 = −0.35, φ2 = 0.25, φ3 = 0.20, φ4 = 0.10, φ5 = 0.09, and the standard deviation of u(t) is 0.02.

4.2.3 The Noise Structure

Given the logarithmic efficient price log s(t), we add a noise component ε(t) to obtain the logarithmic

transaction price. The following noise structures are considered. First, we assume a white noise, so that

ε(t) are i.i.d. normal variates. Second, we consider the case where ε(t) have serial dependence so that it

follows an AR(1) process with a correlation coefficient of −0.2. Third, we generate serially uncorrelated

ε(t), which are correlated with the latent return process so that Corr{ε(t), log s(t)−log s(t−∆)} = −0.2.

Fourth, we consider noises that are autocorrelated as well as correlated with the latent price process.

The correlation coefficients are as given in Case 2 and 3 aforementioned. Finally, we also consider the

case where there is a jump in the price process for the LV model, with 0.4 jump per 5 minutes and jump

sizes of −0.05, −0.03, 0.03 and 0.05 with equal probabilities.

Based on the model specification, the annualized volatility is around 25% to 30%. We define the

noise-to-signal (NSR) ratio as NSR = [Var{ε(t)}/Var{σ(t)}]
1
2 , which is set equal to 0.25, 0.4 and 0.6.

The variance of ε(t) is then determined given the value of NSR and the volatility process.
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4.3 The Results

As the SP estimation is computationally very intensive, we conduct our MC study of the performance of

VA and V ∗A using the QMLE estimates of the AACD model. This is encouraged by the results in Section

4.1, which suggest the good performance of the QMLE for the estimation of ICV. Figure 3 presents two

samples of the volatility paths for the Heston model and LV model, and various volatility estimates. It

can be seen that VA performs very well against the RV estimates. It tracks the volatility function very

well with relatively small estimation errors.

Tables 4 through 6 report the performance of various estimation methods for different volatility

models and noise structures, each based on MC experiments with 1,000 replications. It can be seen

that the RMSE of VA increases as NSR increases. In contrast, the RV estimates hardly vary with NSR

and the structure of the noise. For NSR of 0.25 and 0.4, VA provides the lowest RMSE among all

estimates. It also gives the lowest RMSE for the Heston model with jump when NSR is 0.6. Among all

RV estimates, VB has the best performance, followed by VK , VD and then VR. When NSR is 0.6, VB

gives the lowest RMSE for the Heston model. For the RV estimates, volatility jumps cause the RMSE

to increase, while price jumps hardly have any effect on the RMSE. As expected, V ∗A has lower ME than

VA (by construction, VA < V ∗A), and its performance seems to rank behind VK but ahead of VR.17 This

suggests that the use of the sample price range conditional upon the threshold being exceeded should

be adopted for the ACD-ICV estimates.

5 Empirical Comparison of ACD-ICV and RV Methods

We now consider the use of the ACD-ICV method for the estimation of daily volatility on empirical

data, and compare the results against the RV methods. While the ACD-ICV and RV methods are based

on different theoretical set-ups, their objectives of estimating daily volatility are similar.

17An exception occurs for the LV models with NSR = 0.60, in which case V ∗
A provides the lowest RMSE with VA being

the second best.
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5.1 The Data

The data we used are extracted and compiled from the NYSE Trade and Quote (TAQ) Database

provided through the Wharton Research Data Services. We downloaded the following data from the

Consolidated Trade (CT) file: date, trading time, price and number of shares traded. To select the

stocks, we rank the 500 component stocks of the S&P500 Index by market capitalization as of September

2008. We then divide the stocks into three groups and select the largest 10 stocks from each group. We

call these the large stocks, medium stocks and small stocks. The selected companies and their stock

codes are summarized in Table 7.

We consider three periods of trades characterized by the price movements as periods of upward

market, downward market and sideways market. The begin and end dates of the periods, as well as the

index values of these periods, are summarized in Table 8. Period 1 is a sideways market; Period 2 is an

upward market and Period 3 is a downward market, which has a high volatility of 21.76%.

