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Abstract

The biasedness issue arising from the maximum likelihood estimation of the spatial
autoregressive model (SAR) is further investigated under a broader set-up than that in
Bao and Ullah (2007a). A major difficulty in analytically evaluating the expectations
of ratios of quadratic forms is overcome by a simple bootstrap procedure. With that,
the corrections on bias and variance of the spatial estimator can easily be made up to
third-order, and once this is done, the estimators of other model parameters become
nearly unbiased. Compared with the analytical approach, the new approach is much
simpler, and can easily be extended to other models of a similar structure. Extensive

Monte Carlo results show that the new approach performs excellently in general.

Key Words: Third-order bias; Third-order variance; Bootstrap; Concentrated
estimating equation; Monte Carlo; Quasi-MLE; Spatial layout.

JEL Classification: C10, C21

1 Introduction

The mixed regressive, spatial autoregressive (SAR) model takes the following form

where n is the total number of spatial units, Y, is an n X 1 vector of observations on these
spatial units, X,, is an n x k& matrix whose rows are values of constant regressors, W, is a
specified n x n spatial weights matrix, and wu, is an n-dimensional vector of independent

and identically distributed (iid) disturbances of zero mean and finite variance 2. X is the

T benefited from the IVth World Conference of the Spatial Econometrics Association, June 9-12, 2010,
Chicago, and the seminar at the Singapore Management University, October, 2009. I am grateful to the
support from a research grant (Grant number: C244/MSS9E(005) from Singapore Management University

and the research assistance from Yan Shen.



scalar spatial parameter, and (3 is a p X 1 vector of regression coefficient. When there are
no regressors (X,,) in the model, the SAR model becomes a pure SAR process.?

One popular method for estimating the SAR model is the maximum likelihood (ML) or
quasi-maximum likelihood (QML) (Ord, 1975; Smirnov and Anselin, 2001; Lee, 2004a). Let
0 = (X, 3, 0?) with  being its true value. Let A,()\) = I,, — A\W,, with I,, being an n x n
identity matrix. If the errors are exactly normal, we have the true log-likelihood function,

1

n
n(0) = -3 log(270°) + log | An(N)| — 53

[A,(N)Y, — X8 [An(N)Y, — X08]. (2)

Maximizing () gives the ML estimator (MLE) of #. If the errors are not exactly normal
as assumed in this paper, £(f) can still be used as a working log-likelihood called quasi-log-
likelihood and maximizing it would still produce a consistent estimator of # provided certain
regularity conditions are satisfied (Lee, 2004a). The resulted estimator is called the quasi-
maximum likelihood estimator (QMLE). Now, given A, ¢(f) can be partially maximized,

which gives the constrained QMLEs of 3 and o2, respectively,

>

n(A) = (X;an)_lXéAn()‘)Yna 3)
A0 = VAL M ALY, (@

o)

where M,, = I, — X,,(X/ X,,)"*X/,. These lead to the concentrated log-likelihood of X as

£,(\) = —[log(2m) + 1] — S 1og &7(A) + log | 4, (V)| (5)

Maximizing £ () gives the unconstrained QMLE A, of A, and substituting A, into 3,())
and 62()\) gives the unconstrained QMLE 3, = 3,(\,) of 8, the unconstrained QMLE
62 = 62()) of 02, and hence the unconstrained QMLE 6, = (A, 3,,52)' of 6.

Lee (2004a) gives a detailed study on the asymptotic properties of QMLE 0,,. In particu-
lar, he showed that the QMLEs of 3 and A are /n-consistent if each spatial unit depends on
fixed number of neighbors, otherwise they are y/n/h,-consistent if the number of neighbors
is of order h,, such that as n — oo, h, — oo and h,,/n — 0. The QMLE of o2 is always
\/n-consistent. Lee’s work sets up a solid theoretical foundation for us to study further the

higher-order properties of the QMLE of the SAR Model. Although the SAR model can also

*Ever since its introduction by Cliff and Ord (1973, 1981), the SAR model has become very popular in
modeling the cross-sectional dependence induced by interactions among economic agents, such as neighbor-
hood effects, copy-catting, spillover effects, and peer-group effects. See, among the others, Anselin (1988,
2001), Case (1991), Case, et al. (1993), Cressie (1993), Besley and Case (1995), Brueckner (1998), Anselin
and Bera (1998), Bao and Ullah (2007a), Bell and Bockstael (2000), Bertrand, et al. (2000), Topa (2001),
Lee (2003, 2004a, 2007a,b), Mynbaev and Ullah (2008), and Robinson (2010), for an account on various

SAR-related theoretical issues and economics applications.



be estimated by other methods such as the two-stage least squares (2SLS), and the method
of moments (MM) or GMM (Kelejian and Prucha, 1998, 1999; Lee, 2003, 2007a), that the
QML estimation is applicable to the pure SAR process but the GMM is not, and that the
MLE is more efficient than MM or GMM estimators (Lee, 2004a, 2007a) provide strong
reasons for further studies on the QML estimation of the SAR model.?

While the QMLE of the SAR model enjoys the good properties, it has been recognized
that the it can be quite biased (see, e.g., Lee (2004a, 2007a) and Bao and Ullah (2007a)),
and there are no general methods available for correcting the bias, except Bao and Ullah
(2007a) who provided analytical formulas for the second-order bias and mean squared error
(MSE) of the QMLE of X for the pure SAR model under the assumption that w,, is normally
distributed. In dealing with the case where o2 is unknown, Bao and Ullah (2007a, p.400)
advocate the use of concentrated likelihood function of the spatial parameter as (i) it sim-
plifies the maximization procedure substantially, and (ii) it also simplifies the derivations
for the higher-order results since it is much easier to work with a scalar case than a vector.
We take this path and stress further that these simplifications are even greater if the SAR
model involves exogenous regressors, in particular in deriving the higher-order approxima-
tions to bias and variance. However, with the general model specified in (1) containing
regressors and /or with nonnormal errors, the analytical approach of Bao and Ullah (2007a)
in finding the expectations of ratios of various quadratic forms runs into difficulty. Recently,
Bao (2010) made an attempt to study this problem jointly using the full likelihood function
of (1) and has obtained some interesting results on second-order bias of én, but apparently
this approach runs into difficulties in MSE approximations due to its high complexity. See
Ullah (2004) for a general account on the finite sample econometrics.

In this paper, we follow Bao and Ullah (2007a) and propose to tackle the biasedness issue
for a general SAR model using the concentrated quasi-likelihood function. To overcome
the difficulty in evaluating the expectations of various ratios of quadratic forms in the
expansions, we introduce a simple bootstrap procedure which does not require the repeated
re-estimations of the model parameters. Some detailed arguments might be helpful for

motivating our approach to bias-correction.

3 An issue related to the QML estimation is on computation. Maximization of (5) looks simple as it is only
one dimensional. However, it involves the computation of the determinant |A,())| at each possible value of
A, which can be a burden when n is large. This computational burden can be alleviated by using the following
results, (i) if W, is symmetric or symmetric before row-normalization, then log|A,(A)| = Y7 | log(1— Aw;),
where w;’s are the eigenvalues of W, (Ord, 1975), and (ii) if W5, is intrinsically asymmetric, the result of (i)
is applicable through log| A, (A)| = 1 log|An(X)An(N)| (Pace and Barry, 1997). When n is very large, the
method of Smirnov and Anselin (2001) can be followed.



First, note that if A in the SAR model is known, then the model becomes essentially
a regular linear regression model. Thus, the estimation of § coefficients given A would be
unbiased, and so is the estimation of the error variance o2 if mean-squared-error is used for
estimating o? instead of QMLE. This means that the biasedness problem for the SAR model
centers at the estimation of the spatial parameter A\, and the bias and variance corrections
may only be necessary for the QMLE of A\.* A multidimensional problem is thus reduced
to a scalar one, which greatly simplifies the higher-order stochastic expansions. Yet still,
for these expansions to be of a general practical value, they must be supplemented with
simple ways for evaluating the expectations of ratios of quadratic forms. Noting that these
ratios are all functions of the parameter vector # and the error vector w, with iid elements,
naturally, their expectations can be bootstrapped (see Efron, 1979).

To summarize, the proposed approach is hybrid — combining stochastic expansions based
on concentrated quasi-score function and bootstrap, with the former providing tractable
third-order approximations to the bias and variance of the QMLE ;\n, and the latter making
these expansions practically implementable. The proposed approach is shown to be very ef-
fective in removing bias and improving inferences, and once the QMLE Ay is bias-corrected,
the QMLESs of other model parameters almost automatically become unbiased. Compared
with the analytical approach of Bao and Ullah (2007a) and Bao (2010), the proposed ap-
proach is much simpler, and can easily be extended to other models of a similar structure.
For example, in a linear regression model with a response transformation (Box and Cox,
1964), the transformation parameter is the source of bias in the estimation, but given that,
the estimation of other parameters does not incur bias. Our approach is applicable to this
model for bias correction, but the approach of Bao (2010) is not as the expectations of the
quantities appeared in the expansions are not available. Other good examples of this type
of models may be the dynamic regressions or dynamic panel regressions.

To assess the performance of the proposed method in correcting the bias of the QMLE
5\n and the impact of this bias correction on the estimation of other model parameters
as well as the usual inferences, a series of Monte Carlo experiments are conducted. The
results show that the new approach performs excellently in general, with the bias-corrected
QMLE of A clearly outperforming the original QMLE, and a bias-adjusted QMLE using
the formulas of Bao and Ullah (2007a). With the use of the bias-corrected estimator of A,

the corresponding estimators of 3 and o2 become nearly unbiased, and the performance of

“Lee (2007a) made a similar remark based on his Monte Carlo results. The same arguments may hold
for other models of similar feature such linear regressions with response transformation, dynamic regression,

dynamic panel data regression, etc.



the usual regression t-ratios improved. Monte Carlo results further reveal that the original
QMLE and the QMLE bias-corrected using the formulas of Bao and Ullah (2007a) depends
heavily on the following factors: (a) the spatial layout, in particular whether the number of
neighbors grows with n, (b) the error standard deviation o, and (c) the value of A\. Some
anomalies are found in the Monte Carlo results of Bao and Ullah (2007a) and Lee (2004a).
Their Monte Carlo experiments are rerun and the amended results reported.

The rest of the paper is organized as follows. Section 2 summarizes the general approach
to bias correction. Section 3 presents the main theoretical results corresponding to the SAR

model. Section 4 presents Monte Carlo results. Section 5 concludes.

2 A General Method for Bias-Correction

In this section, we lay out a general framework for bias and variance corrections, which
is applicable to a class of models (including the SAR model) containing one nonlinear para-
meter (bias incurring parameter) and some other linear (location) and scale parameters. We
first present third-order stochastic expansions based on a concentrated estimating equation
for a nonlinear parameter, and then we outline the main ideas of bootstrap method for

estimating quantities in the third-order bias and variance formulas.

2.1 Third-Order Bias and Variance of a Nonlinear Estimator

Bao and Ullah (2007a) considered a general class of y/n-consistent estimators identified

by the moment condition or estimating equation

0 = arg{yn(0) = 0} (6)

where ,(0) = ¥, (Zy;0) is a k x 1 vector-valued function of the observable data Z, =
{Z;}~,, iid or non-iid, and a parameter vector §. Furthermore, 1,(0) is of the same
dimension as 6 and is normalized to have order O,(n~'/2).> This framework extends that
of Rilstone et al. (1996) who considered t,(6) = 1 3", ¢;(6,,) where the summands are
assumed to be iid. They obtain a third-order expansion for én, and a second-order bias and
a third-order MSE for én.

All the results discussed earlier build upon the assumption that Ev, () = 0, a common

assumption for a consistent joint estimation. This is usually true if 6 contains all the

5This is in fact a generalized version of the well-known M-estimation (maximum likelihood type esti-
mation) of Huber (1964). Obviously, the maximum likelihood or quasi-maximum likelihood, least squares,

method of moments, and generalized method of moments are the special cases of this estimation method.



model parameters, e.g., ¥,(0) is the full score function. Occasionally, this is also true
when concentrated score function is used, but with stronger conditions, such as normality,
imposed; see, e.g., the pure SAR model with 02 unknown (Bao and Ullah, 2007a). In
general, however, this condition is violated if the moment condition is associated with the
concentrated estimating function where the parameters not of direct interest are replaced
by their estimators, often constrained upon the parameter of interest. For example, in the
SAR model with regressors considered in this paper, we are only interested in A, the spatial

2 are present.%

lag parameter, but the regression coeflicients § and the error variance o

As pointed out in the introduction, it is very much desirable to construct a stochastic
expansion based on concentrated estimating equation. First, it is much easier to work with
a scalar case than with a vector to derive the second-order results (Bao and Ullah, 2007a,
p.400). Second, as is well known, an ML or QML estimation process often involves two
sets of parameters, where the QMLE of the first set (e.g., pure mean and scale parameters)
given the second has an explicit expression. Thus, the likelihood can be ‘concentrated’
by replacing the first set of parameters by their constrained QMLEs. As a result, the
optimization procedure can be greatly simplified. The third and perhaps the strongest
reason for working with the concentrated estimating equation is that often the estimation
of some parameter(s) in the model incurs bias but the estimation of other parameters alone
doesn’t or incurs very little bias. For example for the SAR model considered in this paper
the estimation of A incurs bias but the estimation of  and o (given \) doesn’t or incurs very
little bias. In a Monte Carlo study in comparing the method of moment estimators, GMM
estimators, and QMLEs for the SAR model, Lee (2007a) noted that the main differences
of various estimation approaches are on the estimation of the spatial effect A. Thus, it is
only necessary to focus on the QMLE ), of A for bias-correction. Once a bias-corrected
estimator of A, 5\20 say, is given, the resulted estimators for 4 and o obtained by plugging
AP< into (3) and (4) can be expected be nearly unbiased.

To fix the idea, let § = (N, a’)’ where X is the scalar nonlinear parameter of which
the estimation incurs biasness, and given A the estimation of the parameter vector « has
an analytical solution. Let &;,()\) be the constrained estimator of « for a given A value.

Let 0y = (A, o) be the true value of the parameter vector. Partition 1, (0) according

5Making inference about the parameter of interest in the presence of many parameters not of direct interest
(called the nuisance parameters) is a standard statistical problem, and it is typical in these situations to
replace the nuisance parameters by their estimators in the object function or the estimating function. There
is a vast literature on the satisfactory handling of nuisance parameters. Most of this work has focused on
the modification of the likelihood function and the concentrated likelihood function. See Laskar and King

(1998) for a survey and a comparison of the various methods.



to (N, ), ie., ¥n(0) = {4, (N a), ¥, (A, @)}. Define ,(A) = ¥an(A, &())), called the
concentrated estimating equation (CEE). Then, the estimator An of A would typically be

An = arg{Pn(X) = 0}. (7)

The CEE given above looks identical to the joint estimating equation (JEE) considered in
Rilstone et al. (1996) and Bao and Ullah (2007a, b). Thus, one would expect that the
stochastic expansion for A takes the same form, though the regularity conditions need to
be strengthened. However, there is a major difference: the expectation of @[N)n()\o) may not
be zero even if Ei,(6y) = 0. Thus, blindly applying the formulas derived under JEE may
lead to misleading results. If &, () is /n-consistent, it is typical that E[¢,(Ao)] = O(n™1),
i.e., the expectation goes to zero at an n-rate. If this is true, then E[t},()\o)] constitutes an
important term in the bias correction. In this case, the bias formula need to be modified.
As a consequence, the higher-order approximations to the variance needs to be modified
as well. The mean squared error (MSE), however, remains in the same form as it directly
follows the stochastic expansions for M-

Let Hyn(\) = d")(N)/dXN",r = 1,2,3. Let ¢y = ¥n(Xo), Hrm = Hen(o) and HS, =
H., — EH.,,v = 1,2,3. Define Q, = —E(Hy,)”'. Note that here and hereafter the
expectation operator corresponds to the true model or the true parameter values 6y. Let
A be the parameter space of \. So far we have not yet specified the form of the 1;,1()\)
function, thus as general theories we need some generic smoothness conditions on 1/;,1()\), as
those of Bao and Ullah (2007a) for a JEE. We feel, however, the regularity conditions of
Bao and Ullah (2007a) need to be tightened under the CEE, which are given below.

Assumption A. A is compact with Ay being an interior point. E(,) = O(n™1), and

Ans as a solution of Pn(X) = 0, is a \/n-consistent estimator of .

Assumption B. &n()\) is differentiable up to rth order for X in a neighborhood of Ao,
E(H,n) = O(1), and HZ, = Op(n"%),r = 1,2,3.

Assumption C. E(Hy,) ! = O(1), and Hy,! = O,(1).
Assumption D. |H,,(A) — Hyp(Mo)| < |A — Xo|Uy for A in a neighborhood of Ao, r =
1,2,3, and E(|U,]) < C < oo for some constant C.

The +/n-consistency is a standard requirement for a higher-order stochastic expansion.
In the context of CEE, the \/n-consistency of A, implies E(¢,,) = o(n~/2) but not zero in
general due to the estimation of the nuisance parameters. If the estimators of the nuisance
parameters are also \/n-consistent, it can be argued that E(¢,) = O(n~'). Further, the
V/n-consistency of A, implies ), = Op(nfé). The Assumptions B and C are the tightened

7



versions of the Assumptions 4 and 5 in Bao and Ullah (2007a). E(H,,) = O(1) and
Hy, = Op(nfé) are needed so that H,, can be replaced by E(H,,) at an appropriate place
in the expansion with the error Op(n_%) being absorbed into the overall error term.” We

are ready to state the general theorems. All the proofs are given in Appendix A.

Theorem 2.1. Let Assumptions A-D hold for some r > 3. Then, a third-order sto-

chastic expansion for A is give by
An— o = a_1/2 +a-1+a_gp+ Op(n72)a (8)

where a_g 5 represents terms of order O/p(n*S/Q) fors =1,2,3, and they are a_y;5 = Qpton,
a1 = QH{,a_1/9 + %QnE(HQn)(GP_l/2), and a_z/y = QH{,a-1 + %QnHé’n(az_l/Q) +
QnE(HQR)(a—lﬂafl) + %QnE(HSn)(a?il/g)'

The third-order expansion based on CEE is seen to have an identical form as those in
Rilstone et al. (1996) under a special JEE with iid summands, in Bao and Ullah (2007b)
under a special JEE with non-iid summands, and in Bao and Ullah (2007a) under a general
JEE. Our set-up is more closely related to Bao and Ullah (2007a) by concentrating their
JEE to give our CEE. However, Bao and Ullah (2007a) did not give a detailed proof of
the results, and there seems to be a need for a more detailed regularity conditions for the
expansions to hold with proper orders. Based on this third-order stochastic expansion for
the nonlinear estimator 5\”, we can easily obtain second-order and third-order expansions

for the bias, the MSE, and the variance of An.

Corollary 2.1. Under the assumptions of Theorem 1, assume further that a quantity
bounded in probability has a finite expectation. Then, we have a third-order expansion for
the bias of A,

Bias(Ay) = b_1 +b_3/5 + O(n?), (9)
where b_g /9 = O(n=%/?),s = 2,3, with b_; = E(a_i/2+a-1) and b_3/5 = E(a_3/3).

Note that E(a_;/3) = 0,E(¢y,). This term is O(n~!) under CEE, and is identically
zero when JEE is used. Rilstone et al. (1996) and Bao and Ullah (2007a, b) considered

only second-order expansions for the bias. Their formulas correspond to our b_; term only.

Comparing with their expansions for the bias, we see that b_; contains an extra term,

"Under a specific model and a specific estimation method (such as the SAR model estimated by the QML
method), the form of the %, ()) function is known, and these generic conditions are satisfied under a set
of weak and primitive conditions. The Assumption A may be relaxed to allow for asymptotic (first-order)
bias, and our methods can in principle be applied to do higher-order bias reduction for dynamic or nonlinear
panel models with fixed effects, see Hahn and Kuersteiner (2002) and Hahn and Newey (2004).



2QnE(1ﬁn) When CEE is used, this term plays a key role, which means that blindly using
the formula of Bao and Ullah (2007a) can give misleading results. This point is confirmed
by the Monte Carlo results presented in Section 4.

Adding a third-order bias-correction term b_3z/, into the formula gives us a choice for
further improvement on the performance of the bias-correction procedure if necessary. With
the results of Corollary 2.1, a second-order bias-corrected estimator of A is j\zd =\ —b_1,
and a thir-order bias-corrected estimator is 5\203 =Ap—b_1— b_3/2. However, the practical
implementation of the third-order bias-correction requires the estimation of b_3/5, which
is surely complicated or even prohibitive if the analytical approach is followed, but adds
only a little computationally if the bootstrap procedure introduced in this paper is followed.

