
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Economics School of Economics 

10-2009 

A Nonparametric Goodness-of-fit-based Test for Conditional A Nonparametric Goodness-of-fit-based Test for Conditional 

Heteroskedasticity Heteroskedasticity 

Liangjun SU 
Singapore Management University, ljsu@smu.edu.sg 

Aman ULLAH 
University of California, Riverside 

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research 

 Part of the Econometrics Commons 

Citation Citation 
SU, Liangjun and ULLAH, Aman. A Nonparametric Goodness-of-fit-based Test for Conditional 
Heteroskedasticity. (2009). 1-50. 
Available at:Available at: https://ink.library.smu.edu.sg/soe_research/1257 

This Working Paper is brought to you for free and open access by the School of Economics at Institutional 
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School 
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For 
more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


A Nonparametric Goodness-of-fit-based Test for Conditional

Heteroskedasticity∗

Liangjun Sua, Aman Ullahb

aSchool of Economics, Singapore Management University, ljsu@smu.edu.sg
bDepartment of Economics, University of California, Riverside, aman.ullah@ucr.edu

October 8, 2009

ABSTRACT

In this paper we propose a nonparametric test for conditional heteroskedasticity based on

a new measure of nonparametric goodness-of-fit (R2). In analogy with the ANOVA tools for

classical linear regression models, the nonparametric R2 is obtained for the local polynomial re-

gression of the residuals from a parametric regression on some covariates. It is close to 0 under

the null hypothesis of conditional homoskedasticity and stays away from 0 otherwise. Unlike

most popular parametric tests in the literature, the new test does not require the correct spec-

ification of parametric conditional heteroskedasticity form and thus is able to detect all kinds

of conditional heteroskedasticity of unknown form. We show that after being appropriately

centered and standardized, the nonparametric R2 is asymptotically normally distributed under

the null hypothesis of conditional homoskedasticity and a sequence of Pitman local alternatives.

We also prove the consistency of the test, propose a bootstrap method to obtain the critical

values or bootstrap p-values, and justify the validity of the bootstrap method. We conduct

a small set of Monte Carlo simulations and compare our test with some popular parametric

and nonparametric tests in the literature. Applications to the U.S. real GDP growth rate data

indicate that our nonparametric test can reveal certain conditional heteroskedasticity which

the parametric tests fail to detect.

KEY WORDS: ANOVA; Conditional homoskedasticity; Consistency; Local polynomial re-

gressions; Nonparametric R2; Nonparametric test.
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1 Introduction

Since the 1960s there has developed a large literature on testing for heteroskedasticity. Most

of the early tests for heteroskedasticity can be classified into three categories: those that are

based on the Lagrange multiplier (LM) principle, those that are based on the least squares

residuals, and those that are based on quantiles or expectiles. For example, the classical tests

of Glejser (1969), Godfrey (1978), and Breusch and Pagan (1979), are among the first category;

the popular tests of Goldfeld and Quandt (1965), Bickel (1978), and White (1980) are among

the second group, and the robust tests of Koenker and Bassett (1982) and Newey and Powell

(1987) belong to the third category. For a survey on early methods of testing heteroskedasticity,

see Pagan and Pak (1993).

As shown by Pagan and Pak (1993) most of the early tests can be regarded as special cases

of the conditional moment tests that are, unfortunately, not robust against functional misspec-

ification. Hong (1993) also demonstrated that many of these existing tests are not consistent

in that they are unable to detect certain forms of heteroskedasticity asymptotically. For this

reason, several nonparametric consistent tests for heteroskedasticity have been proposed, in-

cluding Hong (1993), Hsiao and Li (2001), and Zheng (2006). Based on the comparison between

the kernel estimator of the conditional variance of a regression model under the alternative and

the estimator of the unconditional variance under the null, Hong (1993) proposed a consistent

test for heteroskedasticity when the regressand and regressors are independent and identically

distributed (IID). In contrast, Hsiao and Li’s (2001) test is motivated by the application of

heteroskedasticity test to time series models and the wide use of the ARCH type of models,

and it is constructed by using the idea analogous to the consistent tests for model specifica-

tion. Zheng’s (2006) test for heteroskedasticity works for both parametric and nonparametric

regression models but is limited to IID observations. A close look at these three tests indicates

that they share the same formula despite the use of different approaches in the derivations.

In this paper, we propose a new test for conditional homoskedasticity based on a novel mea-

sure for nonparametric goodness-of-fit (R2). Recently Huang and Chen (2008) have proposed

a measure of goodness-of-fit for local polynomial regressions, which is based on the decom-

position of the total sum of squares (TSS) into the explained sum of squares (ESS) and the

residual sum of squares (RSS). Their definition of nonparametric R2 is analogous to that of

R2 in multiple linear regression models. We think that this measure serves a useful statistic

for testing many popular hypotheses in econometrics and statistics just as the important roles

it plays in the parametric setup. It is well-known that many LM-type and residual-based test

statistics in the parametric framework can be recast as nR2 (e.g., Greene, 2000, pp. 156-157,

196-197, 440, 541, 572), where n is the sample size and R2 is the coefficient of determination
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from some residual-based auxiliary regressions that are parametrically specified. In the case

of misspecification for the functional form in these auxiliary regressions, these tests may lead

to misleading conclusions. To avoid such misspecification of functional form, we propose to

adopt nonparametric models in place of parametric models in the auxiliary regressions. Then

we can construct a nonparametric analogue of the parametric residual-based test by applying

the nonparametric measure of goodness-of-fit.

In this paper, we focus on the case of testing for conditional homoskedasticity based upon

the nonparametric R2. It is a residual-based test. After fitting a parametric model for the

conditional mean regression, we obtain the residuals whose squares are used in the second-

stage auxiliary local polynomial regression. We calculate the nonparametric R2 from this

regression. It is small and close to 0 under the null of conditional homoskedasticity and lies far

away from 0 under the alternative of conditional heteroskedasticity. We show that after being

properly standardized, it is asymptotically normally distributed under the null of conditional

homoskedasticity and a sequence of Pitman local alternatives. We also establish the consistency

of the test and propose a bootstrap method to obtain the bootstrap p-values. Simulations

indicate that our test behaves reasonably well in finite samples.

The rest of the paper is organized as follows. We state the hypothesis and define the

nonparametric R2 in Section 2. In Section 3 we study the asymptotic distributions of our

test statistic under the null and a sequence of local alternatives. We also establish the global

consistency of our test and justify the validity of a bootstrap method. In Section 4 we conduct

Monte Carlo experiments to evaluate the finite sample performance of our test in comparison

with some other tests and apply them to the U.S. real GDP growth rate data. Section 5

concludes. All technical assumptions and proofs are relegated to the Appendix.

To proceed, we define some notation that will be used throughout the paper. For a matrix

A, we denote its Euclidean norm as kAk = [tr (AA0)]1/2 , where tr(·) and prime mean trace and
transpose, respectively. For a vector a ≡ (a1, ..., al)0, diag(a) denotes a diagonal matrix with ai
as its ith diagonal element. Let Il denote an l× l identity matrix. 0l and 1l denote a l-vector

of zeros and ones, respectively. The operator
p→ denotes convergence in probability, and d→

convergence in distributions.

2 Basic Framework

In this section we first introduce the null and alternative hypotheses, then propose a test

statistic based on the measure of nonparametric goodness-of-fit.
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2.1 Hypotheses

Following Hsiao and Li (2001), we consider a nonlinear model of the form

Yt = g (Zt, θ0) + Ut (2.1)

where g (·, ·) is a function of known form, θ0 is a d× 1 vector of unknown parameters, Zt is a

k × 1 vector of regressors, and Ut is a scalar error term such that E (Ut|Zt) = 0 almost surely

(a.s. hereafter). The null of interest is that conditional on Xt, a p× 1 vector of variables, Ut’s

are homoskedastic, i.e.,

H0 : P
¡
E
¡
U2t |Xt

¢
= σ20

¢
= 1 where σ20 ≡ E

¡
U2t
¢
> 0. (2.2)

The alternative hypothesis is

H1 : P
¡
E
¡
U2t |Xt

¢
= σ20

¢
< 1 for all σ20 ∈ R+. (2.3)

Note that we allow the elements in Xt to be distinct from those in Zt.

The consistent tests of Hong (1993), Hsiao and Li (2001), and Zheng (2006) are all residual-

based tests that rely on the observation that E
¡
U2t − σ20|Xt

¢
= 0 a.s. under the null hypothesis.

Below, we propose an alternative way to test for the above hypotheses by extending the use of

R2 from parametric regression models to nonparametric regression models and achieve consis-

tency of the test at the same time.

2.2 A nonparametric R2-based test for conditional heteroskedasticity

Let Vt ≡ U2t and m (Xt) ≡ E (Vt|Xt) . If Vt were observable, we could consider the nonpara-

metric regression model

Vt = m (Xt) + εt (2.4)

where εt ≡ Vt −m (Xt) . Under the null hypothesis of conditional homoskedasticity, we expect

m (Xt) = σ20 a.s., and thus any goodness-of-fit measure for the above nonparametric regression

model should be close to 0. This motivates us to propose a test based on the nonparametric

goodness-of-fit measure that was recently proposed by Huang and Chen (2008).

Let bθ denote the nonlinear least squares (NLS) estimator of θ0 in (2.1). Let bUt ≡ Yt −
g
³
Zt,bθ´ and bVt ≡ bU2t . A feasible regression model is given by

bVt = m (Xt) + et (2.5)

where et is the new error term in the above regression. The basic idea of local polynomial fit

is: if m (x) is a smooth function of x ≡ (x1, · · · , xp)0 , for any Xt in a neighborhood of x, we
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have

m(Xt) = m(x) +
X

1≤|j|≤q

1

j!
D|j|m (x) (Xt − x)j + o (kXt − xkq)

≡
X

0≤|j|≤q
βj (x) (Xt − x)j + o (kXt − xkq) .