On each day transaction data from 9:30 to 16:00 were downloaded. We compute xi as the mean-

diurnally-adjusted duration, which will be used for analysis. Some features of the data are summarized

as follows. First, the average duration increases when the size of the stock decreases. Also, the average

duration decreases from Period 1 to Period 3, indicating that trades in the market are more frequent in

later periods. Second, the changes in price per trade are the lowest for large stocks, and generally lower

for medium stocks than small stocks (except for Period 1). Third, the daily volatility is the highest in

Period 3. For many of the small stocks the annualized standard deviation exceeded 40%.

To investigate the pattern of price duration in relation to the price range δ, we first define δ∗ as the

relative price range so that δ = s̄δ∗, where s̄ is the mean stock price in the period. After experimenting

with different values of δ∗ we set δ∗ to 0.001 in the first two periods and 0.002 in the third period. The

compiled price durations have a mean of approximately 5 minutes. We compute the autocorrelation

coefficients of the price durations and the Q statistics. The autocorrelation coefficients are generally

significant even up to order 30. In addition, the Q statistics show significant serial correlation in

duration, which suggests duration clustering and supports modeling using the ACD models.
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5.2 Empirical Results of NYSE Stocks

We estimate the daily variance by various methods, which are then multiplied by 252 to obtain the

annual variance. The square root of this variance, which is the annualized return standard deviation

based on the open-to-close price changes, is then plotted against time. Figures 4 through 12 plot the

daily volatility estimates of the four methods for different sizes of stocks over three sample periods. To

conserve space, only the first five stocks in each stock-size group are included and VR is excluded. The

results of other stocks are qualitatively similar and their graphs are not presented.

Several characteristics emerging from the graphs can be summarized. It can be seen that the ACD-

ICV estimates track the RV estimates very closely, and they do not appear to have any systematic biases

versus the RV estimates. This is especially true for the stocks in Period 1 (sideways market). During

this period there appears to be little interday variation in volatility. All estimates track each other

quite closely, although there are more variations for the medium and small stocks, especially for the

VD estimates. In Period 2 (upward market), the overall volatility level is higher. We can also see more

daily fluctuations in the volatility estimates. In particular, the VD estimates fluctuate quite significantly

over this period, especially for medium and small stocks. Generally, there appear to be a ranking of VD

being higher than VA, which is in turn higher than VB and VK . The latter two estimates appear to be

closest to each other. For the medium and small stocks it happens quite a significant number of times

that VD is more than double the values of the other estimates. Finally, Period 3 (downward market)

exhibits an interesting feature that the volatilities of all stocks trend upwards during this 25-day period

in which the overall market dropped about 9%. Most stocks start with an annualized volatility of about

20% and trend upwards to 40% or over. Again, the VD estimates appear to be the highest on average,

while VB and VK remain close to each other. Rather interestingly, VA seem to moderate between VD

and the pair of estimates VB and VK .

We further compute two statistics to measure the closeness of the volatility estimates. First, we

calculate the correlation coefficients between pairs of volatility estimates. The results are plotted in

Figure 13. The first panel summarizes the results of VA against other estimates. Panels 2, 3 and 4
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summarize, respectively, the correlations of VB, VK and VD against other estimates. The horizontal

axis orders the stocks by period and then by size within each period. Thus, the 30 stocks in Period 1,

ordered according to large, medium and then small stocks, come first. This is followed by the 30 stocks

in Period 2 and then in Period 3. The graphs show that VA generally correlates quite highly with other

estimates. VD appears to be the estimate that has the lowest correlation with other estimates (see Panel

4).18 VB and VK correlate higher with each other than with VA. We also observe that the correlations

are the highest in Period 3 (see the last 30 data points). This is due to the trending (upwards) of

volatility in this period.

Second, we compute the pairwise root mean-squared differences (RMSD) between the estimates.

The results are presented in Figure 14 in a manner similar to Figure 13. Again, the RMSD between VK

and VB appears to be the lowest amongst all paired comparisons. Also, the RMSD of VD against other

estimates are the highest. Although the correlations between the estimates are the highest in Period

3, the RMSE in Period 3 are also the largest, which is due to the higher general level of volatility in

Period 3 for all stocks.

