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A Nonparametric Poolability Test for Panel Data Models

with Cross Section Dependence∗

Sainan Jina, Liangjun Sua

aSchool of Economics, Singapore Management University, Singapore

August 8, 2010

Abstract

In this paper we propose a nonparametric test for poolability in large dimensional semi-

parametric panel data models with cross-section dependence based on the sieve estimation

technique. To construct the test statistic, we only need to estimate the model under the

alternative. We establish the asymptotic normal distributions of our test statistic under the

null hypothesis of poolability and a sequence of local alternatives, and prove the consistency

of our test. We also suggest a bootstrap method as an alternative way to obtain the criti-

cal values and justify its validity. A small set of Monte Carlo simulations indicate the test

performs reasonably well in finite samples.

JEL Classifications: C13, C14, C33

Key Words: Common factor; Cross-section dependence; Poolability; Semiparametric

panel data model; Sieve estimation; Test

1 Introduction

Recently there has been a growing interest in the estimation of panel data models with

cross-section dependence. See Bai (2003, 2009), Greenaway-McGrevy, Han, and Sul (2009),

Harding (2007), Kapetanios and Pesaran (2005), Pesaran (2006), Pesaran and Tosetti (2007),

Phillips and Sul (2003, 2007), among others, for an overview. All of these papers focus on the

linear specification of regression relationship. More recently, Su and Jin (2009, SJ hereafter)
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have extended the linear model of Pesaran (2006) to the following semiparametric panel data

model with multi-factor error structure

yit = gi(xit) + γ01if1t + eit, eit = γ02if2t + εit, (1.1)

xit = Γ01if1t + Γ
0
2if2t + vit, i = 1, · · · , n, t = 1, · · · , T (1.2)

where xit ∈ Xi ⊂ Rd is a vector of observed individual-specific regressors on the ith cross

section unit at time t, gi (·) ∈ Gi, Gi is a specified class of continuous function from Xi to
R, f1t is a q1 × 1 vector of observed common factors that contains the constant term 1,

f2t is a q2 × 1 vector of unobserved common factors, γ1i and γ2i, are factor loadings, εit

is the individual-specific (idiosyncratic) errors assumed to be independently distributed of

(xit, f1t, f2t), and γ2i, Γ1i and Γ2i are q1 × d and q2 × d factor loading matrices, and vit is

a d × 1 vector of individual-specific components of xit. 1 If the regression function gi (·) is
not identical across i, then we have heterogenous regressions; otherwise we have homogenous

regression relationship that is denoted as g (·).
SJ considered sieve estimation of both heterogeneous and homogenous nonparametric re-

gressions when both the cross-section dimension (n) and the time dimension (T ) are large and

find that significant gains can be achieved when the regression relationship is homogenous

and such knowledge is employed in the estimation procedure. 2This is as expected. Never-

theless, in practice economic theory usually cannot tell whether the regression relationship is

homogenous or not. So it is worthwhile to consider a test for homogenous relationships. If

we fail to reject the null of homogenous relationship, then we can pool the cross section data

together and estimate a single homogenous relationship more effectively.

In this paper, we consider a nonparametric test for poolability in the model (1.1)-(1.2).

Testing for poolability can be traced back to Chow (1960) in econometrics. Since then a

large literature has been developed to test structural stability of economic relationships over

time or equality of regression functions over individuals. These tests were soon generalized

to the nonparametric context for curve comparison. See Baltagi, Hidalgo, and Li (1996), Cri-

ado (2008), Hall and Hart (1990), Koul and Schick (1997), Lavergne (2001), Neumeyer and

1Write f1t = (1, f∗01t)
0. As SJ remarked, we can allow f∗1t to enter (1.1) nonparametrically, in which case

(1.1) will become yit = gi(xit, f
∗
1t) + γ1i + eit. Our asymptotic theory allows some component of xit in (1.1)

not to vary across i, and thus this specification can be treated as a special case of (1.1), where in (1.1) xit

includes some observable common factors and f1t ≡ 1.
2 If f1t ≡ 1 and f2t ≡ 0 for all t, and gi ≡ g for all i, then the model in (1.1) becomes the typical “fixed-

effect” model. In this case one can follow Baltagi and Li (2002) and take a first difference of the data before

using series estimation. In our paper the presence of nonconstant elements in the observable factors and

unobservable factors complicates the asymptotic analysis to a great deal, and simple first difference cannot

yield the desirable model to be estimated consistently by series method.
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Dette (2003), Vilar-Fernández and González-Manteiga (2004), and Vilar-Fernández, Vilar-

Fernández, and González-Manteiga (2007), among others. Nevertheless, to the best of our

knowledge, these tests are only designed to test for the equality of a fixed number of nonpara-

metric regression curves. It is not clear whether they continue to be valid when the number

of regression curves is increasing over the sample size.

There are several key features that distinguish our tests from the existing literature on

curve comparisons. First, unlike the large number of parametric tests for slope homogeneity,

our test is a nonparametric test for homogeneity or poolability of nonparametric regression

relationships. This is important since few economic theories suggest exact functional forms

and nonparametric poolability test can effectively avoid lack of robustness to correct func-

tional specification. Second, our test is designed to test for poolability in large dimensional

panel data models with cross-section dependence. In the absence of cross-section dependence,

Pesaran and Yamagata (2008) proposed a test for slope homogeneity in large panels when

the functional relationship is assumed to be linear. In comparison with their test, our task is

complicated significantly by the presence of both cross-section dependence and the unknown

smooth nonparametric functional relationship. Third, given the large dimensional panel setup

the number of regression curves (n here) passes to infinity. Since our test is based on SJ’s

semiparametric common correlated estimator (CCE) which requires the use of cross-section

sample mean of (xit, yit) as a proxy for the unobservable common factor f2t, n must tend to

infinity sufficiently fast to ensure that the proxy error is asymptotically negligible in our test.

The rest of the paper is structured as follows. Section 2 introduces the hypothesis and

test statistic. In Section 3 we study the asymptotic distributions of the test statistic under

the null, a sequence of local alternatives, and global alternatives, where we also propose a

bootstrap version of the test. A small set of Monte Carlo simulation results is reported in

Section 4. Final remarks are contained in Section 5. All technical details are relegated to the

Appendix.

NOTATION. Throughout the paper we adopt the following notation and conventions.

For a matrix A, we denote its Euclidean norm as kAk = [tr (AA0)]1/2 and its generalized

inverse as A−.When A is a square matrix, we use λmin(A) and λmax(A) to its minimum and

maximum eigenvalues respectively, and diag(A) to denote the diagonal matrix formed from

the diagonal elements of A. IT denotes a T ×T identity matrix. For a vector a ≡ (a1, ..., aT )0,
diag(a) denotes a diagonal matrix with ai as a typical diagonal element. The operator

p→
denotes convergence in probability, and d→ convergence in distributions. We use (n, T )→∞
to denote the joint convergence of n and T .
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2 Hypotheses and test statistic

In this section we first state the hypotheses and then introduce the test statistic.

2.1 The hypotheses

We consider testing possible homogenous regression relationships in model (1.1). The null

hypothesis is

H0 : gi (x) = gj (x) a.e. on the joint support of gi and gj and for all i, j = 1, · · · , n, (2.1)

where a.e. is the abbreviation for almost everywhere. The alternative hypothesis is the

negation of H0 :

H1 : gi (x) 6= gj (x) for some i 6= j with probability greater than zero. (2.2)

Let g (x) ≡ n−1
Pn

i=1 gi (x) . We can rewrite the null and alternative hypotheses equivalently

as

H0 : gi (x) = g (x) a.e. for all i = 1, · · · , n, (2.3)

H1 : gi (x) 6= g (x) a.e. for some i with probability greater than zero. (2.4)

To facilitate the local power analysis, we also define a sequence of Pitman local alternatives:

H1 (γnT ) : gi (x) = g (x) + γnT∆in (x) for all i = 1, · · ·n (2.5)

where ∆in (x) is uniformly bounded measurable functions, γnT → 0 as (n, T )→∞, and the
exact rate of γnT is specified in Theorem 3.3 below.

In this paper, we consider a test of poolability based on the null hypothesis H0 in (2.1).

In fact we can construct consistent tests of H0 versus H1 using various distance measures. A

convenient choice is to use the measure

Γ =
n−1X
i=1

nX
j=i+1

Z
(gi (x)− gj (x))

2w (x) dx, (2.6)

where w (x) is a nonnegative weight function that has support on Rd and could be allowed

to depend on (i, j) , i.e., w (x) = wij (x) . But for notational simplicity, we restrict ourselves

to the employment of same weight functions for different pairs (i, j) . Note that Γ = 0 if and

only if H0 holds and we can propose a test statistic based upon consistent estimation of Γ.
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2.2 Estimation and test statistic

To estimate Γ, we follow SJ and estimate the unknown functions gi (·) , i = 1, · · · , n, by
sieve method. Let {pl(x), l = 1, 2, · · · } denote a sequence of known basis functions that
can approximate any square-integrable function. Let K ≡ K (n, T ) be some integer such

that K → ∞ as (n, T ) → ∞. 3Let pK(x) = (p1(x), p2(x), · · · , pK(x))0, pit = pK(xit), and

pi = (pi1, pi2, · · · , piT )0. Obviously we have suppressed the dependence of pit, and pi, on K

and T. In particular, pi is a T ×K matrix.

Under fairly weak conditions, we can approximate gi (x) very well by α0gip
K(x) for some

K × 1 vector αgi . Let xt ≡ n−1
Pn

i=1 xit, yt ≡ n−1
Pn

i=1 yit, and ht ≡ (f 01t, x0t, yt)0. As SJ

argued, we can use ht as an observable proxy for the unobservable factor f2t. This motivates

them to estimate gi (·) by augmenting the sieve regression of yit on xit with ht :

yit = α0gip
K(xit) + ϑ0iht + uit (2.7)

where uit is the new error term. By the formula for partitioned regression, the estimate of

αgi is given by bαgi = ¡p0imhpi
¢−

p0imhyi, (2.8)

where h ≡ (h1, h2, · · · , hT )0, yi ≡ (yi1, yi2, · · · , yiT )0, mh ≡ IT − h (h0h)− h, and (·)− denotes
any symmetric generalized inverse. Then we estimate gi (·) by

bgi (x) = pK (x)0 bαgi . (2.9)

With bgi (x) , we then estimate Γ by the following functional:
ΓnT =

n−1X
i=1

nX
j=i+1

Z
(bgi (x)− bgj (x))2w (x) dx. (2.10)

This statistic is simple to compute and offers a natural way to test the null hypothesis. In the

following, we limit ourselves to the case where w (x) is a probability density function (PDF)

chosen by the researchers. We will show that, after being appropriately normalized, Γn is

asymptotically normally distributed under suitable assumptions and have power to detect

sequences of Pitman local alternatives at certain rate.

3 The asymptotic distributions of the test statistic

In this section, we first present a set of assumptions that are used in the asymptotic analysis.

Then we study the asymptotic distribution of our test statistic under the null hypothesis, a
3 In theory one can choose K ≡ K (n, T ) to balance the size and power of our test. But this will require

higher order theory, which is beyond the scope of the paper. In practice we recommend the use of least-squares

cross validation (LSCV) to choose K which seems to work very well in our simulation study.
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sequence of Pitman local alternatives, and fixed alternatives. We also propose a bootstrap

version of the test.

3.1 Assumptions

To proceed, let εi ≡ (εi1, εi2, · · · , εiT )0 and vi ≡ (vi1, vi2, · · · , viT )0. Let Pw ≡
R
pK (x) pK (x)0

w (x) dx. Define

Qipp ≡ E[pitp
0
it], Qiph ≡ E[pith

0
t], Qhh ≡ E[hth

0
t], and Qi ≡ Qipp −QiphQ

−1
hhQ

0
iph, (3.1)

where we have suppressed the dependence of Qhh(≡ Qn,hh) on n through ht. The K×K ma-

trices Qipp and Qi play an important role in this paper. We make the following assumptions.

Assumption 1. (i) For each i, εit are independent and identically distributed (IID) with

mean 0 and variance σ2i , and the process {vit : t ≥ 1} is a strictly stationary and α-mixing

process with mixing coefficient αi (j) such that
P∞

j=1 j
2αi (j)

η/(4+η) ≤ C1 < ∞ for some

η > 0. c ≤ min1≤i≤n σ2i ≤ max1≤i≤n σ2i ≤ c for some c > 0 and c <∞. (ii) The common factor

process {(f1t, f2t) : t ≥ 1} is a strictly stationary and α-mixing process with mixing coefficient
α0 (j) such that

P∞
j=1 j

2α0 (j)
η/(4+η) ≤ C2 < ∞. (iii) (f1t, f2t) is distributed independently

of the individual-specific errors εis and vis for all i, t, and s. E[(f 01t, f 02t)0(f 01t, f 02t)] is positive

definite. (iv) The individual-specific errors εit and vjs are distributed independently for

all i, j, t, and s. (v) (εi, vi) are independently distributed across i with zero means. (vi)

E
£
ε8i1
¤
< ∞, and supn≥1max1≤i≤nE |ζi|4+η ≤ μ4+η < ∞ for ζi = vi1, gi (xi1), f11, and f21.