Similarly, one has a third-order expansion for the MSE of M.

Corollary 2.2. Under the assumptions of Theorem 1, assume further that a quantity
bounded in probability has a finite expectation. Then, we have a third-order expansion for
the MSE of An,

MSE(\,) = m_1 +m_z/5 +m_s + O(n~"/?), (10)

where m_g )9 = O(n=%/2?),s = 2,3,4, with m_; = E(a31/2)7 m_zsy = 2E(a_y2a-1), and

m_o = 2E(a_i/2a_3/2 + a%,).

Clearly, the leading term m_; = Q2E(¢2) in the third-order expansion for MSE(\,,)
is the asymptotic variance of 5\, m_1 + m_z/p gives a second-order expansion, and m_; +
m_g/s +m_g gives a third-order expansion for MSE(\,).8

While it is important to have higher-order expansions for MSE(S\n) for the purpose of
efficiency comparison, it is more important to have higher-order expansions for the variance
of \, for inference purpose. In doing so, one is tempted to simply combine the above

expansions for the bias and MSE to give second- and third-order expansions:

Var(A,) = m_1+m_zpn+O0(n?), (11)
Var(A,) = m_1+m_ g +m_g+b_1b_; +O0n>?). (12)
Theoretically these are correct, but empirically they do not guarantee positivity of the

variance estimator when n is not large (see Section 4.1 for more discussions on this). We

thus propose to have variance expansions directly out of the stochastic expansions for 5\n

SRilstone et al. (1996) and Bao and Ullah (2007a, b) refer to the expansion of the form in (10) as a
second-order expansion, but it should in fact be a third-order expansion. Under the special JEE considered
by Rilstone et al. (1996), it can easily be shown that E(a_1,2a—1) = O(n~?), the supposedly second-order

term becomes a part of the third-order term m_». However, in general E(a_;/2a-1) = O(n73/2).



Corollary 2.3. Under the assumptions of Theorem 1, assume further that a quantity
bounded in probability has a finite expectation. Then, we have a third-order expansion for
the variance of 5\n,

Var(An) = vy + v_3/2 +v_2+ O(n=%/?), (13)
where v_g /5 = O(n=%/?),s = 2,3,4, and are of the forms, v_, = Var(a_y/2), v—1+v_3/5 =

Var(a_i/3 +a-1) and v_1 +v_g/5 +v-9 = Var(a_yjp + a—1 +a_32).

With the results of Corollaries 2.1 and 2.3, one can correct \, and its standard error (se)
for an improved inference for A. Clearly, (13) reduces to (12) after dropping the terms of the
same order as the remainder. The expressions for the terms in all the second expansions
given above are fairly short and simple, but the expressions for the third-order term in
all the expansions are long but straightforward to obtain. We will present these in the
framework of SAR model in the next section. The third-order expansions are presented by
clearly separating out the terms of different order, thus allowing one to choose between the
2nd- or 3rd-order approximations according to the actual needs. For example, if one feels
that second-order approximations are sufficient, then one simply drops the third-order terms

a_3/2,b_3/2,m—_2, and v_3 in the expansions, which results in much simpler expressions.

2.2 A bootstrap method for estimating the bias and variance corrections

The second- or third-order corrections on the bias and variance of nonlinear estimators
are practically tractable only if one could find a simple way to estimate the quantities like
E(H,»), E(W2), E(Hi,¥2), etc. The analytical approach is to first find these expectations
and then replace 6 in the resulted expressions by its consistent estimator O, However,
finding these expectations analytically seems to be an impossible task unless one is using
a simple model with iid normal errors. We now discuss a simple bootstrap method for

estimating these quantities. Consider a general model of the form

g(ZTw 00) = Un

where wu, is the disturbance vector of iid (not necessarily normal) components. Assume
that the key quantities ¢, and H,, can be expressed as ¢, = 1/~Jn(un,00) and H,, =
Hyp(un, 6p),r =1,2,3. Let 4, = g(Zy, én) be the vector of estimated residuals based on the
data. Resample the elements of 4, (by making n random draws with replacement) to give
Unp, and compute in(unﬁ, én) and Hyp, (tn,p, én) Repeat this procedure for b=1,2,---,B

times, and the bootstrap estimates of these expected quantities are given as, e.g.,

. 1 B . .
E(’(/J]TLC) = E sz(un,hen)?k = 1’2a T
b=1

10



E(Hrn> = E ZHrn(un,ba én)y
b=1
- 1 B - . .
E(¢ZHEn) = B Z ng(un,ba en)Hzn(un,ba On),

Plugging these bootstrap estimates into the bias, MSE and variance formulas, we obtain
the bootstrap-based estimates of bias, MSE, and variance of An.

Note that in the entire bootstrap process, the same estimate 6,, based on the original
data is used when recalculating zﬁn and H,, based on each bootstrap sample i, ;. The
reestimation of the model parameter 6 is thus avoided, which makes this bootstrap procedure
easy to be implemented. In summary, our proposed approach for bias and se corrections
takes the advantages of both stochastic expansions and bootstrap, neither of which alone
allows us to handle the problem of this type comfortably. The usefulness and effectiveness

of this approach is fully demonstrated in the following sections using the SAR model.

3 Bias-Corrected Estimation for SAR Model

We now consider the estimation of spatial lag parameter A\ in the general SAR model
specified in (1), to give a detailed demonstration on the applications of the general methods
presented in the early section. The nature of the SAR model indeed renders it a special
attention in terms of bias and se corrections. First, the parameter \ enters into the model in
nonlinear manner, hence it is likely that the estimation of it would incur bias. Second, the
degree of spatial dependence among the spatial units depends not only on the magnitude
of the spatial parameter A, but also on the number of neighbors each spatial unit has, or
equivalently the number of non-zero elements that each row of the W,, matrix contains.
A very important special case of this is that the number of neighbors, h,, say, grows with
n (see, e.g., Case, 1991), and in this case, Lee (2004a) showed that the QML estimators
of X\ and 3 are no longer \/n-consistent, but rather \/n/h,-consistent. Thus, the effective
sample size is n/h,, and the bias and variance formulas given above need to be adjusted
to allow for this possibility. Conceptually, this may be fairly straightforward as one may
simply replace n by h,/n everywhere in the expansion formulas. Theoretically, however,
much needs to be done in terms of regularity conditions and formal proofs of the results.
We do so in this paper by following the theoretical foundations laid out in Lee (2004a).
Another challenging problem is that once the general formulas for second-order bias and

variance are available, how do we implement them for practical applications? Below are
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the main theoretical results, followed by a simple bootstrap procedure for estimating the
expectations of various ratios of quadratic forms in the bias and variance corrections.
3.1 The main results

Continuing on the QML estimation of the SAR model outlined in the introduction,
we see that the QMLE A of the spatial parameter A, which maximizes the concentrated

log-likelihood function £ () given in (5), can be equivalently defined as
A = arg{in(X) = 0},
where ), ()) is the derivative of hage (X) and has the form,
Pn(A) = ~haTon(N) + hnBin(A), (14)

where Tp,(\) = n~tr(Gn(N)), Gn(A) = W, A, 1(N), and

Y, AL (N M, W,Y,
Fan N = 3 VLA, ()Y,

Clearly the function 9),,(\) defined in (14) leads to a concentrated estimating function
(CEE), and fits into the general framework described in Section 2. However, there is a
difference — the quantity h,, measuring the degree of spatial dependence may alter the rate
of convergence of the QMLEs in the first-order asymptotics (Lee, 2004a) and of course the
magnitude of the quantities in the higher-order asymptotics. Paralleled with the general
theories given in Section 2. we now present a complete and rigorous treatment for the SAR
model, taking into account of the possibility that A, is unbounded.

The rth derivative of &n()\), H,.,(\) = %z@no\), r=1,2,3, are

h'r:lHln()‘) = _Tln(A) - R2n(>‘) + 2R%n()‘)7 (15)
hy'Hyn(X) = —2T5n(X) + 2R15(A) Ron () + 8R3, (M), (16)
hy'H3n(A) = —6T3,(A) + 2R3, (A) + 10RE, (A) Ran(A) — 32R1,(N), (17)

where Ty, (A) = n~1tr(G7HL(N)),r = 0,1,2,3, and

 YIWIM WY,
- YA (NM, A (V)Y

Ron (M)

Recall ¢, = 9¥n(No) and H,, = Hyn(Xo),r = 1,2,3. Similarly, let A4, = A,(\o),
Gn = Gp(No), Trn = Trn(Xo), 7 =0,1,2,3, and Ry, = Ryp(No),7 = 1,2. Let n, = G, X, 0.
The regularity conditions listed in Section 2 are generic as the model and the esti-

mation method had not yet specified. With the specification of the SAR model and the
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quasi-maximum likelihood estimation method, the t,()) function and its derivatives are
completed known. Thus, the regularity conditions can be made more specific or more prim-
itive. First, the set of rather primitive conditions of Lee (2004a) for the /n/h,-consistency

of the QMLE A are essential and are summarized below in Assumptions 1-6.

Assumption 1: The true Ag is in the interior of a compact set A.

Assumption 2: The innovations {un;} are iid with mean zero and variance o*.

El|up ;|47 ezists for some v > 0.

Assumption 3: The elements wy,;; of W, are at most of order h L uniformly for all i
and j, where the rate sequence {h,} can be bounded or divergent but satisfying hit¢/n — 0
for some € > 0 as n — oco. As a normalization, wy; = 0 for all i. Furthermore, the

matrices {W,} are uniformly bounded in both row and column sums.

Assumption 4: The matriz A, is nonsingular, {A;'} are uniformly bounded in both
row and column sums, and {A *(\)} are uniformly bounded in either row or column sum,

uniformly in A € A.

Assumption 5: The elements of the n X k matriz X,, are uniformly bounded for all n,

and lim,,_ys %X,’zXn exists and is nonsingular.

Assumption 6: The elements of M,n, have the uniform order O(1/v/hy,), and

. hn,
i S M =

where either ¢ > 0; or ¢ = 0 but lim,, 0 22 (In 024 A —1n |072L()\)A(>\);1A’()\)7_Ll|) # 0,
whenever \ # X, where o2(\) = ﬂ:ltr[A’;lA’(/\)A(/\)A*l].

n n

The Assumptions 1-6 listed above are the Assumptions 1, 2, 3’, 4-7, and 10 of Lee
(2004a). Under these assumptions, the QMLE Anis a \/n/hy-consistent estimator of \g. In
the regular case where h,, is bounded, i.e., the degree of spatial dependence does not grow
with the sample size, j\n becomes \/n-consistent. These assumptions lead to the first-order
asymptotics for S\n, which are shown to be essential as well for the third-order stochastic
expansion for ;\n, and the third-order expansions for the bias, MSE, and variance of M.
Some further conditions are needed for ensuring proper orders of Ry, and Rs,, which are

crucial for the proper behaviors of the derivatives H,.,,r = 1,2, 3.

Assumption 7: (i) E[%”(YAA;ZMnI/VnYn)((7';‘1 — oy N (62 - 0d)] = O(n™Y); and (ii)

Elle (YW, M, W, Y,) (674 — 05" (62 — 02)] = O(n™1), where G2 lies between 62 and o3.

These conditions are reasonable as under the early assumptions %"(YT;A;MHW”Y”) =
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Op(1), Lo (VW M, Wy, Y,,) = Op(1), 62 — 0% = Op(n” %), and 6,4 — 05* = Op(n~2). Thus,
the two quantities inside the expectation sign are both Op(n_l). To ensure the proper

stochastic behavior of H,.,,,r = 1,2, 3, the following conditions are needed.

Assumption 8: (i) hiE[(Ri, —ER1,)%] = O((22)2), s = 2,3, 4; (ii) h2E[(Ryn—ERgy)?]
= O((12)2); and (iii) A5 E[(Rip — ER1n)* (Ran — ERn)] = O((22)7),5 = 1,2.

n

The three conditions in Assumption 8 are in fact rather weak, since following the results
of Lemma 3.1 below, all the random quantities inside the expectation sign are of order
Op(h—#) or lower, and hence their expectations are likely stay with the same order but
nonstochastic, i.e., O(%") or lower. However, what is needed is only that the expectation

of those quantities are of order O((%")%) We have the following important lemma.
Lemma 3.1. Under the Assumptions 1-7, we have (i) hy,R1p, = E(hy,Rip) —f—Op((hn—”)%),
and (i) hyRap = E(hnRan) + Op((12)3).

The proof of this lemma is given in Appendix B. Using the results of this lemma and
under the conditions listed above, we are able to prove the following theorem and corollaries.
These theorem and corollaries parallel the general theorem and corollaries given in Section
2 with the order of magnitude of each term adjusted to allow for the possibility that h,

increases with n. Their proofs are given in Appendix B.

Theorem 3.1. Under the Assumptions 1-8, we have a third-order stochastic expansion,
An = Ao =a_12 + a1+ a_ys + Op((n/hn) ), (18)
where a_g /9 = Op((n/hn)_s/Z), s =1,2,3, and are of the form: a_y/; = Qnthn,
a1 = Quin+ Q2 Hyiby, + %QiE(HQn)@ZZ, and
a gy = Quibp + 202 Hipty, + QE(Hon)P2 + Q3 HE 0y + %Q;?;HME?%
S OB Hl? + ORE(H )5 + OB (Hy) 0,
where Py, and Hyp,,r =1,2,3 are given in (14)-(17), and Q, = —BE(Hy,) "

Note that a_g/9,s = 1,2,3, in fact have the same expressions as those in Theorem 2.1.
The difference is in their stochastic orders. By applying this stochastic expansion, one

obtains immediately the expansions for the bias, the MSE, and the variance of M.

Corollary 3.1. Let the Assumptions 1-8 hold. If E(R1,Ra,) and E(R3,) exist, we have

a second-order expansion for the bias of A,

By () = 20 E(fn) + Q3E(Hundn) + SOSE(H)EWR) + O((n/hn) ) (19)
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and if B(R%,)) and E(RS,) exist, we have a third-order expansion for the bias of A,

3

Bs(\n) = 3B ($n) + 3G E(Hintn) + SUE(Hon)E(7) + GE(H, $n)

1 ~ 3
S OB(Hond2) + S OAE (Ha B Hind2) + 3 OTE(Han ) B(TE)
1 ~
+ S QB (Hzn)E(v7) + O((n/hn) 7). (20)
Note that Bo(),) = E(a_y9) + E(a_1) + O((n/h,)~%/?), and B3(\,) = E(a_ys) +
E(a_1) + E(a_3/2) + O((n/hyn)~?), where E(a_y/2) = O((n/hn)~") as shown in Appendix
B, and has the same order as E(a_1). This makes sense intuitively as the estimator is

consistent and hence there is no first-order bias correction. The result of Corollary 3.1 leads

immediately to a second-order bias-corrected QMLE of A as follows:
~o ~ 1
At = An = 200 E () — G E(Hintn) — SO E(Han)E (D7), (21)

where the quantity with an = denotes the estimate of the corresponding quantity, and the
way this estimate is obtained will be discussed in next subsection. This estimator gives
a second-order correction. In contrast, if E(zﬁn) is treated as zero as in the case of joint

estimation, then a bias-adjusted estimator is given as,

32 = S — O2E(Hind) — O3B (Ho)E (), (22)

which misses out a second-order term ZQnE(zﬁn), and obviously these terms can be very
important. It is not difficult to argue that the terms 20, E(¢,,) and Q2E(H,,1,,) are of the
same order. This means that the difference between j\zd and 5\232, or between 5\2"2 and X,
can be quite substantial. Section 4 provides Monte Carlo results for such comparisons.

If the second-order bias-correction is not accurate enough, one can easily go for the
third-order correction to have AP = X, — Bg(\,), where Bs(\,) is an estimate of Bg(A,)
given in (20) after dropping the remainder term. Similarly, one obtains the second- and
third-order expansions for the MSE of M-

Corollary 3.2. Let the Assumptions 1-8 hold. If E(R3, Ro,) and E(R},) exist, then we

have a second-order expansion for the MSE of A,
Ma(An) = 3E®W7) + 20 E(Hindy) + QE(Hen)E(47) + O((n/ha)7%);  (23)
and if B(R%,)) and E(RS,) exist, then we have a third-order expansion for the MSE of A,
Ms(An) = 6QE(V7) +8QE(H1nY7) + 30E(H,07) + 40 E(Hon )E(4)
FOAB(Hal?) + AQB(Han JE(Hun ) + SOSE(Hs B()

+2Q0E(Hon B () + O((n/hn) 7). (24)
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As mentioned in Section 2, it is more useful for the purpose of statistical inference to
have higher-order expansions for the variances of the original and bias-corrected estimators.
It turns out the two agree to order O(n~/2) or O(n~2), depending whether a second-order

or a third-order expansion is used (see the discussions in Section 3.4).

Corollary 3.3. Let the Assumptions 1-8 hold. If E(R3, Ro,) and E(RS,) exist, then we

have a second-order expansion for the variance of 5\n,
Va(An) = Var(a_y /o +a—1) + O((n/hn)2);
if B(RS)) and E(RI2) exist, then we have a third-order expansion for the variance of Ap,
Vs(An) = Var(a_y/o +a-1+a_z;) + O((n/hn) /).

For practical applications, we give more explicite expressions for the variance expan-
sions. From Theorem 3.1, a_y/p +a-1 = 20 4+ Q2 Hipthy, + %Q%E(Hgn)ﬁ)ﬁ, thus,

Var(a_i/ +a-1)
= 402 Var(¢y,) + 493 Cov(¢n, Hintn) + 204 E(Ha, ) Cov (¢, 92)
+Qp Var(Hinthn) + QO E(Han) Cov(Hintn, ¥7) + iﬁiE(Hzn)zVar(lﬁZ)- (25)

Again from Theorem 3.1, a_y/5 +a-1 +a_3/5 = 3Qn@/~)n + 3Q%H1n”g/~)n + %Q%E(Hgn)”g/;% +
Q3 HE by + 305 Hopt)2 + SQAE(Hop) Hinth2 + 3O5E(Hop ) 293 + $QAE(Ha, )03, thus

Var(a_y/ +a-1+a_3)
= 902 Var(v,) + 902 Var(Hint,) + %QQE(HQn)QVar(HM%) 4.
+18Q2 Cov (Y, Hinthn) + I E(Hy,,)Cov (P, ¥2) + -+ -, (26)

where there are all together 8 variance terms and 28 covariance terms.

Clearly, Var(a_1) = O((n/h,)~2) and thus can be dropped from the second-order vari-
ance expansion. Similarly, Cov(a_1,a_3/2) = O((n/hy)~/?) and Var(a_z5) = O((n/hn)?),
which can be dropped from the third-order variance expansion. These lead to asymptoti-
cally equivalent but much simpler variance expansions Va(A) = Ma(A) + O((n/hy)~2), and
V3(A) = Ms(\) + B2(X) + O((n/hy)~%/2). However, as pointed out in Section 2, these
simplifications may not guarantee the positiveness of the variance estimates, thus it is

recommanded that the results in (25) and (26) be followed in the practical applications.
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3.2 The bootstrap method for practical implementation

From the expressions given in (19) to (26) we see that, in order to calculate various
expectations in the bias, MSE, and variance expansions, all we need is to calculate the
expectations of Ry, and Ra, (the ratios of quadratic forms), their powers, and their cross-

products of powers, i.e., we need to calculate, for third-order expansions,
E(R},),k=1,---,10; E(R},),k=1,---,4; and E(R}, R ), k=1,---,6,m =1,2.

However, this seems to be an impossible task if the errors are non-normal, and prohibitively
complicated if the errors are normal. For the case of a pure SAR model with normal errors,
Bao and Ullah (2007a) derived analytical expressions for the expectations of various ratios.
However, even for this simple model with normal errors, the expressions are seen to be
quite complicated already, and when errors become nonnormal, the analytical expressions
are unavailable except the approximations under a small ¢ (Ullah and Srivastava, 1994).°
Thus, for the higher-order results presented above to be practical feasible for a general
SAR model, it is highly desirable to have an alternative way to evaluate these expectations.
Clearly, it is when the errors are non-normal and the model contains regressors that gives
a practical attraction. To solve this puzzle, the bootstrap procedure outlined in Section 2
is made explicite below. Note that the two key quadratic forms can be written as:
uh My Gruy + ul, Mypny,
ul, Mpuy,
ul, G M, Gpuy + 2ul, G Mny, + 1), Myny,
ul, My, ’

Rln = Rln(una 90) -

b

R2n = RQn(uTw 90) =

where 1, = G,X,0yp. These show that an = &n(un,Go), Hy, = Hin(un,bp), Hap =
Hjp(un, 6p), and Hs,, = Hsy,(uy, 6p). For the pure SAR process, 0, = 0, M,, = I,, and these
two quantities reduce to Ry, = u,Gnuy/(ul,u,) and Ra, = u, Gl Gpuy,/(u,uy,). In other
words, all the random quantities in the bias, MSE, and variance formulas can be expressed
in terms of u, and 6y. This leads naturally to a bootstrap procedure for estimating the
expected values of these random quantities (see, e.g., Efron, 1979; Amemiya, 1985, p. 135).