Here, we use the notation of Masry (1996): j = (j1, ..., jp), |j| =
Pp

i=1 ji, x
j = Πp

i=1x
ji
i ,P

0≤|j|≤q =
Pq

k=0

Pk
j1=0

· · ·Pk
jp=0

j1+···+jp=k
, D|j|m (x) = ∂|j|m(x)

∂j1x1···∂jpxp , βj (x) =
1
j!D

|j|m (x) , where j! ≡

Πp
i=1ji!. Thus, given observations

n
(bVt,Xt)

on
t=1

, the qth-order local-polynomial regression ofbVt on Xt is fitted by the weighted least squares (WLS) as follows

min
β

n−1
nX
t=1

⎛⎝bVt − X
0≤|j|≤q

βj(Xt − x)j

⎞⎠2

Kh (Xt − x) , (2.6)

where β is a stack of βj (0 ≤ |j| ≤ q) in the lexicographical order (with highest priority to

last position so that (0, 0, ..., l) is the first element in the sequence and (l, 0, ..., 0) is the last

element), Kh (·) ≡ K (·/h) /h, K (·) is a symmetric probability density function (PDF) on Rp,

and h ≡ h (n) is a bandwidth parameter. Let bβj (x;h) (0 ≤ |j| ≤ q) denote the solution to the

above problem. Based on the normal equations for the above regression, it is easy to verify the

following local ANOVA decomposition of the total sum of squares (TSS)

TSS (x) = ESSq (x) +RSSq (x) (2.7)

where

TSS (x) ≡
nX
t=1

³bVt − bV ´2Kh (Xt − x) ,

ESSq (x) ≡
nX
t=1

⎛⎝ X
0≤|j|≤q

bβj (x;h) (Xt − x)j − bV
⎞⎠2Kh (Xt − x) ,

RSSq (x) ≡
nX
t=1

⎛⎝bVt − X
0≤|j|≤q

bβj (x;h) (Xt − x)j

⎞⎠2

Kh (Xt − x) ,

and bV ≡ n−1
Pn

t=1
bVt. A global ANOVA decomposition of TSS is given by

TSS = ESSq +RSSq (2.8)

where TSS ≡ R
TSS (x) dx = n−1

Pn
t=1

³bVt − bV ´2 , ESSq ≡ R
ESSq (x) dx, and RSSq ≡R

RSSq (x) dx. Then one can define the nonparametric goodness-of-fit (R2) for the above qth-

order local polynomial regression as

R2q = 1−
RSSq
TSS

=
ESSq
TSS

. (2.9)
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For more interpretations of R2q and its local version, we refer the readers to Huang and Chen

(2008). It is worth mentioning that the typical choices of q are 1, 2 and 3. So we will focus on

these three cases in the following sections.

Clearly R2q lies between 0 and 1. The smaller value of R
2
q , the worse the fit is. In the extreme

case, if no regressors among Xt can explain Vt, we expect a value close to 0 in any given sample

of observations on
nbVt,Xt

o
. Let Xtx ≡ μ (Xt − x) denote the stack of (Xt−x)j, 0 ≤ |j| ≤ q, in

the lexicographical order. For example, Xtx ≡ (1, (Xt−x)0)0 if q = 1. Let Xx ≡ (X1x, · · ·Xnx)
0,

Wx ≡diag(Kh (X1 − x) , · · · ,Kh (Xn − x)) , Hx ≡ WxXx (X
0
xWxXx)

−1X0xWx, and H∗ ≡R
Hxdx. It is easy to verify that

TSS = bv0Mbv, ESSq = bv0 (H∗ − L) bv, and RSSq = bv0 (In −H∗) bv,
where bv ≡ ³bV1, · · · , bVn´0 , M ≡ In − L, and L is an n× n matrix with entries 1/n. Then the

nonparametric R2 can be written as

R2q =
bv0 (H∗ − L) bvbv0Mbv . (2.10)

We will show that after being approximately centered and scaled, the above nonparametricR2 is

asymptotically normally distributed under the null and a sequence of Pitman local alternatives.

To proceed, we define some notation. Let Nl = (l + q − 1)!/(l!(q − 1)!) be the number of
distinct q-tuples j with |j| = l. It denotes the number of distinct l-th order partial derivatives

of m(x) with respect to x. Arrange the Nl q-tuples as a sequence in the lexicographical order,

and let φ−1l denote this one-to-one map. For each j with 0 ≤ |j| ≤ 2q, let μj =
R
Rp x

jK(x)dx,

and define the N ×N dimensional matrix S and N × 1 vector B, where N =
Pq

l=0Nl, by

S =

⎡⎢⎢⎢⎢⎢⎣
S0,0 S0,1 ... S0,q
S1,0 S1,1 ... S1,q
...

...
. . .

...

Sq,0 Sq,1 ... Sq,q

⎤⎥⎥⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎢⎢⎣
S0,0
S1,0
...

Sq,0

⎤⎥⎥⎥⎥⎥⎦ , (2.11)

where Si,j are Ni×Nj dimensional matrices whose (l, r) elements are μφi(l)+φj(r). That is, the

elements of S and B are simply multivariate moments of the kernel K.

3 Asymptotic Distributions

In this section we first study the asymptotic distributions of nonparametric R2 under the null

hypothesis and a sequence of Pitman local alternatives. We then prove the consistency of the

test and propose a bootstrap method to obtain bootstrap p-values.
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3.1 Asymptotic null distribution

Let H∗
ts denote the (t, s)th element of H

∗. Define

bn ≡ hp/2
nX
t=1

ε2t
¡
H∗
tt − n−1

¢
/
¡
n−1TSS

¢
,

Ω0 ≡
Z ∙Z

K (z)μ (z)0 S−1μ (z + x)K (z + x) dz

¸2
dx

Z £
v2 (x)

¤2
dx/σ4V

where v2 (x) ≡ E
¡
ε2t |Xt = x

¢
, μ (·) is the function used in the definition of Xtx (≡ μ (Xt − x)),

and σ2V ≡Var(Vt) . Define
Γn ≡ nhp/2R2q − bn.

Theorem 3.1 Suppose Assumptions A1-A6 in the Appendix hold and p ≤ 7. Then under H0,

Γn
d→ N(0,Ω0).

Remark 1. The proof of the above theorem is tedious and is relegated to the Appendix.

The idea underlying the proof is very simple. Under the null hypothesis, we first demonstrate

that n−1TSS ·Γn = σ2V Γn+op (1) , where Γn ≡ 2
n

P
1≤t<s≤n ϕ (ξt, ξs) , ξt ≡ (X 0

t, εt)
0 , ϕ (ξt, ξs) ≡

hp/2εtεs
¡R

KtxX
0
txD

−1
h S−1D−1h XsxKsxf

−1 (x) dx− 1¢ , and Dh ≡diag
³
1, h10N1 · · · , hq10Nq

´
de-

notes an N ×N diagonal matrix with typical elements given by hs, s = 0, 1, · · · , q. Apparently
Γn is a second-order U-statistic with symmetric kernel ϕ (·, ·) . Then we can apply the central
limit theorem (CLT) for second-order U-statistics under some martingale condition and demon-

strate that Γn
d→ N(0, σ4VΩ0). The result then follows by noticing that n

−1TSS = σ2V + op (1) .

To implement the test, we require consistent estimates of both the bias term bn and the

variance Ω0. Let bεt ≡ bVt − n−1
Pn

s=1
bVs. Define

bbn ≡ hp/2
nX
t=1

bε2t ¡H∗
tt − n−1

¢
/
¡
n−1TSS

¢
, and bΩ ≡ 2n−2hp nX

s=1

nX
t6=s
bε2tbε2s (nH∗

ts − 1)2 .

It is easy to show that bbn = bn+ op (1) and bΩ = Ω0+ op (1) under H0. We can define a feasible

nonparametric R2-based test statistic as

Tn =
³
nhp/2R2q −bbn´ /pbΩ. (3.1)

We then compare Tn with the one-sided critical value zα, i.e., the upper αth percentile from

the standard normal distribution. We reject the null when Tn > zα at the α significance level.

To examine the asymptotic local power of our test, we consider the following sequence of

Pitman local alternatives:

H1(γn) : m (x) = σ20 + γn∆ (x) , (3.2)
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where γn → 0 as n→∞ and ∆ (x) is a nonconstant continuous function. Define

∆0 ≡ B0S−1BE
£
∆2 (X1)

¤− [E (∆ (X1))]
2 . (3.3)

The following theorem establishes the local power property of our test.

Theorem 3.2 Suppose Assumptions A1—A6 in the Appendix hold and p ≤ 7. Suppose that
∆ (x) is a continuous function such that E

£42 (X1)
¤
< ∞. Then the local power of the test

Tn satisfies P (Tn ≥ zα|H1(n
−1/2h−p/4))→ 1− Φ(zα −∆0/

√
Ω0) as n→∞, where Φ (.) is the

cumulative distribution function (CDF) of the standard normal.

Remark 2. For the local linear and quadratic regressions (q = 1 and 2), it is straight-

forward to verify that B0S−1B = 1 and hence ∆0 =Var(∆ (X1)) ≥ c for some c > 0 under

H1(n
−1/2h−p/4). If q = 3, by the formula for partitioned inverse and the symmetry of the

kernel function K (·) , we can show that B0S−1B =(1− a)3 + a ≤ 1, where a ≡ S0,2S−12,2S2,0 ≤ 1
by the Cauchy-Schwarz inequality. This implies that ∆0 is no bigger than Var(∆ (X1)) in the

case of q = 3.

Remark 3. Theorem 3.2 implies that the test has non-trivial asymptotic power against

alternatives that diverge from the null at the rate n−1/2h−p/4. The power increases with the

magnitude of ∆0/
√
Ω0. Furthermore, by taking a large bandwidth we can make the alternative

magnitude (of order γn) against which the test has non-trivial power arbitrarily close to the

parametric rate n−1/2.

The following theorem establishes the consistency of the test for both local linear and

quadratic regressions.

Theorem 3.3 Suppose Assumptions A1—A6 in the Appendix hold and p ≤ 7. Let μ0 ≡
B0S−1BE

£
m2 (X1)

¤− [E (m (X1))]
2 . Then under H1, Tn/

¡
nhp/2

¢
= μ0/(σ

2
V

√
Ω)+op (1) where

Ω is the probability limit of bΩ under H1.

Remark 4. Following Remark 2, in the case of local linear and quadratic regressions,

μ0 =Var(m (X1)) ≥ c > 0 under H1. This implies that under H1, P (Tn > tn) → 1 as n → ∞
for any sequence tn = o

¡
nhp/2

¢
, thus establishing the global consistency of the test.