In Figure 15 we present the intraday volatility estimates of three stocks, namely GE (large stock)

in Period 1 for t = 18, TJX (medium stock) in Period 2 for t = 43 and CSC (small stock) in Period

3 for t = 20. These stocks and times are chosen for illustration because in these cases the volatility

estimates of various methods agree very closely with each other. Intraday ACD-ICV estimates over

time intervals of 15 minutes and one hour are considered, and we also present the absolute returns over

these intervals. It can be seen that the volatility estimates over one-hour intervals are subject to less

fluctuation than the 15-min counterparts, as may be expected. For VA there is an intraday pattern of a

U -shape volatility, especially for the estimates over hourly intervals and for GE and TJX. In contrast,

the absolute return values have large intraday fluctuations (indeed many intraday estimates are not

shown as they are outside the range of the graph), which again verifies that this proxy is very noisy. In

summary, the results suggest that VA provides a workable and superior estimate of intraday volatility.

18There are cases of VD having negative correlations with other estimates. In order to maintain a good scale for the
graphs, such cases are deleted.
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We now investigate whether VA is sensitive to the specification of the ACD model and the method

of estimation of the model parameters. To this effect, we compute the daily ACD-ICV estimates of

the NYSE stocks using the ACD(1, 1) and AACD models estimated by the QMLE method, denoted

by ACD-QMLE and AACD-QMLE, respectively. These are compared against the estimates computed

using the AACD-SP method. We calculate the RMSD of the two QMLE daily ICV estimates versus

the AACD-SP estimates for the thirty stocks in the three periods. For Period 1, the average RMSD

is less than 1 percentage point (in annualized return standard deviation). Overall, the RMSD appears

to be small and suggests that the IV estimates are not sensitive to the choice of the ACD(1, 1) model

versus the AACD model.

We further examine the effects of the relative price range δ∗ on the ACD-ICV estimates VA. For this

purpose, we compute the VA estimates of the large and small stocks in Period 1 using the ACD-QMLE

method. We vary δ∗ from 0.00050 to 0.00175 in increments of 0.00025, and calculate the RMSD between

the daily VA estimates for δ∗ and δ∗+ 0.00025. The RMSD appears to be quite stable and is below 0.01

for almost all cases when δ∗ does not exceed 0.001.19 Thus, the results suggest that the estimates VA

are not sensitive to the choice of the price range, provided δ∗ is not too large so as to induce infrequent

sampling of price events. Further research, however, has to be conducted for the determination of an

optimal price range.20

6 Conclusion

We propose a method to estimate intraday volatility by integrating the instantaneous conditional vari-

ance per unit time obtained from the ACD models, and consider the estimation of the ACD model using

a SP method. Our Monte Carlo results verify that the SP method is more efficient than the QMLE and

compares favorably against the MLE. We compare the daily ACD-ICV estimate against several versions

of realized volatility method. Our Monte Carlo results show that the ACD-ICV estimate provides the

smallest RMSE, while the realized kernel RV gives the best results among the RV estimates.

19For δ∗ = 0.001, the mean duration varies from 90 second to 513 second for the cases considered.
20The issue of the optimal price range is analogous to the problem of determining the optimal sampling frequency for

the VR method as studied by Bandi and Russell (2006a, 2006b and 2008).
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Our empirical results using 30 NYSE stocks show that the ACD-ICV estimate correlates highly with

and performs very well against the realized volatility estimates. It frequently moderates between the

realized kernel and duration based RV estimates. A clear advantage of our method is that it can be

used to estimate intraday volatilities over intervals such as 15 minutes or an hour. Our robustness check

shows that the ACD-ICV estimate is not sensitive to the selection of the ACD model and the method of

estimation. Also, it is not sensitive to the choice of the price range, provided the price events sampled

are not too infrequent. The optimal choice of the price range, however, remains an important topic for

future research.
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Table 1: Monte Carlo results for the AACD model with Weibull errors

Parameter MLE QMLE SP

N = 1,000, MC replications = 500

ω (0.04) 0.0423 (0.0081) (0.0084) 0.0492 (0.0170) (0.0193) 0.0444 (0.0120) (0.0128)
α (0.13) 0.1308 (0.0260) (0.0260) 0.1550 (0.0794) (0.0832) 0.1563 (0.0577) (0.0633)
β (0.80) 0.7972 (0.0213) (0.0215) 0.7781 (0.0792) (0.0821) 0.7741 (0.0587) (0.0641)
λ (0.26) 0.2525 (0.0255) (0.0266) 0.1070 (0.0663) (0.1667) 0.2134 (0.0822) (0.0944)
v (0.50) 0.4860 (0.1032) (0.1041) 0.1873 (0.0965) (0.3272) 0.3741 (0.1136) (0.1695)
b (0.10) 0.1006 (0.0324) (0.0323) 0.0317 (0.0263) (0.0732) 0.0679 (0.0323) (0.0455)
c (0.20) 0.2109 (0.1823) (0.1825) 0.5020 (0.1960) (0.3599) 0.2780 (0.1448) (0.1643)