The suggested bootstrap procedure is summarized as follows:

1. Compute the QMLEs 6,, = (3,62, \,)’, A,,G, and 7,

9Working with the joint estimating equation as in Bao (2010) alleviates this problem as only the expec-
tations of quadratic forms, their cross-products and powers are required, but it introduces an additional
complication — the expansions become multidimensional involving the parameters 8 and o as well, which
makes the higher-order corrections on bias and variance extremely difficult. However, one advantage of this

analytical approach is that it allows one to see the ‘cause’ of the bias.
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2. Compute QML residuals 4, = A, — Xan, and then center them,
3. Resample i, in the usual way, and denote the resampled vector by i, 5,

4. Compute Ry, (U, p, én) and Roy, (tpp, én), and thus all the other quantities ¢, (Un, b, én),
Hin(tn s 0n), Hon(tnp,0n), and Hay,(tnp, 0,) defined in (13)-(16),

5. Repeat steps (3) and (4) B times to give sequences of bootstrapped values for Un,
H1n7 H2n7 and H3n-

The bootstrap estimates of various expectations thus follow. For example, the bootstrap

estimates for the means, variances and covariance of 1;721 and H 1n@/~)n are,
. 1 E . .
E(¢EL> = E Z %21 (un,b7 en)
E(Hlnqzn) - ZHln Un b7 wn(un baé )7

Var() = %z@z,%(un,b,én)—ﬁw,%)%

\//—a}(Hln'(En) = _ZHln unb7 ¢ (unb) (Hln'(Ln)Q,
C/(;f(q;%aHlnqzn) - an unba Hln(“nba ) E(T;n) (Hlnwn)

The other quantities in the bias, MSE and variance formulas can be bootstrapped in a
similar way. The validity of this bootstrap procedure is supported by the fact that the
elements of u,, are iid, which ensures that the elements of 4, are asymptotically iid, and the
fact that these ratios of quadratic forms are asymptotically equivalent to their counter-parts
evaluated at the true parameter value. See, e.g., Efron (1979) and Lahiri (2003) for details

on general principles.

3.3 Estimation of the non-spatial parameters

We argued in the introduction that the estimation of the spatial parameter ) is the main
source of biasness in the estimation of the general SAR model. Once the QMLE An Of X is
bias-corrected, the estimators of the non-spatial parameters 8 and ¢ in the model will be

nearly unbiased. We now address this issue in a more formal manner.
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Recall A, = A,(\o) = I, — MoWh,, G, = W, A1 and 0, = G, X80 We have from (3),

Ba(Ale) = (XLX) T XL AR (AR,
(X! X)) X! (I, — A2W,,) Y,
= (XLX0) ' XL [(Ln — AoWy) — (ABS — X)W ]Y,,

- n(AO) - (quzXn) lelzwnYn(j‘gc - >\0)
= ﬁn(AO) - (quan)_qulmnn(j‘BC — o) — (Xr/zXn)_lX:anun(j\gc — Xo)-
E[Ba(A)] = Bo— (X, X)X maE(AR = Xo) — (X7, X5) 71X, GrElun (AR = Ao)]-
Now, Assumptions 3 and 4, and Lemma B.1 ensure that G,, is uniformly bounded in both
row and column sums. As the elements of X, are uniformly bounded by Assumption 5,
it follows that the elements of 1, are uniformly bounded. Thus, (X! X,)"'X!n, = O(1).
E(Abe — )\g) is O((ﬁﬂ)%) or O((%2)?) depending on whether Ab¢ s second- or third-order

n

bias-corrected. Hence, (3, (AR¢) is bias-corrected to order O((hy/n) or higher if
(X! X)) X!, GrE[un (A2 — Xo)] = O((hn/n)?), or smaller.

Although it is difficult to show this in general, it is likely to hold as its stochastic counterpart
Op(v/Ten/n), and the dependence between u,, and A\2° — )g is likely to be week. Monte
Carlo simulation results presented in the next section suggest that it is indeed the case.
The finite sample properties of &, ()\bc) can be studied in a similar manner. Noting
that Y, Al M, A,Y, = u, M,Gpuy, + ul, Myny,, and that Y, W) M,W,.Y,, = ul,G} M, Gru,, +
u, Gh My, + i, My, we have from (4),
G2(Abe) = 1yr AL (AL M, A, (A)Y,
1Y’( )\bCW) n(In, —)\bW) n
%Yri[In — AWy — (ABC - )\O)Wn) Mn(In — AWy — (ch - AO)WH]Yn
Ly Al M, ALYy — 2 AL MW, Yo (A6 — M) + LYW M, W, Y (RS — N)?
= A2()\0) — 2y A MW Yu (NS — M) + LY/ W! M, W, Y (ARE — Xg)?
= () — 2tr( )(Xbc —Xo) — z[ugLMnGnun + up, My — tr(Gn)](ch — o)
+1[6r(GaGl) + 1 Man) (N = Xo)? + Oy (b /),

where we have used the results ( )2u Myn, = Op(1), and ( )%unGﬁzMnnn = Op(1). So,
the bias of 62(Ab°) is of only third-order if

LB [(60(GnGl) + 1, M) (A = 20)2 = 2 (utf, My Gt + 1, M) (A3 — 20)| = O((%2)7),

Again, it is difficult to verify this condition in general. Our simulation results presented
in the next section suggest that this term is indeed of a very small magnitude. Note that
unlike the constrained QMLE 32()\o) which is an unbiased estimator of By, the constrained
QMLE 62()o) has to be modified as —2-62()\) to be an unbiased estimator of 2.
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3.4 Statistical inference

An immediate gain of the bias-correction and the standard error adjustment on A may
be the improved finite sample inferences for the model parameters. As we all know, usual
inferences for the model parameters are based on the t-ratios. Consider the second-order
bias-corrected estimator j\zd of A\. Denote the second-order bias of \, by bg(;\n). We
have from Corollary 3.1, E(A, — Ag) = ba(An) + O((£=)3/2). Let ba(An) be a /n/hp-
consistent estimator of by(An). As ba(An) = O((22)), ba(An) = ba(An) + Op((22)3/2), and
M = An = ba(Aa) + Op((22)%2) = Xo + A = E(An) + Op((22)3/2). Hence, M(A}?) =
E(\22 — \g)? = Var(\,) + O((22)2). On the other hand, M(A\2?) = Var(A??) + E(AR? —
Ao)? = Var(Abe2) 4 O((1=)2). Thus,

Var(A2?) = Var(\,) + O((hn/n)?),

i.e., the two variances agree to second-order.

Similarly, if 5\b‘33 is used, the two variances would agree to the third-order in the sense
that the difference would be of order O(( )5/2). These arguments lead to an important
conclusion: to make statistical inferences using a bias-corrected estimator, the standard
error (se) of the bias-corrected estimator can simply be taken as the se of the original
estimator. Thus, the inference for Ag using S\ZQ can be carried out based on Vg(j\n), and
the inference for A\g using Xﬁ‘ﬁ can be carried out based on Vg(j\n), given in Corollary 3.3.

The implication of this is that the usual ¢t-ratio for inference for A has a mean distortion,

A= M —B) =X +BM)  A—X  B(\)

se(An) se(An) se(Abe)  se(\n)

Similar arguments apply to the ¢-ratios for the regression coefficients. Monte Carlo results

presented in the next section demonstrates that this mean distortion can be quite big.

4 Monte Carlo Simulation

Extensive Monte Carlo experiments are carried out to investigate (i) the finite sample
performance of the QMLE A, and the bias-corrected QMLEs XELQ, 5\2&2, and 5\233 of the
spatial lag parameter )\, and (ii) the impact of the bias and se corrections on An on the
subsequent inferences for A and other model parameters. Also, through the process of our
investigation on the higher-order properties of the SAR model, we found some anomalies in
the documented Monte Carlo results in Bao and Ullah (2007a) and in Lee (2004a). Their

Monte Carlo experiments are rerun and the amended results reported.
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4.1 Monte Carlo Experiment I

To demonstrate the effectiveness of the proposed bias-correction procedure, and to inves-
tigate the impact of bias and se corrections on the subsequent interferences, a comprehensive

set of Monte Carlo experiments is carried out based on the following general SAR model:
Y, = AW, Y, + ﬂOln + anﬂl + Xn2ﬁ2 + Unp,

where 1,, is an n-vector of ones. For all the Monte Carlo experiments, 8 = {3, 81, G2} is set
at {5,1,0.5}, o varies in {1,2,3}, A takes values {0.5,0.2,—0.2, —0.5}, and n is chosen to
be {50, 100,200, 500}.10 Several ways of generating W, (Xn1, Xn2), and u,, are considered.
First, the values {z1;} or {1} of X1, and the values {z2;} or {z2} of X2 are,

MRSAR-A: {z1;} “ 10U(0,1), and {22} % 5N(0,1) + 5, or

MRSAR-B: {x1 i} = 52, + 2ir, and {x24r} = vy + Vi, OF

MRSAR-C: {z1;} = (22, + 27)/V/5, and {2} = (vr + Vir) / V2,
where in both MRSAR-B and MRSAR-C, {z,, 2, Uy, Vi } ud N(0,1), across all ¢ and r. Ap-
parently, MRSAR-A gives iid X values, and MRSAR-B and MRSAR-C give non-iid X values, or

different group means under group interaction, see Lee (2004a) and below for details.

Spatial layouts. Three general spatial layouts are considered in the Monte Carlo
experiments. The first is based on Rook contiguity, the second is based on Queen contiguity
and the third is based on the notion of group interactions. The methods used in generating
these three spatial layouts are similar to those used in Yang (2010).

The detail for generating the W,, matrix under rook contiguity is as follows: (i) index
the n spatial units by {1,2,---,n}, randomly permute these indices and then allocate them
into a lattice of £ x m(> n) squares, (ii) let W;; = 1 if the index j is in a square which is on
immediate left, or right, or above, or below the square which contains the index i, otherwise
Wij =0,4,5 =1,---,n, to form an n X n matrix, and (iii) divide each element of this matrix
by its row sum to give W,,. Similarly, one generates the W,, matrix under Queen contiguity
with additional neighbors sharing a common vertex with the unit of interest.

To generate the W,, matrix according to the group interaction scheme, suppose we have

k groups of sizes my,my, -+, my. Define W,, = diag{W,/(m; —1),j = 1,---,k}, a matrix

0As in Lee (2007a), the maximization of the profile likelihood function is performed globally without
imposing a restricted parameter space, such as A lies in (—1, 1), in our studies. This is important when the
true A value is negative and big, because QMLE is downward biased and a restricted lower bound, —0.9999
say, would result in the searching process to hit the lower bound quite often. This would in turn gives a
wrong impression that when A is negative, the QMLE becomes upward biased. It is believed that this is the
reason for the incoherent Monte Carlo results of Bao and Ullah (2007a).
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formed by placing the submatrices W; along the diagonal direction, where W; is an m; x m;
matrix with ones on the off-diagonal positions and zeros on the diagonal positions. The
group sizes {m;} can be the same or different, and independent or dependent on n, allowing
for a full range of spatial scenarios considered in Lee (2004a). The details are as follows:
(i) calculate the number of groups according to kK = K(n), and the approximate average
group size m = n/k, (ii) generate the group sizes (m1,mo, - -, my) according to a discrete
distribution centered at m, and (iii) adjust the group sizes so that Z;?:l mj =n.!

In our Monte Carlo experiments, we use K (n) = Round(n¢) with e = 0.35,0.50, and 0.75,
representing respectively the situations where (a) there are few groups of many spatial units
in each, (b) the number of groups and the sizes of the groups are of the same magnitude,

and (c) there are many groups of few elements in each. Clearly, h, = O(n'=¢). The group

sizes are drawn from a discrete uniform distribution from 0.5m to 1.5m.

Error distributions. To generate u,, = oe,, three distributions are considered: dgp1:
the elements {e;} of e, are iid standard normal, dgp2: {e;} are iid standardized normal

mixture, and dgp3: {e;} are iid standardized log-normal. Specifically, for dgp2,
ei=((1=&)Z; +&712Z) /(1 —p+p* o),

where ¢ ~ Bernoulli(p), and Z; ~ N(0, 1) independent of £. The parameter p represents the
proportion of mixing the two normal populations. In our experiments, we choose p = 0.1,
meaning that 90% of the random variates are from standard normal and the remaining
10% are from another normal population with standard deviation 7. We choose 7 = 4 to

simulate the situation where there are gross errors in the data. For dgp3,

ei = [exp(Z;) — exp(0.5)]/[exp(2) — exp(1)]*?,

which gives an error distribution that is both skewed and leptokurtic. The normal mixture
gives an error distribution that is still symmetric like normal but leptokurtic. Other non-
normal distributions, such as normal-gamma mixture and chi-square, are also considered

and the results (available from the author upon request) exhibit a similar pattern.

Finite sample performance of the spatial estimators. We report the Monte Carlo

mean, rmse and sd of \,, AP \P2 and AP under various combinations of the values for

' Clearly, this design covers the scenario considered in Case (1991). Typical forms of K(n) include
K(n) = n/m where m is a prespecified constant independent of n and K(n) = Round(n®). Lee (2007b)
shows that the group size variation plays an important role in the identification and estimation of econometric
models with group interactions, contextual factors and fixed effects. Yang (2010) shows that it also plays

an important role in the robustness of the LM test of spatial error components.
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(n, A,0), the error distributions, and the spatial layouts. Each set of results is based on
10,000 Monte Carlo samples. Partial results are summarized in Tables 1-5, where Table
1 corresponds to the Queen contiguity spatial layout with the regressor values generated
according to MRSAR-A, and Tables 2-5 correspond to the group interaction spatial layout
with number of groups k¥ = Round(n%%) or Round(n®3%) and the values of the regressors

are generated according to MRSAR-B. Some general observations are in order:

(i) the bias-corrected QMLESs 5\2‘32 and 5\2"3 are in general nearly unbiased and clearly
outperform the original QMLE A and the bias-adjusted QMLE 5\;‘10;

(ii) A, is always downward biased and some times the biasedness can be quite serious
depending on the spatial layout and the error standard deviation, and 5\?102 does not
seem to offer an improvement due to excluding the first term in (19);

(iii) 5\2‘33 improves over 5\2‘32 but is often marginal, suggesting that the second-order bias-

correction is often sufficient for the SAR model;!?

(iv) spatial layouts can have a huge impact on the finite sample performance of 5\7,, and

5\%‘32 - the stronger the spatial dependence the worse they perform;

(v) the error standard deviation o also has a big impact on the finite sample performance

of \, and 5\2"2 - the bigger the o is, the bigger are the biases, rmses and sds;

(vi) the value of X\ also affects the finite sample performance of A and 5\%" - generally

speaking the more negative the A is the larger are the biases, rmse and se; and finally

(vii) the sds of A,, Ab? and AP agree quite well in general, which is consistent with the

general reasoning given in Section 3.4.

(viii) the proposed bias-correction procedure works equally well for models with normal or

nonnormal errors.

Bias of other parameter estimators. The biasedness of By = Bn(j\n), Bﬁc =
Ba(Ab?), 62 = =2-62(),), and 62 = —Lo62(AE?) are investigated as well. Partial re-

sults are summarized in Tables 6-7 under MRSAR-A and Tables 8-9 under MRSAR-B, all under
group interaction spatial layouts. From the results, we see that ﬁn can be quite biased but
B,‘?bc is nearly unbiased, consistent with our theoretical arguments given in Section 3.3 that
once \, is bias-corrected, the corresponding QMLE of 8 becomes automatically unbiased.
Furthermore, Tables 6-7 show that the bias of Bn occurs only on the intercept, whereas

Tables 8-9 show that the bias occurs on all elements of Bn. In the former situation, the

12We note when A = —0.5, o = 3 and n = 50 (Tables 3 and 5), 5\2‘:3 does not seem to improve over 5\2°2,

but this may well be due to the large variability of An under these circumstances.
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values of X; and X, are iid and hence their group means are the same, whereas in the
latter situation they are not and as a result the group means of the values of X; and X»
are different. It is interesting to note that both 52 and 5,%”0 are nearly unbiased. Again, the

error distribution does not affect much the performance of the bias-corrected estimators.

The performance of the usual t-ratios. The behavior of the t-ratios for A\: ¢(\) =
(An — N)/(AVar(3,))2 and t¢(A) = (AB2 — A)/(V2(An))2, and the t-ratios for By: ¢(8) =
(Bn1 —ﬁl)/(A/\Er(ﬁAnl))% and t°¢(8;) = (3% —ﬁl)/(A/\Er(Bm))% is investigated, where AVar
denotes the asymptotic variance, and \72(5\”) is the bootstrap estimate of the second-order
variance given in (25). Partial Monte Carlo results are summarized in Tables 10 and 11.
From the results we see that, in terms of mean, standard deviation, and the nominal 5%
tail probability, the t-ratio for A with the second-order corrections on both the estimator
and its variance improves substantially over the usual t-ratio using the original QMLE and
asymptotic variance, when referred to the limiting distribution N(0,1). The t-ratios for
the [ coefficients also show some improvements in making inference for . Once again,
the exact error distribution does not may a significant difference on the performance of the
t-ratios.

We have tried using (23) instead of (25) for obtaining the second-order se of A, but
found that it can give rise to negative estimates of the variance when spatial dependence is
strong, error standard deviation is big, and sample size is small. This is because when the
variabilities of the random quantities are large, the second-order term 2Cov(a_y/5,_,) in
(23) can be larger in magnitude than the first order term Var(a_; /2) in a certain bootstrap
sample resulting a negative variance estimate. However, with the addition of a third-order

term Var(a_1) as in (25), the variance estimate is guaranteed to be positive.

4.2 Monte Carlo Experiment 11

The Monte Carlo experiment conducted by Bao and Ullah (2007a) is replicated and
extended for two purposes: (i) to compare our bootstrap-based bias correction with their
analytical bias correction, and (ii) to investigate the cause of incoherent Monte Carlo results
of Bao and Ullah (2007a) for the case of A = —0.9 and J = 10, where J is the number of
neighbors each spatial unit has.

The empirical means and rmses for the four estimators: the MLE ), the bias-adjusted
MLE P22 given in (22), the bias-corrected MLE AP given in (21), and the analytically
bias-corrected MLE AP of Bao and Ullah (2007a), are summarized in Table 12. The results
show that (i) 5\2“2 and 5\2“2 are the same as predicted by the theory and they behave very
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similarly to 5\2“ which is based on the analytical formulas of Bao and Ullah (2007a), showing
the bootstrap procedure works well, and (ii) the results show a very coherent behavior of
the MLE and the bias-corrected MLEs in that the MLE is almost unbiased when J is small
and is downward biased when J is big. In cases where the MLE is biased, the bias-corrected
estimators always be able to correct the bias. However, the Monte Carlo results of Bao and
Ullah show a different picture for the cases where J is large and A is large and negative:
the MLE is upward biased and the bias-correction does not work. A possible explanation

for this can be found in Footnote 10.

4.3 Monte Carlo Experiment III

The Monte Carlo experiments of Lee (2004) are rerun and extended again for two
purposes: i) to further compare MLEs (estimators under normal errors) and second-order
bias-corrected MLEs under a model without intercept, and ii) to amend the anomalies in
his Monte Carlo results. Under the identical set-up but with more Monte Carlo replications
(10,000 vs 400) for each case, we found that with the number of districts R = (30, 60, 120)
and the number of members in each district m = (2, 3, 5, 1020, 50, 100), the MLEs all perform
very well in all cases, showing a big contrast to the results of Lee (2004a). However, when
the values for R and m are switched, the results obtained are more in line with those of Lee
(2004a) in terms of bias but not in terms of sd.