Remark 5. Even though we only focus on the case of parametric conditional mean model,

we can also allow it to be nonparametrically specified. In this case, we can apply the local

polynomial method to estimate the unknown but smooth conditional mean function and apply

the resulting nonparametric residuals to conduct the nonparametric R2 test. Following Su

and Ullah (2009), we conjecture that the first-stage nonparametric estimation error only plays

8



asymptotically negligible role in the asymptotic distributions of our nonparametric R2 test

statistic.

3.2 A bootstrap version of the test

Despite the asymptotic pivotal property of many nonparametric tests, early studies have shown

that their empirical levels are typically sensitive to the choice of bandwidth, and may be highly

distorted in finite samples. Therefore we propose a bootstrap method to obtain the bootstrap

approximation to the finite sample distribution of our test statistic under the null. As Neumann

and Paparoditis (2000) stressed, in order to get an asymptotically correct estimator of the null

distribution of Tn, it is not necessary to reproduce the whole dependence structure of the

stochastic processes generating the original sample. Based on this observation, we propose a

fixed-regressor bootstrap method in the spirit of Hansen (2000), which is quite different from

that of Hsiao and Li (2001) who tried to mimic the data generating process (DGP) when Xt

or Zt contains lagged dependent variables.

For the ease of exposition we consider a nonlinear regression model Yt = g (Zt, θ0) + Ut,

where θ0 can be estimated consistently via the nonlinear least squares (NLS) method. We

propose to generate the bootstrap version of our test statistic Tn as follows:

1. Obtain the NLS residuals bUt = Yt − g(Zt,bθ), where bθ is the NLS estimator of θ0.
2. For t = 1, · · · , n, obtain the bootstrap error U∗t by random sampling with replacement

from {bUs − bU, s = 1, · · · , n}, where bU ≡ n−1
Pn

s=1
bUs. Generate the bootstrap analog of

Yt by holding Zt as fixed: Y ∗t = g(Zt,bθ) + U∗t , t = 1, · · · , n.

3. Regress Y ∗t on Zt to obtain the NLS estimator bθ∗ of bθ. Compute the bootstrap residualsbU∗t = Y ∗t − g(Zt,bθ∗).
4. Let bV ∗

t ≡ bU∗2t . Calculate the nonparametric R2 (denoted as R∗2q ) from the qth order

local polynomial regression of bV ∗
t on Xt. Compute the bootstrap test statistic T ∗n =³

nR∗2q −bb∗n´ /pbΩ∗, where bb∗n and bΩ∗ are defined analogously to bbn and bΩ but with bUt

being replaced by bU∗t .
5. Repeat Steps 2-4 for B times and index the bootstrap statistics as

n
T ∗n,b

oB
b=1

. The boot-

strap p-value is calculated by p∗ ≡ B−1
PB

b=1 1
³
T ∗n,b > Tn

´
, where 1 (·) is the usual

indicator function.

Several facts are worth mentioning here: (i) Conditionally on the original sample W ≡
{(Yt, Zt,Xt) , t = 1, · · · , n}, the bootstrap replicates U∗t are independent and identically dis-
tributed (IID) with mean 0 and variance n−1

Pn
s=1(

bUs − bU)2; (ii) the regressor Zt (resp. Xt)

9



can contain lags of Yt
¡
resp. Yt, U2t

¢
, but the above bootstrap procedure does not need to

mimic the DGP of either Yt or U2t ; (iii) the null hypothesis of conditional homoskedasticity is

implicitly imposed in the above procedure.

The following theorem establishes the validity of the above bootstrap procedure.

Theorem 3.4 Suppose Assumptions A1-A6 in the Appendix hold and p ≤ 7. Then T ∗n
d→

N(0, 1) conditionally on W, and P (Tn > T ∗n) → 1 under H1.

Remark 6. The first part of Theorem 3.4 indicates that the bootstrap provides an as-

ymptotic valid approximation to the null limit distribution of Tn. This holds as long as we

generate the bootstrap data by imposing the null hypothesis. The second part of Theorem

3.4 implies that the test Tn based upon the bootstrap critical value is consistent against every

global alternative for which P
¡
E
¡
U2t |Xt

¢
= σ20

¢
< 1 for any σ20 ∈ R+. That is, Tn →∞ with

probability approaching 1 under H1.

4 Monte Carlo Simulation Study and Applications

In this section, we first conduct Monte Carlo simulations to evaluate the finite sample perfor-

mance of our test in comparison with other tests and then apply these tests to a real dataset.

4.1 Simulation Study

4.1.1 Data generating processes

We generate data according to six data generating processes (DGPs), among which DGPs 1-2

are used for the level study of our test and DGPs 3-6 are for power study.

We use the following two DGPs in the level study:

DGP 1: Yt = 1 + Zt + Ut,

DGP 2: Yt = 0.5Yt−1 + Ut,

where Ut are IID N (0, 1) , and Zt are IID sum of 48 independent random variables each

uniformly distributed on [-0.25,0.25]. According to the CLT, we can treat Z’s as being nearly

standard normal random variables but with compact support [-12, 12]. We choose Xt = Zt in

DGP 1 and Xt = Zt = Yt−1 in DGP 2.

The following four DGPs are used in the power study:

DGP 3: Yt = 1 + Zt + σtηt,

DGP 4: Yt = 1 + Zt + σtηt,

DGP 5: Yt = 0.5Yt−1 + σtηt,
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DGP 6: Yt = 0.5Yt−1 + σtηt,

where Zt are generated as in DGP 1, ηt are IID N (0, 1) in DGPs 3, 4, 6 and are IID sum of

48 independent random variables each uniformly distributed on [-0.25,0.25] in DGP 5, σt =q
((Zt − 1)2 + 1)/3,

q
(
¡
Z2t − 3

¢2
+ 0.1)/6.1,

p
0.2 + e−Y

2
t−1/2, and

p
0.1 + 2/(1 + e−Yt−1) in

DGPs 3, 4, 5, and 6, respectively. We choose Xt = Zt in DGPs 3-4 and Xt = Zt = Yt−1 in

DGPs 5-6. Note that Xt is not compactly supported in DGP 6. In addition, to eliminate the

starting-up effect, we throw away the first 200 observations when generating the data in DGPs

2, 5 and 6.

4.1.2 Test statistics, kernel, and bandwidth choice

For each DGP, we regress Yt on (1, Zt) and obtain the residuals bUt. Based on bVt ≡ bU2t , we
construct five test statistics. The first one is the Lagrange multiplier (LM) test that tests

α1 = 0 in the following parametric regression

bVt = α0 + α1X
2
t + ζt

where here and below ζt are error terms that may change across regressions. The second one

is White’s (1980) nR2 test that tests α1 = α2 = 0 in the following parametric regression

bVt = α0 + α1Xt + α2X
2
t + ζt.

The third one is Hsiao and Li’s (2001) nonparametric bIn test, where bIn ≡ nh1/2Jn/
√
Ωn, Jn ≡¡

n2h
¢−1Pn

t=1

Pn
s6=t
³bVt − bσ20´³bVs − bσ20´K ¡

Xt−Xs
h

¢
, Ωn ≡ 2

¡
n2h

¢−1Pn
t=1

Pn
s6=t
³bVt − bσ20´2

×
³bVs − bσ20´2K2

¡
Xt−Xs

h

¢
, and bσ20 ≡ n−1

Pn
s=1

bVs. The fourth and fifth are our nonparametric
R21 and R22 tests that are based on local linear and local quadratic regressions, respectively.

Implementing the latter three tests requires the choice of both kernel function and band-

width sequence. In all cases, we choose the standard normal PDF as the kernel function. Since

it is difficult to pin down the optimal bandwidth for our test, we follow Horowitz and Spokoiny

(2001) and Su and Ullah (2009) and consider a set of different bandwidth values. Like them, we

use a geometric grid consisting of the points hs = ωssXhmin, where sX is the sample standard

deviation of Xt, s = 0, 1, ...,N − 1, N is the number of grid points, ω = (hmax/hmin)
1/(N−1) ,

hmin = n−1/3.01, and hmax = 4n−1/1000. Following Horowitz and Spokoiny (2001), we choose N
according to the rule of thumb N = dlognc + 1, where dac means the integer part of a. For
each hs, we calculate the test statistic in (3.1) and denote it as Tn (hs) . Define

SupTn ≡ max
0≤s≤N−1

Tn (hs) . (4.1)

11



Even though Tn (hs) is asymptotically distributed as N (0, 1) under the null for each s, the

distribution of SupTn is generally unknown. Fortunately, we can use bootstrap approximation

introduced in Section 3.3.

4.1.3 Test results

Tables 1-2 report the simulation results. We use 1000 replications for each case. To obtain the

simulated p-values, we use 200 bootstrap resamples in each replication for both Hsiao and Li’s

and our tests. To save space in the tables, we use LM, W , HL, NR21 and NR22 to denote the

LM test, White’s test, Hisao and Li’s test, our nonparametric R2 test based on local linear

regression, and our nonparametric R2 test based on local quadratic regression, respectively.

Table 1: Finite sample rejection frequency under the null (DGPs 1-2)
DGP n\tests 5% 10%

LM W HL NR21 NR22 LM W HL NR21 NR22
1 50 0.036 0.040 0.049 0.055 0.054 0.084 0.075 0.102 0.101 0.103

100 0.046 0.048 0.059 0.062 0.055 0.092 0.078 0.104 0.111 0.107
200 0.047 0.060 0.036 0.034 0.041 0.099 0.094 0.088 0.077 0.083

2 50 0.037 0.035 0.068 0.061 0.064 0.068 0.084 0.123 0.124 0.126
100 0.030 0.043 0.051 0.052 0.044 0.077 0.079 0.085 0.105 0.104
200 0.032 0.050 0.063 0.058 0.058 0.079 0.079 0.112 0.111 0.111

Table 1 reports the empirical rejection frequencies of the tests at 5% and 10% nominal levels

when the null hypothesis holds true. It shows that the empirical levels of both the parametric

tests (LM, W ) and the nonparametric tests (HL, NR21, NR22) are reasonably well behaved

despite the fact that the two parametric tests tend to be undersized.

