
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection Lee Kong Chian School Of 
Business Lee Kong Chian School of Business 

11-2009 

A Bayesian Inventory Model Using Real-Time Condition A Bayesian Inventory Model Using Real-Time Condition 

Monitoring Information Monitoring Information 

Rong LI 
Singapore Management University, rongli@smu.edu.sg 

Jennifer Ryan 
School of Business, University College Dublin 

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research 

 Part of the Management Sciences and Quantitative Methods Commons 

Citation Citation 
LI, Rong and Ryan, Jennifer. A Bayesian Inventory Model Using Real-Time Condition Monitoring 
Information. (2009). 
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/1264 

This Working Paper is brought to you for free and open access by the Lee Kong Chian School of Business at 
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research 
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F1264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/637?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F1264&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


A Bayesian Inventory Model Using

Real-Time Condition Monitoring Information

Rong Li
Lee Kong Chian School of Business, Singapore Management University

50 Stamford Road, Singapore 178899

Jennifer K. Ryan∗
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Abstract

Lack of coordination between machinery fault diagnosis and inventory management for spare
parts can lead to increased inventory costs as well as disruptions in production activity. In this
paper, we develop a framework for incorporating real-time condition monitoring information into
inventory management decisions for spare parts. We consider a manufacturer who periodically
replenishes inventory for a machine part that is subject to deterioration. The deterioration process
can be captured via condition monitoring and modeled using a Wiener process. The resulting
degradation model can be used to derive the life distribution of a functioning part and to estimate
the demand distribution for spare machine parts. This estimation is periodically updated, in a
Bayesian manner, as additional information on part deterioration is obtained through condition
monitoring. We develop an inventory model which incorporates this estimated and updated
demand distribution. We use the model to demonstrate that the form of the optimal inventory
control policy is a dynamic base-stock policy in which the optimal base-stock level is a function of
some subset of the observed condition monitoring information. Adaptive inventory policies such
as this can help manufacturers to increase machine availability and reduce inventory costs.
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1 Introduction

The management of complex mechanical systems can be greatly enhanced through the implementa-

tion of condition monitoring, i.e., the collection of real-time sensor information from a functioning

device in order to monitor and learn about the condition of that device. Examples of condition

monitoring techniques include vibration analysis, tribology (oil) analysis, and thermography (Moore

and Starr, 2006). Condition monitoring is particularly useful for devices, e.g., machine parts, that

are subject to deterioration and thus require periodic maintenance and/or replacement.

In order to use real-time sensor information to predict the remaining life of a device and to

improve operational decisions such as replacement and repair, it is useful to identify and model a

degradation signal, i.e., a quantity computed from sensor data that captures the current condition

of the device and provides information on how that condition is likely to evolve (Nelson, 1990). For

example, Gebraeel, et al (2005) develop degradation signal models for machine bearings. As bearings

degrade, the vibration they emit exhibits an increasing trend. When this vibration reaches a specified

threshold the bearing is considered to have failed. Thus, if properly constructed and estimated, a

degradation signal based on bearing vibration can provide information on the remaining life of the

bearing, as well as lead-time for maintenance planning and the procurement of spare parts. Similarly,

oil analysis can be used to monitor machine condition and to identify abnormal wear. The most

common form uses spectrometry to monitor the concentration of wear metals in the oil (Macin, et

al, 2003). Generally, this concentration will increase with machine run time. Manufacturers often

specify limits for these concentrations, indicating whether the machine condition is acceptable or

abnormal (Evans, 2006). Thus, a degradation signal based on wear metal concentrations can provide

useful information regarding machine wear, which can be used to manage preventive maintenance.

In practice, prognostics has drawn attention from the military, e.g., Greitzer and Ferryman

(2001) discuss Naval applications, and heavy equipment manufacturers, such as Caterpillar, e.g., van

de Voort, et al (2006), who own or produce complex mechanical systems. These systems include

tanks, aircraft, ships, and earth-moving equipment. While there have been significant advances

in condition monitoring technology, e.g., sensors, electronics and communications technologies, in

recent years, as noted by Greitzer, et al (1999), the field “is still in a research and development

phase, and implementing prognostics is a monumental task on several levels - the technical challenges

involving hardware and sensor technologies, the analytical challenges involving predictive methods,
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and the logistical challenges centering on how to make use of prognostic information.” Li (2001) and

Gebraeel, et al (2005) consider the second-level challenge by studying how to incorporate real-time

sensor information into the computation of remaining life distributions for functioning devices. In

this paper, we extend this work and consider the third-level challenge. Specifically, we consider how

this type of prognostic information can be used to improve spare parts inventory management.

2 Background and Literature Review

In this section, we provide necessary background on degradation signal modeling and briefly review

the relevant literature. For a more complete overview of condition monitoring, including condition

monitoring techniques and applications, please refer to Li (2001) and Gebraeel, et al (2005).

2.1 Degradation Signal Models for Condition Monitoring

When monitoring a functioning device, it is useful to define and model a degradation signal which

can be observed over time and used to define device failure. Generally, this degradation signal will be

increasing as a function of time, representing increasing degradation. Lu and Meeker (1993) (L&M)

present a random coefficient degradation signal model that contains fixed effects, used to model

characteristics of an entire population of devices, and random effects, used to model heterogeneity

across a population of devices: yij = η(tj , φ, Θi) + εij , where yij is the degradation signal observed

on device i at tj , the time of the jth observation, φ is a vector of fixed-effect parameters, Θi is a

vector of random-effect parameters for the ith device, and εij is the independent Normal random

error term observed at time tj for device i, used to capture measurement error. The random-effects,

Θi, follow a multivariate distribution which depends on some unknown parameters, which can be

estimated using observed degradation signal values. The degradation signal model used in this paper

is similar to the L&M model, but with a Brownian motion error process. Previous work considering

Brownian motion models of degradation signals includes Gebraeel, et al (2005), Park and Padgett

(2005), Whitmore and Schenkelberg (1997), Whitmore (1995), Doksum and Hoyland (1992).

2.1.1 Real-time Bayesian Updating of Brownian Degradation Signal Models

This paper builds on the methods developed in Li (2001) and Gebraeel, et al (2005). Among their

models, the most relevant for us is the single parameter linear model with a Brownian motion error
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process (Li 2001).1 Here, Z(t) = θt + ε(t) for t ≥ 0, represents the signal process over time, where

θ > 0 is the degradation or drift parameter, and ε(t) = σW (t), where W is a standard Brownian

motion. We assume that θ, which measures the rate of deterioration of a device, varies across the

population of devices and is unknown, i.e., requires estimation. Gebraeel, et al (2005) develop a

Bayesian updating method to periodically estimate the distribution of θ using observed degradation

signal values. They adopt a Normal prior distribution for θ. If z1, z2, . . . , zk are degradation signal

observations obtained from a functioning device at times 0 < t1 < t2 < . . . < tk, then at time tk

the posterior distribution of θ can be derived using the prior distribution and these observed signal

values. It is then easy to compute the predictive distribution of Z(tk + t) given z1, z2, . . . , zk, for

t > 0, which can then be used to draw inferences regarding the remaining life of the device.

2.2 Predicting Device Failure Using Real-time Sensor Information

Degradation signal observations can be used to determine when a functioning device has failed and

replacement should be initiated. “A common practice is to record a condition reading at a regular

interval, and once the reading is higher than a pre-set critical level, the item monitored is declared

faulty and repair or replacement may be initiated” (Wang 2000). If the device will be replaced when

the signal value reaches a given threshold, then the remaining life of a functioning device is simply

the time until the signal process reaches that threshold. This approach to find the distribution of

remaining life has been used by L&M, Wang and Zhang (2005) and Gebraeel, et al (2005).

2.3 Bayesian Inventory Models

We develop an inventory model in which the distribution of demand is periodically updated based

on newly obtained sensor readings. Related research considers Bayesian inventory models in which

the distribution of demand is periodically updated based on newly obtained demand observations,

e.g., Dvoretzky, et al (1952), Scarf (1959, 1960), Karlin (1960), Iglehart (1964), etc. However, this

literature generally assumes exogenous demand and Bayesian updating of some demand distribution

parameter using observed demand data. In contrast, we model demand endogenously by deriving

the demand distribution from the life distribution for machine parts and we update the distribution

1Our results can be extended to other degradation signal forms, e.g., an exponential model.



4

of the degradation parameter using real-time sensor information.

3 Problem Description

We consider a system of m ∈ lN machines, each of which uses a single part that is subject to deteriora-

tion. While in use, each of the parts on machine i, i = 1, . . . , m, has an associated degradation signal,

Zi(t), which is periodically monitored (at the start of each period). This signal takes the linear form

with Brownian motion error terms, defined in Section 2.1.1, i.e., Zi(t) = θit + εi(t), t ≥ 0, θi > 0,

where {Zi(t) : t ≥ 0} represents the degradation signal process, θi is the degradation parameter for

parts on machine i, and εi(t) = σWi(t), where Wi is a standard Brownian motion. The degradation

parameter, θi, may differ for each machine, reflecting the fact that the degradation process may

be affected by machine condition. We assume, however, that θi is the same for all parts used on

machine i. The degradation parameter, θi, may known or unknown. When it is unknown, we follow

the Bayesian approach in Li (2001) and Gebraeel, et al (2005) to update the probability distribution

of θi. Let ~θ = [θ1, . . . , θm] denote the array of the drift parameters for the m machines.

A part is considered to have failed, and will be replaced, when the observed degradation signal

exceeds a given threshold, B. We assume instantaneous part replacement (and a sufficient inventory

of spare parts). A key issue is to derive the demand distribution for replacement parts. Since demand

for parts in a given period is driven by part failures in that period, the demand distribution can be

obtained using the remaining life distribution of each part. In a multi-period model, the age of the

part being used on a given machine at the start of the period will be different in each period and for

each machine. In addition, the signals observed at the start of each period will differ. Thus, even if

the periods are of equal length, the demand distributions in each period will not be homogenous.

Given the demand distribution for each period, our goal is to determine the optimal method

for controlling inventory of spare parts, assuming that inventory is ordered periodically to minimize

the total expected cost for the remainder of the planning horizon. The planning horizon consists of

N < ∞ periods of equal length t0 > 0. We call the time interval [(n − 1)t0, nt0) the nth period,

n = 1, 2, . . . , N . Inventory replenishments are only allowed at the start of each of these N periods.