Table 13 corresponds to Tables I & II in Lee (2004a). Tables 14 summarize the results
of the Monte Carlo experiments when the values for R and m are switched, i.e., R =
(3,5,10,20,50,100) and m = (30,60,120). The results in Tables 14 are now more in line
with Lee’s results in terms of bias but not in terms of sd of j\n. The results further show
that for a given R value, increasing the m value does not necessarily reduce the bias of M.
However, for a given m, increasing R clearly improves the performance of the estimators
with both bias and sd significantly reduced.

From the theoretical point of view, our results make more sense as increasing m enlarges
the degree of spatial dependence, making the estimation of the spatial parameter harder
(or at least not easier). In contrast, increasing R clearly reduces the ‘degree’ of spatial

dependence, making the estimation of the spatial parameter much easier.

5 Conclusions

To address the biasedness issue in a model containing nonlinear, location as well as

scale parameters, one needs only to focus on the estimation of the nonlinear parameter
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and use the concentrated estimating equation to obtain higher-order expansions to achieve
bias-correction. This turns a multidimensional problem to a single dimension and greatly
simplifies the higher-order expansions. It is argued that for these abstract formulas to
be practically useful, it is necessary to have a feasible method for estimating the various
expectations in the formulas. Thus, a simple bootstrap procedure is introduced. These ideas
and methods are explored in a full detail in the context of a spatial autoregressive model.
Monte Carlo results show that this approach is quite effective in that it almost eliminates
the bias of the QMLE, which can be quite large when spatial dependence is strong.

The methods introduced in this paper can be applied to other models of similar nature.
For example, a panel model with a spatial lag where the QMLE of the spatial lag parameter
would incur biasness, linear regression with a response transformation where the QMLE
of the transformation parameter may incur biasness, a dynamic regression model where
the QMLE of the dynamic parameter may be biased, etc. While applying the proposed
methods to other models of a similar structure are interesting topics for future research,
a more detailed study on inferences following a bias-corrected estimation of the spatial
parameter may be of a immediate interest. These inferences include tests and confidence
intervals for spatial effects, tests and confidence intervals for regression effects, predicting
future response values, etc., based on higher-order corrections on the mean as well as on
the standard errors.

Our methods can in principle be generalized to allow for asymptotic (first-order) bias
based on a CEE, and/or to the cases where there are several (though still only a few)
bias-inducing parameters in the model. Typical models of both features are the panel
models (dynamic or nonlinear) with fixed effects, and in these cases, it would be interesting
to extend our methods to give higher-order bias reduction to the problems considered in
Hahn and Kuersteiner (2002) and to offer an alternative to the jackknife and analytical
bias reduction method of Hahn and Newey (2004) which is based on an iid data set-up.
Other models of more than one bias-inducing parameters include the SAR model where the
disturbances also follow a SAR process giving two spatial parameters, spatial panel models

with random effects, etc. We are planning to pursue these issues in future research.
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Appendix A: Proofs of the Results in Section 2

Proof of Theorem 2.1: Assumption B allows the Taylor expansions of 1/~Jn(5\n) =0
around A\g to be carried out up to third-order, and Assumptions A and D guarantee that
the errors in the Taylor approximations are of order O,(n~1), O,(n=%/2), and O,(n=2),

respectively, for the 1st-, 2nd- and 3rd-order Taylor expansion. We thus have,

0 = thn+ Hin(A— Xo) + Op(n7"),
~ . 1 . B
0 = ¥+ Hin(An— o) + EHQH(An —X0)? + 0,(n~%?),

~ ~ 1 1 ~
0 = 'L/Jn + Hln(/\n - )\O) + §H2n()\n - /\0>2 + EHQn()\n - /\0>3 + Op(n_2)7

which give, as —Hy,! = O,(1) from Assumption C,

An—Xo = —Hpjp, +0,(n7Y), (A-1)
R - 1 R

Aw=Ro = —Hi % = 5Hi Hon(An = 20)* + Op(n ™7, (A-2)
- - 1 N 1 N

M=o = —Hp o, — §H1—7}H2n(xn — )% - ng‘angn()\n — X0)% 4+ 0p(n?)(A-3)

Under Assumptions B and C, Q, = —E(Hy,)™' = O(1), Hy,! = O,(1), and Hf, =
Hy, —E(Hi,) = Op(nl/ 2). These conditions lead to the following result

—Hy = (071 = Hy) 7= (1= QuHY,) T = Qu + Q2HS, + QS HTE + 0p(n7*/?),

which reduces to —H,! = Q, + Q2HS, + Op(n71), or = Q, + Oy(n~1/2). Substituting

—H;,! = Q, + 0,(n"1/?) into (A-1) gives a first-order stochastic expansion for Ay,
An = X0 = Lty + Op(n) =a_y )5+ Op(n7h). (A-4)

Substituting (A-4) into (A-2) for A, — Ao, Q, + Q2HS, 4 Op(n~!) into (A-2) for the first
—H!, and Q, + Op(nfé) into (A-2) for the second —Hy,!, give a second-order stochastic

expansion for A\, which takes the form after some algebra,
j\n — Ao = a_1/2 +a-1+ Op(n_3/2), (A—5)

where a_; = Q,Hi,a_1/5 + %QnE(Hgn)(aal/Q). Finally, substituting (A-5) into (A-3) for
An — Ao in the second term, (A-4) into (A-3) for A, — Ag in the third term, €, + Q2HJ +
Q3 HP2 4+ 0,(n~3/?) into (A-3) for the first —Hy,!, Q, + Q2HS, + O,(n!) into (A-3) for
the second —Hy,}, and Q, + O,(n~/2) into (A-3) for the third —Hj,!, give a third-order

stochastic expansion for 5\n,
j\n — )\0 == a_1/2 +a_1+ CL_3/2 + Op(n_z), (A-6)
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where a_3/5 = Q, H{,a-1 + %QnHé’n(aZ_UQ) + QnE(Ha2pn) (a1 j2a-1) + %QHE(Hgn)(a?ilﬂ).

Proof of Corollary 2.1: We have b_1 = E(a_y/3) + E(a-1), and b_3,, = E(a_3/3)-
The result follows if the expected error term E(O,(n~2)) = O(n~2), which follows the

assumption in the corollary.

Proof of Corollary 2.2: We have MSE(),) = El(a_1/2 +a-1+ a_3/2 + Op(n2)?].
Under the assumption that a quantity bounded in probability has a finite expectation stated
in the corollary, we have MSE(),,) = m_; +m_gz/p+m_o +0(n~°/?), wherem_; = E(a2_1/2),
m_z/3 = 2E(a_1/9a-1), and m_s = 2E[(a_1/5a_3/5) + a®]. The rest is straightforward.

Proof of Corollary 2.3: Straightforward from the proofs of Corollaries 2.1 and 2.2.

Appendix B: Proofs of the Results in Section 3

To prove the results of Section 3, we need the following lemmas.

Lemma B.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {A,} and {B,} be two
sequences of n X n matrices that are uniformly bounded in both row and column sums. Let
Cn be a sequence of conformable matrices whose elements are uniformly O(h,,'). Then

(i) the sequence {A, By} are uniformly bounded in both row and column sums,

(ii) the elements of A, are uniformly bounded and tr(A,) = O(n), and

(iii) the elements of A,Cy, and Cp A, are uniformly O(h,t).

Lemma B.2 (Lee, 2004a, p.1918): Let X,, be an n x k matriz such that (i) its elements
are uniformly bounded; and (ii) lim, %X;LXn exists and is nonsingular. Then the pro-
jectors P, = X, (X! X,) X! and M,, = I, — X,,(X} X))t X!, are uniformly bounded in

both row and column sums.

Lemma B.3 (Lemma A.9, Lee, 2004b): Let {A,} be a sequence of n x n matrices that
are uniformly bounded in both row and column sums. For M, defined in Lemma B.2,

(i) tr(M,A,) = tr(A,) + O(1)

(i1) tr(Al M, Ay,) = tr(AlL An) + O(1)

(iii) tr[(M,A,)? = tr(A2) + O(1), and

(iv) tr[(A] M, A,)?] = tr[(M, Al A,)?] = tr[A] An)?] + O(1)

Furthermore, if the elements ay ;j of A, are O(hy,') uniformly in all i and j, then,
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(v) tr*(MpAy,) = tr?(A,) + O(3:) and
(m') tr Z?:l((MnAn)ii)Q = ?:1((MnAn)ii)2 + O(hgl),
where (M, Ay,)ii is the ith diagonal element of M, A,,.

Lemma B.4 (Lemma A.12, Lee, 2004b, extended): Let {A,} be a sequence of n x
n matrices that are uniformly bounded in either row or column sums. Suppose that the
elements ani; of A, are O(h,t) uniformly in all i and j. Let u, be a random n-vector of
1id elements with finite 4th moment, and b, be a constant n-vector of which the elements are
of uniform order O( _1/2). Then (i) E(us Anun) = O(3%), (it) Var(u, Apun) = O(3%), (i)
U Antin = Op(£2), (i) uly Antn — B(ul, Anun) = Op((7 )%), and (v) wy Aunbn = Op((72)7).

Note that the results (iv) and (v) in Lemma B.4 extend Lemma A.12 of Lee (2004b),
where (iv) follows directly from the generalized Chebyshev inequality and the result (ii):

W!u Apuy —E(ul, Apuy,)| > M) < WTVar(unAnun) = ++;0(1); and (v) follows from
the generalized Chebyshev inequality: P(@W;Anbnﬂ > M) < ﬁ%"Var(u;Anbn) =
o bl Al Apb, = 320(1).

Lemma B.5 (Kelejian and Prucha, 2001, p.227, extended): Let {A,} be an n X n
matriz of elements {an i;}, by be annx 1 vector of elements {by;}, and u,, an nx1 random

vector of iid elements, having mean zero, variance 03, skewness 7y, and excess kurtosis k.
Let Qp, = ul, Apuy + b, uy. Then,

(i) B(Qn) = ogtr(Ay),
(”) Var(Qn) - UOtr(A A/ + A2) + UOK‘ Zz 1 an i + JO Zz 1 b + 208’7 Z?:l bn,ian,ii-

_1
Furthermore, if {an,i;} are of uniform order Op(hyt), {bni} are of uniform order Op(hn?),

and {A,} are uniformly bounded in either row or column sums, then

(Z”) E(Qn) = O(hl% and

n

() Var(Qn) = O(3%).
Proof of Lemma 3.1. By a Taylor series expansion (of &;02 around o3), we have,

hoRi, = 26 2viAL M W,Y,
= lwg 2y AL M W,Y, — Mgt (V)AL MW, Y,) (62 — 0F)
—la (G0 — 00 (VAL M W,Y0) (67 — 0),

n

where 52 lies between 62, and oZ. Now, Y, A" M, W,.Y,, = u!, M, Gpuy + ul, Myn,. Lemma
B.4(iii) implies 224/ M, Gru, = Op(1) and Lemma B.4(v) implies 224/ M, n, = O, ((L= )1 z).
It follows that b2 A! MW, Y, = bl M,Gpu, + Op((22)7) = Op(1). Furthermore,
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Assumptions 1-6 lead to 62, — 08 = Op(n_%), which implies 7,5 — 05 * = Op(n_%). Thus,

hn
hnRip = ==ty My Gty + Op((hn/1)?) (B-1)
ogn
On the other hand,
E(hnRin) = og?E(Y,A,M,W,Y,) — oy *E[(Y, Al MW, Y5 ) (620 — 03)]

— [(51;(;l - ‘70_4)(Y72A41ManYn)(5721,0 - 08)],

n

where the first term becomes %”tr(MnGn), the last term is O(n~1) under Assumption 7.

Now, by Cauchy-Schwarz inequality, and using Lemma B.5, we have
IE[(Y Al MW, Y5 (620 — o) < 2{Var(Y; A, M, W,,Y,,)Var(u), Myu, — no2)}2
= L{Var(u}, M, Gpun + uj, Myny)Var(u), Mypu, — nog)}
1 _1
= +{O(F)0(n)}2 = O(ha?).

l=

These lead to N

E(hn Rin) = —tr(MyGn) + O(RY/? /n). (B-2)

Taking difference between (B-1) and (B-2) and using Lemma B.4(iv), we obtain hy, R, —
/
E(hnRun) = v, MaGintin — 5246 (M,G) + Op((B2)%) = O(27) = 0p((2) ).
0

n n n

Following similar arguments, we show that

hy, 1
hnRon =~ (ul, Gl My Gt + 1), Maia) + Op((F/0)?), (B-3)
0
hn, hy
E(hnRay) = —tr(GLMnGy) + =51y Mun, + O(h/? /n), (B-4)
n ogn
which gives the result in Lemma 3.1(ii) upon applying Lemma B.4(iv). Q.E.D.

Proof of Theorem 3.1. Clearly, the ¢)(\) function given in (12) is differentiable for
A in a neighborhood of )¢ with its first three derivatives H,,(\),r = 1,2, and 3, given in
(13)-(15). These allow us to implement the following third-order Taylor expansion:

~ ~ o 1 ~
0= "/Jn()\n) = ¢n + Hln()\n - )\0) + §H2n(/\n - )\0)2 + 6H3n(/\n - )\0)3
1

6 [H?m(;‘) - H3n](5‘n - )‘0)3a

+

where A lies between 5\n and Ag. Under Assumptions 1-6, 5\n is y/n/hy-consistent. Incor-
porating h,, and following the arguments leading to the result of Theorem 2.1, the result of

Theorem 3.1 follows if the following results hold:
~ 1 ~
() Pn = O((12)2) and E(¢,) = O(L2);
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(b) E(Hpn) = O(1) and Hy, = Op((2)3),r = 1,2,3;
(c) Hy,} = Op(1) and E(Hy,)~! = O(1); and

1

(d) Hzn(X) — Han = Op((%2)2).
First, Lemma B.1 and Assumptions 3 and 4 give h,T;, = O(1),r = 1,2, 3.

For (), by (B-1), ¥n = —hnTon + haRin = —hyTon + 2=l My Gy, + Op((22)3); by
Lemma B.3(i), tr(M,Gy) = tr(Gp)+0(1) = nTp,+0(1). Thus, Y = p((q)z). By (B-2),
() = —hnTon + Btr(M,Gy) + O(2). By Lemma B.3(1), tr(MyGy) = t2(Gn) + O(1).
It follows that E(¢,) = O(%z).

n

For (b), we have under Assumption 8,

O((k2)2) = h2E(Ry, — ER1,)? = R2E(R2,) — h2
E((hnR1n)?) = E?(hnRin) + O((L2)2).
O((k2)2) = h2E(Ry, — ERy,)? = h2E(RS,) — h2
= E((hnRa2n)?) = (BhnRop)? + O((L2)2).
O((2)2) = h3E(Ry, — ERy,)?
— h3E(R}, — 3R?,E(R1,) + 3Run(
= h3E(R},) — hi (BR1n)® + O((22)?
= B((hnR1n)?) = (BhnRin)? + O((L2

=

R n)2 - (ERln)g)

Similarly, one shows

E((hnRin)*) = (EhyRin)* + O((L2)
E((hnR2n)2) = (EhnR2n) ((Tn)
E((hpR1n)* (hnRon)) = (EhnRin)* (Ehy, Rgn) +O((k2)3),s = 1,2.

Now, Lemma 3.1 implies

(hnRi1p)® = (BhnRin)® + Op( (k2
(hnRan)? = (EhyRoy)? + Oy( (e

As h, T, = O(1),r = 1,2,3, the above results lead immediately to

E(H,,) =O0(1),r=1,2,3,  Hy, — E(Hy,) = 0,((k2)3),
Hay — E(Hzn) = Op((35)%),  Han — E(Hsn) = Op((55)7).

For (c), from (B-2), (B-4), and the result E((h, R1,)?) = E2(h,, Rln)—kO((#)%) obtained
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above, we have

E(Hin) = —haTin — BE(hnRon) + 2E((hnR1n)?)
= —hnTin — t2tr(G, M, G ) — —nnMnnn —O(ha)
+72 (L tr (M, G )+O( ))
= T — B (G M Gr) — L, My + 2 (B2 6r(M, G)? +o(l)
= g (G}) - B2te (GG )— h P My + (7" r(Gn))? + O(t2)
= —Latr((Gn — Tonln)?) — Btr((Go — TonLn) (GuTonTn)) — 2y, M + O(52).

This shows that E(Hy,) < 0 for n sufficiently large and thus E(Hy,)™! = O(1). As Hy, =
E(Hi,) + Op((22)3), we have Hy,! = Op(1).

For (d), we have

62N = ivrAl (MM, A,(N)Y,
lY'A' My AnYy —2(X = X)) 2V, AL MW, Ys + (A — M) LY W) M, W, Y,
0 = 2(A = 20)0p (1) + (X = X0)?Op(hy, )
= no—f—Op(( nn )2), and thus

hoRin(N) = 672N =Y AL (N MW, Y,
672Ny AL MW, Y, — 672(
(AnRin + Op((hun)?)) — Op((12)3

= hoRin + Op((12)7).

1

(
Similarly, one shows that h,Ran(X) = hnRan 4+ Op((22)2). By the mean value theorem,
hnT5n(N) = 2tr(GE(N)) = ntr(G2) +4824r(G3 (X)) (A= o), where A lies between X and Ao.
By Assumption 4 and Lemma B.1, %"tr(Gf’L (A)) = O(1). Tt follows that hy,Ts,(X) — h, T3, =
Op((ﬁnﬂ)%). These lead to Hz,(\) — Hz, = Op((%”)%). Q.E.D.

Proof of Corollary 3.1. Straightforward.
Proof of Corollary 3.2. Straightforward.

Proof of Corollary 3.3. Straightforward.
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Table 1. Empirical Mean[rmse|(sd) of the (Q)MLE of A: Queen Contiguity
MRSAR-A: 0 = 3; dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal

A n dgp An )\Ea )\ZCQ )\'ff?’