Table 2 reports the empirical power for the five tests at both 5% and 10% nominal levels.

We summarize some important findings from Table 2 as follows:

1. For all tests, the empirical power increases quickly as the sample size doubles or quadru-

ples.

2. In DGP 3, the White test utilizes the correct functional form for the conditional variance

and it works best among all five tests for small sample size (n = 50) . As sample sizes

grow, the White test continues to outperform the LM test and our nonparametric R2

tests, but not Hsiao and Li’s test. This indicates that Hsiao and Li’s test is very powerful

in detecting quadratic form of conditional heteroskedasticity.
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3. As can be seen from DGP 4, when the functional form in the parametric tests is incorrectly

specified, the nonparametric tests tend to be more powerful than the parametric tests.

See also the LM test in DGP 6 in comparison with the nonparametric tests.

4. When the conditional heteroskedasticity is not of quadratic form, our nonparametric

R2 tests tend to outperform Hsiao and Li’s test for the DGPs under investigation. For

DGPs 4-5, both NR21 and NR22 are more powerful than HL whereas for DGP 6, NR21

outperforms HL which in turn beats NR22.

5. Unexpectedly, the power performance of the local quadratic regression-based R2 test is

not as good as that of the local linear regression-based R2 test for DGPs 3 and 5-6, even

though for the same bandwidth the nonparametric R2 for the local quadratic regression

is always larger than that for the local linear regression. We conjecture that this is due

to the differences in both bias-correction terms and variance terms.

Table 2: Finite sample rejection frequency under the alternative (DGPs 3-6)
DGP n\tests 5% 10%

LM W HL NR21 NR22 LM W HL NR21 NR22
3 50 0.296 0.660 0.639 0.407 0.355 0.360 0.779 0.752 0.551 0.480

100 0.493 0.935 0.949 0.772 0.696 0.584 0.966 0.975 0.871 0.818
200 0.782 0.998 1.000 0.970 0.947 0.842 0.999 1.000 0.989 0.974

4 50 0.361 0.190 0.255 0.534 0.524 0.523 0.344 0.389 0.643 0.628
100 0.555 0.435 0.603 0.745 0.760 0.659 0.565 0.753 0.828 0.831
200 0.616 0.567 0.940 0.918 0.926 0.686 0.669 0.974 0.944 0.951

5 50 0.209 0.087 0.127 0.350 0.321 0.410 0.208 0.227 0.487 0.450
100 0.563 0.315 0.246 0.593 0.559 0.758 0.529 0.385 0.691 0.667
200 0.943 0.820 0.508 0.913 0.891 0.976 0.924 0.665 0.946 0.936

6 50 0.078 0.278 0.270 0.296 0.263 0.152 0.419 0.405 0.425 0.383
100 0.116 0.652 0.556 0.582 0.517 0.183 0.801 0.677 0.698 0.632
200 0.167 0.967 0.861 0.908 0.849 0.247 0.992 0.920 0.942 0.909

4.2 Application to U.S. real GDP growth rates

We now apply the tests to the study of the growth rates of U.S. real gross domestic product

(GDP).We download the data from U.S. Bureau of Economic Analysis at http://www.bea.gov/.

We have both annual data (1930 - 2008) and seasonally adjusted quarterly data (1947Q2 -
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Figure 1: Linear and local linear fits of Yt on Xt(≡ Yt−1), data are in dots.

2009Q2), both of which are measured at annual percentage rates. For each dataset, let Yt de-

note the GDP growth rates at time t and setXt ≡ Zt ≡ Yt−1. Thus we have n = 78 observations

for the annual data and n = 248 observations for the quarterly data.

Figure 1 plots the Yt against Xt. Clearly, we can observe positive correlations between Yt

and Xt for both datasets but are not sure whether the relationships are linear or not. For

this reason, we consider both parametric linear and nonparametric local liner regressions of

Yt on Xt : Yt = β0 + β1Xt + Ut, and Yt = g (Xt) + Ut. We use the Gaussian kernel for

the local linear regression and the bandwidth is chosen via the least-squares cross validation

(LSCV). The linear and local linear fitted lines are also given in Figure 1. Let bUt denote

the parametric or nonparametric residuals and set bVt ≡ bU2t . It is not obvious from Figure 1

whether Ut is conditionally homoskedastic or not given Xt. So we now use bVt to conduct tests
for conditional homoskedasticity following the implementation procedure as detailed in the

simulation subsection. The only exception is that we now use B = 1000 bootstrap replications

for the three nonparametric tests (HL, NR21, and NR22). In addition, when the first-stage

regression is local linear, we generate the bootstrap version of Yt as Y ∗t = bgh0 (Xt)+U∗t , wherebgh0 (Xt) is the local linear estimate of g (Xt) by using the LSCV bandwidth h0 and U∗’s are

now IID draws from {bUs − bU, s = 1, · · · , n} with bUs ≡ Ys − bgh0 (Xs) .

Table 3 reports the p-values for all tests. For both datasets, no matter whether we use the

linear or local linear fits for the first-stage conditional mean model, both LM and W fail to
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Table 3: p-values for testing conditional homoskedasticity in U.S. GDP growth rate data
1st-stage regression Annual data (n = 78) Quarterly data (n = 248)

LM W HL NR21 NR22 LM W HL NR21 NR22
Linear 0.543 0.831 0.001 0.006 0.003 0.349 0.646 0.019 0.064 0.063
Local linear 0.369 0.668 0 0.045 0.031 0.346 0.641 0.025 0.096 0.082

reject the null hypothesis of conditional homoskedasticity at all conventional significance levels

(1%, 5%, 10%). In contrast, for the annual data, both HL and our nonparametric R2-based

tests can reject the null at 5% level; whereas for the quarterly data, HL rejects the null at

5% level and our tests can reject the null at 10% level despite the first stage parametric or

nonparametric regressions.

5 Concluding Remarks

In this paper we propose a nonparametric goodness-of-fit-based test for conditional heteroskedas-

ticity which is applicable to both IID and time series observations. We demonstrate that after

being suitably normalized, the nonparametric R2 is asymptotically normally distributed un-

der the null hypothesis of conditional homoskedasticity. Our test has power to detect Pitman

local alternatives at the rate n−1/2h−p/4 and is consistent against all kinds of conditional het-

eroskedasticity. We also propose a bootstrap method and justify its validity. Simulations

demonstrate that our test complements that of Hsiao and Li (2001) and behaves well in finite

samples. Applications to the U.S. real GDP growth rates indicate that both Hsiao and Li test

and our test can reveal certain conditional heteroskedasticity which the parametric tests fail

to detect.

We believe that the nonparametric R2 is useful in many other aspects. For example, it can

be used to test for serial correlation of unknown form among the error terms in both parametric

and nonparametric regression models, following the LM principle of Breusch and Pagan (1980).

Also it can be used to test linear or nonlinear restrictions on the derivatives of nonparametric

functions. We leave these for future research.

Appendix: Assumptions and Proofs

Here we give the necessary assumptions for the establishment of the main results in Section

3, along the proofs.
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A Assumptions

Let C <∞ denote a generic constant whose value may change across lines. We make the fol-

lowing assumptions on the process {Ut, Zt,Xt} , kernel function K (·) , and bandwidth sequence
h.

Assumption A1. Let Wt ≡ (Ut, Z
0
t,X

0
t)
0 . The process {Wt} is a strictly stationary strong

mixing process with mixing coefficients α (s) such that
P∞

s=0 s
4α (s)η/(4+η) ≤ C for some η > 0

with η/ (4 + η) ≤ 1/2. For some some γ ∈ (0, 1/3] such that n3α (n0)η/(4+η) = o (1) , where

n0 ≡ dnγc is the integer part of nγ .
Assumption A2. (i) E

¡
εt|F t−∞ (X) ,F t−1

−∞ (ε)
¢
= 0 a.s., where for example F t

s (X) denotes

the sigma algebra generated by (Xs, · · · ,Xt) for s < t.

(ii) E
h
|εt|4+η

i
≤ C, and E

∙¯̄̄
εi1t1ε

i2
t2 · · · εiltl

¯̄̄1+ζ1¸ ≤ C for some arbitrarily small ζ1 > 0,

where 2 ≤ l ≤ 4 and Pl
j=1 ij ≤ 8.

(iii) Let v2 (x) ≡ E
£
ε2t |Xt = x

¤
, and μ4 (x) ≡ E

£
ε4t |Xt = x

¤
. Both v2 (x) and μ4 (x) are

Lipschitz continuous in that |ϑ (x+ ex)− ϑ (x)| ≤ Dϑ (x) kexk and E
h
|Dϑ (X)|2+ζ2

i
≤ C for

ϑ (·) = v2 (·) or μ4 (·) and some arbitrarily small ζ2 > 0, where k·k denotes the Euclidean norm.
(iv) The joint probability density function (PDF) ft1,··· ,tl (·, · · · , ·) of (Xt1 , · · · ,Xtl) for 1 ≤

l ≤ 4 exists, is finite, and is Lipschitz continuous in that |ft1,··· ,tl (x1 + z1, · · · , xl + zl)−ft1,··· ,tl
(x1, · · · , xl) | ≤ Dt1,··· ,tl (x1, · · · , xl) kzk , where z ≡ (z01 · · · , z0l)0, E |Dt1,··· ,tl (Xt1 , · · · ,Xtl)|≤ C,

and
R
Dt1,··· ,tl (x1, · · · , xl) kxk2(1+η) dx ≤ C with x ≡ (x01, · · · , x0l)0. When l = 1, we use f (·)

to denote the marginal PDF of Xt; f (·) is bounded away from 0 on its compact support X .
Assumption A3. (i) E (Ut|Zt) = 0 a.s.

(ii) The parameter space Θ of θ is a compact subset of Rd. E [Yt − g (Zt, θ)]
2 is uniquely

minimized at θ0 on Θ.

(iii) The regression function g (z, θ) is continuously differentiable of order 2 in θ. Let

5g (z, θ) ≡ ∂g (z, θ) /∂θ and 52g (z, θ) ≡ ∂2g (z, θ) /∂θ∂θ0. 5g (z, ·) and 52g (z, ·) are con-
tinuous in z and are dominated by functions G1 (z) and G2 (z) , respectively. G1 (z) and G2 (z)

have finite fourth and second moments, respectively.