The order of events at the start of each period, assuming all machines begin operating at time

0, is: (1) Each machine is monitored to obtain a degradation signal value. (2) If the degradation

parameter is unknown, the distribution of the parameter is updated using the degradation signal
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values obtained up to that time. (3) This distribution and the observed signal values are used to

update the demand distribution for each machine. (4) The optimal inventory policy is updated.

4 Derivation of Demand Distribution Using Degradation Signal Model

As in any inventory control problem, the first step is to characterize the demand distribution. We

will do so for two cases: (1) the degradation parameter, θi, is known and (2) θi is unknown.

4.1 Demand Distribution for Components with Known Drift Parameters

The demand for spare parts at machine i is driven by the failure of parts operating on machine i.

Thus, we start by deriving a closed form expression for Fi(·), the cumulative distribution function

(cdf) of the time between successive failures, e.g., between the (k− 1)st and kth failures at machine

i. Since a part is assumed to fail when its degradation signal reaches the threshold B, Fi(·) is the

distribution of the time it takes for the degradation signal process from the kth part used on machine

i to reach the failure threshold (barrier) B. To determine Fi(·), we use the concept of the first passage

time for a Wiener process (Cox and Miller 1965). The first passage time, T , is defined as the time

until the process, starting from 0, first reaches the absorbing barrier, B, where an absorbing barrier

is a threshold such that, once the process crosses the threshold, the process is stopped. For a linear

Wiener process, Zi, with drift parameter θi and barrier B, let T (θi, B) denote the first passage time.

Then the cdf of T is (Cox and Miller 1965, Section 5.7):

Fi(t) = P {T (θi, B) ≤ t} = 1− Φ
(

B − θit

σ
√

t

)
+ exp

{
2θiB

σ2

}
Φ

(−B − θit

σ
√

t

)
. (1)

Next, we can find the distribution of the k-fold convolution of Fi(·), denoted F
(k)
i (·):

Proposition 4.1 F
(k)
i (t) = P{T (θi, kB) ≤ t}.

Thus, the distribution of the time it takes for a single part to reach failure threshold kB is the same

as the distribution of the time it takes for k successive parts to each reach failure threshold B.

We can now derive the pmf of the demand per period.

Proposition 4.2 Let Din represent the demand for parts from machine i during the period n, n =

1, . . . , N . Let zi
n represent the degradation signal value for the part operating on machine i, observed
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at the start of period n. Then the pmf of Din can be written as follows:

P
{
Din = k|θi, z

i
n

}
= P

{
T (θi, z

i
n, kB) ≤ t0, T (θi, z

i
n, (k + 1)B) > t0

}

= P
{
T (θi, z

i
n, kB) ≤ t0

}
− P

{
T (θi, z

i
n, (k + 1)B) ≤ t0

}
, (2)

for k ∈ lN
⋃{0}, where P

{
T (θi, z

i
n, 0B) ≤ t0

}
= 1, for any zi

n ∈ lR and

P{T (θi, B1, B2) ≤ t} = 1− Φ
(

(B2 −B1)− θit

σ
√

t

)
+ exp

{
2θi(B2 −B1)

σ2

}
Φ

(−(B2 −B1)− θit

σ
√

t

)
.

Let Dn represent the demand for parts from a set of m machines during period n. Let ~zn =

[z1
n, . . . , zm

n ] denote the array of observed degradation signal values for the parts operating on all

m machines at the start of period n. Then the pmf of Dn, given ~θ and ~zn:

P
{
Dn = k|~θ, ~zn

}
=

∑

(l1,...,lm):
∑m

i=1
li=k

(
m∏

i=1

P
{
Din = li|θi, z

i
n

})
, k ∈ lN

⋃
{0}. (3)

4.2 Demand Distribution for Components with Unknown Drift Parameters

We next derive the distribution of demand when the drift parameters are unknown. To estimate

the unknown drift parameter, θi, we follow Li (2001). We treat θi as a random variable, denoted

by Θi, with a Normal prior distribution, N(µi1, σ
2
i1), i = 1, . . . , m. As we obtain degradation signal

observations, we use these observations to update the distribution of Θi in a Bayesian manner. Since

θi is the same for each part used on machine i, we use all of the degradation signal values that

have been obtained from machine i up to that time. Specifically, at the beginning of period 1, with

observed signal value zi
1 = 0, Θi follows the prior distribution, fΘi|zi

1
(·). This distribution may be

obtained from historical data or from information obtained from the part’s manufacturer. At the

beginning of period n, n = 1, 2, . . . , N , we combine the observed degradation signal value, zi
n, and

the posterior distribution of Θi, updated at the start of period n− 1, denoted by fΘi|zi
1,...,zi

n−1
(·), to

derive a new updated distribution for Θi, denoted by fΘi|zi
1,...,zi

n
(·). Using this procedure, as in Li

(2001), we can show that the updated (posterior) distribution of Θi, given zi
1, . . . , z

i
n, is Normal with

mean, µin, and standard deviation, σin, where µin and σin are given in the Appendix.

Let P
{
Din = k|zi

1, . . . , z
i
n

}
denote the pmf of the demand at machine i in period n, given that θi is
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unknown. This probability function depends on all of the observed signal values up to and including

the start of period n. Using the pmf for demand at machine i with known θi, and the posterior

distribution of Θi, we have P
{
Din = k|zi

1, . . . , z
i
n

}
=

∫ ∞

−∞
P

{
Din = k|θ, zi

n

}
fΘi|zi

1,...,zi
n
(θ)dθ, for k ∈

lN
⋃{0}, and i = 1, . . . , m. We can further simplify P

{
Din = k|zi

1, . . . , z
i
n

}
:

For k = 0:

∫ ∞

−∞
P

{
Din = 0|θ, zi

n

}
fΘi|zi

1,...,zi
n
(θ)dθ =

∫ ∞

−∞
P{T (θ, zi

n, B) > t0}fΘi|zi
1,...,zi

n
(θ)dθ. (4)

For k ≥ 1:

∫ ∞

−∞
P

{
Din = k|θ, zi

n

}
fΘi|zi

1,...,zi
n
(θ)dθ

=
∫ ∞

−∞

[
P{T (θ, zi

n, kB) ≤ t0} − P{T (θ, zi
n, (k + 1)B) ≤ t0}

]
fΘi|zi

1,...,zi
n
(θ)dθ. (5)

In (5), for k ≥ 1,

∫ ∞

−∞
P{T (θ, zi

n, kB) ≤ t0}fΘi|zi
1,...,zi

n
(θ)dθ =

∫ ∞

−∞

(∫ t0

0
fT (θ,zi

n,kB)(t)dt

)
fΘi|zi

1,...,zi
n
(θ)dθ

=
∫ t0

0

(∫ ∞

−∞
fT (θ,zi

n,kB)(t)fΘi|zi
1,...,zi

n
(θ)dθ

)
dt (6)

=
∫ t0

0

(∫ ∞

−∞

(
kB − zi

n

t

)
φ

(
kB − zi

n − θt

σ
√

t

)
φ

(
θ − µin

σin

)
dθ

)
dt (7)

=
∫ t0

0


 kB − zi

n√
2πt3(σ2

in + σ2)


 exp

{
− µ2

in

2σ2
in

− (kB − zi
n)2

2σ2t
+

[(kB − zi
n)σ2

in + µinσ2]2

2σ2σ2
in(σ2

int + σ2)

}
dt,

where φ(w) = 1√
2π

exp
{
−w2

2

}
, (6) is obtained by switching integrals, following the Fubini Theorem,

and fT (θ,zi
n,kB)(t) is obtained by differentiating P{T (θ, zi

n, kB) ≤ t} in t.

Finally, we can obtain the distribution of the demand for parts in period n for a system of m

machines, Dn, using the same approach as in (16).

5 Finding the Optimal Inventory Control Policy

To find an optimal inventory policy, we develop a dynamic programming (DP) formulation for this

problem. In this formulation, the cost-to-go function depends on the signal values that have been
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observed through a given time. Thus, the optimal policy will also depend on these signal values.

In addition, when we take the expectation of the cost-to-go functions, we must take into account

the future signal values, which are random variables that will be observed after the replenishment

decision is made. These random variables depend on the ages of the parts in use at the start of future

planning periods, which are also random. Therefore, taking the expectation is not straightforward.

We first consider the case in which the degradation parameters are known, and then consider the

case in which these parameters are estimated using observed degradation signal values.

5.1 Inventory Model with Known Drift Parameters {θi : i = 1, . . . , m}

At the start of each period n, we perform condition monitoring and acquire a degradation signal

value zi
n from each machine i. This value is used to update the demand distribution, as described in

Section 4.1, and then to make our inventory decisions.

Let Ci
n(xi|θi, z

i
n) denote the minimum expected inventory cost for machine i for the remainder

of the horizon, i.e., for periods n, n + 1, . . . , N , given observed degradation signal value zi
n, where

xi is the on-hand inventory level for machine i at the start of period n. This cost function depends

only on the most recently observed degradation signal value, zi
n, and not on the previously observed

values, zi
1, . . . , z

i
n−1, since only zi

n impacts the future demand distributions. We assume that the unit

ordering, holding and penalty costs for the parts used on each machine are the same, and we denote

them by c > 0, 0 < h < c, and p > h, respectively.2 We let α ∈ (0, 1) denote the discount factor for

each period. We then have the following dynamic programming formulation for Ci
n(xi|θi, z

i
n):





Ci
n(xi|θi, z

i
n) = min

y≥xi

{
c(y − xi) + Li

n(y|θi, z
i
n) + α

∞∑

k=0

E
[
Ci

n+1(y − k|θi, Z
i
n+1)1{Din=k|θi,zi

n}
]}

= min
y≥xi

Gi
n(xi, y|θi, z

i
n),

Ci
N+1(x|θi, z

i
N+1) = 0, for x ∈ Z, zi

N+1 ∈ lR,

(8)

2Recall that we assume that a failed part is replaced immediately. Thus, we assume that, if there is no on-hand
inventory when a part fails, a part can be obtained immediately from an outside source for a premium, p.
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where

Li
n(y|θi, z

i
n) =





h
y∑

k=0

(y − k)P
{
Din = k|θi, z

i
n

}
+ p

∞∑

k=y

(k − y)P
{
Din = k|θi, z

i
n

}
y ≥ 0,

p
∞∑

k=0

(k − y)P
{
Din = k|θi, z

i
n

}
y < 0,

(9)

and

E
[
Ci

n+1(y − k|θi, Z
i
n+1)1{Din=k|θi,zi

n}
]

= E
[
Ci

n+1

(
y − k|θi, Z

i(Ai(nt0))
)

1{Din=k|θi,zi
n}

]
, (10)

here 1{Din=k|θi,zi
n} is an indicator function and the expectation is taken over the random variable

Zi
n+1 under the condition Din = k, where Zi

n+1 represents the degradation signal value obtained at

time nt0, i.e., the start of period n + 1. Since Zi
n+1 = Zi(Ai(nt0)), where Ai(nt0) is the age of the

part in use on machine i at the start of period n + 1, there are two sources of randomness: the age

of the part, Ai(nt0), at the start of period and the noise in the degradation signal process, W i(·).
Given this DP formulation, we can now prove the following:

Proposition 5.1 An order-up-to inventory policy with order-up-to level x̄i
n(θi, z

i
n) is optimal for

period n, for all n = 1, 2, . . . , N , where x̄i
n(θi, z

i
n) denotes the value of y minimizing the function

Gi
n(xi, y|θi, z

i
n), as defined in (8).

