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Summary An error is corrected in Yu and Phillips (2001) (Econometrics Journal, 4,
210-224) where a time transformation was used to induce Gaussian disturbances in the
discrete time equivalent model. It is shown that the error process in this model is not a
martingale and the Dambis, Dubins-Schwarz (DDS) theorem is not directly applicable.
However, a detrended error process is a martingale, the DDS theorem is applicable,
and the corresponding stopping time correctly induces Gaussianity. We show that the
two stopping time sequences differ by O(a2), where a is the pre-specified normalized
timing constant.

Keywords: Nonlinear Diffusion, Normalizing Transformation, Level Effect, DDS
Theorem.

This note corrects an error in Yu and Phillips (2001) (hereafter YP) where a time
transformation was used to induce Gaussian disturbances in the discrete time version
of a continuous time model. The error occurs in equations (3.7)-(3.10) of YP where the
Dambis, Dubins-Schwarz (hereafter DDS) theorem was applied to the quadratic variation
of the error term in Equation (3.6), [M ]h, in order to induce a sequence of stopping
time points {tj} for which the disturbance term in (3.10) follows a normal distribution,
facilitating Gaussian estimation.

To apply the DDS theorem, the original error process, M(h) needs to be a continu-
ous martingale with finite quadratic variation. In YP, it was assumed that M(h) was a
continuous martingale. This note shows that the assumption is generally not warranted
and so the DDS theorem does not induce a Brownian motion. However, a simple de-
composition splits the error process into a trend component and a continuous martingale
process. The DDS theorem can then be applied to the detrended error process, generating
a Brownian motion residual. With the presence of the time varying trend component, the
discrete time model is heteroskedastic and the regressor is endogenous. The endogeneity
is addressed using an instrumental variable procedure for parameter estimation. In ad-
dition, we show that the new stopping time sequence differs from that in YP by a term
of O(a2), where a is the pre-specified normalized timing constant. In the case where a is
often chosen to be the average variance whose value is small, the difference between the
two stopping time sequences is likely small.

The discrete time model of the following (nonlinear) continuous time model

dr(t) = (α+ βr(t))dt+ σrγ(t)dB(t), (0.1)
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2 Phillips and Yu

has the form

r(t+ h) =
α

β
(eβh − 1) + eβhr(t) +

∫ h

0

σeβ(h−τ)rγ(t+ τ)dB(τ), (0.2)

where B is standard Brownian motion. Let M(h) = σ
∫ h
0
eβ(h−τ)rγ(t + τ)dB(τ). YP

assumed that M (h) is a continuous martingale with ‘quadratic variation’

[M ]∗h = σ2

∫ h

0

e2β(h−τ)r2γ(t+ τ)dτ. (0.3)

Under this assumption, YP used the DDS theorem - see Revuz and Yor (1999) - to
induce a Brownian motion to represent the process M(h). That is, for any fixed ‘timing’
constant a > 0, YP set

hj+1 = inf{s|[Mj ]
∗
s ≥ a} = inf{s|σ2

∫ s

0

e2β(s−τ)r2γ(tj + τ)dτ ≥ a}, (0.4)

and constructed a sequence of time points {tj} using the iterations tj+1 = tj + hj+1,
leading to the following version of (0.2) evaluated at {tj}

r(tj+1) =
α

β
(eβhj+1 − 1) + eβhj+1r(tj) +M(hj+1). (0.5)

If the DDS theorem were applicable, then M(hj+1) = B(a) ∼ N(0, a).
Unfortunately, in general, M(h) is NOT a continuous martingale. There is a trend

factor in M(h) and the quadratic variation calculation (0.3) in YP fails to take account
of this factor. M(h) is not a continuous martingale even when γ = 0. In this simple case,
we have

M (h) = σeβh
∫ h

0

e−βsdB (s) ,

which is an Ornstein–Uhlenbeck (OU) process satisfying dM (h) = βM (h) dh+σdB (h),
whose quadratic variation process is

[M ]h = hσ2 6= σ2e2βh
∫ h

0

e−2βsds.