(iv) E
£5g (Z1, θ)5 g (Z1, θ)

0¤ is nonsingular for all θ in a small open neighborhood of θ0.
Assumption A4. (i)m (x) is Lipschitz continuous in x and has all partial derivatives up to

order q + 1 if q is odd and q + 2 if q is even.

(ii) The (q + 1) or (q + 2)th order partial derivatives Dkm (x) with |k| = q+1 (if q is odd)

or q + 2 (if q is even), are uniformly bounded in x ∈ X , and are Hölder continuous in x :

|Dkm (x)−Dkm (ex) | ≤ C||x− ex||.
Assumption A5. (i) The kernel function K (·) is a continuous, bounded, and symmetric
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PDF.

(ii) kxk(4+η)qK (x) is integrable and S defined in (2.11) is nonsingular.
(iii) Let Kj(x) ≡ xjK(x) for all j with 0 ≤ |j| ≤ 2q + 1. For some C1 < ∞ and C2 < ∞,

either K (x) is compactly supported such that K (x) = 0 for kxk > C1, and |Kj(x)−Kj(ex)| ≤
C2 kx− exk for any x, ex ∈ Rp and for all j with 0 ≤ |j| ≤ 2q + 1; or K(x) is differentiable,

k5Kj (x)k ≤ C1 and for some ι0 > 1, | 5Kj (x) | ≤ C1 kxk−ι0 for all kxk > C2 and for all j

with 0 ≤ |j| ≤ 2q + 1.
Assumption A6. As n→∞, h→ 0, nh3p/2 →∞, and nhp+2/ (logn)2 → c ∈ (0,∞].
Assumption A1 is typical in nonparametric inference with time series observations. Here we

only assume that the stochastic process {Wt} is strong mixing, which is weaker than absolute
regularity assumed in Hsiao and Li (2001). Also the restriction on the mixing rate is weaker

than the latter’s exponential rate. Assumption A2 is needed to apply Gao’s (2007) CLT for

second order U-statistic with strong mixing data. The martingale difference assumption that

is directly made on εt will greatly simplify the proof and the application of the above CLT.

Assumption A3, together with A1 and A2(ii), ensures that bθ− θ0 = Op

¡
n−1/2

¢
by White and

Domowitz (1984). Assumptions A4-A5 are used to obtain the uniform consistency for the local

polynomial estimator due to Masry (1996) and Hansen (2008). Assumption A6 imposes the

conditions on the bandwidth.

B Proof of the Main Results

Recall Dh ≡diag
³
1, h10N1 · · · , hq10Nq

´
, and bv ≡ ³bU21 , · · · , bU2n´0 . Let bu ≡ ³bU1, · · · , bUn

´0
,

bg ≡ ³
g(Z1,bθ), · · · , g(Zn,bθ)´0 , ε ≡ (ε1, · · · , εn)0, m ≡ (m (X1) , · · · ,m (Xn))

0, and g ≡
(g(Z1, θ0), · · · , g(Zn, θ0))

0. It is easy to verify that H∗1n = 1n and (H∗ − L)1n = 0n. Let

¯ and ⊗ denote the Hadamard and Kronecker products, respectively.
We first present a technical lemma that is used below.

Lemma B.1 Let {ξi, i ≥ 1} be a v-dimensional strong mixing process with mixing coefficient

α (·) . Let Fi1,...,im , denote the distribution function of
¡
ξi1 , ..., ξim

¢
. For any integer m > 1 and

integers (i1, ..., im) such that 1 ≤ i1 < i2 < · · · < im, let θ be a Borel measurable function such

that max{R |θ (v1, · · · , vm)|1+η dFi1,··· ,ij (v1, · · · , vj) dFij+1,··· ,im (vj+1, · · · , vm) , R |θ (v1, · · · , vm)|1+η
dFi1,··· ,im (v1, · · · , vm)} ≤ Mn for some eη > 0. Then | R θ (v1, · · · , vm) dFi1,··· ,im (v1, · · · , vm)−R
θ (v1, · · · , vm) dFi1,··· ,ij (v1, · · · , vj) dFij+1,··· ,im (vj+1, · · · , vm) | ≤ 4M1/(1+η)

n α (ij+1 − ij)
η/(1+η) .

Proof. See Lemma 2.1 of Sun and Chiang (1997).

Next, we prove a lemma under the conditions of Theorem 3.1.
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Lemma B.2 Let Sn (x) ≡ n−1D−1h X0x WxXxD
−1
h and S (x) ≡ Sf (x) . Then Rn ≡ hp/2

n

P
1≤i<j≤n

εiεj
R
KixX

0
ixD

−1
h

£
S−1n (x)− S−1 (x)

¤
D−1h XjxKjxdx = op (1) .

Proof. Let S (x) ≡ [S (x)− Sn (x)]S
−1 (x) . If the kernel function K (·) is compactly

supported, we can verify that under Assumptions A1, A2(iv), and A4-6, the conditions in

Corollary 2(ii) of Masry (1996) are all satisfied and conclude that supx∈X kS (x)− Sn (x)k =
Op

¡
h+ n−1/2h−p/2

√
logn

¢
= Op (h) . In the case where K (·) is not compactly supported, we

can apply Theorem 2 of Hansen (2008) to obtain supx∈X kSn (x)−E [Sn (x)]k = Op(n
−1/2h−p/2√

logn) = Op (h) , which implies that supx∈X ||S (x) −Sn (x) || = Op (h) by the triangle inequal-

ity and the fact that supx∈X kE [Sn (x)]− S (x)k = O (h) under Assumptions A2(iv) and A5.

In either case, supx∈X
°°S (x)°° = Op (h) . Now write

Rn =
2hp/2

n

X
1≤i<j≤n

εiεj

Z
KixX

0
ixD

−1
h S−1n (x) [S (x)− Sn (x)]S

−1 (x)D−1h XjxKjxdx

=
2hp/2

n

X
1≤i<j≤n

εiεj

Z
KixX

0
ixD

−1
h

dp/2cX
l=1

S−1 (x)S (x)lD−1h XjxKjxdx

+
2hp/2

n

X
1≤i<j≤n

εiεj

Z
KixX

0
ixD

−1
h S−1n (x)S (x)dp/2c+1D−1h XjxKjxdx ≡ Rn1 +Rn2.

We first studyRn2. Let Sn (x) ≡ S−1n (x)S (x)dp/2c+1 and ϕn (x) ≡ 1
n

P
1≤i<j≤n εiεj

¡
D−1h Xjx ⊗ Ip+1

¢
D−1h XixKixKjx. Then

Rn2 =

Z
2hp/2

n

X
1≤i<j≤n

εiεjtr
¡
Sn (x)D

−1
h XjxX

0
ixD

−1
h

¢
KixKjxdx

=

Z
2hp/2vec

¡
Sn (x)

¢0
n

X
1≤i<j≤n

εiεj
¡
D−1h Xjx ⊗ Ip+1

¢
D−1h XixKixKjxdx

= 2hp/2
Z
vec

¡
Sn (x)

¢0
ϕn (x) dx,

Let b ∈ R(p+1)2 such that kbk = 1. Then E [b0ϕn (x)] = 0 by Assumption A2(i). Write

E
£
b0ϕn (x)

¤2
=

1

n2

X
1≤i,l<j≤n

E
£
εiεlε

2
jb
0 ¡D−1h Xjx ⊗ Ip+1

¢
D−1h Xix b0

¡
D−1h Xjx ⊗ Ip+1

¢
D−1h XlxKixKlxK

2
jx

¤
=

2

n2

X
1≤i<l<j≤n

E
£
εiεlε

2
jb
0 ¡D−1h Xjx ⊗ Ip+1

¢
D−1h Xix b0

¡
D−1h Xjx ⊗ Ip+1

¢
D−1h XlxKixKlxK

2
jx

¤
+
1

n2

nX
1≤i<j≤n

E
h
ε2i ε

2
j

©
b0
¡
D−1h Xjx ⊗ Ip+1

¢
D−1h Xix

ª2
K2

ixK
2
jx

i
≡ Bn1 +Bn2, say.
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Let bix ≡ b0
¡
D−1h Xjx ⊗ Ip+1

¢
and eXix ≡ D−1h Xix. Denote bix,k and eXix,k as the kth element

of bix and eXix, respectively, where k = 1, · · · , N. Let kξks ≡ {E kξks}1/s . Then by the
Minkowski’s inequality, Assumptions A1 and A2(i)-(ii) and (iv), and Lemma B.1 with eη = η/4,

we have

kBn1k ≤ 2

n2

nX
1≤i<l<j≤n

NX
k=1

NX
s=1

°°°E hεiεlε2jb2jx,k eXix,k
eXlx,sD

−1
h XlxKixKlxK

2
jx

i°°°
≤ C

n2

NX
k=1

NX
s=1

nX
1≤i<l<j≤n

α (j − l)η/(4+η)M1/(1+η/4)
n

≤ Ch−4(1+η)p/(4+η)
∞X
τ=1

α (τ)η/(4+η) = O
¡
h−2p

¢
as η ≤ 2

where

Mn = max
1≤i<l<j≤n

max

½
E
¯̄̄
εiεlε

2
jb
2
jx,k

eXix,k
eXlx,sD

−1
h XlxKixKlxK

2
jx

¯̄̄1+η/4
,Z ¯̄̄

εiεlε
2
jb
2
jx,k

eXix,k
eXlx,sD

−1
h XlxKixKlxK

2
jx

¯̄̄1+η/4
dF (ξi, ξl) dF

¡
ξj
¢¾

= O
³
h−(1+η)p

´
F
¡
ξj
¢
and F (ξi, ξl) the CDFs of ξj and (ξi, ξl) , respectively, and ξi ≡ (εi,X 0

i)
0 . Next, by direct

calculation, Bn2 = O
¡
h−2p

¢
. It follows that ϕn (x) = O (h−p) and Rn2 = Op

¡
h(dp/2c+1)−p/2

¢
=

op (1) as Sn (x) = Op

¡
hdp/2c+1

¢
.