The optimal order-up-to level for this problem, x̄i
n(θi, z

i
n), depends only on the most recent

signal observation, zi
n, and the degradation parameter, θi. Intuitively, if θi, the rate of degradation,

increases, the life of the part is likely to decrease and thus the demand in period n is likely to be

higher. If zi
n increases, i.e., if the part in use at the start of period n is closer to failure, the demand

in period n is likely to be higher. Thus, an increase in either θi or zi
n should lead to an increase in

the order-up-to level for period n. Formally, we can prove this result only for the final period:

Proposition 5.2 x̄i
N (θi, z

i
N ) is a non-decreasing function of θi and zi

N .

Next, we consider jointly managing the inventory for a system consisting of m machines. We

assume that the system will use first come, first served inventory allocation to each machine. This

policy is feasible since the probability that any two or more parts fail at the same time from different

machines is zero. As for the single machine case, we have the following result:
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Proposition 5.3 An order-up-to inventory policy with order-up-to level x̄n(~θ, ~zn) is optimal for

period n, for all n = 1, 2, . . . , N , where x̄n(~θ, ~zn) denotes the value of y minimizing the function

Gn(x, y|~θ, ~zn), defined in (24).

Notice that the optimal order-up-to level for this problem, x̄n(~θ, ~zn), depends on the most recent

degradation signal observation, zi
n, obtained from each machine, as well as the degradation parameter,

θi, for each machine, i = 1, . . . , m.

5.2 Inventory Model with Unknown Drift Parameters {θi : i = 1, . . . ,m}

Next, we extend the results in Section 5.1 to the case in which the degradation parameters, θi,

i = 1, . . . ,m, are unknown and thus we use the Bayesian updating approach discussed in Section

4.2. The DP formulation (and associated notation) for this model is quite similar to that presented

in Section 5.1. Thus, we will present the formulation with little discussion, except to point out the

key differences between the two. For machine i, we have:





Ci
n(xi|zi

1, . . . , z
i
n) = min

y≥xi

{
c(y − xi) + Li

n(y|zi
1, . . . , z

i
n)

+α
∞∑

k=0

E
[
Ci

n+1(y − k|zi
1, . . . , z

i
n, Zi

n+1)1{Din=k|zi
1,...,zi

n}
]}

= min
y≥xi

Gi
n(xi, y|zi

1, . . . , z
i
n),

Ci
N+1(x|zi

1, . . . , z
i
N+1) = 0, x ∈ Z, zi

j ∈ lR, j = 1, . . . , N + 1.

(11)

The key difference between this formulation and that in Section 5.1 is that, when θi is known,

the cost functions and expectations are conditioned on both θi, the known degradation parameter,

and zi
n, the most recent degradation signal observation. However, when θi is unknown, its posterior

distribution will depend on the entire history of degradation signal observations from machine i.

Thus, here the cost functions and expectations are conditioned on zi
1, . . . , z

i
n. In addition, in (11),

the expectation is taken over Zi
n+1 = Zi(Ai(nt0)) and Θi. In Section 5.1, this expectation was taken

only over Zi(Ai(nt0)). We can now specify the form of the optimal inventory policy for this model.

Proposition 5.4 An order-up-to inventory policy with order-up-to level x̄i
n(zi

1, . . . , z
i
n) is optimal for

period n, for all n = 1, 2, . . . , N , where x̄i
n(zi

1, . . . , z
i
n) denotes the value of y minimizing the function

Gi
n(xi, y|zi

1, . . . , z
i
n), defined in (11).
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When θi is unknown, the order-up-to level, x̄i
n(zi

1, . . . , z
i
n), depends on all degradation signal

observations obtained from machine i, as well as the ages of the parts when the signals were observed.

Finally, we consider jointly managing inventory for the m machines, assuming all degradation

parameters are unknown.

Proposition 5.5 An order-up-to inventory policy with order-up-to level x̄n(~z1, . . . , ~zn) is optimal for

period n, for all n = 1, 2, . . . , N , where x̄n(~z1, . . . , ~zn) denotes the value of y minimizing the function

Gn(x, y|~z1, . . . , ~zn), defined in (30).

5.3 Comparison of Models with Known vs Unknown Drift Parameters

We next show that, as the number of the planning periods, N , increases to infinity, the minimum cost

for the last period, given that θi is unknown but periodically updated, converges to the minimum

cost of the last period, given that θi is known, for i = 1, . . . , m. Let Θin denote a Normal random

variable with mean µin and variance σ2
in, the posterior mean and variance of Θi, as given in Section

4.2. Note that µin and σ2
in are functions of Zi

1, . . . , Z
i
n. We can now state our first convergence result:

Proposition 5.6 Given the Bayesian updating procedure described in Section 4.2:

µin
n→∞→ θi, almost surely (a.s.), (12)

σ2
in

n→∞→ 0, a.s., (13)

which implies Θin
n→∞→ θi, in distribution.

We use this result to prove convergence of the cost functions. We consider a finite horizon problem,

i.e., N < ∞, so that Ci
N (xi|θi, z

i
N ) and Ci

N (xi|zi
1, . . . , z

i
N ) denote the cost for the last period.

Proposition 5.7 For any sequence of observed degradation signals, zi
1, . . . , z

i
N we have:

x̄i
N (zi

1, . . . , z
i
N )− x̄i

N (θi, z
i
N ) N→∞→ 0,

Ci
N (xi|zi

1, . . . , z
i
N )− Ci

N (xi|θi, z
i
N ) N→∞→ 0.

Note that this convergence result is for the expected cost and optimal order-up-to levels for the

final period, period N , as discussed in the proof of the propostion.
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6 Inventory Management in the Case of Spot Market Participation

Throughout this paper, we have considered the case in which the manufacturer purchases spare parts

from a supplier at a constant unit cost, c. In this section, we briefly discuss the case in which the

manufacturer replenishes spare parts from a spot market (SM). In this case, the manufacturer may

either buy or sell parts on the spot market, depending on his current inventory status.

Let Sn denote the random spot market price at the start of period n, n = 1, . . . , N . Similarly to

how we defined Ci
n(xi|θi, z

i
n) and Ci

n(xi|zi
1, . . . , z

i
n) above, for the SM case we define Ci

SM,n(xi|θi, z
i
n)

and Ci
SM,n(xi|zi

1, . . . , z
i
n) by omitting the condition y ≥ xi and replacing c(y − xi) by Sn(y − xi)

(since we may buy or sell at price Sn on the SM). We then have the following results:

Proposition 6.1 When spare parts may be bought or sold on a spot market, a myopic critical fractile

inventory policy is optimal in each period n, where the order-up-to level, x̄i
SM,n, satisfies:

• θi known: x̄i
SM,n(θi, z

i
n) is the smallest value of y such that FD|θi,zi

n
(y) ≥ p−sn+αE[Sn+1]

h+p .

• θi unknown: x̄i
SM,n(zi

1, . . . , z
i
n) is the smallest value of y such that FD|zi

1,...,zi
n

(y) ≥ p−sn+αE[Sn+1]
h+p .

• For any sequence of observed degradation signals, zi
1, . . . , z

i
n, . . . , we have:

x̄i
SM,n(zi

1, . . . , z
i
n)− x̄i

SM,n(θi, z
i
n) n→∞→ 0,

Ci
SM,n(xi|zi

1, . . . , z
i
n)− Ci

SM,n(xi|θi, z
i
n) n→∞→ 0.

7 Implementation Issues

In this paper, we have developed a framework for incorporating real-time condition monitoring

information into inventory management for machine parts that are subject to deterioration, when the

deterioration process can be captured via condition monitoring and modeled using a Wiener process.

Many manufacturing organizations have been pursuing the development of condition monitoring

technologies. Thus, models such as the one presented in this paper provide a useful framework for

making use of information obtained through condition monitoring. However, one issue that arises

when attempting to implement models such as this is that the optimal policies tend to be difficult

to compute and may depend on large quantities of data. Therefore, we conclude with a discussion
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of a number of issues related to the implementation of these policies. The challenges can be divided

into two categories: (1) updating the distribution of demand and (2) solving the DP formulation.

Regarding (1), when the degradation parameter is known, the computation of the pmf for demand,

as presented in Proposition 4.2, is relatively straight-forward, requiring nothing more complex than

the evaluation of the cumulative distribution function (cdf) of a normal distribution. When the

degradation parameter is unknown, equation (7) indicates that the computation requires numerical

integration of a one-dimensional integral. In addition, the pmf of demand must be recomputed

each time a new signal is observed and will depend on some subset of observed signals. When

the degradation parameter is unknown, one obvious way to simplify the computation of the pmf of

demand is to apply the demand model for the known degradation parameter case, using some estimate

of the unknown degradation parameter, e.g., the mean of the updated posterior distribution of θ.

Such a procedure would make use of all relevant degradation signals (through the computation of

the posterior distribution of θ) while greatly simplifying the computational requirements.