N = 10,000, MC replications = 100

ω (0.04) 0.0407 (0.0033) (0.0033) 0.0421 (0.0052) (0.0056) 0.0407 (0.0021) (0.0022)
α (0.13) 0.1288 (0.0078) (0.0078) 0.1305 (0.0119) (0.0118) 0.1351 (0.0092) (0.0105)
β (0.80) 0.8000 (0.0083) (0.0083) 0.7922 (0.0146) (0.0165) 0.7987 (0.0096) (0.0096)
λ (0.26) 0.2568 (0.0162) (0.0165) 0.2354 (0.0514) (0.0567) 0.2602 (0.0177) (0.0177)
v (0.50) 0.4956 (0.0376) (0.0377) 0.4346 (0.0744) (0.0987) 0.4959 (0.0276) (0.0278)
b (0.10) 0.0998 (0.0112) (0.0112) 0.0732 (0.0340) (0.0432) 0.0945 (0.0087) (0.0103)
c (0.20) 0.2105 (0.0699) (0.0704) 0.3629 (0.2464) (0.2944) 0.2010 (0.0098) (0.0098)

N = 50,000, MC replications = 50

ω (0.04) 0.0403 (0.0015) (0.0015) 0.0409 (0.0034) (0.0034) 0.0411 (0.0006) (0.0012)
α (0.13) 0.1295 (0.0038) (0.0038) 0.1297 (0.0126) (0.0125) 0.1360 (0.0015) (0.0062)
β (0.80) 0.8006 (0.0050) (0.0050) 0.7983 (0.0110) (0.0111) 0.7964 (0.0013) (0.0038)
λ (0.26) 0.2584 (0.0091) (0.0092) 0.2537 (0.0270) (0.0275) 0.2636 (0.0030) (0.0046)
v (0.50) 0.4985 (0.0212) (0.0210) 0.4883 (0.0251) (0.0274) 0.5088 (0.0082) (0.0120)
b (0.10) 0.1008 (0.0063) (0.0063) 0.0916 (0.0059) (0.0102) 0.0918 (0.0015) (0.0083)
c (0.20) 0.1948 (0.0518) (0.0516) 0.2218 (0.0599) (0.0632) 0.2006 (0.0021) (0.0021)

Notes: The AACD equation is ψλi = ω + αψλi−1[|εi−1 − b| + c(εi−1 − b)]v + βψλi−1. The figures in
the first column are the true parameter values. The figures in other columns are the means of the
parameter estimates, with standard deviations in the first parentheses and RMSE in the second
parentheses.



Table 2: Monte Carlo results for the AACD model with Burr errors

Parameter MLE QMLE SP

N = 1,000, MC replications = 500

ω (0.04) 0.0432 (0.0124) (0.0128) 0.0448 (0.0181) (0.0187) 0.0414 (0.0091) (0.0092)
α (0.13) 0.1329 (0.0374) (0.0375) 0.1192 (0.0547) (0.0557) 0.1283 (0.0222) (0.0222)
β (0.80) 0.7940 (0.0392) (0.0396) 0.8078 (0.0574) (0.0579) 0.8009 (0.0220) (0.0220)
λ (0.26) 0.2582 (0.0945) (0.0944) 0.2568 (0.1716) (0.1715) 0.2570 (0.0498) (0.0498)
v (0.50) 0.4862 (0.1382) (0.1388) 0.5850 (0.1773) (0.1965) 0.5189 (0.1029) (0.1045)
b (0.10) 0.1035 (0.0374) (0.0375) 0.0943 (0.0400) (0.0404) 0.0979 (0.0255) (0.0255)
c (0.20) 0.1969 (0.1697) (0.1696) 0.1878 (0.2611) (0.2611) 0.2155 (0.0931) (0.0943)