To adjust for the drift in the residual of (0.2), let

M (h) = σ

∫ h

0

eβ(h−s)rγ (s) dB (s) = eβhσ

∫ h

0

e−βsrγ (s) dB (s) = eβhH (h) ,

where H (h) := σ
∫ h
0
e−βsrγ (s) dB (s) is a continuous martingale. Then M (t) follows the

process

dM (t) = βM (t) dt+ eβtdH (t) = βM (t) dt+ σrγ (t) dB (t) ,

with

d [H]t = σ2e−2βtr2γ (t) dt, and d [M ]t = σ2r2γ (t) dt.

Hence, instead of (0.3), the actual quadratic variation of M is

[M ]h = σ2

∫ h

0

r2γ(t+ s)ds.

c© Royal Economic Society 2010
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The equation of interest is

r (t) =

[
r (0) +

α

β

]
eβt − α

β
+ eβtH (t) ,

so that

r (t+ h) =

[
r (0) +

α

β

]
eβ(t+h) − α

β
+ eβ(t+h)H (t+ h)

= eβhr (t) +
α

β

(
eβh − 1

)
+ eβ(t+h)H (t+ h)− eβ(t+h)H (t)

= eβhr (t) +
α

β

(
eβh − 1

)
+ eβ(t+h) (H (t+ h)−H (t))

= eβhr (t) +
α

β

(
eβh − 1

)
+ eβ(t+h)σ

∫ t+h

t

e−βsrγ (s) dB (s)

= eβhr (t) +
α

β

(
eβh − 1

)
+ eβhσ

∫ h

0

e−βprγ (t+ p) dB (t+ p) .

Now

Qt (h) = σ

∫ h

0

e−βprγ (t+ p) dB (t+ p)

is a continuous martingale with dQt (h) = e−βhσrγ (t+ h) dB (t+ h) and

d [Qt]h = e−2βhσ2r2γ (t+ h) dh.

Applying the DDS Theorem to Qt with timing constant a so that

h̃j+1 = inf
{
s :
[
Qtj
]
s
≥ a

}
= inf

{
s : σ2

∫ s

0

e−2βpr2γ (tj + p) dp ≥ a
}
, (0.6)

we have

r (tj+1) = eβh̃j+1r (tj) +
α

β

(
eβh̃j+1 − 1

)
+ eβh̃j+1Qtj

(
h̃j+1

)
,

which has Gaussian N(0, a) innovations and where tj+1 = tj + h̃j+1. However, the step

size and stopping times h̃j+1 are endogenous. As a result, the ordinary least squares or
weighted least squares procedures are inconsistent. To consistently estimate α and β, we
note that (1, r(tj)) is a valid instrument. The estimating equations are∑

j

(
e−βh̃j+1r(tj+1)− α

β
(1− e−βh̃j+1)− r(tj)

)
r(tj) = 0, (0.7)

and ∑
j

(
e−βh̃j+1r(tj+1)− α

β
(1− e−βh̃j+1)− r(tj)

)
= 0. (0.8)

Solving these two equations for α and β yields the instrumental variable (IV) estimators

of (α, β) which we denote as (α̂, β̂). The analytic expression for α̂ is

α̂ = β̂

∑
j

[
e−β̂

̂̃
hj+1r(tj+1(β̂))− r(tj(β̂))

]
∑
j(1− e−β̂

̂̃
hj+1)

,

c© Royal Economic Society 2010
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and β̂ is obtained by numerically solving the following equation:∑
j

[(
e−β

̂̃
hj+1r(t̂j+1)− r(t̂j)

)
r(t̂j)

]∑
j

(1− e−β
̂̃
hj+1)

−
∑
j

(
e−β

̂̃
hj+1r(t̂j+1)− r(t̂j)

)∑
j

[
(1− e−β

̂̃
hj+1)r(t̂j)

]
= 0,

where
̂̃
h = h̃(β̂) and t̂j = tj(β̂).
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