Regarding (2), solving even simple DPs can be a computational challenge, in large part due to

the so-called curse of dimensionality (Bellman 1957). In our problem, the state space will inlclude

some set of observed degradation signal values, a set which may be particularly large when the

degradation parameter is unknown. Additionally, the observed degradation signal values have a

continuous state space, (−∞, B). The derivation of the optimal order-up-to level for any period

n, given any set of observed signals, requires the computation of the optimal order-up-to levels for

all future periods, and, more importantly, for every possible value of the future degradation signal

observations, Zi
n′ ∈ (−∞, B), n′ = n + 1, . . . , N − 1, N . Thus, exact computation of the optimal

order-up-to levels is likely to be infeasible, particularly for the case of unknown θ.

Therefore, we consider the development of heuristic approaches to our problem. One key issue

when developing such heuristics is to ensure that, like the optimal solution, the heuristics make

use of the information obtained through condition monitoring, i.e., the history of degradation signal

observations. One approach is to adapt the results of Lovejoy (1990), who studied a class of parameter

adaptive demand models (which include traditional Bayesian inventory models) where the demand

distribution depends on some unknown parameters and the beliefs regarding this parameter are

updated in a statistical fashion as actual demand is realized over time. He suggested a simple

heuristic: a myopic critical fractile order-up-to policy. In other words, the order-up-to level in each
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period n, say x̄n, should satisfy Fn(x̄n) = λ, where Fn(·) is the cdf of demand in period n, updated

to reflect all information about demand observed up to period n, and λ, 0 ≤ λ ≤ 1, is the critical

fractile, a function of the cost parameters. Moreover, he developed upper bounds on the value loss

relative to optimal cost and demonstrated that myopic policies can perform well in some cases.

Specifically, to develop the myopic policy for a multi-period inventory model, Lovejoy (1990)

considers a model in which inventory may be returned with a full-refund. Such a model is referred

to as the disposal case (DC) and is equivalent to our spot market model in Section 6 with Sn = c,

i.e., in any period inventory may be purchased or returned at the unit price c. Thus, for machine

i, when θi is known, the myopic order-up-to level would be the smallest value of x that satisfies

FDn|θi,zi
n

(x) ≥ p−c+αc
h+p . Similarly, when θi is unknown, the myopic order-up-to level would be the

smallest value of x that satisfies FDn|zi
1,...,zi

n
(x) ≥ p−c+αc

h+p . It is important to note that this policy

makes use of the entire relevant history of the observed degradation signals and, more importantly, is

easy to compute and implement. On the other hand, such a policy ignores any potential for learning

about demand in future periods. In addition, since the problem studied in this paper does not allow

inventory to be returned (except for being salvaged at the end of the planning horizon), the myopic

policy will result in overstocking relative to the optimal policy.

Given the myopic policy, we can develop an upper bound on the value loss relative to the optimal

cost by following Lovejoy’s analysis. We present the results for θi is known. The case of θi unknown

is similar. First, define the following notation:

• Ci
1(x

i|θi, z
i
1), defined in (8), is the expected cost over the entire planning horizon for the model

in Section 5.1, assuming the optimal control policy, specified in Proposition 5.1, is used.

• C̃i
1(x

i|θi, z
i
1) is the expected cost over the entire planning horizon for the model presented in

Section 5.1, assuming the myopic critical fractile policy is used in each period.

• Ci
DC,1(x

i|θi, z
i
1, cs) is the expected cost over the entire planning horizon for the disposal case

presented in Lovejoy (1990), assuming the myopic critical fractile policy is used in each period,

where cs is the unit stock disposal cost. This model is similar to our spot market model in

Section 6, but with differing buying and selling prices, c and cs, respectively.

Then, Proposition 4 in Lovejoy (1990) can be easily proved for our model (see the appendix) and we
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have the following upper bound on the value lost when using the myopic critical fractile policy:

C̃i
1(x

i|θi, z
i
1)− Ci

1(x
i|θi, z

i
1)

Ci
1(xi|θi, zi

1)
≤ Ci

DC,1(x
i|θi, z

i
1, cs = h

1−α)− Ci
DC,1(x

i|θi, z
i
1, cs = −c)

Ci
DC,1(xi|θi, zi

1, cs = −c)
,

where the two cost terms on the right hand side, which assume a myopic critical fractile policy is

used, are straightforward to compute.
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9 Appendix for Proofs and Derivations

Proof of Proposition 4.1: First, recall that we assume that the degradation signal process from

the part used on machine i is the Wiener process Zi satisfying Zi(t) = θit + σW i(t), Zi(0) = 0,

with an absorbing barrier at Zi = B, the failure threshold.

Clearly, to prove the proposition, it suffices to show that
k∑

j=1

Xi
j = Si

k = T (θi, k). To this end, we

take any path, from 0 to kB, of a Wiener process Zi with absorbing barrier Zi = kB. Note that the

time duration of this path is a realization of random variable T (θi, kB). Consider a graph for this

path with X-axis for the time and Y-axis for the value of Zi.

We cut this path into k pieces using k horizontal lines, which in order are Zi = B, Zi =

2B, . . . , Zi = kB. Therefore, the jth piece is a path of Zi first reaches Zi = jB, starting from

(j − 1)B, for all j = 1, . . . , k. Now for each j, we shift the jth piece starting from (j − 1)B down

by (j − 1)B. Thus, each shifted piece will start from 0. In other words, each piece itself is a

path of degradation signal process Zi with absorbing barrier B. Note that these pieces are mutu-

ally independent, which is due to fact that the Brownian motion W i has independent increments.

Therefore, the time duration of the jth piece is a realization of Xi
j , j = 1, . . . , k. Note that the dis-

cussion above applies to any path of the Wiener process Zi from 0 to kB. This concludes the proof.

Proof of Proposition 4.2: Let T (θi, B1, B2) denote the time it takes for the Wiener process Zi to

first reach an absorbing barrier B2, given that it starts from level B1, for any B1 < B2. By shifting

this process down by B1, it is easy to see that T (θi, B1, B2) has the same distribution as T (θi, B1−B2),

the time it takes for Zi, starting from 0, to first reach an absorbing barrier, B2−B1 > 0. Therefore,

using (1), we have the following cdf for T (θi, B1, B2), given θi:

P{T (θi, B1, B2) ≤ t} = 1− Φ
(

(B2 −B1)− θit

σ
√

t

)
+ exp

{
2θi(B2 −B1)

σ2

}
Φ

(−(B2 −B1)− θit

σ
√

t

)
.

(14)

Our goal is to compute, at some time t, the distribution of future demand for parts from machine

i. To do this, we need to know the age of the part in use on machine i. We let Ai(t) be the random

variable representing the age of the part in use on machine i at time t and ai(t) be the observed value
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of the age of the part in use on machine i at time t. Finally, we let zi(ai(t)) denote the observed

degradation signal value of the part in use at time t on machine i3. Since the part in use on machine

i has not failed at time t, zi(ai(t)) < B.

Let Din represent the demand for parts from machine i during the period n, n = 1, . . . , N . Let

zi
n = zi (ai((n− 1)t0)) represent the degradation signal value for the part operating on machine i,

observed at the start of period n. We can find the pmf of Din as follows:

P
{
Din = k|θi, z

i
n

}
= P

{
T (θi, z

i
n, kB) ≤ t0, T (θi, z

i
n, (k + 1)B) > t0

}

= P
{
T (θi, z

i
n, kB) ≤ t0

}
− P

{
T (θi, z

i
n, (k + 1)B) ≤ t0

}
, (15)

for k ∈ lN
⋃{0}, where P

{
T (θi, z

i
n, 0B) ≤ t0

}
= 1, for any zi

n ∈ lR.

Finally, we can derive the pmf of the demand per period for the entire system of m machines.

Let Dn represent the demand for parts from all machines during period n. We let ~θ = [θ1, . . . , θm]

denote the array of the drift parameters of the degradation signal process from each machine. We

let ~zn = [z1
n, . . . , zm

n ] denote the array of observed degradation signal values for the parts operating

on all m machines at the start of period n. Since the demand for parts for the system as a whole

is just the sum of the demands at the individual machines, we have the following expression for the

pmf of Dn, given ~θ and ~zn:

P
{
Dn = k|~θ, ~zn

}
=

∑

(l1,...,lm):
∑m

i=1
li=k

(
m∏

i=1

P
{
Din = li|θi, z

i
n

})
, k ∈ lN

⋃
{0}. (16)

Posterior Distribution of Θi: As noted in Section 4.2, it is easy to show that the updated

(posterior) distribution of Θi, given zi
1, . . . , z

i
n, is Normal with mean, denoted by µin, and standard

3We will follow the convention that capital letters represent random variables / processes and lower case letters
denote observed values of these random variables.
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deviation, denoted σin, where:

µin =





(
σ2

t0σ2
i(n−1) + σ2

)
µi(n−1) +

(
t0σ

2
i(n−1)

t0σ2
i(n−1) + σ2

) (
zi
n − zi

n−1

t0

)
If SP,

(
σ2

ai((n− 1)t0)σ2
i(n−1) + σ2

)
µi(n−1) +

(
ai((n− 1)t0)σ2

i(n−1)

ai((n− 1)t0)σ2
i(n−1) + σ2

) (
zi
n

ai((n− 1)t0)

)
If not SP.

σ2
in =





σ2
i(n−1)σ

2

t0σ2
i(n−1) + σ2

If SP,

σ2
i(n−1)σ

2

ai((n− 1)t0)σ2
i(n−1) + σ2

If not SP.

(17)

Here, ai((n − 1)t0) represents the age of the part in use on machine i at time (n − 1)t0, i.e., at the

start of period n. Case SP (same part) refers to the situation in which the degradation signals zi
n−1

and zi
n come from a same part, i.e., the part under observation at the start of period n is the part

in use on that machine at the start of period n− 1.

Proof of Proposition 5.1: We first simplify (10). Note that Zi(Ai(nt0)) depends on whether

Din = 0 or Din > 0. It is easy to see that Din = 0 (i.e., k = 0) is equivalent to Ai(nt0) > t0, while

Din > 0 (i.e., k > 0) is equivalent Ai(nt0) ≤ t0. Therefore, we can simplify the expectation term by

first considering the case Din = 0 and then considering the case Din > 0.