For Rn1, we focus on the case where p ≤ 3 since the case of p > 3 can be proved similarly
but is more tedious. Clearly, if p = 1, Rn1 = 0. When p = 2 or 3,

Rn1 =
2hp/2

n

X
1≤i<j≤n

εiεj

Z
KixX

0
ixD

−1
h S−1 (x)S (x)D−1h XjxKjxdx

=
2hp/2

n2

X
1≤i<j≤n

nX
k=1

εiεj

Z
KixX

0
ixD

−1
h S−1 (x) sk (x)D−1h XjxKjxdx

=
2hp/2

n2

X
1≤i<j≤n

nX
k=1

εiεj

Z
KixX

0
ixD

−1
h S−1 (x) esk (x)D−1h XjxKjxdx

+
2hp/2

n

X
1≤i<j≤n

εiεj

Z
KixX

0
ixD

−1
h S−1 (x) s (x)D−1h XjxKjxdx

≡ Rn11 +Rn12, say,

where sk (x) ≡ [S (x)−KkxD
−1
h XkxX

0
kxD

−1
h ]S−1 (x) , esk (x) ≡ {−KkxD

−1
h XkxX

0
kxD

−1
h +E[Kkx

D−1h XkxX
0
kxD

−1
h S−1 (x)]}, and s (x) ≡ ©S (x)−E

£
KkxD

−1
h XkxX

0
kxD

−1
h

¤ª
S−1 (x) .Noting that
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s (x) = O (h) uniformly in x, it is straightforward to show that Rn12 = Op (h) = op (1) . Now,

write

Rn11 =
2hp/2

n2

nX
1≤i<j≤n,k 6=i,j

εiεj

Z
KixX

0
ixD

−1
h S−1 (x) esk (x)D−1h XjxKjxdx

+
2hp/2

n2

X
1≤i<j≤n

εiεj

Z
KixX

0
ixD

−1
h S−1 (x) [esi (x) + esj (x)]D−1h XjxKjxdx

≡ Rn11,1 +Rn11,2, say.

Noting that E [Rn11,2] = 0 and E
£
R2n11,2

¤
= O

¡
n−2h−p + n−1

¢
, we have Rn11,2 = op (1) by

the Chebyshev inequality. For Rn11,1, we have

Rn11,1 =
2hp/2

n2

⎧⎨⎩ X
1≤k<i<j≤n

+
X

1≤i<k<j≤n
+

X
1≤i<j<k≤n

⎫⎬⎭ϕ1
¡
ξi, ξj , ξk

¢
≡ D1 +D2 +D3, say,

where ϕ1
¡
ξi, ξj , ξk

¢ ≡ εiεj
R
KixX

0
ixD

−1
h S−1 (x) esk (x)D−1h XjxKjxdx, and, for example, D3 ≡

2hp/2n−2
Pn
1≤i<j<k≤n ϕ1

¡
ξi, ξj , ξk

¢
. We only show that D3 = op (1) because it is simpler to

show that D1 = op (1) and D2 = op (1) by noticing that E (Dl) = 0 for l = 1, 2. We prove

D3 = op (1) by showing that ED1 ≡ E (D3) = o (1) and ED2 ≡ E
¡
D2
3

¢
= o (1) .

Let δ ≡ η/4. Let n0 ≡ dnγc for some γ ∈ (0, 1/3] such that n3α (n0)δ/(1+δ) = o (1) which is

possible by Assumption A1. For ED1, we write ED1 as the summation of E
£
ϕ1
¡
ξi, ξj , ξk

¢¤
over the indices (i, j, k) corresponding to two cases: (a) j− i > n0 or k− j > n0, (b) j− i ≤ n0

and k − j ≤ n0. We use ED1s, s = a, b, to denote these two cases. For case (a), without loss

of generality, assume that j − i > n0. Note that

E
¯̄
ϕ1
¡
ξi, ξj , ξk

¢¯̄1+δ ≤ μ2+2δE

¯̄̄̄Z
KixX

0
ixD

−1
h S−1 (x) esk (x)D−1h XjxKjxdx

¯̄̄̄1+δ
≤ Ch−2pδ

and similar results hold for EiEjk

¯̄
ϕ1
¡
ξi, ξj , ξk

¢¯̄1+δ
, where Ei and Ejk denote expectations

with respect to ξi and
¡
ξj , ξk

¢
respectively by treating them as independent of each other. By

Lemma B.1 we have D1a ≤ Chp/2−2p/(1+δ)
Pn

τ=n0+1
α (τ)δ/(1+δ) = O(nhp/2−2p/(1+δ)α (n0)δ/(1+δ))

= o (1) . For case (b), the number of terms in the summation is O
¡
nn20

¢
and each is of order

O (1) . It follows that ED1b = O
¡
hp/2n20n

−1¢ = o (1) . Hence ED1 = o (1) . For ED2, write

ED2 =
4

n4

X
1≤t1<t2<t3≤n

X
1≤t4<t5<t6≤n

E
£
ϕ1
¡
ξt1 , ξt2 , ξt3

¢
ϕ1
¡
ξt4 , ξt5 , ξt6

¢¤
.

We consider two cases: (a) for at least three different i’s, |ti − tj | > n0 for all j 6= i; (b) all the

other remaining cases. We use ED2s, s = a, b, to denote these cases. In case (a), at least one
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of t1, t3, t4 and t6 lies n0-distance far away from all other indices in {t1, · · · , t6} so that we can
apply Lemma B.1 to obtain ED2a = hpO(n2h−4pδ/(1+δ)α (n0)δ/(1+δ)) = o (1) as 4δ/ (1 + δ) ≤ 2
and nhp →∞. In case (b), noting that the total number of terms in the summation is O

¡
n3n30

¢
,

each of which is O (1) , we have ED2b = O
¡
hpn−1n30

¢
= o (1) . It follows that ED2 = o (1) and

thus D3 = op (1) . Consequently, Rn11,1 = op (1) and Rn11 = op (1) .

Proof of Theorem 3.1

Noting that bU2i = [Ui + (bUi − Ui)]
2 = U2i + (

bUi − Ui)
2 + 2(bUi − Ui)Ui = m (Xi) + εi

+[g(Zi,bθ)− g(Zi, θ0)]
2 −2[g(Zi,bθ)− g(Zi, θ0)]Ui, we have

ESSq = bv0 (H∗ − L) bv = A1 +A2 +A3 + 4A4 + 2A5 + 2A6 − 4A7 + 2A8 − 4A9 − 4A10, (B.1)

where

A1 ≡ m0 (H∗ − L)m, A2 ≡ ε0 (H∗ − L) ε,

A3 ≡ ((bg − g)¯(bg − g))0 (H∗ − L) ((bg − g)¯(bg − g)) ,
A4 ≡ ((bg − g)¯ u)0 (H∗ − L) ((bg− g)¯ u) ,
A5 ≡ m0 (H∗ − L) ε,

A6 ≡ m0 (H∗ − L) ((bg− g)¯(bg − g)) ,
A7 ≡ m0 (H∗ − L) ((bg− g)¯ u) ,
A8 ≡ ε0 (H∗ − L) ((bg − g)¯(bg − g)) ,
A9 ≡ ε0 (H∗ − L) ((bg − g)¯ u) ,
A10 ≡ ((bg − g)¯(bg − g)) (H∗ − L) ((bg− g)¯ u) . (B.2)

Under H0, m = σ201n. It follows that As = 0 for s =1, 5, 6, and 7 as (H∗ − L)1n = 0n and

H∗ − L is symmetric. Noting that n−1TSS = σ2V + op (1) , it suffices to prove the theorem by

showing that

A2 ≡ hp/2A2 − hp/2
nX
i=1

ε2i
¡
H∗
ii − n−1

¢ d→ N
¡
0,Ω0σ

4
V

¢
, (B.3)

hp/2As = op (1) for s = 3, 4, 8, 9, 10. (B.4)
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We first show (B.3). By Lemma B.2,

A2 = 2hp/2
X

1≤i<j≤n
εiεj

¡
H∗
ij − n−1

¢
= 2hp/2

X
1≤i<j≤n

εiεj

³
n−1H∗

ij − n−1
´
+ 2hp/2

nX
1≤i<j≤n

εiεj

³
H∗
ij − n−1H∗

ij

´
=

2hp/2

n

X
1≤i<j≤n

εiεj

µZ
KixX

0
ixD

−1
h S−1D−1h XjxKjxf (x)

−1 dx− 1
¶
+ op (1)

≡ A21 + op (1) , (B.5)

whereH
∗
ij ≡

R
KixX

0
ixD

−1
h S−1D−1h XjxKjxf (x)

−1 dx, A21 ≡ 2
n

P
1≤i<j≤n ϕn

¡
ξi, ξj

¢
, and ϕn(ξi,

ξj) ≡ hp/2εiεj (
R
KixX

0
ixD

−1
h S−1D−1h XjxKjxf (x)

−1 dx − 1). Note that A21 is a second order
degenerate U -statistic. Under Assumptions A1-A2 and A5-A6, one can verify that the condi-

tions of Theorem A.1 in Gao (2007) are satisfied so that a central limit theorem applies to A21.

[The exponential mixing rate in the theorem can be relaxed to our requirement on the mixing

rate in Assumption A1.] Its asymptotic variance is given by

lim
n→∞ 2EiEj

h
ϕn
¡
ξi, ξj

¢2i
= lim

n→∞hpEiEj

"
ε2i ε

2
j

µZ
KixX

0
ixD

−1
h S−1D−1h XjxKjxf (x)

−1 dx− 1
¶2#

= lim
n→∞hpEiEj

"
v2 (Xi) v

2 (Xj)

µZ
KixX

0
ixD

−1
h S−1D−1h XjxKjxf (x)

−1 dx
¶2#

= lim
n→∞h−pEiEj

"
v2 (Xi) v

2 (Xj)

½Z
K (z)μ (−z)0 S−1μ ¡− ¡z + χij,h

¢¢
K
¡
z + χij,h

¢
dz

¾2
f (Xi)

−1
#

=

Z Z £
v2 (ex)¤2 ∙Z K (z)μ (−z)0 S−1μ (−z + x)K (z − x) dz

¸2
dxdex

=

Z ∙Z
K (z)μ (z)0 S−1μ (z + x)K (z + x) dz

¸2
dx

Z £
v2 (ex)¤2 dex,

where χij,h ≡ (Xi −Xj) /h, Ei denotes expectation with respect to ξi, and recall v
2 (x) =

E
¡
ε2i |Xi = x

¢
and μ (·) is a function used in the definition of Xix (e.g., Xix = (1, (Xi − x)0)0

if q = 1, i.e., μ (z) = (1, z0)0 in this case). That is, A21
d→ N

¡
0, σ4VΩ0

¢
. This, together with

(B.5), implies that (B.3) follows.