(vii) Let α (j) ≡ supn≥1max0≤i≤nαi (j) .
P∞

j=1 j
2 α (j)η/(4+η) ≤ C3 <∞. (vii) E[gi (xit)] = 0

for all i.

Assumption 2. (i) The unobserved factor loadings γ2i and Γ2i are IID. γ2i and Γ2i are

independent of the individual-specific errors εjt and vjt, and the common factors (f1t, f2t) for

all j and t. The (4 + η)-th moment of Γ2i is finite. (ii) Γ1i are either fixed factor loadings that

are uniformly bounded or random factor loadings that are IID across i with finite (4 + η)-th

moments and are independent of Γ2j , εjt, vjt, f1t and f2t for all j and t. (iii) Let Γ∗2 ≡ E (Γ∗2i)

where Γ∗2i ≡ (Γ2i, γ2i). rank(Γ∗2) = q2 ≤ d+ 1. 4

Assumption 3. (i) For each i, gi(.) is H (λi, ωi)-smooth on Xi for some λi > d/2, ωi ≥ 0.
(See SJ for the definition ofH (·, ·)-smoothness.) (ii) For each i, R ¡1 + ||x||2¢ωi dFi (x) < C <

∞ for some ωi > ωi+λi, where dFi (x) = fi (x) dx, and fi (x) is the probability density func-

tion of xit. (iii) For any H (λi, ωi)-smooth gi(
.) on Xi, there is a function Π∞Kgi ≡ α0gip

K (.)

4 It is desirable to have a statistical test to check such a rank condition. For a recent review on the methods

to test the rank of a general matrix, see Camba-Mendeza and Kapetanios (2009). Nevertheless, it seems to

diffuclt to apply none of the reviewed method to our case because we do not have repeated panel observations

to estimate the expected value of the matrix of factor loadings, i.e., E (Γ∗2i) .
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in the sieve space GK ≡ {f (.) = a0pK (.)} such that ||gi(.) − Π∞Kgi(
.)||∞,ωi = O

¡
K−λi/d¢ .

(iv) For each i, sup1≤j≤K E|pj (xi1) |4+η <∞ for the same η defined in Assumption 1(i), Qi

has the smallest eigenvalues bounded away from zero, Qipp has bounded largest eigenvalues

uniformly in K, and Qhh ≡ Qn,hh tends to a positive definite matrix as n→∞.

Assumption 4. (i) The nonnegative weight function w (·) is a PDF. (ii) R ¡1 + ||x||2¢ω
w (x) dx <∞ where ω ≡ max1≤i≤n ωi. (iii) For each K, the smallest and largest eigenvalues

of Pw are bounded away from zero and infinity, respectively.

Assumption 5. K2/T → 0, KT 2/n→ 0,max
³
nK−2λ/d, TK−2λ/d+1, TK−2λ/d−1ζ (K)2

´
→ 0 as (n, T )→∞, where λ ≡ min1≤i≤n λi and ζ (K) ≡ supx

°°pK (x)°° .
Under a set of conditions that are weaker than Assumptions 1-3 and 5 above, SJ establish

the consistency and asymptotic normality of the sieve estimator bgi (x) . In comparison with
SJ’s conditions, our assumptions are stronger in three aspects. First, to facilitate the estab-

lishment of asymptotic distributions of our test statistic, we strengthen the strong mixing

condition of SJ on the process {εit, t ≥ 1} to the IID condition in Assumption 1. This greatly
simplifies the application of a central limit theorem (CLT) for the summation of quadratic

forms and the estimation of its asymptotic variance. We conjecture that the latter condition

can be relaxed at the cost of lengthy and complicated arguments. Second, the moment condi-

tion on εit is also strengthened from the existence of (4+η)th finite moments to the existence

of 8th finite moments because we need to verify that the 4th moments of a quadratic form

of εi is finite. Third, the conditions on (K,n, T ) in Assumption 5 are much stronger than

those in SJ in order to ensure some terms are asymptotically negligible. For example, SJ

only requires that KT/n → 0 as (n, T ) → ∞ but we need KT 2/n → 0 as (n, T ) → ∞. The

latter condition corresponds to and is much stronger than Pesaran’s (2006) requirement that√
T/n → 0 when gi is assumed to be linear. In particular, it means that our test is mainly

applicable in large dimensional panel where the number of cross-sectional units is much larger

than the number of time periods. 5 See SJ for remarks on other parts of Assumptions 1-3

and 5.

In addition, Assumption 4 is new. The requirement that w (·) be a PDF is innocuous
5As a referee remarked, one can interprete this from the standpoint of kernel-based specification tests. In

Fan and Li (1996), they choose bandwidth a to estimate the restricted model with q1 regressors and bandwidth

h to construct the residual-based test statistic that requires a higher dimension regression with q1+q2 regressors

under the alternative. When q2 ≤ q1, their condition implies that h/a → 0, implying that they smooth the

alternative model less than the null-resticted model. Here, the condition KT 2/n→ 0 suggests that the value

of K used in our test must be smaller than the value of K used in estimating a correctly-specified homogeneous

model which only requires that KT/n→ 0. Smaller K is anaglogous to undersmoothing for the kernel-based

test.
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and can be relaxed. Assumptions 4(ii)-(iii) parallel Assumptions 3(ii) and (iv). If xit are

identically distributed across i, then in principle one can choose w (·) as the PDF of xit (or
its consistent estimate in practice). In this case, Pw reduces to Qipp which is the same across

i.

3.2 Asymptotic distributions

We first study the asymptotic distributions of ΓnT under the null hypothesis. Let zt ≡
(f 01t, f 02t)0. Then

ht = Γ
0zt + v∗t , (3.2)

where

Γ
(q1+q2)×(q1+d+1)

=

⎛⎜⎝ Iq1 Γ1
q1×d

γ1
q1×1

0
q2×q1

Γ2
q2×d

γ2
q2×1

⎞⎟⎠ , v∗0t
1×(q1+d+1)

=

µ
00
1×q1

v0t
1×d

gt + εt
1×1

¶
, (3.3)

Γ1, Γ2, γ1, γ2, vt, εt, and gt are sample averages of Γ1i, Γ1i, γ1i, γ2i, vit, εit, and gi (xit) over

i, respectively. (3.2) justifies the use of ht as the proxy for zt. Let bt ≡ Γ0zt, b ≡ (b1, · · · , bT )0,
and mb ≡ IT − b (b0b)− b. Define

BnT ≡ 1√
n

nX
i=1

σ2i tr
³¡
p0imbpi/T

¢−
Pw

´
, (3.4)

and

VnT ≡ 2

n

nX
i=1

σ4i tr
µ³¡

p0imbpi/T
¢−

Pw

´2¶
, (3.5)

The following theorem establishes the asymptotic normality of ΓnT after being appropriately

scaled and centered.

Theorem 3.1 Under Assumptions 1-5 and under H0,

cnTΓnT −BnT√
VnT

d→ N (0, 1) ,

where cnT = T√
n(n−1) .

The proof of Theorem 3.1 is given in Appendix A1. The idea underlying the proof is very

simple. Let −→ε i = (p
0
imbpi)

− p0imbεi. We first demonstrate that

cnTΓnT = cnT

n−1X
i=1

nX
j=i+1

(−→ε i −−→ε j)
0
Pw (
−→ε i −−→ε j) + op (1) ,
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that is, cnTΓnT can be written as a second-order U -statistic. Next, we apply the Hoeffding

decomposition and show that

cnTΓnT −BnT√
VnT

=
TV

−1/2
nT√
n

nX
i=1

³−→ε 0iPw
−→ε i − σ2i tr

³¡
p0imbpi/T

¢−
Pw

´´
+ op (1) .

Then we apply the CLT for independent but non-identically distributed (INID) variables to

obtain the desired result.

Note that the test “statistic” in Theorem 3.1 is not feasible as it depends on the unknown

objects BnT and VnT . To implement the test, we need to estimate both the “bias” BnT and

the variance VnT consistently. It turns out that consistent estimation of VnT is straightforward

whereas that of BnT is not (as VnT is diverging to∞ at the rateK1/2, slower than the (nK)1/2-

rate at which BnT is diverging to ∞). Let bgi ≡ (bgi(xi1), · · · , bgi(xiT ))0 and bei ≡ mh(yi − bgi).
Denote the tth element of bei as beit. We propose to estimate VnT by

bVnT ≡ 2

n

nX
i=1

bσ4i trµ³¡p0imhpi/T
¢−

Pw

´2¶
where bσ2i ≡ 1

T

Pn
t=1 be2it. It is straightforward to demonstrate that bVnT = VnT + op (1) . For

BnT , a simple replacement of mb and σ2i by mh and bσ2i won’t deliver a consistent estimate.
In fact, we can show that

BnT − 1√
n

nX
i=1

bσ2i tr³¡p0imhpi/T
¢−

Pw

´
=

1√
n

nX
i=1

bσ2i trn³¡p0imbpi/T
¢− − ¡p0imhpi/T

¢−1´
Pw

o
+ op (1) .

The dominant term in the last expression is Op(K) by Lemma ??(ix) in the appendix,

which also needs to be estimated. Let bgt ≡ 1
n

Pn
i=1 bgi (xit), bg∗t ≡ (01×(q1+d),bgt)0, andbg∗ ≡ (bg∗1, · · · ,bg∗T )0. Define

bbnT =
T√
n

nX
i=1

bσ2i trn¡p0imhpi
¢−bbinT ¡p0imhpi

¢−
Pw

o
, and

bBnT =
1√
n

nX
i=1

bσ2i tr³¡p0imhpi/T
¢−

Pw

´
+bbnT ,

where bbinT ≡ p0i(−bg∗ (h0h)−1 h0 − h (h0h)−1 bg∗ + h (h0h)−1 bg∗0bg∗ (h0h)−1 h0)pi. As we demon-
strate in the appendix, bBnT −BnT = op

¡√
VnT

¢
. Thus we have the following corollary.

Corollary 3.2 Let DnT ≡ (cnTΓnT − bBnT )/

qbVnT . Suppose Assumptions 1-5 hold with As-
sumption 3(ii) being strengthened to: for all i,

R ¡
1 + ||x||2¢2ωi dFi (x) < C < ∞ for some

ωi > ωi + λi. Then

DnT
d→ N (0, 1) .
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Corollary 3.2 indicates that we can compare DnT to zα, the αth upper percentile from

the standard normal distribution, and we reject the null hypothesis when DnT > zα.

Next, we study the asymptotic distribution of DnT under the Pitman local alternative in

(2.5). Let

∆ ≡ lim
(n,T )→∞

s
tr
¡
Pw

¢
VnT

1

n (n− 1)
X

1≤i<j≤n

Z
(∆in (x)−∆jn (x))

2w (x) dx.

Then we have the following theorem.

Theorem 3.3 Suppose Assumptions 1-5 hold. Then under H1 (γnT ) with γnT = n−1/4T−1/2

tr
¡
Pw

¢1/4
, DnT

d→ N (∆, 1) .

Theorem 3.3 suggests that our test has nontrivial power to detect Pitman local alternatives

at the rate n−1/4T−1/2tr
¡
Pw

¢1/4
, which is slower than the rate n−1/4T−1/2 as tr

¡
Pw

¢
=

O (K) . The latter rate was obtained by Pesaran and Yamagata (2008) in the case of testing

slope homogeneity in large linear panel data panels. In addition, Theorem 3.3 indicates the

power of the test satisfies P
³
DnT > zα|H1

³
n−1/4T−1/2tr

¡
Pw

¢1/4´´ → 1 − Φ (zα −∆) as
(n, T )→∞, where Φ (·) is the cumulative distribution function of standard normal.

The following theorem establishes the consistency of the test.

Theorem 3.4 Let ∆gn ≡ (n (n− 1))−1
P
1≤i<j≤n

R
[gi (x)− gj (x)]

2 w (x) dx. Suppose ∆g ≡
limn→∞∆gn > 0 and Assumptions 1-5 hold. Then under H1, P (DnT > dnT ) → 1 for any

sequence dnT = op

³
n1/4T 1/2tr

¡
Pw

¢−1/4´
as (n, T )→∞.