For Din = 0: It is easy to see that Din = 0 is equivalent to the event that the process Zi, starting

from the observed value zi
n at the start of period n, has not yet reached the failure threshold B. In

other words,

1{Din=0|θi,zi
n} = 1{T (θi,zi

n,B)>t0}. (18)

Also, given that Din = 0 and Ai((n− 1)t0) = a ∈ [0, (n− 1)t0], i.e., the age of the part in use at

the start of period n was a, the signal value at the start of period n + 1, Zi(Ai(nt0)), can be written

as:

Zi(Ai(nt0)) = Zi(a + t0) = Zi(a) + θit0 + σW i(a + t0)− σW i(a) = zi
n + θit0 + σW (t0),
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where W is a standard Brownian motion independent of W i, with restriction that the Wiener process,

{θit + σW (t) : t ≥ 0}, has not reached an absorbing barrier B − zi
n by time t0.

Next, from Cox and Miller (1965), for the Wiener process Zi with an absorbing barrier B > 0,

the density function of Zi(t) ≤ B is:

p(x, t; B, θi) =
1

σ
√

2πt

[
exp

{
−(x− θit)2

2σ2t

}
− exp

{
2θiB

σ2
− (x− 2B − θit)2

2σ2t

}]
, (19)

where x denotes one realization of Zi(t). Note that there are three parameters in this density

function: t, B, θi, where t represents the time of the process Zi, B represents the absorbing barrier

for Zi, and θi is the drift parameter of Zi.

Using (19), we have the following result:

E
[
Ci

n+1

(
y|θi, Z

i(Ai(nt0))
)
1{Din=0|θi,zi

n}
]

= E
[
Ci

n+1

(
y|θi, Z

i(Ai(nt0))
)
1{T (θi,zi

n,B)>t0}
]

=
∫ B−zi

n

−∞
Ci

n+1(y|θi, z
i
n + x)p(x, t0;B − zi

n, θi)dx

=
∫ B

−∞
Ci

n+1(y|θi, x)p(x− zi
n, t0; B − zi

n, θi)dx. (20)

For Din > 0: It is easy to see that Din = k for k ≥ 1, is equivalent to the event that the Wiener

process Zi, starting from zi
n at the start of period n, has reached kB, but has not yet reached

(k + 1)B, at the end of period n. In other words,

1{Din=k|θi,zi
n} = 1{T (θi,zi

n,kB)<t0,T (θi,zi
n,(k+1)B)>t0} = 1{T (θi,zi

n,kB)<t0,T (θi,zi
n,kB)+Ai(nt0)>t0}, (21)

which implies

∞∑

k=1

E
[
Ci

n+1

(
y − k|θi, Z

i(Ai(nt0))
)
1{Din=k|θi,zi

n}
]

=
∞∑

k=1

E
[
Ci

n+1

(
y − k|θi, Z

i(Ai(nt0))
)
1{T (θi,zi

n,kB)<t0,T (θi,zi
n,kB)+Ai(nt0)>t0}

]

=
∞∑

k=1

∫ t0

0

∫ B

−∞
Ci

n+1(y − k|θi, x)p(x, a; B, θi)fT (θi,zi
n,kB)(t0 − a)dxda, (22)

where a is a realization of Ai(nt0), x is a realization of Zi(a), fT (θi,zi
n,kB)(t0 − a) is the condi-
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tional density function of Ai(nt0), conditioning on Zi
n = Zi(Ai((n − 1)t0)) = zi

n. In other words,

p(x, a; B, θi)fT (θi,zi
n,kB)(t0−a) is the joint density function for Ai(nt0) and Zi

n+1 for the case Din = k.

To understand this, we note that Din = k ≥ 1 implies Ai(nt0) < t0, i.e., the age of the part in use

on machine i at the start of period n + 1 is less than t0. It also implies that it takes t0 − Ai(nt0)

time units for the process Zi to first reaches kB starting from zi
n. Integrating with respect to a and

then with respect to x, we obtain (22).

Combining the results for Din = 0 and Din > 0, given in (20) and (22), we have:

∞∑

k=0

E
[
Ci

n+1(y − k|θi, Z
i
n+1)1{Din=k|θi,zi

n}
]

=
∫ B

−∞
Ci

n+1(y|θi, x)p(x− zi
n, t0; B − zi

n, θi)dx

+
∞∑

k=1

∫ t0

0

∫ B

−∞
Ci

n+1(y
i − k|θi, x)p(x, a;B, θi)fT (θi,zi

n,kB)(t0 − a)dxda. (23)

Given the dynamic programming formulation as specified in (8), we can now prove the form of the

optimal inventory policy. We will prove the result by induction. First, note that c(y−xi)+Li
n(y|θi, z

i
n)

is a convex function of y. Therefore, the cost function for the last period

Ci
N (xi|θi, z

i
N ) = min

y≥xi

{
c(y − xi) + LN (y|θi, z

i
N )

}
,

is convex with respect to xi and an order-up-to policy is optimal for the last period. This is a typical

result for similar inventory models.

Next we need to show that the convexity results hold for period n. Note that the expression

for
∑∞

k=0 E
[
Ci

n+1(y − k|θi, Z
i
n+1)1{Din=k|θi,zi

n}
]
, given by (23), has variable y contained only in the

cost functions Ci
n+1(y − k|θi, x), k ∈ lN

⋃{0}. Moreover, these cost functions are inside the integra-

tion. Hence, we claim that
∑∞

k=0 E
[
Ci

n+1(y − k|θi, Z
i
n+1)1{Din=k|θi,zi

n}
]

preserves the convexity of y,

which implies that the convexity results hold for Ci
n(xi|θi, z

i
n) and an order-up-to policy is optimal

for period n. This concludes the proof.

Proof of Proposition 5.2: Note that, throughout this paper, we have considered integer demand,

and thus integer order-up-to levels are optimal. Thus, it is easy to see that the derivative of the



22

convex function Gi
n(xi, y|θi, z

i
n) at y = x̄i

N (θi, z
i
N ), the optimal order-up-to level for the last period,

may or may not be 0. Without loss of generality, we assume that this derivative is positive and thus

at y = x̄i
N (θi, z

i
N )− 1, the derivative of Gi

n(xi, y|θi, z
i
n) is negative.

We now continuize the cdf of DiN |θi, z
i
N on support [x̄i

N (θi, z
i
N ) − 1, x̄i

N (θi, z
i
N )]. From (15), we

know that P
{
DiN ≤ k|θi, z

i
N

}
= 1−P

{
T (θi, z

i
N , (k + 1)B) ≤ t0

}
. Note that 1−P

{
T (θi, z

i
N , x) ≤ t0

}

is an increasing function of x for any θi and zi
N . Thus, for any y ∈ [x̄i

N (θi, z
i
N ) − 1, x̄i

N (θi, z
i
N )], we

assume that P
{
DiN ≤ y|θi, z

i
N

}
= 1− {

T (θi, z
i
N , (y + 1)B) ≤ t0

}
and thus the cdf of DiN |θi, z

i
N for

support [x̄i
N (θi, z

i
N )− 1, x̄i

N (θi, z
i
N )] is continuous and differentiable.

Let x̃i
n(θi, z

i
n) ∈ lR denote the value of y ∈ [x̄i

N (θi, z
i
N )− 1, x̄i

N (θi, z
i
N )] at which the derivative of

Gi
n(xi, y|θi, z

i
n) is 0. By definition, we have

c +
d

dy
Li

N (y|θi, z
i
N )

∣∣∣
y=x̃i

N (θi,zi
N )

= 0

⇔ 1− P
{
T (θi, z

i
N , (x̃i

N (θi, z
i
N ) + 1)B) ≤ t0

}
=

p− c

p + h
> 0 (using (15)),

Note that for any given zi
N (θi) and x, as θi (zi

N ) increases, 1−P
{
T (θi, z

i
N , x) ≤ t0

}
decreases. There-

fore, it is easy to see that if either θi increases or zi
N increases, x̃i

N (θi, z
i
N ) should increase. Since

x̃i
N (θi, z

i
N ) is between two integers, x̄i

N (θi, z
i
N ) − 1 and x̄i

N (θi, z
i
N ), it is easy to see that x̄i

N (θi, z
i
N )

should not decrease as θi increases or zi
N increases.

Proof of Proposition 5.3: Let Cn(x|~θ, ~zn) denote the minimum discounted expected cost for

periods n, n+1, . . . , N for the entire system, given that the on-hand inventory level held for the system

is x at the start of period n, n = 1, 2, . . . , N . We then have the following dynamic programming

formulation for Cn(x|~θ, ~zn), which is similar to (8):





Cn(x|~θ, ~zn) = min
y≥x

{
c(y − x) + Ln(y|~θ, ~zn) + α

∞∑

k=0

E

[
Cn+1(y − k|~θ, ~Zn+1)1{Dn=k|~θ,~zn}

]}

= min
y≥x

Gn(x, y|~θ, ~zn),

CN+1(x|~θ, ~zN+1) = 0, x ∈ Z, ~zN+1 ∈ lRN+1,

(24)
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where

Ln(y|~θ, ~zn) =





h
y∑

k=0

(y − k)P
{
Dn = k|~θ, ~zn

}
+ p

∞∑

k=y

(k − y)P
{
Dn = k|~θ, ~zn

}
y ≥ 0,

p
∞∑

k=0

(k − y)P
{
Dn = k|~θ, ~zn

}
y < 0,

(25)

in which P
{
Dn = k|~θ, ~zn

}
, k ≥ 0, is given by (16). In addition, we can write:

∞∑

k=0

E

[
Cn+1(y − k|~θ, ~Zn+1)1{Dn=k|~θ,~zn}

]

=
∞∑

k=0

∑
∑m

i=1
li=k

E
[
Cn+1(y − k|~θ, ~Zn+1)1{Din=li|θi,zi

n,i=1,...,m}
]

=
∞∑

k=0

∑
∑m

i=1
li=k

E
[
Cn+1(y − k|~θ, ~Zn+1)1{T (θi,zi

n,liB)<t0,T (θi,zi
n,liB)+Ai(nt0)>t0,i=1,...,m}

]
(use (21))

=
∞∑

k=0

∑
∑m

i=1
li=k

∫ t0

0

∫ B

−∞
· · ·

∫ t0

0

∫ B

−∞
Cn+1(y − k|~θ, ~zn+1)

m∏

i=1

g(zi
n+1, ai|θi, z

i
n, li)

dz1
n+1da1 · · · dzm

n+1dam, (26)

where g(zi
n+1, ai|θi, z

i
n, li) represents the joint density function of Zi

n+1 and Ai(nt0) given li ≥ 0 and

is similar to the joint density function used in (20) and (22) when li = 0 and li > 0, respectively. We

derive this joint density function following the approach used in Section ??.