N = 10,000, MC replications = 100

ω (0.04) 0.0410 (0.0033) (0.0034) 0.0418 (0.0045) (0.0048) 0.0389 (0.0035) (0.0036)
α (0.13) 0.1302 (0.0058) (0.0058) 0.1322 (0.0081) (0.0084) 0.1533 (0.0104) (0.0255)
β (0.80) 0.7981 (0.0083) (0.0085) 0.7966 (0.0100) (0.0105) 0.7923 (0.0089) (0.0118)
λ (0.26) 0.2575 (0.0181) (0.0182) 0.2403 (0.0247) (0.0314) 0.2226 (0.0173) (0.0411)
v (0.50) 0.4929 (0.0424) (0.0428) 0.6776 (0.0314) (0.1803) 0.5886 (0.0323) (0.0942)
b (0.10) 0.1013 (0.0142) (0.0141) 0.0808 (0.0274) (0.0334) 0.1005 (0.0226) (0.0225)
c (0.20) 0.2115 (0.0378) (0.0394) 0.2037 (0.0950) (0.0946) 0.1979 (0.0202) (0.0202)

N = 50,000, MC replications = 50

ω (0.04) 0.0402 (0.0016) (0.0016) 0.0401 (0.0014) (0.0014) 0.0405 (0.0010) (0.0011)
α (0.13) 0.1302 (0.0026) (0.0025) 0.1301 (0.0023) (0.0023) 0.1324 (0.0019) (0.0031)
β (0.80) 0.7987 (0.0030) (0.0032) 0.7995 (0.0043) (0.0043) 0.8005 (0.0017) (0.0018)
λ (0.26) 0.2623 (0.0079) (0.0082) 0.2608 (0.0091) (0.0090) 0.2626 (0.0042) (0.0049)
v (0.50) 0.5001 (0.0179) (0.0177) 0.5018 (0.0216) (0.0214) 0.5020 (0.0158) (0.0158)
b (0.10) 0.1011 (0.0055) (0.0056) 0.1007 (0.0055) (0.0055) 0.0980 (0.0043) (0.0047)
c (0.20) 0.2104 (0.0569) (0.0573) 0.2026 (0.0496) (0.0492) 0.2022 (0.0028) (0.0035)

Notes: The AACD equation is ψλi = ω + αψλi−1[|εi−1 − b| + c(εi−1 − b)]v + βψλi−1. The figures in
the first column are the true parameter values. The figures in other columns are the means of the
parameter estimates, with standard deviations in the first parentheses and RMSE in the second
parentheses.



Table 3: Monte Carlo results for experiments with deterministic volatility

Estimation Experiment 1 Experiment 2 Experiment 3 Experiment 4
Method ME RMSE ME RMSE ME RMSE ME RMSE

VA −0.0024 0.0087 −0.0004 0.0089 −0.0013 0.0088 −0.0005 0.0089
V ∗A −0.0124 0.0141 −0.0111 0.0143 −0.0114 0.0145 −0.0101 0.0143
V ′A −0.0006 0.0110 0.0047 0.0121 0.0042 0.0120 −0.0052 0.0121
VB −0.0026 0.0137 0.0028 0.0139 0.0030 0.0140 0.0038 0.0141
VD −0.0120 0.0196 −0.0068 0.0170 −0.0066 0.0170 −0.0188 0.0157
VK −0.0050 0.0139 0.0006 0.0131 0.0008 0.0131 0.0014 0.0134
VR −0.0120 0.0249 −0.0068 0.0245 −0.0066 0.0248 −0.0118 0.0243

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 50 MC
replications of 150-day daily volatility estimates. VA and V ′A are computed using SP and QMLE
methods, respectively, with δ being the average price range conditional on a price event being
observed. V ∗A is computed using SP method, with δ being the threshold price range.