Theorem 3.4 indicates that under H1 our test statistic DnT explodes at the rate n1/4T 1/2

tr
¡
Pw

¢−1/4
provided ∆g > 0. This can occur if gi (·) and gj (·) differ on a set of positive

measure for a “large” number of pairs (i, j) with i 6= j. It rules out the case where only a

finite fixed number of functions among {gi (·)}ni=1 are distinct from others on a set of positive
measure (e.g., only g1 (·) is different from others), or the case where the cardinality of the set

of functions among {gi (·)}ni=1 that are distinct from others on a set of positive measure is

diverging to infinity as n→∞ but at a slower rate than n. In the former case, ∆gn shrinks to

0 at rate n−2 so that the DnT test cannot be consistent; in the latter case case, our test can

still be consistent as long as ∆gn does not shrink to 0 too fast so that DnT is still diverging

to infinity as (n, T )→∞.

3.3 A bootstrap version of our test

We now propose a bootstrap version of the test. Similar to Li, Hsiao and Zinn (2003), one may

want to propose a bootstrap version of the test using a residual-based wild bootstrap method.

10



To construct the bootstrap analog of yit, one needs not only estimates of g (xit) but also

estimates of the non-observable factor f2t and the factor loadings γ1i and γ2i. Unfortunately,

consistency of estimates for the latter objects has not been established, not to mention the

consistency rate. So Li, Hsiao and Zinn’s method cannot be applied in our framework.

Nevertheless, the results in the last subsection suggest that under the null hypothesis

DnT =

1√
n

Pn
i=1

³−→ε 0iPw
−→ε i − σ2i tr

³
(p0imbpi/T )

− Pw

´´
r

2
n

Pn
i=1 bσ4i tr³¡(p0imhpi/T )

− Pw

¢2´ + op (1) (3.6)

d→ N (0, 1) .

Therefore we can continue to obtain a bootstrapped version of DnT by mimicking the leading

term on the right hand side of (3.6). Let e∗it = ηitbeit where ηit are IID across i and t with

mean zero and variance 1. We define the bootstrap analog of DnT as

D∗nT =
1√
n

Pn
i=1

¡−→ε ∗0i Pw
−→ε ∗i − T tr

¡
AihΣi

¢¢q
2
n

Pn
i=1 tr

¡
AihΣiAihΣi

¢
where −→ε ∗i ≡ (p0imhpi)

− p0imhe
∗
it, e

∗
i ≡ (e∗i1, · · · , e∗iT )0, Σi ≡diag(be2it, · · · , be2iT ), and Aih ≡

mhpi (p
0
imhpi)

− Pw (p
0
imhpi)

− p0imh. Note that T tr
¡
AihΣi

¢
is the conditional expectation of

−→ε 0iPw
−→ε i given the data, and 2tr

¡
AihΣiAihΣi

¢
is the conditional variance of −→ε iPw

−→ε i given

the data, ignoring asymptotically negligible terms. It is straightforward to show that D∗nT
converges to the standard normal distribution no matter whether H0 holds or not. Therefore,

we have the following theorem.

Theorem 3.5 Suppose Assumptions 1-5 hold. Suppose that ηit are IID across i and t such

that E (ηit) = 0, E
¡
η2it
¢
= 1, and E

¡
η8it
¢
< ∞. Then D∗nT

d→ N (0, 1) conditionally on the

data, and P (DnT > D∗nT )→ 1 under H1.

The conditions on ηit can easily be met in practice. In the following simulations, we

simply draw ηit from the standard normal distributions. The first part of theorem 3.5 shows

that the proposed bootstrap provides an asymptotically valid approximation to the null limit

distribution of DnT . The second part implies that the test DnT based upon the bootstrap

critical value is consistent against all global alternatives. We will compare the finite-sample

performance of the bootstrap test with that of the asymptotic normal approximation in our

simulation.

4 Simulation

In this section we conduct a small set of Monte Carlo simulations to evaluate the finite

sample performance of our test and compare it with some other tests. We consider three

11



data generating processes (DGPs) that are different only in the specification of the regression

functions gi of interest. In all three DGPs, we generate yit and xit,s (s = 1, 2) according to:

yit = gi (xit,1, xit,2) + γ1i + γ2i,1f2t,1 + γ2i,2f2t,2 + εit,

xit,s = Γ1i,s + Γ2i,s1f2t,1 + Γ2i,s2f2t,2 + vit,s, s = 1, 2,

for i = 1, 2, · · · , n, and t = 1, 2, · · · , T. Clearly, we have two individual-specific regressors
(xit ≡ (xit,1, xit,2)

0), one observed common factor (f1t = 1) , and two unobserved common

factors (f2t ≡ (f2t,1, f2t,2)0). We generate vit ≡ (vit,1, vit,2)0, xit, the unobserved factors (f2t),
and the factor loadings (Γ1i ≡ (Γ1i,1,Γ1i,2), Γ2i ≡ (Γ2i,1,Γ2i,2), γ2i ≡ (γ2i,1, γ2i,2)0) according
to the full rank regression case of SJ. For each i, εit are IID drawn from N

¡
0, σ2i

¢
where σ2i

are IIDU[0.5, 1] across i’s.

Following Pesaran (2006), DGP 1 considers a linear specification for gi(= g) under the

null:

g (xit,1, xit,2) = 0.5xit,1 + 0.5xit,1 + δixit,2.

In contrast, both DGPs 2 and 3 consider a nonlinear specification for gi(= g) under the null:

g (xit,1, xit,2) = exp (xit,1) / (exp (xit,1) + 1) +
¡
0.5xit,2 − 0.25x2it,2

¢
.

Under the alternative, we consider gi (xit,1, xit,2) = g (xit,1, xit,2) + δi cos(πxit,2) where g is

specified as above, δi’s are IIDU[0, c] in DGPs 1 and 2, δi = 0 for all i = 1, 2, · · · , n/2, and
generate δi’s are IIDU[0, c] for i = n/2+1, n/2+2, · · · , n in DGP3 under the alternative. Here
c > 0 is a parameter that controls the degree of heterogeneity in the DGPs: the larger value

of c, the greater degree of heterogeneity; we will set c = 1 and 2 for our power study. Clearly,

DGP 3 is identical to DGP 2 under the null and different from it under the alternative.

We consider three tests of poolability in this paper. The first one is our DnT test which

takes into account the unobservable common factors and does not assume known functional

relationship. The second one is a variant of our DnT test that does not assume known

functional relationship but neglects the presence of unobservable common factors. The third

one is the test of Pesaran and Yamagata (2008, PY hereafter) that assumes linear functional

relationship and neglects the unobservable common factors. We denote the second and third

tests as D(N)
NT and D

(PY )
NT , respectively, where the superscript N stands for “naive” and it

indicates that we construct D(N)
NT based on the naive estimators of gi (xit,1, xit,2) in SJ by

augmenting the sieve regression of yit on xit with only observed common factor f1t (i.e.,

ht = f1t in (2.7)). The third test was calculated according to eq. (54) in PY.

To conduct the DnT and D
(N)
NT tests, we need to estimate the model under the alterna-

tive. Since gi (x1, x2) has the additive structure and can be written as the sum of gi1 (x1)

and gi2 (x2) , [e.g., gi1 (x1) ≡ exp (xit,1) / (exp (xit,1) + 1) and gi2 (x2) ≡
³
0.5xit,2 − 0.25x2it,2

´
12



+δicos(πxit,2) in DGPs 2-3], we approximate each component by J terms of Hermite poly-

nomials, where J is chosen by the least square cross-validation method. That is, we choose

J to minimize the criterion function6

CV (J) ≡
nX
i=1

TX
t=1

n
yit − bg(J)−i (xit)o2

where bg(J)−i (xit) , t = 1, · · · , T, are the restricted semiparametric CCE estimate (for the DNT

test) or SJ’s naive estimate (for the D(N)
NT test) of g (xit) under the null by deleting the T

observations corresponding to individual i and using the 2J terms of Hermite polynomials to

approximate the restricted homogeneous regression function g (·) .
It is well known that the asymptotic normal distribution typically cannot approximate

the finite sample distribution of many nonparametric test statistics. So we suggest using a

conditional bootstrap method to obtain the bootstrap p-values. Unfortunately, simulations

indicate the bootstrap test procedure proposed in the previous section is sensitive to the

specifications of DGPs and combinations of n and T. So we now propose an alternative

procedure for the DnT test:

1. Obtain the semiparametric CCE pooled estimate bg (xit,1, xit,2) under the null. Let buit ≡
yit− bg (xit,1, xit,2) . Estimate the unobserved common factor f2t and factor loadings γ2i
by the principal components method. Denote the estimates as bf2t and bγ2i, respectively.
Estimate γ1i by bγ1i ≡ T−1

PT
t=1{yit − bg (xit,1, xit,2) − bγ02i bf2t} for i = 1, 2, · · · , n. Letbεit ≡ buit − bγ1i − bγ02i bf2t and bεi ≡ (bεi1,bεi2, · · ·bεiT )0.

2. For i = 1, · · · , n and t = 1, · · · , T, generate

y∗it = bg (xit,1, xit,2) + bγ1i + bγ02i bf2t + ε∗it,

where ε∗it is the tth element of ε
∗
i = (ε

∗
i1, ε

∗
i2, · · · , ε∗iT )0, and ε∗i is a random drawn from

{bε1,bε2, · · · ,bεn} with replacement.
3. Compute the bootstrap test statisticD∗nT in the same way asDnT by using {(y∗it, xit, f1t) , i =
1, · · · , n, t = 1, · · · , T} instead.

4. Repeat steps 2-3 B times to obtain B bootstrap test statistic
n
D∗nT,j

oB
j=1

. Calculate

the bootstrap p-values p∗ ≡ B−1
PB

j=1 1
³
D∗nT,j ≥ DnT

´
and reject the null hypothesis

of conditional independence if p∗is smaller then the prescribed level of significance.
6A better strategy is to allow J to depend on the additive component to approximate, i.e., we can choose

Js terms of Hermite polynomials to approximate gs (x) = gis (x) under the null for s = 1, 2.

13



Clearly the above procedure imposes the null hypothesis when we generate the bootstrap

data {y∗it} in step 2. Following Bai (2009), we can justify that under H0, bf2t and bγ2i con-
sistently estimate f2t and γ2i subject to certain normalization restrictions. Nevertheless the

rigorous justification for the validity of the above bootstrap method is beyond the scope of

the paper. We only demonstrate that it works effectively through simulations.

To obtain a bootstrap analog of D(N)
NT , one can readily modify the above procedure. For

example, in step 1 bg (xit,1, xit,2) is now replaced by SJ’s naive estimate bg(N) (xit,1, xit,2) of
g (xit,1, xit,2) under the null, there is no need to estimate f2t and γ2i, and one can estimate

γ1i by bγ1i ≡ T−1
PT

t=1{yit−bg(N) (xit,1, xit,2)}. Similarly, one can obtain the bootstrap analog
of D(PY )

NT by imposing linearity in the pooled regression under the null and neglecting the

presence of unobserved common factors.

We consider two sample sizes for n : n = 50, and 100. We consider T = 20, 30, 40,

50 when n = 50, and T = 25, 50, 75, 100 when n = 100. In each scenario, the number of

replications in the Monte Carlo study is 1000 for the size study and 500 for the power study.

For the bootstrap version of the test, we use B =200 bootstrap resamples for each replication.