For li = 0, g(zi
n+1, ai|θi, z

i
n, 0) satisfies:

∫ t0

0

∫ B

−∞
g(zi

n+1, ai|θi, z
i
n, 0)dzi

n+1dai =
∫ B

−∞
p(zi

n+1 − zi
n, t0;B − zi

n, θi)dzi
n+1, (27)

For li > 0, g(zi
n+1, ai|θi, z

i
n, li) satisfies:

g(zi
n+1, ai|θi, z

i
n, li) = p(zi

n+1, ai; B − zi
n, θi)fT (θi,zi

n,liB)(t0 − ai). (28)

To understand (26), we note that the pairs of random variables, (Zi
n+1, A

i(nt0)), i = 1, . . . , m, are

mutually independent. Integrating over Z1
n+1, A

1(nt0), . . . , Zm
n+1, A

m(nt0) using the corresponding

joint density functions, we obtain (26).
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Given this dynamic programming formulation, the same approach used to prove Proposition 5.1

can also be used for this case. Note that taking the summation over the minimum cost to go for

each machine preserves convexity.

Proof of Proposition 5.4: We first simplify (11) by replacing Zi
n+1 by Zi(Ai(nt0)) and considering

two cases, Din = 0 and Din > 0, to obtain:

∞∑

k=0

E
[
Ci

n+1(y − k|zi
1, . . . , z

i
n, Zi

n+1)1{Din=k|zi
1,...,zi

n}
]

=
∫ ∞

−∞

∫ B

−∞
Ci

n+1(y|zi
1, . . . , z

i
n, zi

n + x)p(x− zi
n, t0; B − zi

n, θ)fΘi|zi
1,...,zi

n
(θ)dxdθ

+
∞∑

k=1

∫ ∞

−∞

∫ t0

0

∫ B

−∞
Ci

n+1(y
i − k|zi

1, . . . , z
i
n, x)p(x, a; B, θ)fT (θ,zi

n,kB)(t0 − a)fΘi|zi
1,...,zi

n
(θ)dxdadθ.

(29)

Next, the same approach used to prove Proposition 5.1 can also be used for this case with un-

known degradation drift parameters. Note that taking the expectation with respect to Θi preserves

convexity.

Proof of Proposition 5.5: We first present the dynamic programming formulation for this problem.





Cn(x|~z1, . . . , ~zn) = min
y≥x

{c(y − x) + Ln(y|~z1, . . . , ~zn)

+α
∞∑

k=0

E
[
Cn+1(y − k|~z1, . . . , ~zn, ~Zn+1)1{Dn=k|~z1,...,~zn}

]}

= min
y≥x

Gn(x, y|~z1, . . . , ~zn),

CN+1(x|~z1, . . . , ~zN+1) = 0, x ∈ Z, ~zj ∈ lRm, j = 1, . . . , N + 1,

(30)

where for k ≥ 0

E
[
Cn+1(y − k|~z1, . . . , ~zn, ~Zn+1)1{Dn=k|~z1,...,~zn}

]

=
∑

∑m

i=1
li=k

E
[
Cn+1(y|~z1, . . . , ~zn, Zi

n+1)1{Din=li,i=1,...,m|~z1,...,~zn}
]
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=
∑

∑m

i=1
li=k

∫ ∞

−∞

∫ t0

0

∫ B

−∞
· · ·

∫ ∞

−∞

∫ t0

0

∫ B

−∞
Cn+1(y − k|~z1, . . . , ~zn, ~zn+1)

m∏

i=1

g(zi
n+1, ai|θi, z

i
n, li)

m∏

i=1

fΘi|zi
1,...,zi

n
(θi)dz1

n+1da1dθ1 · · · dzm
n+1damdθm, (31)

where g(zi
n+1, ai|θi, z

i
n, li) is given by (27) for li = 0, and is given by (28) for li > 0.

Given this formulation, the same approach used to prove Proposition 5.3 can also be used for

this case with unknown degradation drift parameters. Note that taking the expectation with respect

to Θi preserves convexity.

Proof of Proposition 5.6: We first define some additional notation. Let Θi1 denote a Normal

random variable with mean µi1 and variance σ2
i1, the prior mean and variance of Θi. Similarly, we

then let Θin denote the Normal random variable with mean µin and variance σ2
in, the posterior mean

and variance of Θi, as given in Section 4.2. Note that µin and σ2
in are functions of Zi

1, . . . , Z
i
n.

Using inductive equations for µin and σ2
in given in (17), we start by deriving explicit expressions

for µin and σ2
in and then prove the convergence results for two extreme cases:(i) Zi

1, . . . , Z
i
n all come

from a same stochastic process, i.e., the part under observation at the start of period n is the first

part used on machine i since the monitoring was started, and (ii) Zi
1, . . . , Z

i
n all come from different

stochastic processes, i.e., the parts in use at the start of each period are all different.

For Case (i), we have

µin =

(
σ2

(n− 1)t0σ2
i1 + σ2

)
µi1 +

(
(n− 1)t0

(n− 1)t0σ2
i1 + σ2

) (
θi +

W i((n− 1)t0)
(n− 1)t0

)
, (32)

σ2
in =

σ2
i1σ

2

(n− 1)t0σ2
i1 + σ2

, (33)

where µi1 and σ2
i1 are the prior mean and variance of Θi preset at time 0. Note that in (32), a same

Brownian motion, W i, is used to express Zi
1, . . . , Z

i
n, due to the assumption that Zi

1, . . . , Z
i
n come

from a same signal process. We also note that µin only depends on Zi
n−Zi

1 and the prior mean and

variance of θi, µi1 and σ2
i1, where Zi

1 = 0 in our model.

It is obvious that σ2
in

n→∞→ 0. We next show that µin
n→∞→ θi a.s.. It is easy to see that in (32)

the first term converges to 0 and the first item of the second term converges to 1. Thus, it suffices



26

to show that
W i((n− 1)t0)

(n− 1)t0
converges to 0 a.s.. To this end, we note that

W i((n− 1)t0)
(n− 1)t0

=

∑n−1
j=1

(
W i(jt0)−W i((j−1)t0)

t0

)

n− 1
,

where the Normal random variables, W i(jt0)−W i((j−1)t0)
t0

, j = 1, . . . , n − 1, are iid with mean 0.

Therefore, according to Strong Law of Large Numbers (SLLN), we obtain that the average of these

random variables convergence almost surely to 0, the mean of any of these random variables, i.e.,
W i((n−1)t0)

(n−1)t0
converges to 0, a.s., as n goes to infinity.

For Case (ii), i.e., for the case in which Zi
1, . . . , Z

i
n all come from different stochastic processes,

we have

µin =

(
σ2

σ2
i(n−1)A

i((n− 1)t0) + σ2

)
µi(n−1) +

(
σ2

in−1A
i((n− 1)t0)

σ2
i(n−1)A

i((n− 1)t0) + σ2

) (
Zi

n

Ai((n− 1)t0)

)

=

(
σ2

σ2
i1

∑n
j=1 Ai(jt0) + σ2

)
µi1 +

(
σ2

i1

∑n−1
j=1 Ai(jt0)

σ2
i1

∑n−1
j=1 Ai(jt0) + σ2

) ( ∑n
j=2 Zi

j∑n−1
j=1 Ai(jt0)

)

=

(
σ2

σ2
i1

∑n
j=1 Ai(jt0) + σ2

)
µi1 +


σ2

i1

∑n−1
j=1

(
θiA

i(jt0) + W i
j (A

i(jt0))
)

σ2
i1

∑n−1
j=1 Ai(jt0) + σ2




=

(
σ2

σ2
i1

∑n
j=1 Ai(jt0) + σ2

)
µi1 +

(
σ2

i1

∑n−1
j=1 Ai(jt0)

σ2
i1

∑n−1
j=1 Ai(jt0) + σ2

)
θi +

σ2
i1

∑n−1
j=1 W i

j (A
i(jt0))

σ2
i1

∑n−1
j=1 Ai(jt0) + σ2

,

(34)

σ2
in =

σ2
i,n−1σ

2

σ2
i(n−1)A

i((n− 1)t0) + σ2
=

σ2
i1σ

2

σ2
i1

∑n−1
j=1 Ai(jt0) + σ2

, (35)

where Ai(jt0) < t0 represents the age of the part operating at time jt0 on machine i, and W i
j denotes

the Brownian motion in the degradation signal process of the operating part on machine i at time jt0.

Since Zi
1, . . . , Z

i
n all come from different signal processes, the subscript j of W i

j is used to distinguish

these different degradation signal processes. We also note that µin depends on Zi
2, . . . , Z

i
n and the

age of the parts under observation at the start of each period, together with the prior mean and

variance of θi. σ2
in depends on the age of the parts under observation at the start of each period and

the prior variance of θi.

To prove the convergence result, we first show that
∑n−1

j=1 Ai(jt0)
n→∞→ ∞ a.s., which implies that
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σ2
in

n→∞→ 0, a.s. For this purpose, we first note that the demand process for parts for machine i,

{Di(t) : t ≥ 0}, is in fact a renewal process due to our assumption that the life times of the parts

used for the same machine are iid. Then following a same reasoning for Proposition 3.4.6 in S. M.

Ross (1983, page 71), we have the following result:

lim
n→∞E[Ai(nt0)] = lim

t→∞E[Ai(t)] = lim
t→∞ tF̄i(t) +

∫ t

0
(t− y)F̄i(t− y)dm(y)

=

∫ ∞

0
tF̄i(t)dt

E[Xi
k]

=

∫ ∞

0
t

(∫ ∞

t
fi(s)ds

)
dt

E[Xi
k]

=

∫ ∞

0

s2

2
fi(s)ds

E[Xi
k]

=
E[(Xi

k)
2]

2E[Xi
k]

=
E

[
(T (θi, 0, B))2

]

2E [T (θi, 0, B)]
(= β > 0), k = 1, 2, . . . , (36)

where Xi
k represents the life time of the kth part used on machine i. Since E

[
(T (θi, 0, B))2

]

and E [T (θi, 0, B)] are both positive and finite, it is easy to see β > 0. It follows immediately

that limn→∞E
[∑n−1

j=1 Ai(jt0)
]

= ∞. This implies that
∑n−1

j=1 Ai(jt0)
n→∞→ ∞, a.s., using the fact

Ai(jt0) ≥ 0, for any j ≥ 1.