Table 4: Monte Carlo results for stochastic volatility models with NSR = 0.25

Volatility model
Estimation Heston Heston with jump LV LV with jump
method ME RMSE ME RMSE ME RMSE ME RMSE

Panel A: Transaction price with white noise

VA −0.0005 0.0111 0.0010 0.0141 −0.0007 0.0075 −0.0003 0.0074
V ∗
A −0.0162 0.0202 −0.0287 0.0335 −0.0144 0.0161 −0.0137 0.0155
VB −0.0017 0.0140 −0.0024 0.0194 −0.0016 0.0128 −0.0016 0.0128
VD −0.0095 0.0189 −0.0191 0.0296 −0.0079 0.0166 −0.0075 0.0165
VK −0.0004 0.0150 −0.0008 0.0209 −0.0003 0.0138 −0.0003 0.0138
VR −0.0029 0.0256 −0.0041 0.0356 −0.0028 0.0235 −0.0027 0.0234

Panel B: Transaction price with autocorrelated noise

VA −0.0003 0.0110 0.0012 0.0141 −0.0005 0.0074 −0.0002 0.0074
V ∗
A −0.0161 0.0201 −0.0286 0.0334 −0.0143 0.0161 −0.0136 0.0154
VB −0.0017 0.0140 −0.0025 0.0195 −0.0016 0.0128 −0.0016 0.0128
VD −0.0094 0.0189 −0.0190 0.0295 −0.0078 0.0166 −0.0075 0.0165
VK −0.0004 0.0150 −0.0008 0.0209 −0.0003 0.0138 −0.0003 0.0138
VR −0.0029 0.0256 −0.0041 0.0356 −0.0028 0.0235 −0.0027 0.0235

Panel C: Transaction price with noise correlated with efficient price

VA −0.0006 0.0109 0.0009 0.0141 −0.0008 0.0075 −0.0001 0.0074
V ∗
A −0.0163 0.0202 −0.0288 0.0336 −0.0145 0.0162 −0.0138 0.0156
VB −0.0017 0.0140 −0.0025 0.0195 −0.0016 0.0128 −0.0016 0.0128
VD −0.0095 0.0189 −0.0191 0.0296 −0.0080 0.0166 −0.0076 0.0165
VK −0.0004 0.0150 −0.0008 0.0209 −0.0004 0.0137 −0.0003 0.0137
VR −0.0029 0.0256 −0.0041 0.0356 −0.0027 0.0234 −0.0027 0.0234

Panel D: Transaction price with autocorrelated noise correlated with efficient price

VA −0.0004 0.0110 0.0010 0.0141 −0.0007 0.0074 0.0003 0.0074
V ∗
A −0.0162 0.0202 −0.0288 0.0336 −0.0143 0.0160 −0.0136 0.0154
VB −0.0017 0.0140 −0.0025 0.0195 −0.0016 0.0128 −0.0016 0.0128
VD −0.0094 0.0189 −0.0190 0.0295 −0.0079 0.0166 −0.0075 0.0165
VK −0.0004 0.0150 −0.0008 0.0208 −0.0004 0.0138 −0.0003 0.0138
VR −0.0029 0.0255 −0.0041 0.0355 −0.0028 0.0235 −0.0028 0.0235

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 1,000
MC replications of 100-day daily volatility estimates. VA and V ∗

A are based on the QMLE of the
AACD model. For VA δ is the average price range conditional on a price event, while for V ∗

A δ is
the price-range threshold. The Heston-with-jump model is the Heston model with jumps in the
volatility, while the LV-with-jump model has jumps in the price.



Table 5: Monte Carlo results for stochastic volatility models with NSR = 0.40

Volatility model
Estimation Heston Heston with jump LV LV with jump
method ME RMSE ME RMSE ME RMSE ME RMSE

Panel A: Transaction price with white noise

VA 0.0028 0.0113 0.0044 0.0147 0.0027 0.0078 0.0036 0.0082
V ∗
A −0.0138 0.0184 −0.0263 0.0315 −0.0120 0.0139 −0.0113 0.0134
VB −0.0014 0.0138 −0.0022 0.0193 −0.0013 0.0128 −0.0013 0.0128
VD −0.0077 0.0180 −0.0171 0.0283 −0.0064 0.0160 −0.0060 0.0159
VK 0.0002 0.0148 −0.0004 0.0207 0.0002 0.0138 0.0003 0.0138
VR −0.0027 0.0253 −0.0039 0.0352 −0.0026 0.0234 −0.0026 0.0234