0.5 50 1| 0.418 [.187](.168) | 0.396 [.198](.168) | 0.488 [.168](.168) | 0.488 [.167](.167)
2| 0.423 [.178](.161) | 0.402 [.189](.161) | 0.487 [.160](.160) | 0.487 [.160](.159)
3| 0.431 [.166](.150) | 0.411 [.176](.151) | 0.486 [.150](.149) | 0.486 [.150](.149)

100 1| 0.465 [.107](.101) | 0.457 [.110](.102) | 0.495 [.101](.101) | 0.495 [.101](.101)
2 | 0.466 [.104](.099) | 0.459 [.108](.099) | 0.494 [.099](.099) | 0.494 [.099](.099)
3| 0.470 [.096](.091) | 0.463 [.099](.092) | 0.494 [.091](.090) | 0.493 [.091](.090)

200 1| 0.484 [.073](.071) | 0.481 [.074](.071) | 0.499 [.071](.071) | 0.499 [.071](.071)
2 | 0.483[.072](.070) | 0.481 [.073](.070) | 0.498 [.070](.070) | 0.498 [.070](.070)
3 | 0.485 [.067](.065) | 0.483 [.068](.065) | 0.498 [.065](.065) | 0.498 [.065](.065)

500 1| 0.494 [.046](.046) | 0.493 [.046](.046) | 0.501 [.046](.046) | 0.501 [.046](.046)
2 | 0.493 [.046](.046) | 0.492 [.046](.046) | 0.500 [.046](.046) | 0.500 [.046](.046)
3| 0.493 [.044](.044) | 0.492 [.044](.044) | 0.499 [.044](.044) | 0.499 [.044](.044)

0.2 50 1| 0.144 [.172](.162) | 0.130 [.177](.162) | 0.191 [.163](.163) | 0.192 [.163](.162)
2 | 0.150 [.163](.155) | 0.137 [.168](.156) | 0.193 [.156](.156) | 0.194 [.155](.155)
3| 0.156 [.152](.145) | 0.143 [.157](.146) | 0.190 [.145](.144) | 0.191 [.145](.144)

100 1| 0.170 [.126](.123) | 0.166 [.128](.123) | 0.198 [.123](.123) | 0.198 [.123](.123)
2| 0.171 [.121](.118) | 0.167 [.123](.118) | 0.197 [.118](.118) | 0.196 [.118](.118)
3| 0.173 [.112](.109) | 0.170 [.113](.109) | 0.196 [.109](.109) | 0.195 [.109](.109)

200 1| 0.183[.093](.091) | 0.179 [.094](.092) | 0.200 [.092](.092) | 0.200 [.092](.092)
2| 0.183[.090](.088) | 0.179 [.091](.089) | 0.200 [.089](.089) | 0.200 [.088](.088)
3| 0.183 [.086](.085) | 0.180 [.087](.085) | 0.199 [.085](.085) | 0.198 [.085](.085)

500 1| 0.194 [.055](.055) | 0.193 [.055](.055) | 0.200 [.055](.055) | 0.200 [.055](.055)
2 | 0.194 [.054](.054) | 0.193 [.055](.054) | 0.200 [.054](.054) | 0.200 [.054](.054)
3| 0.195 [.053](.052) | 0.194 [.053](.053) | 0.200 [.053](.053) | 0.200 [.053](.053)

-0.2 50 1| -0.248 [.199](.193) | -0.255 [.201](.193) | -0.199 [.197](.197) | -0.197 [.196](.196)
2 | -0.244 [.194](.189) | -0.251 [.196](.189) | -0.201 [.192](.192) | -0.199 [.191](.191)
3 | -0.241 [.167](.162) | -0.247 [.169](.162) | -0.205 [.164](.164) | -0.206 [.163](.163)

100 1| -0.221 [.133](.132) | -0.226 [.134](.132) | -0.198 [.133](.133) | -0.198 [.133](.133)
2 | -0.222 [.129](.127) | -0.228 [.131](.128) | -0.202 [.129](.129) | -0.201 [.129](.129)

-0.217 [.121](.120) | -0.222 [.122](.120) | -0.199 [.120](.120) | -0.199 [.120](.120)

200 1| -0.214 [.105](.104) | -0.219 [.106](.104) | -0.201 [.105](.105) | -0.200 [.105](.105)
2 | -0.214 [.103](.102) | -0.218 [.104](.102) | -0.201 [.103](.103) | -0.201 [.103](.103)
3| -0.214 [.097](.096) | -0.218 [.098](.096) | -0.202 [.097](.097) | -0.202 [.097](.097)

500 1 | -0.206 [.065](.065) | -0.207 [.065](.065) | -0.200 [.065](.065) | -0.200 [.065](.065)
2 | -0.206 [.065](.064) | -0.207 [.065](.065) | -0.200 [.065](.065) | -0.200 [.065](.065)
3 | -0.204 [.061](.061) | -0.205 [.061](.061) | -0.199 [.061](.061) | -0.199 [.061](.061)

-0.5 50 1| -0.531 [.217](.215) | -0.543 [.221](.216) | -0.489 [.223](.223) | -0.483 [.222](.221)
2 | -0.531 [.206](.204) | -0.543 [.210](.205) | -0.493 [.210](.210) | -0.488 [.209](.209)
3| -0.527 [.187](.185) | -0.537 [.190](.186) | -0.495 [.191](.190) | -0.490 [.189](.189)

100 1| -0.523 [.148](.146) | -0.532 [.150](.147) | -0.495 [.149](.148) | -0.494 [.148](.148)
2 | -0.523 [.145](.143) | -0.532 [.147](.143) | -0.497 [.145](.145) | -0.496 [.145](.145)
3 | -0.520 [.133](.131) | -0.528 [.135](.132) | -0.498 [.133](.133) | -0.497 [.133](.133)

200 1| -0.511 [.108](.108) | -0.515 [.109](.108) | -0.498 [.109](.109) | -0.498 [.109](.109)
2 | -0.509 [.107](.106) | -0.513 [.107](.107) | -0.497 [.107](.107) | -0.497 [.107](.107)
3| -0.510 [.102](.101) | -0.513 [.103](.102) | -0.499 [.102](.102) | -0.499 [.102](.102)

500 1 | -0.503 [.065](.064) | -0.504 [.065](.065) | -0.498 [.065](.065) | -0.498 [.065](.065)
2 | -0.504 [.064](.064) | -0.505 [.065](.064) | -0.499 [.064](.064) | -0.499 [.064](.064)
3 | -0.504 [.063](.063) | -0.505 [.063](.063) | -0.499 [.063](.063) | -0.499 [.063](.063)
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Table 2. Empirical Mean|rmse](sd) of the (Q)MLE of A\: Group Interaction with k = n®5
dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal

MRSAR-B: o = 1;

A n dgp An Aba Abe2 Abes

0.5 50 1] 0.482[.062](. 0.471 [.066](.060) | 0.498 [.060](.060) | 0.499 [.060](.060)
2| 0.483 [.062](. 0.473 [.066](.060) | 0.496 [.060](.060) | 0.498 [.060](.060)

3| 0.485 [.057](. 0.476 [.061](.056) | 0.495 [.055](.055) | 0.498 [.055](.055)

100 1| 0.492 [.042)(. 0.484 [.044](.041) | 0.500 [.042](.042) | 0.500 [.042](.042)

2 | 0.491 [.042](. 0.485 [.044](.041) | 0.499 [.042](.041) | 0.499 [.042](.042)

3| 0.492 [.041](. 0.486 [.043](.040) | 0.498 [.040](.040) | 0.500 [.040](.040)

200 1| 0.495 [.032](. 0.491 [.033](.032) | 0.500 [.032](.032) | 0.500 [.032](.032)

2 | 0.495 [.032](. 0.491 [.033](.031) | 0.499 [.032](.032) | 0.499 [.032](.032)

3| 0.495 [.031](. 0.492 [.032](.031) | 0.499 [.031](.031) | 0.500 [.031](.031)

500 1| 0.498 [.021](. 0.496 [.021](.021) | 0.500 [.021](.021) | 0.500 [.021](.021)

2 | 0.498 [.021](. 0.496 [.021](.021) | 0.500 [.021](.021) | 0.500 [.021](.021)

3| 0.498 [.021](. 0.496 [.021](.021) | 0.500 [.021](.021) | 0.500 [.021](.021)

02 50 1| 0.173 [.103](. 0.148 [.111](.098) | 0.201 [.102](.102) | 0.204 [.102](.102)
2| 0.173 [.101](. 0.151 [.108](.096) | 0.198 [.099](.099) | 0.203 [.099](.099)

3| 0.174 [.098](. 0.156 [.105](.095) | 0.193 [.095](.094) | 0.200 [.095](.095)

100 1| 0.183 [.076](. 0.170 [.079](.073) | 0.201 [.074](.074) | 0.201 [.074](.074)

2| 0.183 [.075](. 0.170 [.079](.073) | 0.199 [.074](.074) | 0.201 [.074](.074)

3| 0.182 [.072](. 0.171 [.076](.071) | 0.196 [.070](.070) | 0.198 [.070](.070)

200 1| 0.193 [.049](. 0.187 [.050](.048) | 0.200 [.049](.049) | 0.201 [.049](.049)

2 | 0.192 [.049](. 0.186 [.050](.048) | 0.199 [.049](.049) | 0.199 [.049](.049)

3| 0.193 [.048](. 0.188 [.049](.047) | 0.199 [.048](.048) | 0.200 [.048](.048)

500 1| 0.197 [.032](. 0.194 [.032](.032) | 0.200 [.032](.032) | 0.200 [.032](.032)

2| 0.197 [.032](. 0.194 [.032](.032) | 0.200 [.032](.032) | 0.200 [.032](.032)

3| 0.196 [.032](. 0.194 [.032](.031) | 0.199 [.031](.031) | 0.200 [.031](.031)

-0.2 50 1 |-0.240 [.143](. -0.272 [.153](.135) | -0.198 [.142](.142) | -0.192 [.142](.142)
2 | -0.238 [.139](. -0.267 [.148](.133) | -0.201 [.137](.137) | -0.192 [.137](.137)

3 |-0.237 [.130 -0.259 [.139](.126) | -0.207 [.126](.126) | -0.195 [.127](.127)

100 1 -0.226 [109 -0.245 [.114](.105) | -0.199 [.108](.108) | -0.197 [.108](.108)

2 | -0.226 [.109](. -0.245 [.114](.105) | -0.201 [.107](.107) | -0.199 [.107](.107)

3| -0.226 [.111](. -0.241 [.116](.109) | -0.204 [.108](.108) | -0.200 [.108](.108)

200 1 |-0.211 [.075](. -0.220 [.076](.074) | -0.200 [.075](.075) | -0.200 [.075](.075)

2 | -0.210 [.075](. -0.218 [.076](.074) | -0.199 [.074](.074) | -0.199 [.074](.074)

3| -0.211 [.075](. -0.218 [.076](.074) | -0.201 [.075](.075) | -0.200 [.075](.075)

500 1 | -0.206 [.050](. -0.210 [.050](.049) | -0.200 [.050](.050) | -0.200 [.050](.050)

2 | -0.206 [.049](. -0.210 [.050](.049) | -0.200 [.049](.049) | -0.200 [.049](.049)

3 | -0.207 [.050](. -0.211 [.051](.050) | -0.202 [.050](.050) | -0.202 [.050](.050)

-0.5 50 1] -0.548 [.175](. -0.581 [.183](.164) | -0.494 [.173](.173) | -0.485 [.174](.173)
2 | -0.547 [.171 -0.576 [.179](.162) | -0.499 [.169](.169) | -0.489 [.170](.169)

3| -0.538 [160 -0.563 [.166](.154) | -0.501 [.157](.157) | -0.490 [.159](.159)

100 1| -0.522 [.120](. -0.539 [.123](.117) | -0.496 [.120](.120) | -0.494 [.120](.120)

2 | -0.522 [.119](. -0.538 [.123](.117) | -0.498 [.119](.119) | -0.496 [.119](.119)

3 | -0.521 [.113](. -0.535 [.117](.111) | -0.501 [.112](.112) | -0.498 [.113](.112)

200 1| -0.514 [.089](. -0.526 [.091](.087) | -0.499 [.088](.088) | -0.499 [.088](.088)

2 | -0.517 [.090](. -0.528 [.092](.088) | -0.502 [.089](.089) | -0.501 [.089](.089)

3 | -0.514 [.086](. -0.524 [.088](.084) | -0.501 [.085](.085) | -0.500 [.085](.085)

500 1 | -0.506 [.059](. -0.511 [.060](.059) | -0.500 [.059](.059) | -0.499 [.059](.059)

2 | -0.507 [.058](. -0.512 [.059](.058) | -0.500 [.058](.058) | -0.500 [.058](.058)

3 | -0.506 [.058](. -0.511 [.059](.058) | -0.500 [.058](.058) | -0.500 [.058](.058)
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Table 3. Empirical Mean|rmse](sd) of the (Q)MLE of A\: Group Interaction with k = n%5
MRSAR-B: 0 = 3; dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal

A n dgp An )\Ea )\ZCQ )\'ff?’

0.5 50 1| 0.398 [.174](.141) | 0.350 [.210](.146) | 0.490 [.137](.137) | 0.495 [.136](.136)
2 | 0.401 [.171](.139) | 0.354 [.205](.144) | 0.484 [.135](.134) | 0.490 [.133](.133)
3| 0.414 [.156](.131) | 0.373 [.187](.137) | 0.485 [.124](.123) | 0.493 [.121](.121)

100 1| 0.445 [.116](.102) | 0.420 [.131](.104) | 0.494 [.102](.101) | 0.495 [.101](.101)
2 | 0.447 [.111](.098) | 0.423 [.127](.100) | 0.494 [.098](.097) | 0.495 [.097](.097)
3| 0.453 [.103](.091) | 0.429 [.117](.093) | 0.492 [.091](.090) | 0.494 [.090](.090)

200 1| 0470 [.077](.071) | 0.453 [.086](.072) | 0.497 [.072](.072) | 0.497 [.072](.072)
2 | 0.472 [.075](.069) | 0.456 [.083](.070) | 0.498 [.070](.070) | 0.499 [.070](.070)
3| 0.475 [.072](.067) | 0.459 [.079](.068) | 0.498 [.067](.067) | 0.499 [.067](.067)

500 1| 0.485 [.053](.051) | 0.477 [.056](.051) | 0.499 [.051](.051) | 0.499 [.051](.051)
2 | 0.487 [.051](.050) | 0.479 [.054](.050) | 0.500 [.050](.050) | 0.500 [.050](.050)
3| 0.486 [.051](.049) | 0.479 [.054](.049) | 0.499 [.049](.049) | 0.499 [.049](.049)

0.2 50 1| 0.068 [.239](.199) | 0.007 [.280](.202) | 0.191 [.201](.200) | 0.199 [.198](.198)
2 | 0.077 [.225](.188) | 0.018 [.264](.192) | 0.189 [.189](.188) | 0.198 [.186](.186)
3| 0.092 [.207](.176) | 0.038 [.242](.180) | 0.185 [.175](.174) | 0.196 [.172](.171)

100 1| 0.123 [.168](.149) | 0.086 [.190](.152) | 0.198 [.150](.150) | 0.200 [.150](.150)
2| 0.122 [.167](.148) | 0.085 [.189](.150) | 0.192 [.148](.148) | 0.195 [.148](.148)
3| 0.130 [.152](.134) | 0.095 [.173](.137) | 0.190 [.135](.135) | 0.192 [.134](.134)

200 1| 0.152 [.121](.111) | 0.126 [.134](.112) | 0.197 [.112](.112) | 0.198 [.112](.112)
2 | 0.153 [.120](.110) | 0.127 [.133](.111) | 0.196 [.111](.111) | 0.197 [.111](.111)
3| 0.157 [.111](.103) | 0.133 [.124](.104) | 0.196 [.103](.103) | 0.197 [.103](.103)

500 1| 0.178 [.082](.079) | 0.166 [.087](.079) | 0.200 [.080](.080) | 0.200 [.080](.080)
2| 0.177 [.082](.079) | 0.165 [.087](.079) | 0.198 [.080](.080) | 0.198 [.080](.080)
3| 0.179 [.080](.077) | 0.167 [.084](.077) | 0.199 [.077](.077) | 0.199 [.077](.077)

-0.2 50 1| -0.386 [.340](.285) | -0.447 [.377](.284) | -0.200 [.278](.278) | -0.182 [.274](.273)
2 | -0.372 [.323](.273) | -0.432 [.359](.274) | -0.203 [.266](.266) | -0.186 [.261](.261)
3 | -0.344 [.285](.246) | -0.400 [.318](.248) | -0.203 [.240](.240) | -0.187 [.236](.235)

100 1 | -0.300 [.232](.209) | -0.343 [.255](.211) | -0.197 [.210](.210) | -0.193 [.209](.209)
2 | -0.301 [.230](.207) | -0.344 [.254](.209) | -0.204 [.208](.208) | -0.200 [.207](.207)
3 | -0.288 [.204](.184) | -0.329 [.227](.187) | -0.206 [.185](.185) | -0.203 [.184](.184)

200 1| -0.275 [.184](.168) | -0.312 [.203](.169) | -0.204 [.169](.169) | -0.202 [.169](.169)
2 | -0.273 [.182](.166) | -0.309 [.200](.168) | -0.204 [.168](.168) | -0.203 [.168](.168)
3| -0.265 [.170](.157) | -0.300 [.187](.159) | -0.204 [.158](.158) | -0.202 [.157](.157)

500 1| -0.232 [.118](.113) | -0.250 [.124](.114) | -0.201 [.115](.115) | -0.200 [.115](.115)
2 | -0.233 [.117](.112) | -0.251 [.124](.113) | -0.202 [.114](.114) | -0.202 [.114](.113)
3 |-0.230 [.113](.109) | -0.247 [.119](.110) | -0.201 [.110](.110) | -0.201 [.110](.110)

-0.5 50 1| -0.723 [.382](.310) | -0.822 [.443](.304) | -0.480 [.323](.322) | -0.446 [.321](.316)
2 | -0.712 [.367](.299) | -0.809 [.427](.295) | -0.492 [.309](.309) | -0.456 [.303](.300)
3 | -0.689 [.335](.276) | -0.779 [.392](.275) | -0.502 [.281](.281) | -0.470 [.274](.273)

100 1 | -0.618 [.264](.236) | -0.678 [.296](.236) | -0.496 [.242](.242) | -0.490 [.241](.241)
2 | -0.613 [.259](.233) | -0.671 [.288](.232) | -0.500 [.237](.237) | -0.493 [.236](.236)
3 | -0.602 [.243](.220) | -0.655 [.270](.221) | -0.505 [.223](.223) | -0.497 [.222](.222)

200 1| -0.595 [.235](.215) | -0.638 [.257](.216) | -0.500 [.216](.216) | -0.498 [.216](.216)
2 | -0.594 [.230](.210) | -0.637 [.252](.212) | -0.503 [.212](.212) | -0.501 [.212](.212)
3| -0.588 [.221](.203) | -0.629 [.242](.205) | -0.505 [.204](.204) | -0.503 [.204](.204)

500 1| -0.543 [.148](.142) | -0.567 [.157](.142) | -0.500 [.143](.143) | -0.500 [.143](.143)
2 | -0.543 [.149](.142) | -0.567 [.158](.143) | -0.501 [.144](.144) | -0.501 [.144](.144)
3 | -0.540 [.145](.139) | -0.564 [.154](.140) | -0.502 [.141](.141) | -0.501 [.141](.141)
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Table 4. Empirical Mean|rmse](sd) of the (Q)MLE of A\: Group Interaction with k = n%-3°
dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal

MRSAR-B: o = 1;

A n dgp An Aba Abe2 Abes
0.5 50 1| 0477 [.071](. 0.460 [.077](.066) | 0.498 [.069](.069) | 0.500 [.069](.069)
2| 0.477 [.069](. 0.463 [.075](.065) | 0.496 [.067](.066) | 0.500 [.067](.067)
3| 0.479 [.070](. 0.468 [.075](.068) | 0.494 [.066](.066) | 0.500 [.067](.067)
100 1| 0.488 [.054](. 0.479 [.057](.053) | 0.500 [.054](.054) | 0.501 [.054](.054)
2 | 0.487 [.054](. 0.478 [.057](.052) | 0.498 [.053](.053) | 0.499 [.053](.053)
3| 0.488 [.054](. 0.480 [.056](.053) | 0.497 [.053](.053) | 0.499 [.053](.053)
200 1| 0.495 [.036](. 0.490 [.037](.036) | 0.500 [.036](.036) | 0.500 [.036](.036)
2 | 0.494 [.036](. 0.489 [.037](.036) | 0.499 [.036](.036) | 0.500 [.036](.036)
3| 0.494 [.036](. 0.490 [.036](.035) | 0.499 [.035](.035) | 0.500 [.036](.036)
500 1| 0.498 [.025](. 0.495 [.025](.025) | 0.500 [.025](.025) | 0.500 [.025](.025)
2 | 0.497 [.025](. 0.495 [.025](.025) | 0.500 [.025](.025) | 0.500 [.025](.025)
3| 0.497 [.025](. 0.495 [.025](.025) | 0.500 [.025](.025) | 0.500 [.025](.025)
0.2 50 1| 0.173 [.097](. 0.152 [.103](.092) | 0.199 [.095](.095) | 0.202 [.096](.096)
2| 0.175 [.096](. 0.157 [.102](.092) | 0.198 [.095](.095) | 0.203 [.096](.095)
3| 0.176 [.091](. 0.162 [.097](.089) | 0.194 [.088](.088) | 0.202 [.090](.090)
100 1| 0.176 [.091)(. 0.166 [.094](.088) | 0.202 [.088](.088) | 0.203 [.088](.088)
2| 0.173 [.092](. 0.163 [.096](.088) | 0.196 [.088](.088) | 0.197 [.088](.088)
3| 0.174 [.102 0.166 [.106](.100) | 0.194 [.097](.097) | 0.195 [.097](.097)
200 1] 0.191 [053 0.185 [.054](.052) | 0.200 [.053](.053) | 0.201 [.053](.053)
2 | 0.192 [.053](. 0.185 [.055](.053) | 0.200 [.053](.053) | 0.201 [.053](.053)
3| 0.190 [.053](. 0.185 [.054](.052) | 0.198 [.052](.052) | 0.199 [.052](.052)
500 1| 0.196 [.037](. 0.193 [.038](.037) | 0.200 [.037](.037) | 0.200 [.037](.037)
2| 0.196 [.037](. 0.193 [.037](.037) | 0.200 [.037](.037) | 0.200 [.037](.037)
3| 0.196 [.037](. 0.193 [.037](.037) | 0.200 [.037](.037) | 0.200 [.037](.037)
-0.2 50 1 |-0.245 [.162](. -0.276 [.171](.153) | -0.199 [.161](.161) | -0.193 [.161](.161)
2 | -0.241 [.161](. -0.270 [.169](.154) | -0.201 [.159](.159) | -0.193 [.160](.160)
3 | -0.238 [.156](. -0.260 [.164](.152) | -0.206 [.152](.152) | -0.194 [.155](.155)
100 1| -0.228 [.110)(. -0.249 [.116](.105) | -0.201 [.109](.109) | -0.199 [.109](.109)
2 | -0.226 [.109](. -0.246 [.115](.105) | -0.201 [.107](.107) | -0.199 [.108](.108)
-0.227 .108 -0.243 [.113](.104) | -0.206 [.105](.105) | -0.201 [.106](.106)
200 1| -0.212 [079 -0.221 [.080](.078) | -0.201 [.079](.079) | -0.200 [.079](.079)
2 | -0.211 [.079](. -0.219 [.080](.078) | -0.200 [.078](.078) | -0.200 [.078](.078)
3 | -0.211 [.076](. -0.218 [.077](.075) | -0.202 [.076](.076) | -0.201 [.076](.076)
500 1 | -0.206 [.051](. -0.211 [.052](.051) | -0.201 [.051](.051) | -0.201 [.051](.051)
2 | -0.205 [.051](. -0.210 [.052](.051) | -0.199 [.051](.051) | -0.199 [.051](.051)
3 | -0.206 [.052](. -0.210 [.053](.052) | -0.201 [.052](.052) | -0.201 [.052](.052)
-0.5 50 1] -0.571 [.208](. -0.617 [.224](.191) | -0.495 [.202](.202) | -0.485 [.203](.203)
2 | -0.569 [.202](. -0.609 [.217](.188) | -0.502 [.194](.194) | -0.490 [.196](.195)
3| -0.569 [.212](. -0.601 [.226](.202) | -0.515 [.199](.198) | -0.499 [.200](.200)
100 1| -0.532 [.141])(. -0.555 [.147](.136) | -0.500 [.140](.140) | -0.498 [.140](.140)
2 | -0.530 [.139](. -0.551 [.144](.134) | -0.500 [.138](.138) | -0.497 [.138](.138)
3 | -0.531 [.139](. -0.549 [.144](.135) | -0.505 [.137](.137) | -0.500 [.137](.137)
200 1| -0.516 [.092](. -0.528 [.095](.091) | -0.501 [.092](.092) | -0.500 [.092](.092)
2 | -0.515 [.093](. -0.527 [.095](.091) | -0.501 [.092](.092) | -0.500 [.092](.092)
3 | -0.515 [.092](. -0.525 [.094](.091) | -0.502 [.091](.091) | -0.500 [.091](.091)
500 1 | -0.507 [.063](. -0.512 [.064](.063) | -0.500 [.063](.063) | -0.500 [.063](.063)
2 | -0.507 [.064](. -0.513 [.064](.063) | -0.501 [.064](.064) | -0.500 [.064](.064)
3 | -0.507 [.064](. -0.512 [.065](.064) | -0.501 [.064](.064) | -0.500 [.064](.064)
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Table 5. Empirical Mean|rmse](sd) of the (Q)MLE of A\: Group Interaction with k = n%-3°
MRSAR-B: 0 = 3; dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal

A n dgp An )\Ea )\ZCQ )\'ff?’