We next show that µin
n→∞→ θi a.s. by considering each term separately in (34). For the first

term, since
∑n−1

j=1 Ai(jt0)
n→∞→ ∞ a.s. and µi1 is a constant number, the first term converges to 0

almost surely. Similarly, the second term can be shown converge to θi almost surely. Finally, for the

last term, we claim

σ2
i1

∑n−1
j=1 W i

j (A
i(jt0))

σ2
i1

∑n−1
j=1 Ai(jt0) + σ2

=

∑n−1

j=1
W i

j (Ai(jt0))∑n−1

j=1
Ai(jt0)

1 + σ2

σ2
i1

(∑n−1

j=1
Ai(jt0)

)
n→∞→ 0, a.s. (37)

To prove this result, we first note that the Normal random variables, W i
j (A

i(jt0)), j = 1, . . . , n− 1,

are mutually independent, given Ai(jt0) = tij , for any tij ∈ lR+. Without loss of generality, suppose

each tij is an integer. Using the property of independent increments for each W i
j , we can separate

∑n−1
j=1 W i

j (t
i
j), a Normal random variable with mean 0 and variance

∑n−1
j=1 tij , into

∑n−1
j=1 tij iid Normal

random variables each with mean 0 and variance 1. Applying the SLLN, we obtain

∑n−1
j=1 W i

j (t
i
j)∑n−1

j=1 tij

n→∞→ 0 a.s. for any tij ∈ lR+ ⇒
∑n−1

j=1 W i
j (A

i(jt0))∑n−1
j=1 Ai(jt0)

n→∞→ 0 a.s.. (38)
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Since
∑n−1

j=1 Ai(jt0)
n→∞→ ∞ a.s. and σ2

i1 and σ2 are both constants, it is easy to see that (37) holds.

Thus, in all, we have shown that µin
n→∞→ θi a.s.

So far, we have proved the convergence for µin and σ2
in for the two extreme cases. We next use

these results to show that the convergence results hold in general.

Note that as n goes to infinity, among the random variables Zi
1, . . . , Z

i
n, . . . , there are either

infinitely many coming from a same stochastic process, i.e., there is a part operating on machine i

that never fails, or there are infinitely many all coming from different stochastic processes. If the

first case happens, we can obtain the convergence result as follows: We first use the random variables

that are not coming from the same stochastic process and the prior mean and variance, (µi1, σ
2
i1),

to obtain a posterior mean and a posterior variance for Θi. We then treat this posterior mean and

posterior variance as a new prior mean and a new prior variance, respectively. Finally, we utilize

the proof we have given for the extreme case (i) with these new prior mean and variance. If the

second case happens and the part in use at the start of each period is different, then we can apply

the results for extreme case (ii) directly to obtain convergence. Otherwise, if a part is in use for

multiple periods, say part j being used on machine i, we let Zi
j1

, . . . , Zi
jnj

denote all of its observed

signal values. Note that µijnj
and σ2

ijnj
can be updated directly using Zi

jnj
− Zi

j1
, µij1 , and σ2

ij1
,

where µij1 and σ2
ij1

are updated using Zi
j1

, µi(j1−1) and σ2
i(j1−1), i.e., the posterior mean and variance

determined a period before part j’s first signal, Zi
j1

, is observed. Thus µijnj
and σ2

ijnj
can be updated

directly using Zi
jnj

, the age of part j when its last signal is observed, µi(j1−1), and σ2
i(j1−1). This

is as if we update the posterior mean and variance using only the last signals observed from each

different part being monitored and thus the signals we use are all from different parts. Therefore,

we can apply the proof we have given for the extreme case (ii) and obtain the convergence. Thus, in

all, we have proved the convergence of µin and σ2
in in general.

Finally, since Θin ∼ N(µin, σ2
in), it follows immediately that Θin

n→∞→ θi, in distribution, finishing

the proof.

Proof of Proposition 5.7: First, we note that the almost surely convergence result in Proposition

5.6, µin
n→∞→ θi, a.s., and σ2

in
n→∞→ 0, a.s., has the following implication: Except for a set of Ω that

is of P−measure 0, denoted by Ω0, for any w ∈ Ω\Ω0, we have that µin
n→∞→ θi and σ2

in
n→∞→ 0,

where µin and σ2
in, given w ∈ Ω, are numbers rather than random variables. For the remainder of
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this section, we only consider the domain Ω\Ω0. To keep the notation simple, we denote Ω\Ω0 by Ω.

Next, notice that

Ci
N (xi|zi

1, . . . , z
i
N ) = min

y≥xi
c(y − xi) + LN (y|zi

1, . . . , z
i
N ),

Ci
N (xi|θi, z

i
N ) = min

y≥xi
c(y − xi) + LN (y|θi, z

i
N ).

x̄i
N (zi

1, . . . , z
i
N ) is the solution to d

dy

(
c(y − xi) + LN (y|zi

1, . . . , z
i
N )

)
= 0. And x̄i

N (θi, z
i
N ) is the solu-

tion to d
dy

(
c(y − xi) + LN (y|θi, z

i
N )

)
= 0. It is easy to see that it suffices to show that LN (y|zi

1, . . . , z
i
N )−

LN (y|θi, z
i
N ) N→∞→ 0, for any y ∈ lR. Comparing the expression for LN (y|zi

1, . . . , z
i
N ) to the expression

for LN (y|θi, z
i
N ), we find that it suffices4 to show

P{DiN = k|zi
1, . . . , z

i
N} − P{DiN = k|θi, z

i
N} N→∞→ 0, uniformly in k ∈ lN

⋃{0}, (39)

which, using (4) and (5), reduces to:

∫ ∞

−∞
P{T (θ, zi

N , kB) ≤ t0}fΘi|zi
1,...,zi

N
(θ)dθ − P{T (θi, z

i
N , kB) ≤ t0} N→∞→ 0, uniformly in k ∈ lN

⋃{0}.

(40)

In order to prove (40), we next show a stronger result: for any ε ∈ (0, 1), there exists M ∈ lN such

that for any N ≥ M , we have for all k ∈ lN
⋃{0},

∫ ∞

−∞

∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣fΘi|zi
1,...,zi

N
(θ)dθ < ε. (41)

To complete the proof, for any fixed ε, we need to find M such that (41) is satisfied for any

N ≥ M . To achieve this goal, we first recall that P{T (θ, zi
N , kB) ≤ t0} represents the probability

that by time t0 the Wiener process Zi has not yet reached the absorbing barrier Zi = kB−zi
N . Note

that by time t0, if the Wiener process Zi has reached a higher absorbing barrier, then it must have

reached a lower absorbing barrier as well. In other words, it is clear that this probability function

decreases in k. Also note that as k goes to infinity, P{T (θ, zi
N , kB) ≤ t0} goes to 0. Mathematically,

4Note that for k large, (39) cannot guarantee the convergence of LN (y|zi
1, . . . , z

i
N ) − LN (y|θi, z

i
N ). However, since

E[Din] < ∞, we can find an integrable function, denoted by H(k), such that k|P{DiN = k|zi
1, . . . , z

i
N} − P{DiN =

k|θi, z
i
N}| ≤ H(k). Thus, the convergence holds due to Dominated Convergence Theorem when k is large.



30

this implies that, for any θ > 0, for fixed ε, there exists K(θ) ∈ lN such that for any k ≥ K(θ), we

have:

P{T (θ, zi
N , kB) ≤ t0} <

ε

2
.

We next prove (41) by three steps. Step 1: We claim that

K = max
θ∈[θi− θi

2
,θi+

θi
2

]

K(θ) = K(θi − θi

2
) ∨K(θi +

θi

2
) < ∞. (42)

This claim can be proved as follows. (i) Note that p(x, t0; kB − zi
N , θ) is the pdf of Zi(t0) with

the absorbing barrier Zi = kB − zi
N . We know that

P{T (θ, zi
N , kB) ≤ t0} = 1−

∫ kB−zi
N

−∞
p(x, t0; kB − zi

N , θ)dx, (43)

where p(x, t0; kB− zi
N , θ) is given by (19). (ii) Since p(x, t0; kB− zi

N , θ) is continuous in θ, we obtain

that P{T (θ, zi
N , kB) ≤ t0} is also continuous in θ. (iii) We can show that P{T (θ, zi

N , kB) ≤ t0}
is unimodal opening upwards as a function of θ. From (43), we know that it suffices to show that

p(x, t0; kB − zi
N , θ) is unimodal opening downwards as a function of θ. We then calculate the first

derivative of p(x, t0; kB − zi
N , θ) with respect to θ. Using (19), we have the following for any t > 0

and any b > 0:

d

dθ
p(x, t; b, θ)

=
d

dθ

{
1

σ
√

2πt

[
exp

{
−(x− θt)2

2σ2t

}
− exp

{
2θb

σ2
− (x− 2b− θt)2

2σ2t

}]}

=
(

x− θt

σ2

) (
1

σ
√

2πt

) [
exp

{
−(x− θt)2

2σ2t

}
− exp

{
2θb

σ2
− (x− 2b− θt)2

2σ2t

}]

=
(

x− θt

σ2

)
p(x, t; b, θ), (44)

which is positive if θ < x
t and is negative if θ > x

t . By taking t = t0, b = kB − zi
N , this implies

that p(x, t0; kB− zi
N , θ) is a unimodal function of θ opening downwards. (iv) The unimodal opening
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upwards property of P{T (θ, zi
N , kB) ≤ t0} implies

max
θ∈[θi− θi

2
,θi+

θi
2

]

P{T (θ, zi
N , kB) ≤ t0} = max

{
P{T (θi − θi

2
, zi

N , kB) ≤ t0} ,

P{T (θi +
θi

2
, zi

N , kB) ≤ t0}
}

. (45)

Therefore, for any θ ∈ (θi − θi
2 , θi + θi

2 ), for any k ≥ K = K(θi − θi
2 ) ∨K(θi + θi

2 ), we have

P{T (θ, zi
N , kB) ≤ t0}

≤ P{T (θi − θi

2
, zi

N , kB) ≤ t0} ∨ P{T (θi +
θi

2
, zi

N , kB) ≤ t0} ( using (45) )

<
ε

2
∨ ε

2
( because k ≥ K(θi − θi

2 ) and k ≥ K(θi + θi
2 ) )

⇒ K ≥ K(θ) ( using definition of K(θ) ),

finishing the proof for the claim in (42).