Table 1 reports the level performance of the three tests for poolability using the above

DGPs. The upper and lower panels of Table 1 summarize the rejection frequency of our tests

based on the asymptotic normal critical values and the bootstrap p-values, respectively. For

the normal-critical-values-based tests, we find that the DnT test seems to perform reasonably

well despite the fact that it tends to be oversized for smaller values of T in DGP 1 and

can be somewhat undersized for some values of n and T in DGP 2. Similar phenomenon

occurs for the D
(N)
nT test, and the noticeable main difference is that this test tends to be

more oversized for small values of T in DGP 1 than the DnT test. In contrast, the D
(PY )
nT

test, which ignores both unknown functional form and the existence of unobserved common

factors, always mistakenly rejects the null hypothesis of homogeneous regression functional

relationship. For the bootstrap version of the three tests, we find that the bootstrap-p-value-

based DnT test outperforms the normal-critical-values-based test in that the empirical level

of the bootstrapped DnT test is quite close to the nominal level for both DGPs 1 and 2, the

bootstrapped D
(N)
nT test tends to be oversized for both DGPs, and the bootstrapped D

(PY )
nT

test is not stable at all across different DGPs and sample sizes. Interestingly, the empirical

level of the bootstrapped D
(PY )
nT test seems fine for DGP 1 when n = 50 but it is identically

zero when n = 100. Nevertheless, for DGP 2 the bootstrapped D(PY )
nT test is severely oversized

for all combinations of n and T. The last two columns in Table 1 report the average number

of series terms J chosen by the LSCV method in the construction of the (bootstrapped and

non-bootstrapped) DnT and D
(N)
nT tests, respectively. As either n or T increases, we see that

14



Table 1: Finite sample rejection frequency under the null (nominal level: 0.05 and 0.10)

DGP n T 5% tests 10% tests
DnT D

(N)
nT D

(PY )
nT DnT D

(N)
nT D

(PY )
nT Jcv1 Jcv2

Tests based on asymptotic normal critical values
1 50 20 0.131 0.112 1.000 0.176 0.145 1.000 5.03 4.63

30 0.103 0.135 1.000 0.138 0.176 1.000 5.23 4.66
40 0.080 0.164 1.000 0.111 0.207 1.000 5.48 4.60
50 0.045 0.053 1.000 0.069 0.074 1.000 6.00 5.63

100 25 0.148 0.145 1.000 0.183 0.182 1.000 5.74 4.53
50 0.090 0.078 1.000 0.104 0.105 1.000 6.92 5.44
75 0.027 0.019 1.000 0.045 0.040 1.000 7.49 6.61
100 0.054 0.056 1.000 0.066 0.071 1.000 7.76 6.70

2 50 20 0.110 0.069 1.000 0.159 0.093 1.000 5.32 4.90
30 0.079 0.095 1.000 0.102 0.128 1.000 5.48 5.03
40 0.079 0.104 1.000 0.102 0.142 1.000 5.67 5.12
50 0.073 0.061 1.000 0.100 0.088 1.000 5.87 5.59

100 25 0.069 0.096 1.000 0.105 0.126 1.000 5.73 5.06
50 0.043 0.069 1.000 0.059 0.085 1.000 6.58 5.93
75 0.028 0.017 1.000 0.040 0.031 1.000 7.05 6.63
100 0.046 0.041 1.000 0.060 0.054 1.000 7.19 6.71

Tests based on bootstrap p-values
1 50 20 0.052 0.217 0.056 0.116 0.274 0.142

30 0.077 0.310 0.035 0.137 0.374 0.118
40 0.060 0.332 0.018 0.106 0.386 0.113
50 0.063 0.274 0.013 0.117 0.320 0.091

100 25 0.074 0.358 0.000 0.139 0.406 0.000
50 0.077 0.406 0.000 0.134 0.451 0.000
75 0.062 0.375 0.000 0.118 0.423 0.000
100 0.061 0.366 0.000 0.113 0.428 0.000

2 50 20 0.067 0.190 0.347 0.121 0.254 0.528
30 0.067 0.238 0.287 0.123 0.308 0.540
40 0.078 0.284 0.300 0.128 0.344 0.568
50 0.050 0.197 0.298 0.096 0.253 0.576

100 25 0.068 0.317 0.768 0.122 0.386 0.916
50 0.067 0.341 0.864 0.107 0.389 0.979
75 0.060 0.296 0.913 0.113 0.338 0.995
100 0.049 0.280 0.924 0.090 0.316 0.997

Note: Jcv1 and Jcv2 denote the average values of the number of series terms J chosen by the

LSCV method for the tests DnT and D
(N)
nT , respectively.
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Table 2: Finite sample rejection frequency under the alternative (nominal level: 0.05)
DGP n T c = 1 Jcv1 Jcv2 c = 2 Jcv1 Jcv2

DnT D
(N)
nT D

(PY )
nT DnT D

(N)
nT D

(PY )
nT

Tests based on asymptotic normal critical values
1 50 20 0.298 0.172 1.000 4.94 4.55 0.652 0.400 1.000 4.76 4.57

30 0.308 0.336 1.000 5.22 4.53 0.614 0.520 1.000 5.14 4.60
40 0.338 0.376 1.000 5.35 4.49 0.680 0.624 1.000 5.13 4.54
50 0.332 0.264 1.000 5.95 5.66 0.732 0.578 1.000 5.72 5.57

100 25 0.326 0.236 1.000 5.44 4.69 0.656 0.516 1.000 5.14 4.86
50 0.346 0.226 1.000 6.48 5.67 0.756 0.588 1.000 6.24 5.74
75 0.336 0.148 1.000 7.50 6.73 0.880 0.556 1.000 7.08 6.78
100 0.524 0.252 1.000 7.47 6.71 0.886 0.792 1.000 7.17 6.67

2 50 20 0.216 0.130 1.000 5.26 4.89 0.558 0.338 1.000 5.09 4.86
30 0.262 0.232 1.000 5.37 4.93 0.592 0.500 1.000 5.29 4.96
40 0.302 0.290 1.000 5.57 5.02 0.660 0.596 1.000 5.48 5.04
50 0.378 0.262 1.000 5.79 5.58 0.720 0.614 1.000 5.65 5.50

100 25 0.170 0.124 1.000 5.88 5.10 0.558 0.294 1.000 5.65 5.07
50 0.226 0.152 1.000 6.53 6.06 0.596 0.398 1.000 6.31 6.00
75 0.164 0.102 1.000 7.28 6.69 0.644 0.378 1.000 7.12 6.73
100 0.234 0.182 1.000 7.42 6.77 0.748 0.538 1.000 7.27 6.70

3 50 20 0.134 0.088 1.000 5.27 4.88 0.282 0.152 1.000 5.12 4.87
30 0.140 0.152 1.000 5.44 4.95 0.344 0.286 1.000 5.30 4.95
40 0.186 0.190 1.000 5.56 5.06 0.380 0.344 1.000 5.50 5.03
50 0.208 0.148 1.000 5.80 5.57 0.380 0.290 1.000 5.77 5.57

100 25 0.100 0.096 1.000 5.93 5.11 0.308 0.194 1.000 5.82 5.08
50 0.116 0.100 1.000 6.57 6.13 0.338 0.220 1.000 6.50 6.13
75 0.136 0.076 1.000 7.35 6.71 0.350 0.234 1.000 7.16 6.73
100 0.120 0.116 1.000 7.50 6.73 0.408 0.294 1.000 7.44 6.68

Tests based on bootstrap p-values
1 50 20 0.208 0.298 0.028 0.548 0.472 0.028

30 0.294 0.436 0.036 0.656 0.602 0.036
40 0.428 0.486 0.026 0.764 0.648 0.008
50 0.540 0.462 0.020 0.876 0.696 0.016

100 25 0.262 0.370 0.000 0.696 0.500 0.000
50 0.556 0.472 0.000 0.912 0.744 0.000
75 0.728 0.518 0.000 0.970 0.792 0.000
100 0.794 0.568 0.000 0.974 0.884 0.000

2 50 20 0.178 0.274 0.308 0.504 0.508 0.270
30 0.280 0.376 0.246 0.698 0.648 0.232
40 0.444 0.456 0.266 0.794 0.710 0.230
50 0.498 0.424 0.270 0.858 0.738 0.232

100 25 0.316 0.438 0.704 0.694 0.628 0.614
50 0.472 0.440 0.798 0.844 0.658 0.728
75 0.538 0.498 0.880 0.892 0.736 0.796
100 0.628 0.542 0.896 0.892 0.788 0.814

3 50 20 0.106 0.204 0.296 0.238 0.302 0.212
30 0.144 0.290 0.260 0.380 0.404 0.206
40 0.204 0.314 0.244 0.488 0.462 0.180
50 0.216 0.274 0.250 0.502 0.414 0.184

100 25 0.174 0.392 0.722 0.458 0.480 0.652
50 0.244 0.378 0.800 0.652 0.508 0.776
75 0.322 0.414 0.880 0.726 0.614 0.826
100 0.364 0.454 0.906 0.738 0.634 0.850

Note: Jcv1 and Jcv2 denote the average values of the number of series terms J chosen by the

LSCV method for the tests DnT and D
(N)
nT , respectively.
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the average number of series terms increase slowly and steadily.

Table 2 reports the power performance of the three tests for poolability. Like Table 1,

the upper and lower panels of Table 2 summarize the rejection frequency of the tests based

on the asymptotic normal critical values and the bootstrap p-values, respectively. Due to

the size distortion of the D(N)
nT and D

(PY )
nT tests, we focus on the DnT test and summarize

some main findings. First, the bootstrap version of the DnT test tends to be more powerful

than the normal-critical-values-based DnT test. Second, the power of the DnT test is mainly

driven by the increase of T. As T increases, the power of the test tends to increase. For fixed

T, the power is not necessarily increasing when n increases (see DGP 2, T = 50). This is in

line with our theoretical findings in the last section because the effect of the increase of n on

the power may be cancelling the effect of the increase of tr
¡
Pw

¢
on the power. Intuitively

speaking, the larger n is, the more heterogenous regression relationships that need to be

estimated under the alternative. This may have adverse effect on the power performance of

the test. Similar phenomenon has been found in Pesaran and Yamagata (2008) when they

only consider linear functional relationship without unobserved common factors. Third, as the

degree of heterogeneity increases (c increases from 1 to 2), the power of the DnT test increases

rapidly. For the other two tests, we notice that surprisingly the normal-critical-value-based

D
(PY )
nT test always reject the null across different DGPs, but its bootstrap version can behave

quite differently in different DGPs; the D(N)
nT test (both bootstrapped and non-bootstrapped

versions) has some power but it is less powerful than the DnT test.

Columns 7-8 (resp. 11-12) in Table 2 report the average number of series terms J chosen

by the LSCV method in the construction of the (bootstrapped and non-bootstrapped) DnT

and D
(N)
nT tests, respectively, for the case c = 1 (resp. 2). As expected, the average number

of series terms increase slowly and steadily as either n or T increases.

5 Concluding remarks

In this paper we propose a nonparametric poolability test for semiparametric panel data

models with multi-factor error structure. We establish the asymptotic distributions of our

test statistics under both the null hypothesis of poolability and a sequence of Pitman local

alternatives. In addition, we prove the consistency of the test and justify the validity of a

bootstrap method as an alternative to obtain the critical values. Simulations suggest that

the proposed test works fairly well in finite samples.

Our test requires sieve estimation of the heterogeneous regression relationships under the

alternative. Alternatively, we can propose a test that compares the homogeneous regression

estimate with the heterogeneous regression estimate, which requires the selection of two sieve
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approximating terms. It is also possible to propose a test that only requires estimation under

the null hypothesis. In addition, other types of testing procedure are possible. For example,

one can extend the specification test of Li, Hsiao, and Zinn (2003) to our framework which

relies on the application of empirical process theory, or one can apply the kernel method as

Baltagi, Hidalgo, and Li (1996).
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Appendix

Let C signify a generic constant whose exact value may vary from case to case. Let

D = { (xit, f1t, f2t) : i = 1, · · · , n, t = 1, · · · , T}. Let ED (.) and VarD (.) denote the con-
ditional expectation and variance given D, respectively. Let P1≤i<j≤n ≡

Pn−1
i=1

Pn
j=i+1 .

Recall yi ≡ (yi1, yi2, · · · , yiT )0, εi ≡ (εi1, εi2, · · · , εiT )0, −→ε i ≡ (p0imbpi)
− p0imbεi, and Pw ≡R

pK (x) pK (x)0w (x) dx.

A Proof of results in Section 3

In this appendix, we prove the main results in Section 3. In the next appendix we state and

prove several lemmas that are used in the proof of these main results.

Proof of Theorem 3.1

Let f1 ≡ (f11, f12, · · · , f1T )0, f2 ≡ (f21, f22, · · · , f2T )0, and gi ≡ (gi (xi1) , gi (xi2) , · · · , gi (xiT ))0.
Using (1.1) and the sieve approximation for gi (·) we have

yi = piαgi + f1γ1i + f2γ2i + εi + (gi − piαgi). (A.1)

Therefore by (2.8), bαgi = αgi + eεi + eri, where eεi ≡ (p0imhpi)
− p0imhεi, eri ≡ (p0imhpi)

− p0imhri,

and ri ≡ f2γ2i + (gi − piαgi). Then by (2.9)-(2.10), we have

cnTΓnT

= cnT
X

1≤i<j≤n

¡bαgi − bαgj¢0 Pw

¡bαgi − bαgj¢
= cnT

X
1≤i<j≤n

©
(αgi − αgj ) + (eεi − eεj) + (eri − erj)ª0 Pw

©
(αgi − αgj ) + (eεi − eεj) + (eri − erj)ª

= A1 +A2 +A3 +A4 +A5 +A6, (A.2)

where the A’s are defined as follows:

A1 ≡ cnT
P
1≤i<j≤n(αgi − αgj )

0Pw(αgi − αgj ), A2 ≡ cnT
P
1≤i<j≤n (eεi − eεj)0 Pw (eεi − eεj) ,

A3 ≡ cnT
P
1≤i<j≤n (eri − erj)0 Pw (eri − erj) , A4 ≡ 2cnT

P
1≤i<j≤n(αgi − αgj )

0Pw(eεi − eεj),
A5 ≡ 2cnT

P
1≤i<j≤n

¡
αgi − αgj

¢0
Pw (eri − erj) , A6 ≡ 2cnT

P
1≤i<j≤n (eεi − eεj)0 Pw (eri − erj) .