0.5 50 1| 0.331[.254](.189) | 0.258 [.313](.198) | 0.478 [.196](.194) | 0.485 [.193](.193)
2 | 0.335[.250](.188) | 0.266 [.306](.197) | 0.468 [.192](.190) | 0.478 [.188](.187)
3| 0.360 [.223](.174) | 0.299 [.272](.183) | 0.468 [.175](.172) | 0.480 [.170](.169)

100 1| 0.415 [.164](.140) | 0.383 [.185](.143) | 0.491 [.138](.137) | 0.493 [.137](.137)
2| 0.417[.162](.139) | 0.387 [.182](.143) | 0.488 [.136](.136) | 0.490 [.135](.135)
3| 0.420 [.163](.141) | 0.393 [.181](.147) | 0.482 [.135](.134) | 0.485 [.134](.134)

200 1| 0.448 [.112](.099) | 0.422 [.127](.100) | 0.497 [.102](.102) | 0.497 [.102](.102)
2 | 0.450 [.111](.099) | 0.424 [.126](.101) | 0.497 [.101](.101) | 0.497 [.101](.101)
3| 0.451 [.107](.095) | 0.426 [.122](.097) | 0.491 [.097](.097) | 0.492 [.096](.096)

500 1| 0.481 [.065](.062) | 0.469 [.069](.062) | 0.499 [.063](.063) | 0.499 [.063](.063)
2 | 0.481 [.065](.062) | 0.469 [.069](.062) | 0.499 [.063](.063) | 0.499 [.063](.063)
3| 0.481 [.063](.060) | 0.470 [.068](.061) | 0.498 [.061](.061) | 0.498 [.061](.061)

0.2 50 1| 0.027 [.280](.221) | -0.064 [.343](.220) | 0.186 [.233](.233) | 0.201 [.232](.232)
2 | 0.030 [.281](.223) | -0.054 [.340](.227) | 0.172 [.230](.228) | 0.191 [.226](.226)
3| 0.042 [.293](.247) | -0.027 [.342](.256) | 0.158 [.242](.238) | 0.181 [.235](.234)

100 1| 0.087 [.209](.176) | 0.027 [.248](.177) | 0.190 [.184](.184) | 0.194 [.184](.184)
2 | 0.093 [.205](.175) | 0.035 [.242](.177) | 0.189 [.181](.180) | 0.194 [.180](.180)
3| 0.099 [.202](.174) | 0.048 [.235](.179) | 0.180 [.176](.175) | 0.187 [.174](.174)

200 1| 0.134 [.157](.143) | 0.101 [.175](.143) | 0.198 [.146](.146) | 0.199 [.146](.146)
2| 0.135[.158](.143) | 0.102 [.174](.145) | 0.196 [.146](.146) | 0.197 [.146](.146)
3| 0.134 [.158](.144) | 0.105 [.174](.146) | 0.189 [.145](.145) | 0.191 [.144](.144)

500 1| 0.168 [.099](.093) | 0.147 [.107](.093) | 0.199 [.095](.095) | 0.199 [.095](.095)
2 | 0.167 [.099](.093) | 0.147 [.107](.093) | 0.197 [.095](.095) | 0.198 [.095](.095)
3| 0.169 [.097](.092) | 0.150 [.105](.092) | 0.198 [.093](.093) | 0.199 [.093](.093)

-0.2 50 1 | -0.455 [.443](.362) | -0.550 [.505](.364) | -0.201 [.375](.375) | -0.179 [.370](.369)
2 | -0.453 [.457](.380) | -0.542 [.512](.381) | -0.226 [.385](.384) | -0.200 [.376](.376)
3 | -0.442 [.523](.463) | -0.512 [.547](.450) | -0.244 [.437](.435) | -0.205 [.419](.419)

100 1| -0.362 [.310](.264) | -0.445 [.361](.265) | -0.208 [.276](.276) | -0.202 [.275](.275)
2 | -0.357 [.308](.265) | -0.436 [.356](.267) | -0.214 [.274](.273) | -0.206 [.272](.272)
3 | -0.342 [.290](.253) | -0.413 [.334](.258) | -0.220 [.258](.257) | -0.210 [.255](.255)

200 1| -0.294 [.225](.205) | -0.351 [.253](.204) | -0.205 [.213](.213) | -0.204 [.213](.213)
2 | -0.291 [.223](.204) | -0.345 [.251](.204) | -0.205 [.211](.211) | -0.203 [.211](.211)
3| -0.283 [.215](.198) | -0.334 [.240](.199) | -0.208 [.204](.204) | -0.204 [.203](.203)

500 1| -0.237 [.133](.128) | -0.266 [.143](.127) | -0.198 [.131](.131) | -0.197 [.131](.131)
2 | -0.241 [.134](.128) | -0.269 [.144](.127) | -0.202 [.131](.131) | -0.202 [.131](.131)
3 | -0.238 [.133](.127) | -0.265 [.142](.126) | -0.203 [.129](.129) | -0.201 [.129](.129)

-0.5 50 1| -0.915 [.700](.564) | -0.999 [.747](.556) | -0.487 [.533](.533) | -0.448 [.516](.513)
2 | -0.912 [.711](.579) | -0.994 [.748](.561) | -0.517 [.533](.532) | -0.466 [.506](.505)
3 | -0.845 [.643](.543) | -0.918 [.664](.516) | -0.508 [.485](.485) | -0.453 [.472](.470)

100 1| -0.699 [.375](.318) | -0.798 [.435](.317) | -0.506 [.332](.332) | -0.498 [.331](.331)
2 | -0.690 [.368](.315) | -0.785 [.426](.317) | -0.511 [.324](.324) | -0.501 [.323](.323)
3| -0.671 [.343](.298) | -0.755 [.395](.302) | -0.520 [.303](.302) | -0.507 [.300](.300)

200 1| -0.629 [.291](.260) | -0.706 [.331](.259) | -0.503 [.271](.271) | -0.501 [.271](.271)
2 | -0.631 [.289](.257) | -0.706 [.329](.256) | -0.511 [.267](.266) | -0.508 [.266](.266)
3| -0.616 [.281](.256) | -0.684 [.316](.257) | -0.509 [.262](.262) | -0.503 [.261](.261)

500 1| -0.549 [.178](.171) | -0.584 [.190](.171) | -0.495 [.175](.175) | -0.495 [.175](.175)
2 | -0.555 [.183](.174) | -0.589 [.195](.174) | -0.503 [.178](.178) | -0.502 [.178](.178)
3 | -0.551 [.175](.168) | -0.584 [.188](.168) | -0.503 [.171](.171) | -0.501 [.171](.171)
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Table 6. Empirical Means for All Parameter Estimators: Group Interaction with k =n

MRSAR-A: 0 =1, = (5,1,.5)"; dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal

0.35

A n_ dgp A X2 Bon Pin Pon be be be | 62 G
0.5 50 1| 0.457 0.491 | 6.000 0.997 0.500 | 5.217 0.998 0.499 | 0.980 0.978
2| 0.460 0.490 | 5.939 0.997 0.500 | 5.242 0.998 0.499 | 0.978 0.976

3| 0.457 0.483 | 6.022 0.997 0.500 | 5.417 0.998 0.499 | 1.000 0.997

100 1| 0465 0.497 | 5.921 0.999 0.500 | 5.097 0.999 0.500 | 0.991 0.989
21 0465 0.495 | 5.899 1.000 0.499 | 5.133 0.999 0.499 | 0.988 0.986

2| 0471 0.496 | 5.751 1.000 0.499 | 5.106 0.999 0.500 | 1.004 1.002

200 1| 0489 0.499 | 5.303 1.000 0.500 | 5.031 1.000 0.500 | 0.994 0.994
2 0.489 0.499 [ 5.288 1.000 0.500 | 5.027 1.000 0.500 | 0.995 0.995

2| 0.489 0.498 | 5.277 1.000 0.500 | 5.046 1.000 0.500 | 0.988 0.988

500 1 0.479 0.499 | 5.524 1.000 0.500 | 5.028 1.000 0.500 | 0.999 0.998
2| 0.480 0.500 [ 5.500 1.000 0.500 | 5.014 1.000 0.500 | 0.997 0.996

2| 0.480 0.498 | 5.487 1.000 0.500 | 5.041 1.000 0.500 | 0.991 0.991

0.2 50 1] 0.158 0.192 | 5.671 0.998 0.499 | 5.128 0.999 0.499 | 0.979 0.980
2 0.159 0.190 [ 5.655 0.998 0.499 | 5.170 0.998 0.499 | 0.975 0.976

2| 0.164 0.188 [ 5.585 0.998 0.499 | 5.196 0.998 0.499 | 0.946 0.947

100 1 0.169 0.198 | 5.476 1.000 0.500 | 5.044 0.999 0.500 | 0.989 0.989
2| 0.170 0.196 | 5.473 1.000 0.500 | 5.073 1.000 0.500 | 0.987 0.988

2| 0174 0.196 | 5.402 1.000 0.500 | 5.069 0.999 0.500 | 0.982 0.982

200 1] 0144 0.197 | 5.900 0.999 0.499 | 5.058 0.999 0.500 | 0.993 0.993
2| 0.146 0.197 [ 5.865 0.999 0.499 | 5.057 1.000 0.500 | 0.997 0.997

21 0.144 0.188 | 5.904 0.999 0.499 | 5.189 0.999 0.500 | 1.000 1.000

500 1| 0.189 0.200 | 5.167 1.000 0.500 | 5.001 1.000 0.500 | 0.998 0.998
2 0191 0.201 | 5.142 1.000 0.500 | 4.981 1.000 0.500 | 0.998 0.998

2 0189 0.199 | 5.172 1.000 0.500 | 5.021 1.000 0.500 | 0.994 0.994

-0.2 50 1] -0.347 -0.212 | 6.654 0.988 0.495 | 5.141 0.998 0.499 | 0.964 0.975
2 |-0.346 -0.225 | 6.644 0.988 0.494 | 5.292 0.997 0.499 | 0.962 0.972

2 |-0.338 -0.239 [ 6.558 0.989 0.495 | 5.448 0.996 0.498 | 0.964 0.975

100 11]-0.235 -0.200 | 5.362 0.998 0.500 | 5.006 0.999 0.500 | 0.987 0.989
2 |-0.237 -0.204 | 5.378 0.999 0.500 | 5.047 1.000 0.500 | 0.988 0.990

2 |-0.236 -0.208 [ 5.371 0.999 0.500 | 5.090 1.000 0.499 | 1.006 1.008

200 1|-0.248 -0.203 | 5.519 0.999 0.499 | 5.036 0.999 0.500 | 0.993 0.994
2 |-0.244 -0.201 | 5.478 0.999 0.500 | 5.016 0.999 0.500 | 0.992 0.993

2| -0.244 -0.206 | 5.478 0.999 0.500 | 5.067 0.999 0.500 | 0.996 0.997

500 1] -0.225 -0.200 | 5.265 1.000 0.500 | 5.000 1.000 0.500 | 0.997 0.998
2 |-0.226 -0.201 | 5.269 1.000 0.500 | 5.009 1.000 0.500 | 0.999 0.999

2 1-0.224 -0.201 | 5.251 1.000 0.500 | 5.009 1.000 0.500 | 0.996 0.996

-0.5 50 1] -0.538 -0.500 | 5.338 1.000 0.498 | 5.004 0.998 0.500 | 0.976 0.980
2 | -0.541 -0.506 [ 5.358 0.999 0.498 | 5.062 0.998 0.500 | 0.971 0.975

2| -0.535 -0.507 | 5.307 1.001 0.499 | 5.068 1.000 0.500 | 0.964 0.968

100 1] -0.546 -0.502 | 5.397 1.000 0.499 | 5.025 1.000 0.500 | 0.988 0.990
2 |-0.544 -0.503 | 5.376 0.999 0.500 | 5.031 0.999 0.500 | 0.988 0.990

2 | -0.542 -0.508 | 5.352 1.000 0.500 | 5.066 1.000 0.500 [ 0.979 0.981

200 1] -0.529 -0.500 | 5.238 1.000 0.500 | 5.006 0.999 0.500 | 0.994 0.995
2 | -0.527 -0.500 | 5.225 1.000 0.500 | 5.004 0.999 0.500 | 0.992 0.993

2 |-0.530 -0.506 [ 5.250 1.000 0.500 | 5.053 0.999 0.500 | 1.009 1.010

500 1] -0.519 -0.500 | 5.165 1.000 0.500 | 5.002 1.000 0.500 | 0.998 0.998
2| -0.518 -0.499 [ 5.152 1.000 0.500 | 4.992 1.000 0.500 | 0.997 0.998

2 | -0.518 -0.501 [ 5.155 1.000 0.500 | 5.007 1.000 0.500 | 0.994 0.995
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Table 7. Empirical Means for All Parameter Estimators: Group Interaction with k =n

MRSAR-A: 0 =3, = (5,1,.5)"; dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal

0.5

A n_ dgp A X2 Bon Pin Pon be be be | 62 G
0.5 50 1| 0440 0.488 | 6.462 1.002 0.500 | 5.325 0.993 0.499 | 8874 8.795
2| 0.445 0.488 [ 6.374 0.999 0.500 | 5.345 0.991 0.498 | 8.858 8.780

3| 0.451 0.487 | 6.203 1.004 0.498 | 5.353 0.997 0.497 | 8.749 8.675

100 1| 0458 0.497 | 6.042 1.002 0.498 | 5.112 0.997 0.498 | 8.924 8.873
2| 0.458 0.494 | 6.042 1.001 0.500 | 5.161 0.997 0.500 | 8.984 8.933

3| 0459 0.492 | 6.021 1.002 0.499 | 5.205 0.998 0.499 | 8.943 8.893

200 1| 0468 0.498 | 5.853 0.997 0.500 | 5.072 0.998 0.499 | 8.977 8.947
2| 0.468 0.498 [ 5.832 0.997 0.500 | 5.075 0.998 0.499 | 8.968 8.938

3| 0470 0.497 | 5.783 0.999 0.500 | 5.088 1.000 0.499 | 9.044 9.015

500 1 0.482 0.498 | 5.441 1.001 0.500 | 5.048 1.000 0.500 | 8.982 8.970
2| 0.484 0.500 [ 5.383 1.000 0.500 | 4.998 0.999 0.500 | 9.014 9.002

3| 0.485 0.499 | 5.378 1.000 0.500 | 5.019 1.000 0.500 | 9.003 8.992

0.2 50 1] 0119 0.191 | 6.246 0.991 0.502 | 5.182 0.992 0.495 | 8.755 8.754
2 0125 0.190 | 6.136 0.996 0.502 | 5.180 0.997 0.496 | 8.871 8.868

3| 0.134 0.188 | 6.015 0.992 0.503 | 5.223 0.992 0.498 | 8.568 8.562

100 1 0.130 0.197 | 6.173 0.993 0.498 | 5.084 0.997 0.498 | 8.891 8.883
2 0129 0.192 | 6.189 0.995 0.498 | 5.157 0.998 0.498 | 8.914 8.906

3| 0.144 0.197 | 5.955 0.994 0.499 | 5.073 0.996 0.499 | 8.865 8.855

200 1] 0.161 0.199 | 5.587 1.000 0.500 | 5.025 0.998 0.500 | 8.954 8.948
2| 0.161 0.197 | 5.602 0.998 0.500 | 5.059 0.997 0.500 | 8.996 8.990

3| 0.164 0.197 | 5,551 1.000 0.499 | 5.056 0.998 0.499 | 8.991 8.985

500 1| 0.172 0.200 | 5.441 0.999 0.500 | 5.012 0.999 0.500 | 8.984 8.980
2 0172 0.200 | 5.432 1.000 0.500 | 5.008 1.000 0.499 | 8.995 &8.991

2 0174 0.199 | 5.409 1.000 0.500 | 5.012 1.000 0.500 | 8.963 8.960

-0.2 50 1]-0.346 -0.207 | 6.680 0.981 0.492 | 5.154 0.990 0.494 | 8.620 8&.761
2 |-0.334 -0.207 | 6.537 0.984 0.493 | 5.145 0.992 0.495 | 8.681 8.812

3 [-0.312 -0.202 | 6.289 0.986 0.495 | 5.085 0.992 0.497 | 8.592 8.702

100 1]-0.324 -0.203 | 6.373 0.988 0.493 | 5.065 0.997 0.498 | 8.804 8.879
2 |-0.317 -0.202 | 6.263 0.992 0.495 | 5.012 1.001 0.500 | 8.793 8&.863

3 [-0.311 -0.205 | 6.217 0.991 0.494 | 5.065 0.999 0.499 | 8.854 8.918

200 1] -0.281 -0.201 | 5.877 0.996 0.498 | 5.004 1.000 0.500 | 8.904 8.933
2 |-0.281 -0.203 | 5.880 0.995 0.498 | 5.032 0.999 0.500 | 8.908 8.936

3 |-0.270 -0.198 | 5.766 0.996 0.497 | 4.985 1.000 0.499 | 8.865 8.890

500 11]-0.234 -0.199 | 5.358 1.001 0.500 | 4.988 1.000 0.500 | 8.983 8.989
2 1-0.233 -0.199 | 5.3563 1.000 0.500 | 4.989 0.999 0.500 | 8.973 8.980

3 [-0.235 -0.202 | 5.370 1.000 0.499 | 5.027 0.999 0.499 | 8.981 8.988

-0.5 50 1] -0.648 -0.489 | 6.567 0.976 0.489 | 4.971 0.992 0.496 | 8.580 8.820
2 |-0.637 -0.493 | 6.418 0.981 0.491 | 4.969 0.996 0.497 | 8.610 8&8.835

3 [-0.618 -0.501 | 6.238 0.984 0.492 | 5.051 0.996 0.498 | 8.584 8.773

100 11]-0.619 -0.498 | 6.093 0.988 0.493 | 5.000 0.997 0.499 | 8.778 8.890
2 | -0.609 -0.495 [ 5.995 0.989 0.493 | 4.969 0.998 0.499 | 8.761 8.867