Panel B: Transaction price with autocorrelated noise

VA 0.0032 0.0114 0.0048 0.0149 0.0030 0.0079 0.0039 0.0084
V ∗
A −0.0136 0.0182 −0.0261 0.0314 −0.0118 0.0138 −0.0111 0.0132
VB −0.0014 0.0138 −0.0022 0.0193 −0.0013 0.0128 −0.0013 0.0128
VD −0.0076 0.0179 −0.0170 0.0282 −0.0063 0.0160 −0.0059 0.0158
VK 0.0002 0.0148 −0.0004 0.0207 0.0002 0.0137 0.0003 0.0138
VR −0.0027 0.0253 −0.0039 0.0352 −0.0026 0.0234 −0.0026 0.0234

Panel C: Transaction price with noise correlated with efficient price

VA 0.0026 0.0113 0.0042 0.0147 0.0024 0.0078 0.0034 0.0081
V ∗
A −0.0140 0.0185 −0.0265 0.0317 −0.0121 0.0141 −0.0114 0.0135
VB −0.0014 0.0138 −0.0022 0.0193 −0.0014 0.0128 −0.0013 0.0128
VD −0.0078 0.0180 −0.0172 0.0284 −0.0065 0.0160 −0.0061 0.0159
VK 0.0001 0.0148 −0.0004 0.0207 0.0001 0.0137 0.0002 0.0138
VR −0.0027 0.0253 −0.0039 0.0352 −0.0026 0.0234 −0.0026 0.0234

Panel D: Transaction price with autocorrelated noise correlated with efficient price

VA 0.0029 0.0113 0.0046 0.0148 0.0027 0.0079 0.0037 0.0083
V ∗
A −0.0138 0.0184 −0.0263 0.0315 −0.0119 0.0139 −0.0112 0.0133
VB −0.0014 0.0138 −0.0022 0.0193 −0.0012 0.0128 −0.0012 0.0128
VD −0.0077 0.0180 −0.0171 0.0283 −0.0063 0.0160 −0.0059 0.0158
VK 0.0002 0.0149 −0.0004 0.0207 0.0002 0.0137 0.0003 0.0137
VR −0.0027 0.0253 −0.0039 0.0352 −0.0025 0.0234 −0.0025 0.0234

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 1,000
MC replications of 100-day daily volatility estimates. VA and V ∗

A are based on the QMLE of the
AACD model. For VA δ is the average price range conditional on a price event, while for V ∗

A δ is
the price-range threshold. The Heston-with-jump model is the Heston model with jumps in the
volatility, while the LV-with-jump model has jumps in the price.



Table 6: Monte Carlo results for stochastic volatility models with NSR = 0.60

Volatility model
Estimation Heston Heston with jump LV LV with jump
method ME RMSE ME RMSE ME RMSE ME RMSE

Panel A: Transaction price with white noise

VA 0.0091 0.0143 0.0111 0.0178 0.0089 0.0117 0.0098 0.0124
V ∗
A −0.0091 0.0152 −0.0216 0.0276 −0.0073 0.0102 −0.0066 0.0098
VB −0.0008 0.0137 −0.0018 0.0193 −0.0008 0.0127 −0.0007 0.0127
VD −0.0048 0.0170 −0.0141 0.0267 −0.0035 0.0152 −0.0031 0.0151
VK 0.0013 0.0149 0.0004 0.0207 0.0013 0.0138 0.0014 0.0139
VR −0.0025 0.0253 −0.0038 0.0352 −0.0024 0.0234 −0.0024 0.0234

Panel B: Transaction price with autocorrelated noise

VA 0.0098 0.0147 0.0119 0.0184 0.0096 0.0122 0.0105 0.0129
V ∗
A −0.0087 0.0148 −0.0211 0.0273 −0.0069 0.0100 −0.0062 0.0096
VB −0.0008 0.0137 −0.0018 0.0193 −0.0008 0.0127 −0.0007 0.0127
VD −0.0046 0.0169 −0.0138 0.0265 −0.0032 0.0151 −0.0029 0.0151
VK 0.0013 0.0149 0.0004 0.0207 0.0013 0.0138 0.0014 0.0138
VR −0.0025 0.0253 −0.0038 0.0352 −0.0024 0.0234 −0.0024 0.0234