We now show (B.4). By White and Domowitz (1984), bθ − θ0 = Op

¡
n−1/2

¢
under As-

sumptions A1, A2(ii) and A3. Noting that the elements of H∗ are uniformly Op

¡
n−1h−p

¢
, by
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Assumption A3(iii) we have

hp/2A3 = hp/2
nX
i=1

[g(Zi,bθ)− g(Zi, θ0)]
4
¡
H∗
ii − n−1

¢
+hp/2

nX
i=1

[g(Zi,bθ)− g(Zi, θ0)]
2

nX
j 6=i

¡
H∗
ij − n−1

¢
[g(Zj ,bθ)− g(Zj , θ0)]

2

≤ Op

³
n−1h−p/2

´ nX
i=1

kG1(Zi)k4
°°°bθ − θ0

°°°4 +Op

³
n−1h−p/2

´( nX
i=1

kG1(Zi)k2
)2 °°°bθ − θ0

°°°4
= Op

³
n−2h−p/2

´
+Op

³
n−1h−p/2

´
= op (1) ,

and

hp/2A10 = hp/2
nX
i=1

[g(Zi,bθ)− g(Zi, θ0)]
3Ui

¡
H∗
ii − n−1

¢
+hp/2

nX
i=1

[g(Zi,bθ)− g(Zi, θ0)]
2

nX
j 6=i

¡
H∗
ij − n−1

¢
[g(Zj ,bθ)− g(Zj , θ0)]Uj

≤ Op

³
n−1h−p/2

´ nX
i=1

kG1(Zi)k3 |Ui|
°°°bθ − θ0

°°°3
+Op

³
n−1h−p/2

´( nX
i=1

kG1(Zi)k2
)

nX
j=1

kG1(Zi)k |Uj |
°°°bθ − θ0

°°°3
= Op

³
n−3/2h−p/2

´
+Op

³
n−1/2h−p/2

´
= op (1) .

For A4, write

hp/2A4 ≡ ((bg − g)¯ u)0 (H∗ − L) ((bg − g)¯ u)
= hp/2

nX
i=1

[g(Zi,bθ)− g(Zi, θ0)]
2U2i

¡
H∗
ii − n−1

¢
+hp/2

nX
i=1

[g(Zi,bθ)− g(Zi, θ0)]Ui

nX
j 6=i

¡
H∗
ij − n−1

¢
[g(Zj ,bθ)− g(Zj , θ0)]Uj

≡ A41 +A42, say.

Clearly, A41 ≤ Op

¡
n−1h−p/2

¢Pn
i=1 kG1(Zi)k2 |Ui|2 ||bθ−θ0||2 = Op

¡
n−1h−p/2

¢
= op (1) . Noting

that g(Zi,bθ)−g(Zi, θ0) = (∇g (Zi, θ0))
0 (bθ−θ0)+(bθ−θ0)0∇2g(Zi,eθ)(bθ−θ0) where eθ lies between
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bθ and θ0 elementwise, by Assumption A3 we have

A42 = 2hp/2(bθ − θ0)
0

⎧⎨⎩
nX

1≤i<j≤n
∇g (Zi, θ0)UiUj

¡
H∗
ij − n−1

¢∇g (Zj , θ0)
0
⎫⎬⎭ (bθ − θ0)

+
1

2
hp/2

nX
i=1

nX
j 6=i
kG2 (Zi)k kUik kG2 (Zj)k kUjk

°°°bθ − θ0

°°°4 ¡H∗
ij − n−1

¢
= 2hp/2(bθ − θ0)

0

⎧⎨⎩
nX

1≤i<j≤n
∇g (Zi, θ0)UiUj

³
n−1H∗

ij − n−1
´
∇g (Zj , θ0)

0
⎫⎬⎭ (bθ − θ0)

+2hp/2(bθ − θ0)
0

⎧⎨⎩
nX

1≤i<j≤n
∇g (Zi, θ0)UiUj

³
H∗
ij − n−1H∗

ij

´
∇g (Zj , θ0)

0
⎫⎬⎭ (bθ − θ0)

+Op

³
n−1h−p/2

´
.

The first term on the right-hand side of the last expression is Op

¡
n−1

¢
because we can show that

n−1hp/2
Pn
1≤i<j≤n∇g (Zi, θ0) UiUj

³
H
∗
ij − 1

´
∇g (Zj , θ0)

0 = Op (1) under Assumptions A1-A3

and A5-A6 by the second-order U -statistic theory. The second term is op
¡
n−1

¢
by arguments

analogous to those used in the proof of Lemma B.2. It follows that hp/2A4 = op (1) .

For A8, write

hp/2A8 = hp/2
nX
i=1

[g(Zi,bθ)− g(Zi, θ0)]
2εi
¡
H∗
ii − n−1

¢
+hp/2

nX
i=1

εi

nX
j 6=i

¡
H∗
ij − n−1

¢
[g(Zj ,bθ)− g(Zj , θ0)]

2

≡ A81 +A82, say.

By Taylor expansions, we can show that A81 = Op

¡
n−1h−p/2

¢
= op (1) and A82 = Op

¡
n−1/2

¢
=

op (1) . Hence hp/2A8 = op (1) . Similarly, write

hp/2A9 = hp/2
nX
i=1

[g(Zi,bθ)− g(Zi, θ0)]εiUi

¡
H∗
ii − n−1

¢
+hp/2

nX
i=1

εi

nX
j 6=i

¡
H∗
ij − n−1

¢
[g(Zj ,bθ)− g(Zj , θ0)]Uj

≡ A91 +A92, say.

Then A91 = hp/2(bθ − θ0)
0Pn

i=1∇g(Zi, θ0)εiUi

¡
H∗
ii − n−1

¢
+ Op

¡
n−1h−p/2

¢
= Op

¡
n−1

¢
+

Op

¡
n−1h−p/2

¢
= op (1) , and A92 = hp/2(bθ − θ0)

0Pn
i=1

Pn
j 6=i ∇g(Zj , θ0)εi

³
H∗
ij − n−1

´
Uj +

Op

¡
n−1/2

¢
= Op

¡
n−1/2

¢
= op (1) . This completes the proof of (B.4).¥

Proof of Theorem 3.2
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The proof follows closely from that of Theorem 3.1, now keeping the additional terms that

do not vanish under H1

¡
n−1/2h−p/4

¢
. It suffices to show that under H1

¡
n−1/2h−p/4

¢
,

hp/2A1
p→ ∆0, (B.6)

hp/2As = op (1) , s = 5, 6, 7 (B.7)

where A1, A5, A6, and A7 are defined in (B.2). Let γn ≡ n−1/2h−p/4. Under H1 (γn) , m (x) =

σ20 +γn∆ (x) and we have

hp/2A1 = hp/2γ2n

nX
i=1

nX
j=1

∆ (Xi)∆ (Xj)
¡
H∗
ij − n−1

¢
= n−2

nX
i=1

nX
j=1

∆ (Xi)∆ (Xj)
³
H
∗
ij − 1

´
+ n−1

nX
i=1

nX
j=1

∆ (Xi)∆ (Xj)
³
H∗
ij − n−1H∗

ij

´
≡ A11 +A12, say,

where recall H
∗
ij =

R
KixX

0
ixD

−1
h S−1 D−1h XjxKjxf (x)

−1 dx. It is straightforward to show that

A12 = op (1) . For A11, by the Fubini theorem, the weak law of large numbers, and Assumptions

A1, A2(iv) and A5-A6, we have

A11

= n−2
nX
i=1

nX
j=1

∆ (Xi)∆ (Xj)

µZ
KixX

0
ixD

−1
h S−1D−1h XjxKjxf (x)

−1 dx− 1
¶

=

Z (
n−1

nX
i=1

∆ (Xi)KixX
0
ixD

−1
h

)
S−1

⎧⎨⎩n−1
nX

j=1

D−1h XjxKjx∆ (Xj)

⎫⎬⎭ f (x)−1 dx

−
"
n−1

nX
i=1

∆ (Xi)

#2
=

Z
∆2 (x)B0S−1Bf (x) dx− [E (∆ (X1))]

2 + op (1) = ∆0 + op (1) .

Consequently, hp/2A1
p→ ∆0.

Next, write

hp/2A5 = n−1hp/2γn
X

1≤i<j≤n
∆ (Xi) εj

³
H
∗
ij − 1

´
+ n−1hp/2γn

X
1≤j<i≤n

∆ (Xi) εj

³
H
∗
ij − 1

´
+hp/2γn

nX
i=1

nX
j 6=i
∆ (Xi) εj

³
H∗
ij − n−1H∗

ij

´
+ hp/2γn

nX
i=1

∆ (Xi) εi
¡
H∗
ii − n−1

¢
= A51 +A52 +A53 +A54, say.
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Using arguments similar to but simpler than those used in the proof of Rn11,1 = op (1) in

Lemma B.2, we can show that A51 = op (1) and A52 = op (1) . Decompose

A53 = n−1hp/2γn
nX
i=1

nX
j 6=i
∆ (Xi) εj

Z
KixX

0
ixD

−1
h

£
S−1n (x)− S−1 (x)

¤
D−1h XjxKjxdx

= n−1hp/2γn
nX
i=1

∆ (Xi)

Z
KixX

0
ixD

−1
h

dp/4cX
l=1

S−1 (x)S (x)l
nX
j 6=i

εjD
−1
h XjxKjxdx

+n−1hp/2γn
nX
i=1

∆ (Xi)

Z
KixX

0
ixD

−1
h S−1 (x)S (x)dp/4c+1

nX
j 6=i

εjD
−1
h XjxKjxdx

≡ A53a +A53b, say,

where recall Sn (x) ≡ n−1D−1h X0xWxXxD
−1
h , S (x) ≡ Sf (x) and S (x) ≡ [S (x)− Sn (x)]S

−1 (x) .