(A.3)

Under H0, Al = 0 for l = 1, 4, and 5. So it suffices to show that

A2 −BnT√
VnT

d→ N (0, 1) , (A.4)

A3√
VnT

= op (1) , and
A6√
VnT

= op (1) . (A.5)
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We first show (A.4). Note that ED (eεi) is generally not 0 since the sample mean yt enters the
definition of ht and thus h. By Assumptions 1(i), 3(iv) and 4(iii), and Lemmas B.1(i)-(ii),

VnT =
2

n

nX
i=1

σ4i tr
µ³¡

p0imbpi/T
¢−

Pw

´2¶

≥ 2λmin
¡
Pw

¢
n

nX
i=1

£
λmax

¡
p0imbpi/T

¢¤−2
σ4i tr(Pw) > c > 0. (A.6)

By (A.6), it suffices to prove (A.4) by first establishing that

A2 = cnT
X

1≤i<j≤n
(−→ε i −−→ε j)

0
Pw (
−→ε i −−→ε j) + op (1) ≡ −→A 2 + op

³
V
1/2
nT

´
(A.7)

and then showing that −→
A 2 −BnT√

VnT

d→ N (0, 1) . (A.8)

where
−→
A 2 ≡ cnT

P
1≤i<j≤n (

−→ε i −−→ε j)
0
Pw (
−→ε i −−→ε j) .

To prove (A.7), write

A2 −−→A 2 =
cnT
2

X
1≤i6=j≤n

©
(eεi −−→ε i)

0
Pw (eεi −−→ε i) + (eεj −−→ε j)

0
Pw (eεj −−→ε j)

ª
−cnT

X
1≤i6=j≤n

(eεi −−→ε i)
0
Pw (eεj −−→ε j)

+2cnT
X

1≤i6=j≤n
(eεi −−→ε i)

0
Pw (
−→ε i −−→ε j)

≡ A21 −A22 +A23.

By Lemma B.4(i) and the Cauchy-Schwarz inequality, |A22| ≤ A21 ≤ ncnT
Pn

i=1 (eεi −−→ε i)
0
Pw(eεi

−−→ε i) = Op

¡
K2/n1/2

¢
. By Lemma B.4(ii), A23 = Op

¡
K1/2/T 1/2

¢
= op

¡
K1/2

¢
. Then (A.7)

follows by noticing that V 1/2nT = Op

¡
K1/2

¢
and K3/n = o (1) .

To prove (A.8), let ϕ (−→ε i,
−→ε j) ≡ T (−→ε i −−→ε j)

0
Pw (
−→ε i −−→ε j) . Then we can write

−→
A 2 =√

nUnT/2, where

UnT =
2

n (n− 1)
X

1≤i<j≤n
ϕ (−→ε i,

−→ε j)

is a standard second-order U-statistic with symmetric kernel ϕ (·, ·) . By the idea of Hoeffding
decomposition, we have

UnT = θ +H
(1)
nT +H

(2)
nT

where θ ≡ 2
n(n−1)

P
1≤i<j≤n θij , θij ≡ EiEj [ϕ (

−→ε i,
−→ε j)] ,

H
(1)
nT ≡ 2

n (n− 1)
X

1≤i<j≤n
{Ei [ϕ (

−→ε i,
−→ε j)] +Ej [ϕ (

−→ε i,
−→ε j)]− 2θij}

H
(2)
nT ≡ 2

n (n− 1)
X

1≤i<j≤n
{ϕ (−→ε i,

−→ε j)−Ej [ϕ (
−→ε i,
−→ε j)]−Ei [ϕ (

−→ε i,
−→ε j)] + θij} ,
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and Ej [·] denotes expectation taken with respect to−→ε j conditional on D. Straightforward cal-
culations show that θij = T [ED(−→ε 0iPw

−→ε i)+ED(−→ε 0jPw
−→ε j)] and hence θ = 2T

n

Pn
i=1ED(

−→ε 0iPw
−→ε i).

Noting that conditional on D, −→ε i are INID by Assumptions 1(i), (v) and 2, by the standard

U-statistic theory (e.g., Lee, 1990), it is easy to show that H(2)
nT = op

¡
n−1/2

¢
. It follows that

−→
A 2 − T√

n

nX
i=1

ED(−→ε 0iPw
−→ε i)

=
1√

n (n− 1)
X

1≤i<j≤n
{Ei [ϕ (

−→ε i,
−→ε j)] +Ej [ϕ (

−→ε i,
−→ε j)]− 2θij}+ op (1)

=
T√
n

nX
i=1

©−→ε 0iPw
−→ε i −ED(−→ε 0iPw

−→ε i)
ª
+ op (1) .

Noting that T√
n

Pn
i=1ED(

−→ε 0iPw
−→ε i) = BnT , we have

−→
A 2 −BnT√

VnT
=

T (VnT )
−1/2

√
n

nX
i=1

©−→ε 0iPw
−→ε i −ED(−→ε 0iPw

−→ε i)
ª
+ op (1) .

Thus it suffices to prove (A.8) by showing that

VarD

Ã
T (VnT )

−1/2
√
n

nX
i=1

−→ε 0iPw
−→ε i

!
= 1 + op (1) (A.9)

and verifying the Liapounov condition for the central limit theorem. Let μ4i ≡ E
¡
ε4it
¢
and

Aib ≡ mbpi (p
0
imbpi)

− Pw (p
0
imbpi)

− p0imb. Standard variance calculations show that

VarD

Ã
T√
n

nX
i=1

−→ε 0iPw
−→ε i

!

=
2

n

nX
i=1

σ4i tr
½³¡

p0imbpi/T
¢−

Pw

´2¾
+
1

n

nX
i=1

¡
μ4i − 3σ4i

¢
T 2tr

¡
Aibdiag

¡
Aib

¢¢
.

Let mb,ts and aib,ts denote the (t, s)th element of mb and Aib, respectively. Let ιt denote the

T -vector with one in its tth place and zeros elsewhere. Noting that

TX
s=1

kpismb,tsk =
TX
s=1

°°°pis ³1 (s = t)− b0t
¡
b0b
¢−1

bs

´°°°
≤ kpitk+ T−1

TX
s=1

°°°b0t ¡b0b/T ¢−1 bsp0is°°° ≤ kpitk+ αT kbtk ,

where 1 (·) is the usual indicator function and αT ≡ || (b0b/T )−1 ||T−1
PT

s=1 kpisb0sk = Op(
√
K),
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we have

aib,tt = ι0tmbpi
¡
p0imbpi

¢−
Pw

¡
p0imbpi

¢−
p0imbιt

≤ λmax
¡
Pw

¢
T−2

£
λmin

¡
p0imbpi/T

¢¤−2 °°p0imbιt
°°2

= T−2
£
λmin

¡
p0imbpi/T

¢¤−2 °°°°°
TX
s=1

pismb,ts

°°°°°
= T−2

£
λmin

¡
p0imbpi/T

¢¤−2
[kpitk+ αT kbtk] ,

and T 2tr
¡
Aibdiag

¡
Aib

¢¢
= T 2

PT
t=1 a

2
ib,tt = T−2 [λmin (p0imbpi/T )]

−4PT
t=1 [kpitk+ αT kbtk]2

= Op (K/T ) = op (1) . Thus VarD
³

T√
n

Pn
i=1
−→ε 0iPw

−→ε i

´
= VnT + op (1) . This, together with

(A.6), implies (A.9). Now, let

ξiT ≡
T [−→ε 0iPw

−→ε i −ED(−→ε 0iPw
−→ε i)]

tr(Pw)
=

T
£
ε0iAibεi −ED

¡
ε0iAibεi

¢¤
tr(Pw)

.

Then by the Cr and Jensen inequalities and Theorem 2 of Bao and Ullah (2009),

ED
£
ξ4iT
¤ ≤ 16σ4iT

4[trPw]
−4{(trAib)

4 + 12
¡
trAib

¢2
tr(A

2
ib) + 12(tr(A

2
ib))

2

+32
¡
trAib

¢
tr(A

3
ib) + 48tr(A

4
ib) + remainder terms}, (A.10)

where the expression of the remainder terms (which vanish if εit is normally distributed)

is tedious and can be found from Bao and Ullah. By some tedious algebra, we can show

that each term on the right hand side of (A.10) is of order Op(1) or smaller by using the

fact that tr
¡
Aib

¢
=tr((p0imbpi)

− Pw) ≤ T−1[λmin (p0imbpi/T )]
−1tr

¡
Pw

¢
= Op

¡
T−1trPw

¢
and

that all elements of Aib are of order Op(K
3/2T−2). On the other hand,

Pn
i=1ED

£
ξ2iT
¤
=

n
2VnT/[trPw]

2. Then by (A.6) and Assumption 5, we havePn
i=1ED

£
ξ4iT
¤©Pn

i=1ED
£
ξ2iT
¤ª2 = Op (n)£

n
2VnT/(trPw)2

¤2 = Op

µ
(trPw)

4

nV 2nT

¶
= Op

µ
K2

n

¶
= op (1) .

This verifies the Liapounov condition.

We now show (A.5). Let
−→
A 3 ≡ cnT

P
1≤i<j≤n (

−→r i −−→r j)
0
Pw (
−→r i −−→r j) . We prove (iii)

by showing that A3 −−→A 3 = op(V
1/2
nT ), and

−→
A 3 = op(V

1/2
nT ). First, we decompose A3 −

−→
A 3 as

follows

A3 −−→A 3 =
cnT
2

X
1≤i6=j≤n

©
(eri −−→r i)

0
Pw (eri −−→r i) + (erj −−→r j)

0
Pw (erj −−→r j)

ª
−cnT

X
1≤i6=j≤n

(eri −−→r i)
0
Pw (erj −−→r j)

+2cnT
X

1≤i6=j≤n
(eri −−→r i)

0
Pw (
−→r i −−→r j)

≡ A31 −A32 +A33.
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By Lemma B.4(iii) and the Cauchy-Schwarz inequality, |A32| ≤ A31 ≤ ncnT
Pn

i=1 (eri −−→r i)
0
Pw(eri

−−→r i) = Op

¡
Tn−1/2K1−2λ/d +KT/n1/2

¢
= op(K

1/2). By Lemma B.4(iv), A33 = Op(Tn
1/2K1−2λ/d) =

op(K
1/2). It follows that A3 = op(V

1/2
nT ).

Now, we decompose A6 as follows

A6 = 2cnT
X

1≤i<j≤n
{(eεi −−→ε i − eεj +−→ε j)

0
Pw (eri −−→r i − erj +−→r j)

+ (eεi −−→ε i − eεj +−→ε j)
0
Pw (
−→r i −−→r j) + (

−→ε i −−→ε j)
0
Pw (eri −−→r i − erj +−→r j)

+ (−→ε i −−→ε j)
0
Pw (
−→r i −−→r j)}

≡ A61 +A62 +A63 +A64.

where, e.g., A61 ≡ 2cnT
P
1≤i<j≤n (eεi −−→ε i − eεj +−→ε j)

0
Pw (eri −−→r i − erj +−→r j) . Then by the

repeated use of the Cauchy-Schwarz inequality and Lemmas B.4(i) and (iii) ,

|A61| ≤ 8cnT

nX
i=1

(eεi −−→ε i)
0
Pw (eri −−→r i)

≤ 8

(
cnT

nX
i=1

(eεi −−→ε i)
0
Pw (eεi −−→ε i)

)1/2(
cnT

nX
i=1

(eri −−→r i)
0
Pw (eri −−→r i)

)1/2
=

n
Op

³
K2/n1/2

´
Op

³
Tn−1/2K1−2λ/d +KT/n1/2

´o1/2
= op

³
K1/2

´
.

Similarly, by Lemmas B.4(i) and (iv), we have |A62| =
©
Op

¡
K2/n1/2

¢
Op

¡
Tn1/2K1−2λ/d¢ª1/2

= op
¡
K1/2

¢
. By Lemmas B.4(v) and (vi), A6s = op

¡
K1/2

¢
for s = 3, 4. This completes the

proof of the theorem. ¥

Proof of Corollary 3.2

Noting that VnT ≥ Ctr(Pw) = O(K) for some C > 0 by (A.6), it suffices to prove the

corollary by showing that

bVnT = VnT + op (VnT ) , and bBnT −BnT = op

³
K1/2

´
.