31 -0.601 -0.498 | 5.941 0.988 0.494 | 5.011 0.996 0.499 | 8.818 8.915

200 1] -0.577 -0.497 | 5.701 0.995 0.497 | 4.995 0.997 0.499 | 8.900 8.946
2| -0.579 -0.502 | 5.713 0.995 0.497 | 5.033 0.997 0.499 | 8.900 8.945

3 | -0.566 -0.497 | 5.595 0.996 0.497 | 4.985 0.998 0.499 | 8.866 8.907

500 1] -0.558 -0.502 | 5.501 0.998 0.499 | 5.025 0.999 0.500 | 8.965 8.983
2 | -0.556 -0.502 [ 5.486 0.999 0.499 | 5.018 1.000 0.500 | 8.977 8.995

3 | -0.552 -0.501 | 5.454 0.998 0.499 | 5.017 0.999 0.500 | 8.932 8.949
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Table 8. Empirical Means for All Parameter Estimators: Group Interaction with k =n

MRSAR-B: 0 =1, 8= (5,1,.5)"; dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal

0.5

A n_ dgp A X2 Bon Pin Pon be be be | 62 G
0.5 50 1| 0482 0.499 | 5.194 1.032 0.507 | 5.014 1.001 0.499 | 0.979 0.978
2| 0.482 0.497 | 5.195 1.031 0.506 | 5.035 1.004 0.499 | 0.979 0.978

3| 0483 0.495 | 5.192 1.029 0.508 | 5.062 1.008 0.501 | 1.006 1.004

100 1| 0489 0.500 | 5.109 1.021 0.504 | 5.002 1.000 0.499 | 0.990 0.989
2| 0489 0.499 | 5.112 1.021 0.503 | 5.013 1.002 0.499 | 0.987 0.986

3| 0490 0.498 | 5.103 1.020 0.504 | 5.022 1.004 0.500 | 0.991 0.990

200 1] 0495 0.500 | 5.0563 1.010 0.503 | 5.002 1.000 0.500 | 0.995 0.995
2| 0.495 0.500 [ 5.064 1.010 0.503 | 5.005 1.000 0.500 | 0.995 0.995

3| 0.496 0.500 | 5.046 1.008 0.503 | 5.002 1.000 0.500 | 0.994 0.993

500 1 0.498 0.500 | 5.024 1.005 0.501 | 5.003 1.001 0.500 { 0.998 0.998
2| 0.498 0.500 [ 5.021 1.004 0.501 | 5.000 1.000 0.500 | 0.999 0.999

3| 0.498 0.500 | 5.022 1.004 0.501 | 5.002 1.000 0.500 | 1.006 1.006

0.2 50 1] 0162 0.197 | 5.199 1.032 0.490 | 5.010 1.000 0.496 | 0.977 0.978
2| 0163 0.194 | 5.195 1.030 0.492 | 5.028 1.002 0.497 | 0.979 0.979

3| 0.167 0.192 | 5.176 1.027 0.492 | 5.040 1.005 0.497 | 0.977 0.978

100 1 0.183 0.200 | 5.111 1.021 0.502 | 5.005 1.001 0.500 | 0.990 0.990
2| 0184 0.199 | 5.104 1.021 0.502 | 5.006 1.002 0.499 | 0.993 0.993

3| 0.183 0.196 | 5.111 1.021 0.503 | 5.028 1.005 0.500 | 1.012 1.012

200 1] 0189 0.199 | 5.071 1.012 0.503 | 5.006 1.001 0.500 | 0.995 0.995
21 0.191 0.200 | 5.064 1.011 0.501 | 5.002 1.000 0.499 | 0.994 0.994

3 0.190 0.198 | 5.067 1.011 0.502 | 5.013 1.002 0.500 | 0.989 0.989

500 1] 0196 0.200 | 5.026 1.005 0.501 | 5.001 1.000 0.500 | 0.999 0.999
2 0.196 0.200 | 5.027 1.005 0.502 | 5.002 1.000 0.500 | 1.000 1.000

3| 0.196 0.200 | 5.024 1.004 0.501 | 5.001 1.000 0.500 | 0.997 0.997

-0.2 50 1]-0.259 -0.198 | 5.228 1.047 0.510 | 4.990 0.998 0.496 | 0.976 0.981
2 |-0.261 -0.209 | 5.237 1.049 0.511 | 5.030 1.007 0.500 | 0.967 0.971
3|-0.253 -0.212 | 5.211 1.043 0.508 | 5.044 1.010 0.499 | 0.971 0.975

100 11]-0.223 -0.197 | 5.104 1.017 0.500 | 4.990 0.997 0.500 | 0.989 0.990
2 1-0.225 -0.202 | 5.115 1.020 0.499 | 5.009 1.001 0.499 | 0.991 0.991

3 [-0.224 -0.205 | 5.110 1.019 0.501 | 5.023 1.003 0.500 | 0.985 0.985

200 1-0.212 -0.199 | 5.049 1.010 0.503 | 4.994 0.999 0.499 | 0.994 0.995
2 |-0.214 -0.201 | 5.055 1.011 0.503 | 5.003 1.000 0.500 | 0.994 0.994

3 1-0.213 -0.202 | 5.0564 1.011 0.503 | 5.008 1.002 0.500 | 0.991 0.991

500 1] -0.206 -0.200 [ 5.025 1.004 0.501 | 5.002 1.000 0.500 | 0.998 0.998
2 | -0.205 -0.200 | 5.022 1.004 0.501 | 5.000 1.000 0.500 | 0.999 0.999

31 -0.206 -0.201 | 5.024 1.004 0.501 | 5.003 1.001 0.500 | 0.998 0.998

-0.5 50 1] -0.543 -0.500 | 5.139 1.015 0.512 | 5.000 0.996 0.498 | 0.973 0.977
2 | -0.540 -0.503 [ 5.134 1.015 0.511 | 5.011 0.998 0.499 | 0.972 0.976

3| -0.535 -0.504 | 5.117 1.014 0.508 | 5.015 1.000 0.498 | 0.982 0.987

100 11]-0.530 -0.499 | 5.099 1.019 0.506 | 4.995 0.999 0.499 | 0.987 0.989
2 |-0.529 -0.501 | 5.097 1.019 0.505 | 5.002 1.000 0.499 | 0.975 0.977

31 -0.529 -0.505 | 5.098 1.018 0.506 | 5.018 1.003 0.501 | 0.986 0.988

200 1] -0.517 -0.498 | 5.060 1.010 0.500 | 4.996 0.999 0.499 | 0.995 0.995
2 | -0.518 -0.501 | 5.065 1.011 0.499 | 5.003 1.000 0.499 | 0.991 0.991

3 |-0.5617 -0.501 | 5.057 1.010 0.500 | 5.003 1.001 0.500 | 0.979 0.979

500 1] -0.507 -0.501 | 5.024 1.005 0.500 | 5.003 1.001 0.500 | 0.997 0.997
2 | -0.507 -0.501 [ 5.023 1.004 0.500 | 5.003 1.000 0.500 | 0.997 0.997

3 | -0.506 -0.500 | 5.021 1.004 0.500 | 5.002 1.000 0.500 | 0.994 0.994
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Table 9. Empirical Means for All Parameter Estimators: Group Interaction with k =n

MRSAR-B: 0 =3, §=(5,1,.5)"; dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal

0.5

A n_ dgp A X2 Bon Pin Pon be be be | 62 G
0.5 50 1| 0409 0.491 | 5.896 1.172 0.566 | 5.085 1.015 0.503 | 8.894 8.778
2| 0414 0487 | 5.851 1.163 0.564 | 5.120 1.022 0.507 | 8.893 8.779

3| 0421 0.482 | 5.819 1.150 0.560 | 5.190 1.032 0.512 | 9.037 8.926

100 1| 0443 0.495 | 5.583 1.110 0.531 | 5.061 1.010 0.499 | 8.964 8&8.899
2| 0.445 0.493 | 5.550 1.107 0.535 | 5.063 1.013 0.504 | 8.925 &8.861

3| 0450 0.492 | 5,516 1.096 0.528 | 5.086 1.015 0.502 | 9.017 8.954

200 1| 0473 0.499 | 5.271 1.048 0.507 | 5.004 0.999 0.496 | 8.951 8.923
2 0472 0.497 | 5.286 1.051 0.510 | 5.029 1.004 0.500 | 8.989 8.962

3| 0473 0.496 | 5.277 1.048 0.510 | 5.043 1.006 0.501 | 8.974 8.947

500 1 0.486 0.499 | 5.135 1.026 0.506 | 5.006 1.001 0.500 | 8.996 8.987
2| 0.487 0.499 | 5.132 1.026 0.503 | 5.005 1.001 0.497 | 9.001 8.992

3| 0487 0.499 | 5.132 1.025 0.504 | 5.011 1.002 0.499 | 8.990 &8.981

0.2 50 1] 0.073 0.193 | 5.838 1.124 0.545 | 5.064 0.999 0.504 | 8.755 8.766
2 0.082 0.190 [ 5.760 1.118 0.532 | 5.066 1.005 0.496 | 8.736 8.745

3| 0.097 0.18 | 5.683 1.101 0.534 | 5.096 1.008 0.504 | 8.809 &8.815

100 1 0.122 0.198 | 5.472 1.091 0.508 | 5.008 1.001 0.490 | 8.906 8.898
2| 0125 0.196 | 5.456 1.088 0.510 | 5.021 1.004 0.494 | 8.988 8.980

3| 0.131 0.193 | 5.422 1.079 0.510 | 5.041 1.007 0.496 | 8.894 8.886

200 1] 0.152 0.198 | 5.286 1.053 0.508 | 5.010 1.000 0.497 | 8.958 8.951
2| 0.153 0.197 | 5.279 1.052 0.508 | 5.014 1.001 0.498 | 8.957 8.950

3| 0.158 0.197 | 5.250 1.045 0.506 | 5.011 1.000 0.497 | 8.935 8.928

500 1| 0.175 0.199 | 5.153 1.030 0.506 | 5.006 1.001 0.500 | 8.969 8.966
2 0176 0.199 | 5.148 1.029 0.503 | 5.004 1.001 0.497 | 8.983 8.980

3| 0.176  0.198 | 5.149 1.028 0.504 | 5.015 1.002 0.499 | 8.976 8.973

-0.2 50 1]-0.357 -0.196 | 5.618 1.116 0.551 | 4.974 0.992 0.497 | 8.601 8.779
2 |-0.352 -0.207 | 5.585 1.113 0.547 | 5.009 1.002 0.498 | 8.659 8&8.830

3 1-0.331 -0.211 | 5.523 1.096 0.536 | 5.034 1.005 0.497 | 8.566 8.722

100 11]-0.299 -0.199 | 5414 1.072 0.505 | 4.991 0.997 0.492 | 8.823 8.883
2 |-0.297 -0.205 | 5.412 1.071 0.509 | 5.020 1.002 0.497 | 8.778 8.836

3 [-0.286 -0.206 | 5.366 1.063 0.511 | 5.024 1.003 0.500 | 8.769 8.823

200 1]-0.274 -0.202 | 5.326 1.057 0.509 | 5.011 1.000 0.497 | 8.911 8.938
21 -0.273 -0.203 | 5.320 1.054 0.507 | 5.018 1.000 0.495 | 8.874 8.900

3| -0.268 -0.205 | 5.298 1.051 0.510 | 5.023 1.002 0.499 | 8.977 9.002

500 11]-0.235 -0.201 | 5.148 1.028 0.509 | 5.003 1.000 0.500 | 8.968 8.974
2 1-0.233 -0.199 | 5.141 1.026 0.508 | 4.999 0.999 0.498 | 8.948 8.955

3 [-0.235 -0.203 | 5.149 1.027 0.509 | 5.016 1.002 0.500 | 8.943 8.949

-0.5 50 1]-0.719 -0.479 | 5.714 1.144 0.538 | 4.918 0.985 0.490 | 8.419 8&.811
2 | -0.707 -0.490 | 5.682 1.137 0.532 | 4.964 0.994 0.489 | 8.522 8.900

3 [-0.681 -0.499 | 5.611 1.119 0.531 | 4.994 0.999 0.495 | 8.395 8.744

100 1] -0.648 -0.492 | 5.447 1.086 0.512 | 4.962 0.992 0.490 | 8.750 8&8.902
2 |-0.643 -0.497 | 5.434 1.084 0.515 | 4.981 0.996 0.494 | 8.756 8.902

3 [-0.632 -0.502 | 5.410 1.075 0.514 | 5.002 0.997 0.496 | 8.854 8.998

200 1]-0.592 -0.499 | 5.292 1.056 0.513 | 4.992 0.998 0.495 | 8.877 8.931
2 | -0.589 -0.500 [ 5.285 1.055 0.514 | 4.997 0.999 0.498 | 8.886 8.940

3 | -0.580 -0.501 | 5.258 1.050 0.512 | 5.002 1.000 0.497 | 8.887 8.937

500 1] -0.546 -0.500 | 5.1563 1.029 0.507 | 5.001 1.000 0.498 | 8.969 8.984
2 | -0.546 -0.502 [ 5.154 1.029 0.507 | 5.005 1.000 0.499 | 8.952 8.967

3| -0.543 -0.502 | 5.147 1.027 0.508 | 5.009 1.001 0.500 | 9.048 9.062
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Table 10. Performance of t-ratios: Group Interaction with & = n%35, MRSAR-C, o = 2

Three rows under each n: dgpl-dgp3

Each two columns for: #()\) and t"°()\)

Each two columns for: ¢(£;) and t°¢(31)

A n mean tail prob mean tail prob
0.5 50| -.752 .169 1.066 1.041 .130 .064 | .38 -.089 1.131 1.105 .099 .079
-.758 .091 1.014 1.030 .123 .057 | .391 -.048 1.139 1.122 .106 .080

-700 .057 0.998 1.052 .105 .064 | .328 -.071 1.105 1.091 .088 .073

100 | -.774 109 1.016 1.026 .122 .057 | .536 -.067 1.065 1.091 .098 .074
-730 114 0.995 1.038 .111 .059 | .473 -.097 1.057 1.081 .090 .072

-701 .058 0.966 1.049 .098 .061 | .452 -.066 1.044 1.079 .084 .070

200 | -.659 .191 0.997 1.006 .100 .055 | .156 -.085 1.071 1.024 .071 .058
-.640 .189 0.991 1.019 .096 .060 | .161 -.074 1.070 1.024 .071 .058

-.623 .152 0.960 1.014 .087 .057 | .158 -.065 1.063 1.025 .070 .057

500 | -.451 131 1.013 1.032 .074 .058 | .204 -.070 1.018 1.015 .057 .052
-456  .120 1.004 1.038 .075 .061 | .207 -.062 1.034 1.030 .065 .059

-452  .099 0.975 1.048 .068 .063 | .191 -.069 1.027 1.025 .061 .057

0.2 50| -751 .218 1.099 1.043 .135 .069 | .177 -.062 1.114 1.087 .080 .071
-717 171 1.009 1.024 .105 .060 | .197 -.034 1.095 1.077 .079 .070

-.634 .159 0.948 0973 .073 .050 | .178 -.036 1.103 1.089 .080 .070

100 | -.702 .167 1.028 1.022 .113 .058 | .332 -.118 1.099 1.078 .087 .072
-678 .145 1.005 1.042 .103 .063 | .316 -.110 1.089 1.071 .084 .070

-.652 .086 0.944 1.038 .082 .059 | .332 -.063 1.059 1.057 .079 .065

200 | -.540 .086 1.003 1.028 .085 .057 | .372 -.080 1.024 1.054 .069 .063
-549 .052 1.010 1.060 .091 .065 | .391 -.044 1.028 1.060 .074 .064

-529 .017 0.991 1.073 .081 .072| .365 -.030 1.020 1.048 .071 .062

500 | -.436 .081 1.004 1.027 .069 .055 | .325 -.063 1.009 1.035 .065 .059
-414 .096 1.003 1.036 .074 .058 | .306 -.076 1.008 1.033 .061 .056

-410 .074 0.994 1.049 .069 .062 | .289 -.071 1.007 1.030 .061 .056

-2 501 -975 .158 1.117 0.982 .178 .052 | .571 -.156 1.175 1.185 .131 .097
-871 114 1.004 0.982 .129 .051 | .41 -.119 1.127 1.151 .114 .089

-792 .067 0981 0.967 .112 .045 | .528 -.080 1.123 1.153 .114 .086

100 | -.791 .268 1.060 0.987 .134 .058 | .149 -.091 1.136 1.055 .088 .065
-704 246 0.914 0.959 .067 .050 | .177 -.060 1.128 1.057 .087 .065

-.654 .222 0.847 0.965 .046 .048 | .156 -.079 1.109 1.045 .080 .064

200 | -.584 .071 1.023 1.046 .096 .060 | .468 -.075 1.030 1.089 .081 .072
-591 .029 0.989 1.043 .086 .062 | .474 -.043 1.022 1.079 .081 .069

-.554 .002 0.981 1.090 .074 .071 | .450 -.024 976 1.031 .068 .056

500 | -.393 .063 1.010 1.029 .068 .058 | .265 -.068 1.013 1.034 .060 .058
-.383 .063 1.008 1.042 .072 .061 | .260 -.067 1.016 1.036 .064 .061

-.359 .057 1.006 1.066 .067 .069 | .2656 -.046 1.001 1.022 .058 .056

-5 50| -.818 .220 1.180 1.063 .157 .071 | .281 -.165 1.182 1.124 .102 .083
-.668 .211 0.979 0.974 .083 .056 | .293 -.126 1.155 1.119 .101 .080

-602 .185 0.915 0.927 .066 .046 | .275 -.136 1.141 1.117 .095 .078

100 | -.592 .200 1.060 1.043 .098 .066 | .109 -.061 1.049 1.055 .063 .065
-497 187 0.936 1.032 .051 .061 | .097 -.065 1.031 1.037 .057 .058

-453 139 0.908 1.079 .047 .071 ] .109 -.043 1.040 1.046 .060 .061

200 | -.660 .205 1.033 1.028 .113 .062 | .154 -.076 1.071 1.022 .070 .057
-.578 211 0.927 0.996 .059 .054 | .120 -.104 1.082 1.034 .074 .059

-.551 .143 0.868 1.063 .044 .068 | .131 -.077 1.049 1.014 .063 .055

500 | -.350 .067 1.009 1.033 .067 .059 | .267 -.059 1.004 1.031 .060 .057
-.335 .069 0.995 1.040 .063 .063 | .259 -.060 1.010 1.036 .064 .059

-.342 .022 0.963 1.062 .050 .064 | .264 -.031 0.996 1.022 .055 .057
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Table 11. Performance of t-ratios: Group Interaction with & = n%%, MRSAR-C, o = 2

Three rows under each n: dgpl-dgp3

Each two columns for: #()\) and t"°()\)

Each two columns for: ¢(£;) and t°¢(31)

A n mean tail prob mean tail prob
0.5 50| -.603 .100 1.050 0.996 .106 .052 | .396 -.038 1.102 1.086 .094 .072
-.604 .052 0.998 1.000 .095 .050 | .392 -.009 1.075 1.064 .084 .068

-.553 .038 0.952 0.992 .072 .051 | .338 -.029 1.029 1.028 .071 .060

100 | -.551 .115 1.034 1.003 .092 .054 | .351 -.101 1.059 1.050 .078 .064
-.539 .096 0.971 0.991 .075 .052 | .355 -.073 1.054 1.047 .078 .064

-.507 .069 0.917 1.007 .057 .056 | .336 -.057 1.010 1.010 .068 .054

200 | -.378 .089 1.016 1.019 .072 .056 | .274 -.065 1.031 1.040 .067 .063
-378 .075 0.981 1.021 .064 .057 | .271 -.054 1.011 1.020 .060 .056

-.361 .061 0.940 1.048 .051 .061 | .255 -.050 0.979 0.991 .052 .048

500 | -.313 .074 1.008 1.015 .064 .056 | .209 -.070 1.015 1.022 .062 .057
-311 .071 0.985 1.015 .057 .054 | .211 -.061 1.016 1.022 .059 .054

-.322  .037 0.936 1.025 .049 .059 | .215 -.040 0.982 0.987 .053 .046

0.2 50| -.676 .121 1.079 0974 .125 .047 | .314 -.080 1.154 1.104 .101 .078
-.641 .104 1.015 0.977 .102 .049 | .311 -.066 1.129 1.092 .096 .076