Step 2: We note that (42) implies that for any k ≥ K

∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣ <
ε

2
,

for any θ ∈ [θi − θi
2 , θi + θi

2 ]. It follows immediately that

∫ θi+
θi
2

θi− θi
2

∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣fΘi|zi
1,...,zi

N
(θ)dθ <

ε

2
.

To prove (41) for k ≥ K, we show that there exists M ∈ lN such that for any N ≥ M ,

(∫ θi− θi
2

−∞
+

∫ ∞

θi+
θi
2

) ∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣fΘi|zi
1,...,zi

N
(θ)dθ <

ε

2
. (46)

To find an M such that (46) is satisfied, we use the result that µiN
N→∞→ θi, and σ2

iN
N→∞→ 0,

for any zi
1, z

i
2, . . . and Θi|zi

1, . . . , z
i
N

N→∞→ θi in distribution. Mathematically, this implies that for ε,

there exists M1 ∈ lN such that for any N ≥ M1, we have

(∫ θi−δ

−∞
+

∫ ∞

θi+δ

)
fΘi|zi

1,...,zi
N

(θ)dθ <
ε

2
, (47)
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where

δ =
ε

4L
∧ θi

2
, (48)

L = max
ξ∈[θi− θi

2
,θi+

θi
2

]

∫ KB−zi
N

−∞

∣∣∣x− ξt0
σ2

∣∣∣p(x, t0; KB − zi
N , ξ)dx < ∞. (49)

The result that L < ∞ is due to the fact that p(x, t0; KB − zi
N , ξ) is of the order e−x2

.

Now, we let M = M1, which does not depend on k. Since δ ≤ θi
2 and

∣∣∣P{T (θ, zi
N , kB) ≤

t0} − P{T (θi, z
i
N , kB) ≤ t0}

∣∣∣ ≤ 1, we know that (47) implies (46). So far, we have shown that for

fixed ε, for any N ≥ M = M1, (41) holds true for any k ≥ K, where K is defined by (42).

Step 3: We demonstrate that for any N ≥ M , (41) holds for any k ≤ K as well, i.e.,

∫ ∞

−∞

∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣fΘi|zi
1,...,zi

N
(θ)dθ < ε, (50)

for any k ≤ K, and then we will have completed the proof.

For this purpose, we first rewrite the left hand side of (50) and obtain an upper bound for it as

follows:

∫ ∞

−∞

∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣fΘi|zi
1,...,zi

N
(θ)dθ

=

(∫ θi+δ

θi−δ
+

∫ θi−δ

−∞
+

∫ ∞

θi+δ

) ∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣fΘi|zi
1,...,zi

N
(θ)dθ

<

∫ θi+δ

θi−δ

∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣fΘi|zi
1,...,zi

N
(θ)dθ +

ε

2
. (51)

To understand (51), we first note that
∣∣∣P{T (θ, zi

N , kB) ≤ t0} − P{T (θi, z
i
N , kB) ≤ t0}

∣∣∣ ≤ 1. Then,

using (47), (51) is attained.

Finally, we will show that for any N ≥ M , the following result holds true:

∫ θi+δ

θi−δ

∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣fΘi|zi
1,...,zi

N
(θ)dθ ≤ ε

2
, for any k ≤ K. (52)
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To do this, we first apply (43) to the left hand side of (52) and obtain the following results:

∫ θi+δ

θi−δ

∣∣∣P{T (θ, zi
N , kB) ≤ t0} − P{T (θi, z

i
N , kB) ≤ t0}

∣∣∣fΘi|zi
1,...,zi

N
(θ)dθ

≤
∫ θi+δ

θi−δ

∫ kB−zi
N

−∞

∣∣∣p(x, t0; kB − zi
N , θ)− p(x, t0; kB − zi

N , θi)
∣∣∣dxfΘi|zi

1,...,zi
N

(θ)dθ

=
∫ kB−zi

N

−∞

∫ θi+δ

θi−δ

∣∣∣p(x, t0; kB − zi
N , θ)− p(x, t0; kB − zi

N , θi)
∣∣∣fΘi|zi

1,...,zi
N

(θ)dθdx (Fubini Thm)

=
∫ kB−zi

N

−∞

∫ θi

θi−δ

∣∣∣
∫ θi

θ

d

dθ
p(x, t0; kB − zi

N , ξ)dξ
∣∣∣fΘi|zi

1,...,zi
N

(θ)dθdx

+
∫ kB−zi

N

−∞

∫ θi+δ

θi

∣∣∣
∫ θ

θi

d

dθ
p(x, t0; kB − zi

N , ξ)dξ
∣∣∣fΘi|zi

1,...,zi
N

(θ)dθdx, for any k ≤ K. (53)

For the first term in (53), we apply (44) and (48) and obtain the following result for any k ≤ K:

∫ kB−zi
N

−∞

∫ θi

θi−δ

∣∣∣
∫ θi

θ

d

dθ
p(x, t0; kB − zi

N , ξ)dξ
∣∣∣fΘi|zi

1,...,zi
N

(θ)dθdx

=
∫ kB−zi

N

−∞

∫ θi

θi−δ

∣∣∣
∫ θi

θ

(
x− ξt

σ2

)
p(x, t0; kB − zi

N , ξ)dξ
∣∣∣fΘi|zi

1,...,zi
N

(θ)dθdx, (use (44))

=
∫ θi

θi−δ

∫ θi

θ

∣∣∣x− ξt

σ2

∣∣∣p(x, t0; kB − zi
N , ξ)dξfΘi|zi

1,...,zi
N

(θ)dθdx

=
∫ θi

θi−δ

∫ ξ

θi−δ

(∫ kB−zi
N

−∞

∣∣∣x− ξt

σ2

∣∣∣p(x, t0; kB − zi
N , ξ)dx

)
fΘi|zi

1,...,zi
N

(θ)dθdξ, (Fubini Theorem)

≤ δ max
ξ∈[θi−δ,θi]

I(ξ, kB − zi
N )

≤ δ max
ξ∈[θi−δ,θi]

I(ξ, KB − zi
N ) ( since k ≤ K and I(ξ, kB − zi

N ) is increasing in k )

≤ δ max
ξ∈[θi− θi

2
,θi+

θi
2

]

I(ξ,KB − zi
N ) ( since δ ≤ θi

2 )

= δL ≤ ε

4
( since δ ≤ ε

4L ), (54)

where

I(ξ, kB − zi
N ) =

∫ kB−zi
N

−∞

∣∣∣x− ξt

σ2

∣∣∣p(x, t0; kB − zi
N , ξ)dx < ∞, for any ξ ∈ [θi − θi

2
, θi +

θi

2
].

Similarly, for the second term in (53), we have the following:

∫ kB−zi
N

−∞

∫ θi+δ

θi

∣∣∣
∫ θ

θi

d

dθ
p(x, t0; kB − zi

N , ξ)dξ
∣∣∣fΘi|zi

1,...,zi
N

(θ)dθdx ≤ ε

4
, for any k ≤ K. (55)
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Since (54) and (55) together imply (50), we have proved (41), finishing the proof.

Note that this convergence result is for the expected cost and optimal order-up-to levels for the

final period, period N . We are only able to prove convergence for the final period for several rea-

sons. For machine i, i = 1, . . . , m, at the start of period n ≤ N , the expectation of the cost-to-go

function is assessed and the expectation is taken over the random degradation signal value that will

be observed at the start of the next period, Zi
n+1. One use of this value is to update the distribution

of the unknown degradation parameter, Θi, i.e., the updated distribution of the unknown degrada-

tion parameter depends on the observed value of this random degradation signal, zi
n+1. Note that

we have proven that, for any sequence of observed degradation signal values, zi
1, z

i
2, . . . , z

i
n, zi

n+1, . . .,

the updated distribution for Θi converges to its actual value, θi. This convergence, however, is not

uniform in all sequences of observed degradation signal values, but is uniform in a finite number

of sequences of observed degradation signal values. Such a uniform convergence can only ensure a

uniform convergence for the cost-to-go function values that are associated with a finite number of

values of Zi
n+1. Since this random degradation signal, Zi

n+1, can take infinitely many values (i.e.,

zi
n+1 ∈ (−∞, B)), the convergence for the expected cost-to-go functions may not hold.

Proof of Proposition 6.1: Following the proof of Proposition 5.1, we can easily show that a

myopic fixed level inventory policy is optimal for the cases with known and unknown θi. The fixed

level, i.e., x̄i
SM,n(θi, z

i
n), for the case in which θi is known, is obtained by differentiating the function

sn − αE[Sn+1])y + Ln(y|θi, z
i
n). Since demand is discrete and the inventory level is an integer, the

solution should be the smallest value of y such that sn − αE[Sn+1] + L′n(y|θi, z
i
n) ≥ 0. Similarly, we

have the result for the fixed level, x̄i
SM,n(zi

1, . . . , z
i
n), when θi is unknown. Finally, using the same

proof as for Proposition 5.2, we can show that x̄i
SM,n(θi, z

i
n) is a non-decreasing function of θi and

zi
n.

To prove the convergence result, notice that we show LN (y|zi
1, . . . , z

i
N ) − LN (y|θi, z

i
N ) N→∞→ 0

in the proof for Proposition 5.7. This result implies that Ln(y|zi
1, . . . , z

i
n) − Ln(y|θi, z

i
n) n→∞→ 0,

for any y ∈ lR. From the definition of x̄i
SM,n(θi, z

i
n) and x̄i

SM,n(zi
1, . . . , z

i
n), we can easily see

that this result implies the convergence of x̄i
SM,n(zi

1, . . . , z
i
n) − x̄i

SM,n(θi, z
i
n) and the convergence of

Ci
SM,n(xi|zi

1, . . . , z
i
N )−Ci

SM,n(xi|θi, z
i
n), for any sequence of observed degradation signals, zi

1, . . . , z
i
n, . . ..
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