First, we write

bVnT − VnT =
2

n

nX
i=1

bσ4i trµ³¡p0imhpi/T
¢−

Pw

´2¶− 2
n

nX
i=1

σ4i tr
µ³¡

p0imbpi/T
¢−

Pw

´2¶

=
2

n

nX
i=1

¡bσ4i − σ4i
¢
tr
µ³¡

p0imhpi/T
¢−

Pw

´2¶

+
2

n

nX
i=1

σ4i tr
µ³¡

p0imhpi/T
¢−

Pw

´2 − ³¡p0imbpi/T
¢−

Pw

´2¶
≡ 2V1nT + 2V2nT .
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We want to show VsnT = op (K) for s = 1, 2. Let mih ≡ mh − mhpi (p
0
imhpi)

− p0imh and

mib ≡ mb −mbpi (p
0
imbpi)

− p0imb. Then bei = mh (yi − bgi) = mih (εi + ri) where recall ri ≡
f2γ2i + (gi − piαgi). It follows that

bσ2i = 1

T
be0ibei = 1

T
ε0imihεi +

1

T
r0imihri +

2

T
r0imihεi, (A.11)

and

1

n

nX
i=1

¡bσ2i − σ2i
¢2 ≤ 3

n

nX
i=1

µ
1

T
ε0imihεi − σ2i

¶2
+
3

n

nX
i=1

µ
1

T
r0imihri

¶2
+
12

n

nX
i=1

µ
1

T
r0imihεi

¶2
≡ 3δ1nT + 3δ2nT + 12δ3nT .

For δ1nT , we can use the decomposition in (B.1) as in the proof of Lemma B.4(ii) to show

that δ1nT = δ1nT +Op (K/T ) , where δ1nT ≡ 1
n

Pn
i=1

¡
1
T ε

0
imibεi − σ2i

¢2
. Let mib,ts denote the

(t, s) element of mib. Noting that tr(mib) = T −K − q1 − q2, and 1
T 2
PT

t=1

PT
s=1 (mib,ts)

2 =

1 +Op (K/T ) uniformly in i, we have

ED
¡
δ1nT

¢
=

1

n

nX
i=1

ED
µ
1

T 2
ε0imibεiε

0
imibεi − 2

T
ε0imibεiσ

2
i + σ4i

¶

=
1

n

nX
i=1

"
1

T 2

(
TX
t=1

TX
s=1

(mib,ts)
2 σ4i +

TX
t=1

(mib,tt)
2 £E ¡ε4it¢− 3σ4i ¤

)
− 2tr (mib)

T
σ4i + σ4i

#
= Op (K/T ) .

Hence δ1nT = Op (K/T ) by the conditional Markov inequality. For δ2nT , noting that mih =

mhmih = mihmh and that both mh and mih are projection matrices, we have

1

T
r0imihri ≤ 1

T
kmhrik2 ≤ 2

T
kmhf2γ2ik2 +

2

T
kmh(gi − piαgi)k2 .

It follows that δ2nT ≤ 8
nT 2

Pn
i=1 k(mh −mb) f2γ2ik4+ 8

nT 2
Pn

i=1 kmh(gi − piαgi)k4 = Op(n
−1

+K−4λ/d) where n−1T−2
Pn

i=1 k(mh −mb) f2γ2ik4 = Op

¡
n−1

¢
can be proved analogously to

the proof of Lemma A5(v) of Su and Jin (2010), and 1
nT2

Pn
i=1 k(gi − piαgi)k4 = Op(K

−4λ/d)

by arguments similar to the proof of Lemma A.2 of Su and Jin (2010) under the strengthened

condition given in the corollary. For δ3nT , we can show that δ3nT = δ3nT +Op (K/T ) , where

δ3nT =
1
n

Pn
i=1

¡
1
T r

0
imibεi

¢2
. Then noting that mibri = mib(gi−piαgi) and mib is a projection

matrix, by Lemma (B.2)(ii) we have

ED
¡
δ3nT

¢
=

1

nT 2

nX
i=1

r0imibE
¡
εiε

0
i

¢
mibri ≤ C

nT 2

nX
i=1

kgi − piαgik2 = Op

³
T−1K−2λ/d

´
,

Consequently, δ3nT = Op

¡
K/T + T−1K−2λ/d¢ = Op (K/T ) , and

1

n

nX
i=1

¡bσ2i − σ2i
¢2
= Op (K/T ) .
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Similarly, we can show that 1n
Pn

i=1(bσ2i + σ2i )
2 = Op (1) . It follows that

V1nT =
1

n

nX
i=1

¡bσ2i − σ2i
¢ ¡bσ2i + σ2i

¢
tr
µ³¡

p0imhpi/T
¢−

Pw

´2¶

≤ (c2λ)
−2 λmax

¡
Pw

¢
tr
¡
Pw

¢( 1
n

nX
i=1

¡bσ2i − σ2i
¢2)1/2( 1

n

nX
i=1

¡bσ2i + σ2i
¢2)1/2

= O (K)Op(
p
K/T )Op (1) = op(K).

Noting that σ2i is uniformly bounded, V2nT = Op(K/
√
n) = op(K) by Lemma B.4(iii). Con-

sequently, bVnT − VnT = op(VnT ) as VnT = Op (K) .

Next, write

bBnT −BnT

=
1√
n

nX
i=1

bσ2i tr³¡p0imhpi/T
¢−

Pw

´
+bbnT − 1√

n

nX
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σ2i tr
³¡
p0imbpi/T
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Pw

´
≡ B1 +B2,

where B1 ≡ 1√
n

Pn
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³
(p0imbpi/T )

− Pw

´
, and B2 ≡ 1√

n

Pn
i=1 bσ2i tr{[(p0imhpi/T )

−

− (p0imbpi/T )
−]Pw} + bbnT . Using (A.11) we can show that B1 = 1√

n

Pn
i=1

¡
1
T ε

0
imibεi − σ2i

¢
×tr

³
(p0imbpi/T )

− Pw

´
+ op (1) =

−→
B 1 + op (1) , where

−→
B 1 ≡ 1√

n

Pn
i=1(

1
T−q1−d−1ε

0
imibεi −

σ2i )tr
³
(p0imbpi/T )

− Pw

´
. Simple calculations reveal that ED(

−→
B 1) = 0 and

VarD(
−→
B 1) =

1

n (T − q1 − d− 1)2
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VarD(ε0imibεi)
n
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³¡
p0imbpi/T

¢−
Pw

´o2
= Op

¡
K2/T

¢
= op (1)

as VarD(ε0imibεi) ≤Var(ε0iεi) = O (T ). Hence B1 = op (1) .

Now we show that B2 = op
¡
K1/2

¢
. Note that

B2 =
1√
n

nX
i=1

bσ2iT tr³¡p0imhpi
¢− £

p0imbpi − p0imhpi
¤ ¡
p0imbpi

¢−
Pw

´
+bbnT

=
1√
n
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bσ2iT−1tr³hp0i (mb −mh) pi +bbinT iβi´
=

1√
n
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³h
p0i (mb −mh) pi +bbinT iβi´

+
1√
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¡bσ2i − σ2i
¢
T−1tr

³h
p0i (mb −mh) pi +bbinT iβi´

≡ B21 +B22,

where βi ≡ (p0imhpi/T )
− Pw (p

0
imbpi/T )

− . It suffices to prove B21 = op
¡
K1/2

¢
and B22 =

op
¡
K1/2

¢
. We only prove the former result since the latter can be established analogously
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based on the decomposition of bσ2i in (A.11). Let ε ≡ (ε1, · · · , εT )0, v ≡ (v1, · · · , vT )0, g ≡
(g1, · · · , gT )0, and bg ≡ (bgt, · · · ,bgT )0. Then

B21 =
1

n1/2T

nX
i=1

σ2i tr
³h
p0i (mb −mh) pi +bbinT iβi´

=
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nX
i=1

σ2i tr
n
p0i[h

¡
h0h
¢−1

h− b
¡
b0b
¢−1

b]piβi

+p0i[−bg∗ ¡h0h¢−1 h0 − h
¡
h0h
¢−1 bg∗ + h

¡
h0h
¢−1 bg∗0bg∗ ¡h0h¢−1 h0]piβio

=
1

n1/2T

nX
i=1

σ2i tr
n
p0i[(h− b)− bg∗] ¡h0h¢−1 h0piβio

+
1

n1/2T

nX
i=1

σ2i tr
n
p0ih

¡
h0h
¢−1

[(b0b− h0h) + bg∗0bg∗] ¡h0h¢−1 h0piβio
+

1

n1/2T

nX
i=1

σ2i tr
n
p0ih

¡
h0h
¢−1

[(h− b)− bg∗]0piβio+Op(K/T 1/2)

= B21,1 +B21,2 +B21,3 +Op(K/T 1/2), say,

where the Op

¡
K/T 1/2

¢
term comes from the replacement of b0b/T and h0pi/T by h0h/T and

b0pi, respectively. We only show that B21,1 = op(
√
K) as one can prove B21,s = op(

p
K/n),

s = 2, 3, analogously. By the proof of Lemma A.5(i) in Su and Jin (2010), T−1
Pn

i=1(kp0iεk+
kp0iv]k) = Op(

√
K +

p
Kn/T ). It follows that

|B21| ≤ max1≤i≤n σ2i
n1/2T

nX
i=1

¯̄̄
tr
n
p0i
³bg − g

´ ¡
h0h
¢−1

h0piβi
o¯̄̄
+Op(K/n1/2 +K/T 1/2)

≤ CB21,1 + op(
√
K),

where B21,1 ≡ 1
n1/2T

Pn
i=1 |tr{p0i(bg−g) (h0h)−1 h0piβi}|. By Theorem 4.2 of Su and Jin (2010),

we can show that bgt − gt =
1
n

Pn
j=1 [bgj (xjt)− gj (xjt)] = Op(

p
K/nT ). By the Cauchy-

Schwarz inequality and the fact that kβik = Op(
√
K) uniformly in i, we have

B21,1 ≤ 1

n1/2T

nX
i=1

½
tr
µ
p0i
³bg − g

´ ¡
h0h
¢−1 ³bg − g

´0
pi

¶¾1/2 n
tr
³
β0ip

0
ih
¡
h0h
¢−1

h0piβi
´o1/2

≤ 1

n1/2T

nX
i=1

½
tr
µ
p0i
³bg − g

´ ¡
h0h
¢−1 ³bg − g

´0
pi

¶¾1/2 ©
tr
¡
β0ip

0
ipiβi

¢ª1/2
≤ £

λmin
¡
h0h/T

¢¤−1
max
1≤i≤n

λmax
¡
p0ipi/T

¢ 1

n1/2T

nX
i=1

°°°p0i ³bg − g
´°°° kβik

= Op

³√
K
´°°°bg − g

°°°( 1

n1/2T

nX
i=1

kpik
)
= Op

³√
K
´
Op

³p
K/n

´
Op

³p
nK/T

´
= Op

³p
K3/T

´
= op

³√
K
´
.
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Consequently, B21,1 = op

³√
K
´
. This completes the proof. ¥

Proof of Theorem 3.3

The proof follows closely from that of Theorems 3.1 and 3.2, now keeping the addi-

tional terms that do not vanish under H1

³
n−1/4T−1/2tr

¡
Pw

¢1/4´
. Since the proof in The-

orem 3.2 does not impose the null hypothesis, by (A.6) it suffices to show that under

H1

³
n−1/4T−1/2tr

¡
Pw

¢1/4´
,

A1/
p
VnT

p→ ∆, (A.12)

A4 = op

³
tr(Pw)

1/2
´
, and A5 = op

³
tr(Pw)

1/2
´
. (A.13)

where A1, A4, and A5 are defined in (A.3). Under H1

³
n−1/4T−1/2tr

¡
Pw

¢1/4´
, gi (x) −

gj (x) = γnT∆ij,n (x) with ∆ij,n (x) ≡ ∆in (x)−∆jn (x) . It follows that

A1 = cnT
X

1≤i<j≤n

Z ¡
pK (x)0

¡
αgi − αgj

¢¢2
w (x) dx

= cnT
X

1≤i<j≤n

Z ©
γnT∆ij,n (x) + [dgj (x)− dgi (x)]

ª2
w (x) dx

= A11 +A12 +A13 −A14 −A15,

where dgi (x) ≡ gi (x) − pK (x)0 αgi , A11 ≡ cnTγ
2
nT

P
1≤i<j≤n

R
∆2ij,n (x)w (x) dx, A12 ≡

T√
n

Pn
i=1

R
d2gi (x)w (x) dx, A13 ≡ 2γnT cnT

P
1≤i<j≤n

R
∆ij,n (x) dgj (x)w (x) dx, A14 ≡ 2γnT cnTP

1≤i<j≤n
R
∆ij,n (x) dgi (x)w (x) dx, and A15 ≡ 2cnT

P
1≤i<j≤n

R
dgi (x) dgj (x)w (x) dx.