-.610 .081 0.971 0.972 .081 .048 | .288 -.076 1.098 1.074 .086 .072

100 | -.531 .119 1.024 0.986 .087 .050 | .321 -.089 1.055 1.050 .072 .063
-.526  .102 0.997 1.007 .080 .053 | .312 -.080 1.060 1.057 .074 .065

-511 .073 0.972 1.049 .070 .063 | .293 -.081 1.020 1.028 .065 .059

200 | -.442 .084 0.998 0.988 .071 .050 | .316 -.066 1.023 1.027 .066 .057
-453 .060 0.992 1.008 .072 .054 | .317 -.052 1.022 1.026 .067 .057

-429 .057 0.975 1.035 .063 .060 | .296 -.052 0.999 1.006 .060 .054

500 | -.332 .054 1.018 1.022 .067 .060 | .254 -.034 1.013 1.019 .062 .055
-.322  .059 1.002 1.021 .061 .055 | .247 -.036 1.009 1.016 .058 .054

-.325  .042 0.987 1.047 .060 .064 | .243 -.028 0.996 1.004 .056 .054

-2 50]-674 .026 1.171 1.177 .128 .079 | .118 -.060 1.151 1.097 .089 .072
-.547 .071 1.018 1.114 .077 .069 | .095 -.081 1.143 1.096 .088 .075

-470 111 0.938 1.000 .054 .050 | .072 -.110 1.134 1.093 .086 .076

100 | -.527 .118 1.048 0.996 .093 .053 | .258 -.066 1.073 1.055 .076 .064
-500 .087 0.972 0.994 .072 .050 | .235 -.072 1.063 1.049 .073 .064

-441 .086 0.947 1.031 .055 .058 | .235 -.057 1.020 1.015 .060 .054

200 | -.430 .108 1.024 1.004 .075 .054 | .172 -.084 1.033 1.016 .060 .056
-420 .087 0.981 1.002 .067 .054 | .189 -.061 1.036 1.021 .063 .054

-.381 .076 0.928 1.023 .045 .056 | .174 -.060 1.011 1.000 .058 .051

500 | -.319 .065 0.998 1.003 .059 .051 | .243 -.061 1.013 1.022 .062 .056
-.303 .069 0.984 1.007 .058 .052 | .236 -.064 1.000 1.011 .057 .054

-.283 .059 0.959 1.035 .048 .060 | .211 -.070 0.985 0.998 .053 .051

-5 50| -68 .154 1.163 1.032 .133 .058 | .136 -.071 1.167 1.094 .096 .075
-529 194 0.986 0.955 .070 .045 | .133 -.075 1.169 1.105 .097 .074

-427 243 0917 0.887 .050 .043 | .108 ~-.115 1.151 1.096 .090 .076

100 | -.545 117 1.061 0.997 .098 .050 | .230 -.081 1.084 1.054 .078 .064
-435 133 0.933 0.975 .052 .048 | .196 -.099 1.059 1.035 .066 .058

-.359 137 0.862 0.963 .034 .047 | .188 -.094 1.029 1.012 .059 .053

200 | -.453 .093 1.026 1.006 .077 .053 | .273 -.070 1.041 1.041 .066 .060
-414 .069 0.949 1.004 .054 .054 | .268 -.057 1.014 1.018 .061 .053

-.329 .091 0.876 1.014 .035 .056 | .217 -.081 0.965 0.973 .047 .046

500 | -.320 .062 1.012 1.014 .064 .052 | .245 -.056 1.020 1.030 .062 .056
-.293 .066 0.982 1.019 .055 .056 | .234 -.058 1.004 1.015 .056 .054

-.262 .044 0.908 1.023 .035 .060 | .210 -.057 0.948 0.961 .042 .041
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Table 12. Empirical Means and rmses of the MLE and Bias-Corrected MLEs of A
Replication of the Monte Carlo Experiment of Bao and Ullah (2007a, p. 405)

n J A An  rmse AbaZ - rmge b2 rmse Abu2 rmse

30 2 09| 0.880 0.060 | 0.887 0.059 [ 0.887 0.059 | 0.898 0.054

0.4 0381 0.159 | 0.383 0.160 | 0.383 0.160 | 0.398 0.164

0.2 0190 0.177 | 0.191 0.179 | 0.190 0.179 | 0.199 0.185

0.0 | 0.003 0.180 | 0.003 0.181 | 0.002 0.181 | 0.003 0.189

-0.2 [ -0.189 0.173 | -0.190 0.174 | -0.191 0.174 | -0.198 0.180

-0.4 1 -0.377 0.163 | -0.380 0.164 | -0.380 0.164 | -0.395 0.168

-0.9 [ -0.881 0.060 | -0.888 0.059 | -0.888 0.059 | -0.899 0.054

6 09| 0854 0.117 | 0.88 0.100 [ 0.886 0.100 | 0.897 0.095

0.4 0318 0.280 | 0.379 0.265 | 0.377 0.265 | 0.393 0.272

0.2 | 0.127 0.309 | 0.190 0.300 | 0.189 0.301 | 0.199 0.312

0.0 | -0.070  0.329 | -0.007 0.325 [ -0.008 0.326 | -0.006 0.340

-0.2 [ -0.255 0.347 | -0.193 0.350 | -0.195 0.349 | -0.201 0.367

-0.4 | -0.443 0.353 | -0.386 0.362 | -0.388 0.361 | -0.404 0.380

-0.9 [ -0.899 0.339 | -0.858 0.357 | -0.860 0.357 | -0.900 0.370

10 09 0821 0.191 | 0.880 0.153 [ 0.879 0.153 | 0.893 0.148

0.4 0258 0.389 | 0.375 0.354 | 0.372 0.354 | 0.390 0.365

0.2 | 0.057 0432 | 0.180 0.407 | 0.177 0.408 | 0.189 0.425

0.0 | -0.143 0.461 | -0.018 0.448 | -0.021  0.449 | -0.018 0.471

-0.2 1 -0.325 0.480 | -0.203 0.481 | -0.206  0.482 | -0.212 0.508

-0.4 | -0.504 0.489 | -0.388 0.504 | -0.391 0.505 | -0.408 0.533

-0.9 [ -0.949 0.491 | -0.862 0.534 | -0.865 0.534 | -0.908 0.561

100 2 09 ] 0895 0.027 | 0.898 0.026 | 0.898 0.026 | 0.900 0.026

0.4 0394 0.087 | 0.396 0.087 | 0.396 0.087 | 0.400 0.088

0.2 ] 0.198 0.097 | 0.199 0.098 | 0.199 0.097 | 0.201 0.098

0.0 | -0.001 0.100 | -0.001 0.101 | -0.001 0.101 | -0.001 0.102

-0.2 1 -0.197 0.097 | -0.198 0.098 | -0.198 0.098 | -0.200 0.099

-0.4 | -0.395 0.087 | -0.397 0.087 | -0.397 0.087 | -0.401 0.087

-0.9 [ -0.895 0.027 | -0.898 0.026 | -0.898 0.026 | -0.900 0.026

6 09| 0.887 0.043 | 0.897 0.040 [ 0.897 0.040 | 0.899 0.039

041 0374 0.137 | 0.394 0.134 | 0.394 0.134 | 0.398 0.134

0.2 | 0.175 0.160 | 0.196 0.158 [ 0.196 0.158 | 0.199 0.159

0.0 | -0.023 0.177 | -0.002 0.177 | -0.002 0.177 | -0.002 0.178

-0.2 [ -0.216 0.186 | -0.196 0.187 | -0.195 0.187 | -0.198 0.189

-0.4 |1 -0.416 0.196 | -0.398 0.198 | -0.398 0.198 | -0.403 0.201

-0.9 1-0.902 0.195 | -0.891 0.199 | -0.891 0.199 | -0.902 0.201

10 09 ] 0.880 0.058 | 0.897 0.051 | 0.897 0.051 | 0.899 0.050

0.4 0360 0.177 | 0.398 0.169 | 0.399 0.169 | 0.402 0.170

0.2 ] 0.154 0.213 | 0.195 0.207 | 0.195 0.207 | 0.198 0.208

0.0 | -0.046 0.236 | -0.004 0.232 | -0.004 0.232 | -0.004 0.234

-0.2 [ -0.243 0.259 | -0.201 0.258 | -0.202 0.258 | -0.204 0.261

-0.4 | -0.430 0.267 | -0.391 0.271 | -0.390 0.271 | -0.395 0.274

-0.9 [ -0.915 0.288 | -0.887 0.297 | -0.887 0.297 | -0.899 0.301
Note: Ab"2: the second-order analytically bias-corrected MLE of Bao and Ullah (2007a).

rmse:

the empirical root mean squared error.
DGP: a pure SAR model, i.e., Y, = AW, + up, un ~ N(0,1,).



Table 13. MLE and 2nd-Order Bias-Corrected MLE of SAR Models: Replication I of Lee (2004a)
Each Pair of Rows: Empirical Means and sds; Each Pair of Columns: MLE and Bias-Corrected MLE

R 9| m=3 m=>5 m =10 m = 20 m = 50 m = 100
SAR: Y,, = AW, + un, un ~ N(0,0°1,), A\=05and o = 1
30 X[ 0494 0.497 0.490 0.497 0.488 0.498 0.487 0.498 0.48 0.499 0.487 0.500
0.067 0.067 0.068 0.067 0.068 0.066 0.068 0.067 0.070 0.068 0.068 0.067
o | 0992 0.991 0.995 0.994 0.998 0.997 0.999 0.998 1.000 0.999 1.000 0.999
0.079 0.079 0.059 0.059 0.042 0.042 0.029 0.029 0.018 0.018 0.013 0.013
60 X[ 0496 0.498 0.496 0.499 0.494 0.499 0.494 0.500 0.494 0.500 0.493 0.499
0.048 0.047 0.046 0.046 0.047 0.047 0.047 0.047 0.047 0.046 0.047 0.047
o | 0997 0.996 0.998 0.997 0.998 0.998 0.999 0.999 1.000 1.000 1.000 1.000
0.056 0.056 0.042 0.042 0.029 0.029 0.020 0.020 0.013 0.013 0.009 0.009
120 A | 0.498 0.499 0.497 0.499 0.497 0.499 0.497 0.500 0.498 0.500 0.498 0.501
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.032
o] 0998 0.997 0.998 0.998 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000
0.040 0.040 0.030 0.030 0.021 0.021 0.015 0.015 0.009 0.009 0.007 0.007
MRSAR-1: Y, = AW, + X0 + un , where u, ~ N(0, O'QIn), X, ~N(0,I,),\=5,=1,and o =1
30 X[ 0496 0.497 0.492 0.498 0.492 0.500 0.491 0.499 0.490 0.499 0.490 0.499
0.056 0.056 0.056 0.055 0.057 0.055 0.057 0.056 0.058 0.056 0.058 0.056
B8] 0.997 0.996 0.999 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
0.108 0.108 0.082 0.082 0.058 0.058 0.041 0.041 0.026 0.026 0.018 0.018
o | 098 0.986 0.992 0.991 0.996 0.995 0.998 0.997 0.999 0.999 1.000 0.999
0.080 0.080 0.059 0.059 0.042 0.042 0.029 0.029 0.018 0.018 0.013 0.013
60 A [ 0497 0.497 0.497 0.499 0.496 0.500 0.495 0.499 0.496 0.500 0.496 0.500
0.039 0.039 0.038 0.038 0.038 0.038 0.039 0.038 0.038 0.038 0.039 0.038
£ ] 1.000 0.999 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.077 0.077 0.059 0.059 0.041 0.041 0.029 0.029 0.019 0.019 0.013 0.013
o | 0994 0.993 0.996 0.996 0.998 0.997 0.999 0.999 0.999 0.999 1.000 1.000
0.055 0.055 0.042 0.042 0.029 0.029 0.020 0.020 0.013 0.013 0.009 0.009
120 A | 0.499 0.499 0.498 0.499 0.499 0.500 0.498 0.500 0.498 0.500 0.498 0.500
0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027
£ ] 1.000 1.000 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.054 0.054 0.041 0.041 0.029 0.029 0.021 0.021 0.013 0.013 0.009 0.009
o | 0996 0996 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
0.039 0.039 0.030 0.030 0.021 0.021 0.015 0.015 0.009 0.009 0.006 0.006
MRSAR-2: Y, = AW,, + X8 + tn , un ~ N(0,0°1,,), the elements z;. of X, are zir = (2 + 2ir)/V/2
with z,'s and z;'s being iid N(0,1), A=.5,84=1,and o = 1.
30 A [ 0494 0.496 0.493 0.499 0.493 0.500 0.493 0.499 0.496 0.500 0.498 0.500
0.059 0.058 0.055 0.055 0.052 0.051 0.045 0.044 0.034 0.034 0.027 0.027
£ ] 1.003 1.001 1.001 0.998 1.001 0.998 1.001 0.999 1.001 1.000 1.000 0.999
0.138 0.138 0.105 0.105 0.075 0.075 0.053 0.053 0.034 0.034 0.024 0.024
o | 098 0985 0.992 0.991 0.996 0.996 0.998 0.998 0.999 0.999 1.000 0.999
0.079 0.079 0.060 0.060 0.041 0.041 0.029 0.029 0.018 0.018 0.013 0.013
60 X[ 0497 0.498 0.496 0.499 0.496 0.500 0.497 0.500 0.498 0.500 0.499 0.500
0.041 0.041 0.039 0.039 0.036 0.035 0.031 0.031 0.024 0.024 0.019 0.019
£ | 1.000 1.000 1.002 1.000 1.000 0.999 1.001 0.999 1.000 0.999 1.000 1.000
0.096 0.096 0.074 0.074 0.053 0.0563 0.038 0.038 0.024 0.024 0.018 0.018
o | 0993 0993 0.996 0.995 0.999 0.998 0.999 0.999 0.999 0.999 1.000 1.000
0.056 0.056 0.042 0.042 0.029 0.029 0.021 0.021 0.013 0.013 0.009 0.009
120 A | 0.499 0.499 0.498 0.499 0.498 0.500 0.499 0.500 0.499 0.500 0.499 0.500
0.029 0.029 0.027 0.027 0.025 0.025 0.022 0.022 0.017 0.017 0.013 0.013
B | 1.000 1.000 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.068 0.068 0.052 0.053 0.037 0.037 0.027 0.027 0.017 0.017 0.012 0.012
o | 0996 0.996 0.998 0.998 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000
0.039 0.039 0.030 0.030 0.020 0.020 0.015 0.015 0.009 0.009 0.007 0.007
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Table 14. MLE and 2nd-Order Bias-Corrected MLE of SAR Models: Replication II of Lee (2004a)
Each Pair of Rows: Empirical Means and sds; Each Pair of Columns: MLE and Bias-Corrected MLE

m 9| R=3 R=5 R=10 R=20 R =150 R =100
SAR: Y,, = AW, + un, un ~ N(0,0°1,), A\=05and o = 1
30 A [ 0327 0.478 0.409 0.490 0.460 0.498 0.481 0.499 0.492 0.499 0.497 0.500
0.429 0.331 0.238 0.206 0.136 0.127 0.087 0.084 0.052 0.051 0.036 0.036
o | 0991 0.990 0.996 0.994 0.997 0.996 0.999 0.998 1.000 0.999 1.000 0.999
0.076 0.075 0.058 0.058 0.042 0.042 0.029 0.029 0.019 0.019 0.013 0.013
60 X[ 0323 0.484 0.406 0.491 0.461 0.500 0.480 0.498 0.493 0.500 0.496 0.500
0.441 0.337 0.249 0.213 0.136 0.126 0.088 0.085 0.052 0.051 0.035 0.035
o | 0996 0.995 0.997 0.997 0.999 0.998 0.999 0.999 1.000 1.000 1.000 1.000
0.053 0.053 0.041 0.041 0.029 0.029 0.021 0.021 0.013 0.013 0.009 0.009
120 X | 0.307 0.476 0.405 0.492 0.457 0.497 0.480 0.499 0.493 0.500 0.497 0.500
0.514 0.375 0.253 0.216 0.137 0.127 0.087 0.084 0.052 0.051 0.035 0.035
o] 0998 0.997 0.998 0.998 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000
0.037 0.037 0.029 0.029 0.021 0.021 0.014 0.014 0.009 0.009 0.006 0.006
MRSAR-1: Y, = AW, + X0 + un , where u, ~ N(0, O'QIn), X, ~N(0,I,),\=5,=1,and o =1
30 A [ 0365 0473 0.435 0.493 0.471 0.499 0.486 0.500 0.494 0.499 0.497 0.500
0.369 0.282 0.200 0.169 0.112 0.103 0.071 0.068 0.043 0.042 0.029 0.029
B8] 0.998 0.996 0.999 0.997 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000
0.107 0.107 0.083 0.083 0.058 0.058 0.041 0.041 0.026 0.026 0.019 0.019
o | 0984 0983 0.991 0.990 0.996 0.995 0.998 0.998 0.999 0.999 1.000 1.000
0.076 0.076 0.059 0.059 0.041 0.041 0.029 0.029 0.018 0.018 0.013 0.013
60 X[ 0365 0.481 0.432 0.494 0.470 0.498 0.487 0.500 0.494 0.500 0.497 0.500
0.381 0.289 0.199 0.166 0.112 0.102 0.072 0.069 0.043 0.042 0.030 0.029
B8] 0998 0.997 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.075 0.075 0.057 0.057 0.041 0.041 0.029 0.029 0.018 0.018 0.013 0.013
o | 0993 0.992 0.996 0.995 0.998 0.998 0.999 0.999 1.000 1.000 1.000 1.000
0.054 0.054 0.041 0.041 0.029 0.029 0.021 0.021 0.013 0.013 0.009 0.009
120 X | 0.369 0.488 0.434 0.497 0.468 0.498 0.48 0.500 0.494 0.500 0.497 0.500
0.368 0.275 0.201 0.168 0.114 0.104 0.071 0.068 0.042 0.041 0.029 0.029
£ ] 0998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.053 0.053 0.041 0.041 0.029 0.029 0.020 0.020 0.013 0.013 0.009 0.009
o | 0997 0.996 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
0.037 0.037 0.029 0.029 0.021 0.021 0.014 0.014 0.009 0.009 0.007 0.007
MRSAR-2: Y, = AW,, + X8 + tn , un ~ N(0,0°1,,), the elements z;. of X, are zir = (2 + 2ir)/V/2
with z,'s and z;'s being iid N(0,1), A=.5,84=1,and o = 1.
30 A | 0428 0.489 0.462 0.495 0.482 0.498 0.492 0.500 0.497 0.500 0.499 0.500
0.221 0.182 0.131 0.118 0.078 0.074 0.051 0.050 0.031 0.030 0.022 0.021
G ] 1.010 0.992 1.007 0.996 1.002 0.996 1.001 0.998 1.000 0.999 1.000 1.000
0.143 0.144 0.109 0.110 0.076 0.076 0.054 0.054 0.034 0.034 0.024 0.024
o | 098 0986 0.992 0.991 0.996 0.996 0.998 0.998 0.999 0.999 0.999 0.999
0.077 0.077 0.059 0.059 0.041 0.041 0.029 0.029 0.018 0.018 0.013 0.013
60 A | 0447 0.490 0.475 0.497 0.488 0.499 0.494 0.499 0.498 0.500 0.499 0.500
0.186 0.156 0.096 0.088 0.061 0.059 0.040 0.040 0.025 0.025 0.017 0.017
B ] 1.007 0.995 1.004 0.996 1.002 0.998 1.002 1.000 1.000 1.000 1.000 1.000
0.102 0.103 0.077 0.078 0.055 0.055 0.038 0.039 0.025 0.025 0.017 0.017
o | 0993 0993 0.996 0.996 0.998 0.998 0.999 0.999 1.000 1.000 1.000 1.000
0.053 0.053 0.041 0.041 0.028 0.028 0.020 0.020 0.013 0.013 0.009 0.009
120 X | 0.469 0.496 0.487 0.501 0.493 0.499 0.497 0.500 0.499 0.500 0.499 0.500
0.137 0.118 0.071 0.068 0.045 0.044 0.030 0.030 0.019 0.019 0.013 0.013
B | 1.004 0.997 1.002 0.997 1.001 0.998 1.001 0.999 1.000 1.000 1.000 1.000
0.072 0.072 0.055 0.055 0.038 0.038 0.028 0.028 0.017 0.017 0.012 0.012
o | 0996 0.996 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
0.038 0.038 0.029 0.029 0.020 0.020 0.014 0.014 0.009 0.009 0.007 o0.007
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