If p = 1, 2, 3, A53a = 0. For p = 4, 5, 6, 7, following the proof of Rn11 in Lemma B.2 we can

show that A53a = op (1) . As to A53b, we have

|A53b|

≤ hp/2γn sup
x∈X

¯̄̄
S (x)dp/4c+1

¯̄̄
sup
x∈X

°°°°°°n−1
nX

j=1

εjD
−1
h XjxKjx

°°°°°°
(

nX
i=1

∆ (Xi)

Z
Kix

°°X 0
ixD

−1
h S−1 (x)

°° dx)

= hp/2γnOp

³
hdp/4c+1

´
Op

³
n−1/2h−p/2

p
logn

´
Op (n) = Op

³
hdp/4c+1−p/4

p
logn

´
= op (1) .

It follows that A53 = op (1) . Next, |A54| = hp/2γnmaxi
¯̄
n−1H∗

ii − 1
¯̄ ©
n−1

Pn
i=1 |∆ (Xi)| εi

ª
=

Op(n
−1/2 h−3p/4) = op (1) . Consequently hp/2A5 = op (1) .

For A6, we have

hp/2A6 = hp/2γn

nX
i=1

nX
j 6=i
∆ (Xi) [g(Zj ,bθ)− g(Zj , θ0)]

2
¡
H∗
ij − n−1

¢
+

+hp/2γn

nX
i=1

∆ (Xi) [g(Zi,bθ)− g(Zi, θ0)]
2
¡
H∗
ii − n−1

¢
≡ A61 +A62, say.

By Taylor expansions, it is straightforward to show that A61 = Op

¡
n−1/2hp/4

¢
= op (1) and

A62 = Op

¡
n−3/2h−3p/4

¢
= op (1) , and hence hp/2A6 = op (1) . Now,

hp/2A7 = hp/2γn

nX
i=1

nX
j 6=i
∆ (Xi)Uj [g(Zj ,bθ)− g(Zj , θ0)]

¡
H∗
ij − n−1

¢
+

+hp/2γn

nX
i=1

∆ (Xi)Ui[g(Zi,bθ)− g(Zi, θ0)]
¡
H∗
ii − n−1

¢
≡ A71 +A72, say.
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By Taylor expansions, it is easy to show thatA71 = Op

¡
hp/4

¢
= op (1) , andA72 = Op

¡
n−1h−3p/4

¢
=

op (1) , and hence hp/2A7 = op (1) .

Consequently, P (bT ≥ zα|H1(n
−1/2h−p/4))→ 1− Φ(zα −∆0/σ0). This concludes the proof

of the theorem.¥

Proof of Theorem 3.3

The proof follows closely from that of Theorems 3.1 and 3.2. By (B.1) and the proof of

Theorem 3.1, ESSq = A1 +2A5+2A6 − 4A7+ op
¡
h−p/2

¢
. Following the determination of the

probability order of hp/2As (s = 5, 6, 7) in the proof of Theorem 3.2, we can readily show that

n−1As = op
¡
n−1h−p/2

¢
= op (1) under H1 for s = 5, 6, 7. Under H1, by the Fubini theorem,

the weak law of large numbers, and Assumptions A1, A2(iv), and A4-A6, we have

n−1A1

=
1

n2

nX
i=1

nX
j=1

m (Xi)m (Xj)

½Z
KixX

0
ixD

−1
h S−1D−1h XjxKjxf

−1 (x) dx− 1
¾
+ op (1)

=

Z (
1

n

nX
i=1

Kixm (Xi)X
0
ixD

−1
h

)
S−1

⎧⎨⎩1n
nX

j=1

D−1h XjxKjxm (Xj)

⎫⎬⎭ f−1 (x) dx

−
(
1

n

nX
i=1

m (Xi)

)2
+ op (1)

=

Z
m2 (x)B0S−1Bf (x) dx− {E [m (X1)]}2 + op (1) = μ0 + op (1) .

Also, n−1TSS = σ2V + op (1) . It follows that R2q = n−1ESSq/
¡
n−1TSS

¢
= μ0/σ

2
V + op (1) .

Under H1, we have
¡
nhp/2

¢−1bbn = op (1) and bΩ p→ Ω. It follows that

³
nhp/2

´−1
Tn =

R2q −
¡
nhp/2

¢−1bbnpbΩ =
μ0

σ2V

√
Ω
+ op (1) .¥

Proof of Theorem 3.4

Let P ∗ denote the probability conditional on the original sample W. Let E∗ (·) and
Var∗ (·) denote the expectation and variance with respect to P ∗. an = op∗ (1) denotes that

P ∗ (|an| ≥ �) → 0 for any positive � > 0 as n → ∞. The notation Op∗ (1) is similarly de-

fined. Let ε∗i ≡ U∗2i − bσ2, where bσ2 ≡ E∗
¡
U∗2i

¢
= n−1

Pn
i=1

³bUi − bU´2 and bU ≡ n−1
Pn

i=1
bUi.

Let bg∗ ≡ ³
g(Z1,bθ∗), · · · , g(Zn,bθ∗)´0 , u∗ ≡ (U∗21 , · · · , U∗2n )0, ε∗ ≡ (ε∗1, · · · , ε∗n)0, and bv∗ ≡³bU∗21 , · · · , bU∗2n ´0 . Write bU∗2i =

h
U∗i +

³bU∗i − U∗i
´i2

= U∗2i + (bU∗i − U∗i )
2 + 2

³bU∗i − U∗i
´
U∗i

= bσ2 + ε∗i + [g(Zi,bθ∗)− g(Zi,bθ)]2 − 2[g(Zi,bθ∗)− g(Zi,bθ)]U∗i . By the symmetry of H∗ − L and
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the fact that (H∗ − L)1n = 0n, we have

ESS∗q ≡ n−1bv∗0 (H∗ − L) bv∗ = A∗2 +A∗3 + 4A
∗
4 + 2A

∗
8 − 4A∗9 − 4A∗10, (B.8)

where A∗s are the bootstrap analogues of As defined in (B.2) for s = 2, 3, 4, 8, 9, 10 :

A∗2 ≡ ε∗0 (H∗ − L) ε∗,

A∗3 ≡ ((bg∗ − bg)¯(bg∗ − bg))0 (H∗ − L) ((bg∗ − bg)¯(bg∗ − bg)) ,
A∗4 ≡ ((bg∗ − bg)¯ u∗)0 (H∗ − L) ((bg∗ − bg)¯ u∗) ,
A∗8 ≡ ε∗0 (H∗ − L) ((bg∗ − bg)¯(bg∗ − bg)) ,
A∗9 ≡ ε∗0 (H∗ − L) ((bg∗ − bg)¯ u∗) ,
A∗10 ≡ ((bg∗ − bg)¯(bg∗ − bg)) (H∗ − L) ((bg∗ − bg)¯ u∗) . (B.9)

Let bV ∗i ≡ bU∗2i , and TSS∗ ≡Pn
i=1

³bV ∗i − bV ∗´2 where bV ∗ ≡ n−1
Pn

i=1
bV ∗i . It is straightforward

to show that

n−1TSS∗ = E∗
³bV ∗i − bV ∗´2 + op∗ (1) = n−1

nX
i=1

(bVi − bV )2 + op∗ (1) = σ2V + op∗ (1) .

We prove the theorem by showing that(
hp/2A∗2 − hp/2

nX
i=1

ε∗2i
¡
H∗
ii − n−1

¢)
/

qbΩ∗σ4V d→ N (0, 1) , (B.10)

bb∗n = hp/2
nX
i=1

ε∗2i
¡
H∗
ii − n−1

¢
+ op (1) , and (B.11)

hp/2A∗s = op (1) for s = 3, 4, 8, 9, 10, (B.12)

We first show (B.10). Analogously to the proof of (B.3), we have

hp/2A∗2 = 2h
p/2

nX
1≤i<j≤n

ε∗i ε
∗
j

¡
H∗
ij − n−1

¢
+ hp/2

nX
i=1

ε∗2i
¡
H∗
ii − n−1

¢ ≡ A∗21 +A∗22, say.

Let v∗2 ≡Var∗ ¡U∗2i ¢ . Noting that A∗21 is a second order degenerate U -statistic and ε∗i are

independent conditional on the data, we can apply the CLT for second order degenerate U-

statistic with independent but nonidentically distributed (INID) observations (e.g., De Jong,

1987) and conclude that conditional on the data,

A∗21
d→ N

¡
0,Ω∗σ4V

¢
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where

Ω∗σ4V ≡ p lim
n→∞

2hp

n2

nX
i=1

nX
j 6=i

E∗
"
ε∗2i ε∗2j

µZ
KixX

0
ixD

−1
h S−1n (x)D−1h XjxKjxdx− 1

¶2#

= p lim
n→∞

2hpv∗4

n2

nX
i=1

nX
j 6=i

µZ
KixX

0
ixD

−1
h S−1n (x)D−1h XjxKjxdx− 1

¶2
= p lim

n→∞
2hpv∗4

n2

nX
i=1

nX
j 6=i

µZ
KixX

0
ixD

−1
h S−1D−1h XjxKjxf

−1 (x) dx
¶2

= lim
n→∞ 2h

pv∗4E1E2

"µZ
K1xX

0
1xD

−1
h S−1D−1h X2xK2xf

−1 (x) dx
¶2#

= 2v∗4vol (X )
Z ∙Z

K (z)μ (z)0 S−1μ (z + x)K (z + x) dz

¸2
dx,

where vol(X ) ≡ RX dx. (B.10) follows as one can easily show that bΩ∗ = Ω∗+op (1) . Recall ε∗i ≡
U∗2i −bσ2 and bε∗i ≡ bU∗2i −bσ2. Thenbb∗n−hp/2Pn

i=1 ε
∗2
i

¡
H∗
ii − n−1

¢
= hp/2

Pn
i=1

¡bε∗2i − ε∗2i
¢ ¡
H∗
ii − n−1

¢
= Op∗

¡
n−1/2h−p/2

¢
= op∗ (1) , proving (B.11). Noting that bθ∗ − bθ = Op∗(n

−1/2) under our as-

sumptions, the proof of (B.12) is analogous to that of (B.4) in the proof of Theorem 3.1 and

thus omitted. ¥
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