First, A11/
√
VnT =

¡
tr
¡
Pw

¢
/VnT

¢1/2 1
n(n−1)

P
1≤i<j≤n

R
(∆in (x)−∆jn (x))

2w (x) dx→
∆. By Assumptions 3(iii), 3(vi) and 5,

A12 ≤ n−1/2T
nX
i=1

||dgi (·) ||∞,ωi

Z ³
1 + kxk2

´ωi
w (x) dx = O

³
n1/2TK−2λ/d

´
= o (1) .

Similarly, A13 = O
¡
n2γnT cnTK

−λ/d¢ = o (1) , A14 = O(n2γnT cnTK
−λ/d) = o (1) , and

A15 = O
¡
n2cnTK

−2λ/d¢ = o (1) . Consequently, (A.12) follows.

Now write

A4 = 2cnT
X

1≤i<j≤n

Z ©
γnT∆ij,n (x)− [dgi (x)− dgj (x)]

ª
pK (x)0 (eεi − eεj)w (x) dx = A41−A42,

whereA41 ≡ 2cnTγnT
P
1≤i<j≤n

R
∆ij,n (x) p

K (x)0 (eεi − eεj)w (x) dx, andA42 ≡ 2cnT P1≤i<j≤nR ¡
dgi − dgj

¢
pK (x)0 (eεi − eεj)w (x) dx. Let γnT ≡ γnT/tr(Pw)

1/2 = n−1/4T−1/2tr(Pw)
−1/4.

27



Analogously to the proof of Lemma B.4(i) by replacing eεi with −→ε i, we can show that

A41/tr(Pw)
1/2

= cnTγnT

nX
i=1

nX
j=1

Z
(∆in (x)−∆jn (x)) p

K (x)0 (eεi − eεj)w (x) dx
= 2ncnTγnT

nX
i=1

Z
∆in (x) p

K (x)0 eεiw (x) dx− 2cnTγnT nX
i=1

nX
j=1

Z
∆in (x) p

K (x)0eεjw (x) dx
= 2ncnTγnT

nX
i=1

Z
∆in (x) p

K (x)0−→ε iw (x) dx− 2cnTγnT
nX
i=1

nX
j=1

Z
∆in (x) p

K (x)0−→ε jw (x) dx

+n2cnTγnTOp(K/
√
nT )

=
−→
A 41a −−→A 41b + op (1) ,

where
−→
A 41a ≡ 2ncnTγnT

Pn
i=1

R
∆in (x) p

K (x)0−→ε iw (x) dx and
−→
A 41b ≡ 2cnTγnT

Pn
i=1

Pn
j=1R

∆in (x) p
K (x)0−→ε jw (x) dx. Noting that ED(

−→
A 41a) = 0 and

VarD(
−→
A 41a)

= 4n2c2nTγ
2
nT

nX
i=1

σ2i

Z
∆in (x) p

K (x)0w (x) dx
¡
p0imbpi

¢−1 Z
pK (ex)∆in (ex)w (ex) dex

≤ 4[λmin
¡
T−1p0imbpi

¢
]−1T−1n2c2nTγ

2
nT

nX
i=1

σ2i

Z Z
w (x)∆in (x) p

K (x)0 pK (ex)∆in (ex)w (ex) dxdex
= Op(T

−1n3c2nTγ
2
nTK) = Op

³
n−1/2Ktr(Pw)

−1/2
´
= op (1) ,

it follows that
−→
A 41a = op (1). Similarly, we can show that

−→
A 41b = op (1) and thus A41 =

op
¡
tr(Pw)

1/2
¢
. Analogously,

A42/tr(Pw)
1/2

= 2ncnT

nX
i=1

Z
dgi (x) p

K (x)0eεiw (x) dx− 2cnT nX
i=1

nX
j=1

Z
dgi (x) p

K (x)0eεjw (x) dx
= A42a +A42b + op (1)

where cnT ≡ cnT/tr(Pw)
1/2, A42a ≡ 2ncnT

Pn
i=1

R
dgi (x) p

K (x)0−→ε iw (x) dx and A42b ≡
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2cnT
Pn

i=1

Pn
j=1

R
dgi (x) p

K (x)0−→ε jw (x) dx. Noting that ED(
−→
A 42a) = 0 and

VarD(
−→
A 42a)

= 4n2c2nT

nX
i=1

σ2i

Z
dgi (x) p

K (x)0w (x) dx
¡
p0imbpi

¢−1 Z
pK (ex) dgi (ex)w (ex) dex

≤ 4[λmin
¡
T−1p0imbpi

¢
]−1T−1n2c2nT

nX
i=1

σ2i

Z Z
w (x) dgi (x) p

K (x)0 pK (ex) dgi (ex)w (ex) dxdex
≤ 4[λmin

¡
T−1p0imbpi

¢
]−1T−1n2c2nT

nX
i=1

σ2i kdgi (·)k2∞,ωi

Z ³
1 + kxk2

´ωi
w (x)2

°°pK (x)°°2 dx
= Op(T

−1n3c2nTK
−2λ/dζ (K)2) = Op(TK

−2λ/dζ (K)2 tr(Pw)
−1) = op (1) ,

it follows that
−→
A 42a = op (1). Similarly, we can show that

−→
A 42b = op (1) and thus A42 =

op
¡
tr(Pw)

1/2
¢
. Lastly, |A5| = op

¡
tr(Pw)

1/2
¢
by the determination of the order of A1 and A4,

and the Cauchy-Schwarz inequality. This completes the proof. ¥

Proof of Theorem 3.4

The proof follows closely from that of Theorems 3.1-3.3. Now, by (A.2) and the proof of

Theorems 3.1 and 3.3, we can show that

V
1/2
nT n−1/2T−1DnT

= V
1/2
nT n−1/2T−1(cnTΓnT − bBnT )/

qbVnT
= n−1/2T−1 ((cnTΓnT −BnT )) {1 + op (1)}+ n−1/2T−1{ bBnT −BnT}{1 + op (1)}
= n−1/2T−1cnT

X
1≤i<j≤n

¡
αgi − αgj

¢0
Pw

¡
αgi − αgj

¢ {1 + op (1)}+ op (1) .

Next, n−1/2T−1cnT
P
1≤i<j≤n

¡
αgi − αgj

¢0
Pw

¡
αgi − αgj

¢
= (n (n− 1))−1P1≤i<j≤n

R {gi (x)
−gj (x)}2w (x) dx + o (1) → ∆g, where ∆g = limn→∞(n (n− 1))−1

P
1≤i<j≤n

R {gi (x) −
gj (x)}2w (x) dx 6= 0. The result follows because VnT = Op

¡
tr(Pw)

¢
by (A.6).¥

Proof of Theorem 3.5

Let E∗ and Var∗ denote expectation and variance conditional on the original sample.

The proof follows closely from the same argument as used in proving T√
nVnT

Pn
i=1{−→ε 0iPw

−→ε i

−ED(−→ε 0iPw
−→ε i)} d→ N (0, 1) in the proof of Theorem 3.1. Note that E∗(eε∗0i Pweεi) =tr(AihΣi)

and Var∗(eε∗0i Pweεi) = 2tr(AihΣiAihΣi)+op (1) , where op (1) becomes 0 if ηit v N (0, 1) . Since

E(η8it) <∞, one can check the Liapounov condition as in the proof of Theorem 3.1. ¥

B Some technical lemmas

In this appendix we list some technical lemmas that are used in the proof of the main results

in Section 3. Note that all lemmas hold without imposing the null restriction. For notational
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simplicity, let c1λ ≡ min1≤i≤n{λmin(T−1p0imbpi)} and c2λ ≡ min1≤i≤n{λmin(T−1p0imhpi)}.

Lemma B.1 Suppose Assumptions 1-2 and 3(iv) hold, then

(i) ||T−1p0imhpi −Qi|| = Op(K/
√
T );

(ii)
°°T−1(p0i(mh −mb)pi)

°° = Op(K/
√
n);

(iii) mbf2 = 0 w.p.a.1 as n→∞.

Proof. (i) and (iii) follow from Lemmas A.1(iii) and A.5(iv) of Su and Jin (2010),

respectively. The proof of (ii) is analogous to that of Lemma A.5(vi) of Su and Jin (2010) by

using the decomposition for mh −mb in (B.1) below.

Lemma B.2 (i) Suppose Assumptions 1(i), (v), (vi), and (viii) hold, then nE [vv0] ≤ CIT

and nE [εε0] ≤ CIT for some C <∞, where v = (v1, v2, · · · , vT )0 and ε = (ε1, ε2, · · · , εT )0.
(ii) Suppose Assumptions 3(i)-(iii) hold, then (nT )−1

Pn
i=1E kgi − piagik2 = O(K−2λ/d).

Proof. See Lemmas A.3 and B.2 of Su and Jin (2010).

Lemma B.3 Suppose Assumptions 1-2 and 3(iv) hold, then

(i)
Pn

i=1 ||T−1p0i(mh −mb)εi||2 = Op(K/T );

(ii)
Pn

i=1

°°T−1p0i(mh −mb)pip
0
imbεi

°°2 = Op(K
2/T );

(iii) n−1
Pn

i=1tr
µh¡

T−1p0imbpi
¢−

Pw

i2 − h¡T−1p0imhpi
¢−

Pw

i2¶
= Op(K/

√
n).

Proof. (i) Using the decomposition

mh −mb = b
¡
b0b
¢−1

b0 − h
¡
h0h
¢−1

h0

= (b− h)
¡
b0b
¢−1

b0 + h[
¡
b0b
¢−1 − ¡h0h¢−1]b0 + h

¡
h0h
¢−1

(b− h)0 , (B.1)

we have that by the Cr inequality,

1

T 2

nX
i=1

°°p0i(mh −mb)εi
°°2 ≤ 1

T 2

nX
i=1

°°°p0iv∗ ¡b0b¢−1 b0εi°°°2 + 1

T 2

nX
i=1

°°°p0ih[¡b0b¢−1 − ¡h0h¢−1]b0εi°°°2
+
1

T 2

nX
i=1

°°°p0ih ¡h0h¢−1 v∗0εi°°°2
≡ D1 +D2 +D3, say,

where v∗ ≡ (v∗01 , ..., v∗0T )0 = h− b. Noting that

T−4ED

Ã
nX
i=1

kpik2
°°b0εi°°2! = T−4

nX
i=1

kpik2 tr
¡
b0E

¡
εiε

0
i

¢
b
¢

≤ max
1≤i≤n

©
λmax

¡
E
¡
εiε

0
i

¢¢ªn
T−1 kbk2

o(
T−3

nX
i=1

kpik2
)

= O (1)Op (1)Op

¡
nK/T 2

¢
= Op

¡
nK/T 2

¢
, (B.2)
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we have

D1 ≤
£
λmin

¡
T−1b0b

¢¤−2 kv∗k2(T−4 nX
i=1

kpik2
°°b0εi°°2)

= Op (1)Op (T/n)Op

¡
nK/T 2

¢
= Op (K/T )

Similarly,D2 ≤ ||h[
¡
T−1b0b

¢−1−¡T−1h0h¢−1]||2{T−4Pn
i=1 kpik2 kb0εik2} = Op (T/n)Op

¡
nK/T 2

¢
= Op (K/T ) , andD3 ≤ || (h0h)−1 h0||2{T−2

Pn
i=1 kε0iv∗k2 kpik2} = OP

¡
T−1

¢
Op (K) = Op (K/T ).

It follows that 1
T 2
Pn

i=1 kp0i(mh −mb)εik2 = Op (K/T ) .

For (ii), using the decomposition in (B.1), we have

T−2
nX
i=1

°°p0i(mh −mb)pip
0
imbεi

°°2
≤ T−2

nX
i=1

°°°p0i(b− h)
¡
b0b
¢−1

b0pip0imbεi

°°°2 + T−2
nX
i=1

°°°p0ih[¡b0b¢−1 − ¡h0h¢−1]b0pip0imbεi

°°°2
+T−2

nX
i=1

°°°p0ih ¡h0h¢−1 (b− h)0pip0imbεi

°°°2
≡ D4 +D5 +D6, say.