Panel C: Transaction price with noise correlated with efficient price

VA 0.0087 0.0139 0.0106 0.0174 0.0085 0.0113 0.0094 0.0121
V ∗
A −0.0094 0.0153 −0.0219 0.0279 −0.0076 0.0105 −0.0069 0.0100
VB −0.0008 0.0138 −0.0018 0.0193 −0.0008 0.0127 −0.0008 0.0127
VD −0.0050 0.0171 −0.0143 0.0268 −0.0037 0.0152 −0.0033 0.0152
VK 0.0012 0.0149 0.0004 0.0207 0.0012 0.0138 0.0013 0.0138
VR −0.0025 0.0253 −0.0038 0.0352 −0.0024 0.0234 −0.0024 0.0234

Panel D: Transaction price with autocorrelated noise correlated with efficient price

VA 0.0093 0.0143 0.0113 0.0179 0.0091 0.0118 0.0100 0.0125
V ∗
A −0.0091 0.0151 −0.0216 0.0277 −0.0072 0.0102 −0.0065 0.0098
VB −0.0008 0.0138 −0.0018 0.0192 −0.0006 0.0127 −0.0006 0.0127
VD −0.0048 0.0171 −0.0140 0.0266 −0.0033 0.0152 −0.0030 0.0151
VK 0.0013 0.0149 0.0004 0.0207 0.0014 0.0138 0.0014 0.0138
VR −0.0025 0.0252 −0.0037 0.0351 −0.0023 0.0234 −0.0023 0.0234

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 1,000
MC replications of 100-day daily volatility estimates. VA and V ∗

A are based on the QMLE of the
AACD model. For VA δ is the average price range conditional on a price event, while for V ∗

A δ is
the price-range threshold. The Heston-with-jump model is the Heston model with jumps in the
volatility, while the LV-with-jump model has jumps in the price.



Table 7: Stocks and codes

Large Stocks Medium Stocks Small Stocks

Stock Code Stock Code Stock Code

Exxon Mobil XOM TJX TJX Brown-Forman (B) BFB

General Electric GE Tyco International TYC Constellation Energy Group CEG

Procter & Gamble PG Viacom (B) VIAB Computer Sciences CSC

John & Johnson JNJ Allergan AGN Jacobs Engineering Group JEC

AT & T T Chesapeake Energy CHK American Int’l. Group AIG

Chevron CVX Aon AOC Waters WAT

JPMorgan Chase JPM Loews CG U.S. Steel X

Wal Mart WMT Progress Energy PGN Moody’s MCO

IBM IBM Williams WMB McCormick MKC

Pfizer PFE Baker Hughes BHI Comerica CMA

Table 8: Sample period and data summary

Period 1 2 3

Begin date 2006-01-11 2007-03-13 2007-07-13

End date 2006-03-31 2007-06-04 2007-08-16

Begin index 1294.18 1377.95 1552.5

End index 1294.87 1539.18 1411.27

Number of days 56 58 25

Return in period 0.05% 11.70% −9.1%

Annualized standard 9.01% 9.85% 21.76%

deviation of daily return
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Figure 1: Estimates of Deterministic Volatility Model
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 Estimates, Experiment 2 (BSM with infrequent large jumps)
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Figure 3: Estimates of Stochastic Volatility Model
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Figure 4: Volatility of Large Stocks, Period 1: Jan 11, 2006 -- March 31, 2006
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Figure 5: Volatility of Medium Stocks, Period 1: Jan 11, 2006 -- March 31, 2006
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Figure 6: Volatility of Small Stocks, Period 1: Jan 11, 2006 -- March 31, 2006
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Figure 7: Volatility of Large Stocks, Period 2: Mar 13, 2007 -- Jun 4, 2007
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Figure 8: Volatility of Medium Stocks, Period 2: Mar 13, 2007 -- Jun 4, 2007
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Figure 9: Volatility of Small Stocks, Period 2: Mar 13, 2007 -- Jun 4, 2007
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Figure 10: Volatility of Large Stocks, Period 3: Jul 13, 2007 -- Aug 16, 2007
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Figure 11: Volatility of Medium Stocks, Period 3: Jul 13, 2007 -- Aug 16, 2007
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Figure 12: Volatility of Small Stocks, Period 3: Jul 13, 2007 -- Aug 16, 2007
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Figure 13: Correlation Coefficient of Volatility Estimates
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Figure 14: Root Mean-Squared Difference of Volatility Estimates
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Figure 15: Intraday V
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 Estimates of Three Selected NYSE Stocks
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