Noting that ED(T−2
Pn

i=1 kpik2 kpip0imbεik2) = T−2
Pn

i=1 kpik2tr(pip0imbE (εiε
0
i)mbpip

0
i) ≤

max1≤i≤n λmax (E (εiε0i))T
−2Pn

i=1 kpik2tr(p0imbpip
0
ipi) ≤ max1≤i≤n [λmax (E (εiε0i))]max1≤i≤n

{λmax
¡
T−1p0imbpi

¢} T−1Pn
i=1 kpik4 = Op

¡
nK2/T

¢
, we have

D4 ≤ kv∗k2
°°°¡b0b¢−1 b0°°°2(T−2 nX

i=1

kpik2
°°pip0imbεi

°°2)
= Op (T/n)Op (1/T )Op

¡
nK2/T

¢
= Op

¡
K2/T

¢
.

Similarly, we can show thatDs = Op

¡
K2/T

¢
for s = 5, 6. Thus T−2

Pn
i=1 kp0i(mh −mb)pip

0
imbεik2

= Op

¡
K2/T

¢
.

(iii) Let Mih ≡
¡
T−1p0imhpi

¢−
Pw, Mib ≡

¡
T−1p0imbpi

¢−
Pw, and D7 ≡ 1

n

Pn
i=1tr{[(T−1p0i

mbpi)
−Pw]

2 −[¡T−1p0imhpi
¢−

Pw]
2}. Then by the Hölder inequality,

D7 =
1

n

nX
i=1

tr((Mib +Mih) (Mib −Mih))

≤ 1

n

nX
i=1

©
tr
¡
(Mib +Mih)

2
¢ª1/2 ©

tr
¡
(Mib −Mih)

2
¢ª1/2

≤ 2λmax
¡
Pw

¢ h
(c1λ)

−1 + (c2λ)−1
i
D7,

where recall c1λ ≡ min1≤i≤n [λmin(p0imbpi/T )] and c2λ ≡ min1≤i≤n [λmin(p0imhpi/T )] , and

D7 ≡ 1
n

Pn
i=1

©
tr
¡
(Mib −Mih)

2
¢ª1/2

. By the Cauchy-Schwarz inequality, D7 ≤ −→D1/2
7 , where
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−→
D7 ≡ 1

n

Pn
i=1tr

¡
(Mib −Mih)

2
¢
. Writing Mib −Mih = {T−1p0i(mh − mb)pi

¡
T−1p0imbpi

¢−}0¡
T−1p0imhpi

¢−
Pw and using the fact that tr{(A0B)2} ≤tr{(A0A) (B0B)} (e.g., Magnus and

Neudecker, 1999, p.201), we have

−→
D7 ≤ 1

n

nX
i=1

tr
½³

T−1p0i(mh −mb)pi
¡
T−1p0imbpi

¢−´0
T−1p0i(mh −mb)pi

¡
T−1p0imbpi

¢−
Pw

¡
T−1p0imhpi

¢− ¡
T−1p0imhpi

¢−
Pw

o
≤ £

λmax
¡
Pw

¢¤2
(c1λc2λ)

−1 1
n

nX
i=1

°°°T−1p0i(mh −mb)pi
¡
T−1p0imbpi

¢−°°°2
≤ £

λmax
¡
Pw

¢¤2
c−31λ c

−1
2λ

1

n

nX
i=1

°°T−1p0i(mh −mb)pi
°°2 .

Again, using the decomposition in (B.1), it is straightforward to show that 1n
Pn

i=1 ||T−1p0i(mh

−mb)pi||2 = Op

¡
K2/n

¢
. It follows that D7 = Op (K/

√
n) .

Lemma B.4 Recall eεi ≡ (p0imhpi)
− p0imhεi,

−→ε i ≡ (p0imbpi)
− p0imbεi, eri ≡ (p0imhpi)

− p0imhri,
−→r i ≡ (p0imbpi)

− p0imbri, ri ≡ f2γ2i+(gi−piαgi), and λ ≡ min1≤i≤n λi. Suppose Assumptions
1-2 and 3(iv) hold, then

(i) ncnT
Pn

i=1 (eεi −−→ε i)
0
Pw (eεi −−→ε i) = Op

¡
K2/n1/2

¢
;

(ii) cnT
P
1≤i6=j≤n (eεi −−→ε i)

0
Pw (
−→ε i −−→ε j) = Op

¡
K1/2/T 1/2

¢
;

(iii) ncnT
Pn

i=1 (eri −−→r i)
0
Pw (eri −−→r i) = Op

¡
Tn−1/2K1−2λ/d +KT/n1/2

¢
;

(iv) cnT
P
1≤i6=j≤n (

−→r i −−→r j)
0
Pw (
−→r i −−→r j) = Op

¡
Tn1/2K1−2λ/d¢ ;

(v) cnT
P
1≤i<j≤n (

−→ε i −−→ε j)
0
Pw (eri −−→r i) = Op

¡
K/T 1/2 + T 1/2K1−λ/d¢ ;

(vi) cnT
P
1≤i<j≤n (

−→ε i −−→ε j)
0
Pw (
−→r i −−→r j)} = Op

¡
T 1/2K1/2−λ/d¢ .

Proof. (i) Noting that eεi−−→ε i = [(p
0
imhpi)

−−(p0imbpi)
−]p0imhεi+(p

0
imbpi)

− p0i (mh −mb) εi

and (p0imhpi)
− − (p0imbpi)

− = (p0imhpi)
− p0i(mb −mh)pi (p

0
imbpi)

− , by the Cr inequality and

Lemmas B.3(i)-(ii) we have
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−1p0imbεi

°°2
32
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°°2

= ncnT
¡
Op

¡
K2/T

¢
+Op (K/T )

¢
= Op

³
K2/n1/2

´
.

(ii) Noting that cnT
P
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0
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0
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0
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−→ε j . It suffices to

prove (ii) by showing that QsnT = op
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for s = 1, 2. We decompose Q1nT as follows
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≡ Q1nT,1 +Q1nT,2.

By (B.1) we can further decompose Q1nT,1 as follows
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To analyze Q1nT,11, note that v∗t ≡ (00, v0t, gt+εt)
0. So we can decompose v∗ ≡ (v∗1, · · · , v∗T )0 =

v+ + g∗, where the tth rows of v+ and g∗ are given by v+t ≡ (00, v0t, εt)0 and g∗t ≡ (00, 00, gt)0,
respectively. Then Q1nT,11 = Q1nT,111 + Q1nT,112, where Q1nT,111 and Q1nT,112 are anal-

ogously defined as Q1nT,11 but with v∗ being replaced by v+ and g∗, respectively. Let

ξi ≡ pi (p
0
imbpi)

− Pw (p
0
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− p0imbεiε
0
i and ξci ≡ ξi − ED (ξi) . Then we can decompose

Q1nT,111 as follows
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0
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0. Then by Lemma B.2(i)
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Using this and the fact that tr(A0B) ≤ {tr(A0A)tr(B0B)}}1/2 we have

Q1nT,111a = ncnT

nX
i=1

tr
³
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¡
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0
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¢
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¡
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Similarly, for Q1nT,111b we have
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Ã
b
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ξci

!
≤ ncnT {Q1}1/2 {Q2}1/2 ,
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³Pn
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i ξ

c
j

´
. Noting that
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and
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we have Q1nT,111b = ncnTOp (1/
√
n)Op

³√
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´
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p
K/n). It follows that Q1nT,111 =

Op(
p
K/T +

p
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p
K/T ).

For Q1nT,112, noting that Q1nT,112 = ncnT
Pn

i=1 ζi with ζi ≡ ε0ib (b
0b)−1 g∗0pi (p0imbpi)

−
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0
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2
i , and Q1nT,112b ≡ (ncnT )2

P
1≤i6=j≤n ζiζj . It is easy to show that ED (Q1nT,112a) =

Op (K/ (nT )) , implying thatQ1nT,112a = Op (K/ (nT )) by the Markov inequality. ForQ1nT,112b,

we have
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whereD ≡ ncnT
Pn

i=1{tr(b (b0b)−1 g∗0pi (p0imbpi)
− Pw (p

0
imbpi)

− p0ig
∗ (b0b)−1 b0)}1/2 {tr(E (εiε0i)

mbpi (p
0
imbpi)

− Pw (p
0
imbpi)

− p0imbE (εiε
0
i))}1/2. Note that

D ≤ Cλmax
¡
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¢
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³
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³
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.

So we have Q1nT,112b = Op

¡
K/T 1/2

¢
and Q1nT,112 = Op

¡
K/T 1/2

¢
. Consequently Q1nT,11 =
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¡
K1/2 +K/T 1/2

¢
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¡
K1/2

¢
. Analogously, we can show that Q1nT,1s = Op

¡
K1/2

¢
for

s = 2, 3. It follows that Q1nT,1 = Op

¡
K1/2

¢
.

ForQ1nT,2, it is easy to show thatQ1nT,2 = ncnT
Pn

i=1 ε
0
imhpi (p

0
imbpi)

− p0i(mb−mh)pi (p
0
imhpi)

−

Pw (p
0
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0
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0
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− p0i(mb −
mh)pi (p

0
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− Pw (p
0
imbpi)

− p0imbεi. Then using the decomposition in (B.1) and the proof

strategy for Q1nT,1, we can show that Q1nT,2 = Op

¡
K1/2

¢
. Consequently, Q1nT = Op

¡
K1/2

¢
.

Analogously we can prove Q2nT ≡ cnT
Pn

i=1

Pn
j=1 (eεi −−→ε i)

0
Pw
−→ε j = Op

¡
K1/2

¢
.

(iii) By the definition of ri and the fact mbf2 = 0 w.p.a.1 as n→∞, we have

eri −−→r i =
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p0imhpi

¢−
p0i (mh −mb) ri +

h¡
p0imhpi
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¢−i
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¡
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¢−
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+
h¡
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¢− − ¡p0imbpi
¢−i

p0imbdi, (B.3)

where di ≡ gi − piαgi . It follows that
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0
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≤ 3ncnT
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For U1nT , we have
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¡
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where U1nT ≡ ncnT
Pn

i=1

°°T−1p0i (mh −mb)di
°°2 . Using (B.1), we have

U1nT ≤ 3ncnT

nX
i=1

°°°T−1p0i (b− h)
¡
b0b
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≡ 3U1nT,1 + 3U1nT,2 + 3U1nT,3, say.

To proceed, we notice that by Lemma B.2
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For U1nT,1, we have
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nE (vv0) ≤ CIT and nE (εε0) ≤ CIT for some C > 0 by Lemma A.3 of Su and Jin (2010), we
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Consequently,
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where we have repeatedly used the fact that tr(AB) ≤ λmax (A)tr(B) for symmetric A and

p.s.d. B. It follows U1nT = Op

¡
Tn−1/2K1−2λ/d¢ .

For U2nT , notice that
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For U3nT , using the expression (p0imhpi)
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we have by the Cauchy-Schwarz inequality¯̄̄̄
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Op

³
Kn1/2

´
Op

³
Tn−1/2K1−2λ/d

´o1/2
= Op

³
T 1/2K1−λ/d

´
.
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Similarly, W1nT,3 = Op

¡
T 1/2K1−λ/d¢ . Consequently W1nT = Op

¡
K/T 1/2 + T 1/2K1−λ/d¢ .

Analogously we can show that W2nT = Op

¡
K/T 1/2 + T 1/2K1−λ/d¢ .

(vi) By the Cauchy-Schwarz inequality, it suffices to prove (vi) by showing that W3nT ≡
ncnT

Pn
i=1
−→ε 0iPw

−→r i = Op

¡
T 1/2K1/2−λ/d¢ . Note that ED (W3nT ) = 0, and

ED
h
(W3nT )

2
i
= (ncnT )

2
nX
i=1

d0imbpi
¡
p0imbpi

¢−
Pw

¡
p0imbpi

¢−
p0imbE

¡
εiε

0
i

¢
×mbpi

¡
p0imbpi

¢−
Pw

¡
p0imbpi

¢−
p0imbdi

≤ C (ncnT )
2

nX
i=1

d0imbpi
¡
p0imbpi

¢−
Pw

¡
p0imbpi

¢−
Pw

¡
p0imbpi

¢−
p0imbdi

≤ C (ncnT )
2 ¡λmax ¡Pw

¢¢2
(c1λ)

−3
(
T−3

nX
i=1

d0imbpip
0
imbdi

)
= (ncnT )

2Op

³
nK1−2λ/d/T

´
= Op

³
TK1−2λ/d

´
.

It follows that W3nT = Op

¡
T 1/2K1/2−λ/d¢ .
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