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Bayesian Hypothesis Testing in Latent Variable

Models∗

Yong Li
Sun Yat-Sen University

Jun Yu
Singapore Management University

Abstract: Hypothesis testing using Bayes factors (BFs) is known to suffer from several

problems in the context of latent variable models. The first problem is computational.

Another problem is that BFs are not well defined under the improper prior. In this paper,

a new Bayesian method, based on decision theory and the EM algorithm, is introduced

to test a point hypothesis in latent variable models. The new statistic is a by-product

of the Bayesian MCMC output and, hence, easy to compute. It is shown that the new

statistic is appropriately defined under improper priors because the method employs a

continuous loss function. The finite sample properties are examined using simulated data.

The method is also illustrated in the context of a one-factor asset pricing model and a

stochastic volatility model with jumps using real data.

JEL classification: C11, C12, G12.

Keywords: Bayes factors; Kullback-Leibler divergence; Decision theory; EM Algorithm;

Markov Chain Monte Carlo.

1 Introduction

Latent variable models have been widely used in economics, finance, and many other

disciplines. They are appealing from both the practical and the theoretical perspectives.

One advantage of using latent variables is that it reduces the dimensionality of data. A
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gapore Management University. We would like to thank Robert Kohn, Jim Griffin, Havard Rue, Mike
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tation for useful comments. Yong Li, Business School, Sun Yat-Sen University, Guangzhou, 510275,
China. Jun Yu, School of Economics and Sim Kee Boon Institute for Financial Economics, Singa-
pore Management University, 90 Stamford Road, Singapore 178903. Email: yujun@smu.edu.sg. URL:
http://www.mysmu.edu/faculty/yujun/.
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well known example is the factor models. For example, in the arbitrage pricing theory

(APT) of Ross (1976), and Roll and Ross (1980), returns of an infinite sequence of risky

assets are assumed to depend linearly on a set of common factors. Another example is the

modeling of the volatility of financial assets, where a separate stochastic process is often

specified to describe the dynamics of the movement of volatility. This so-called stochastic

volatility (SV) model has been proven to be an effective alternative to ARCH-type models;

see Shephard (2005). The SV model is a special case of a more general class of models

known as the state-space (SS) models. While statistical analysis of the linear Gaussian SS

model is straightforward with the help of the Kalman filter technique, statistical analysis

of a nonlinear or non-Gaussian SS model is much more challenging than its linear Gaussian

counterpart.

For many latent variable models, it is difficult to use traditional frequentist estimation

and inferential methods. The main reasons are as follows. First, for some latent variable

models, such as the nonlinear or non-Gaussian SS models, the log-likelihood function of the

observed variables (termed the observed data log-likelihood) often involves integrals which

are not analytically tractable. When the dimension of the integrals is high, the classical

numerical techniques may fail to work, and hence, the likelihood function becomes difficult

to evaluate accurately. Consequently, the maximum likelihood (ML) method and all the

tests based on ML, are difficult to use.

Second, for dynamic latent variable models, the frequentist inferential methods are

almost always based on the asymptotic theory. The validity of the classical asymptotic

theory requires a set of regularity conditions that may be too strong for economic data,

to hold. For example, a regularity condition often used is stationarity. This condition

may not be realistic for the macroeconomic and financial time series. In the context of a

particular class of latent variable models, Chang, Miller, and Park (2009) discussed the

impact of nonstationarity on the asymptotic distribution of the ML estimator.

Third, for the asymptotic theory to work well in finite samples, a large sample size

is typically required. However, in many practical situations involved time series data,

unfortunately, the sample size is not very large. In some cases, even if the sample size of

available data is large, fully sampled data are not always utilized because of the concern

over possible structural changes in the data. As a result, the classical asymptotic distribu-

tion may not be a good approximation to the finite sample distribution, and the inference

based on the classical asymptotic theory may be misleading.

Due to the above mentioned difficulties in using the frequentist methods, there has

been increasing interest in the Bayesian methods to deal with latent variable models.
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With the advancement of MCMC algorithms and the rapidly expanding computing facility,

the estimation of latent variable models has become increasingly easier. Since Bayesian

inference is based on the posterior distribution, no asymptotic theory is needed for making

statistical inferences.1

One of the most important statistical inferences is hypothesis testing, for which the

formulation of the null hypothesis typically contains a unique value of a parameter which

corresponds to the prediction of an important theory. Bayes factors (BFs) are the domi-

nant method of Bayesian hypothesis testing (Kass and Raftery 1995; Geweke, 2007). One

serious drawback is that they are not well defined when using an improper prior. The use

of improper priors is typical in practice when noninformative priors are employed. Since

the improper priors are specified only up to an undefined multiplicative constant, BFs

contain undefined constants (Kass and Rafety, 1995), and hence, take arbitrary values.2

Another drawback is computational. Calculation of BFs for comparing any two competing

models requires the marginal likelihoods, and thus, a marginalization over the parameter

vectors in each model. When the dimension of the parameter space is large, as is typical in

latent variable models, the high-dimensional integration poses a formidable computational

challenge, although there have been several interesting methods proposed in the literature

for computing BFs from the MCMC output; see, for example, Chib (1995), and Chib and

Jeliazkov (2001).

To define BFs with improper priors, a simple approach is to view part of the data as a

training sample. The improper prior is then updated with the training sample to produce

a new proper prior distribution. This leads to some variants of BFs; see, for example,

the fractional BFs (O’Hagan 1995), and the intrinsic BFs (Berger and Perrichi, 1996).

Instead of using BFs, Bernardo and Rueda (2002) suggested treating Bayesian hypothesis

testing as a decision problem, and introduced a Bayesian test statistic that is well defined

under improper priors. A crucial element in their approach is the specification of the loss

function. They showed that the BFs approach to hypothesis testing is a special case of

their decision structure with the loss function being a simple zero-one function.

In this paper, we generalize the Bayesian hypothesis testing approach of Bernardo and

Rueda (2002) to deal with latent variable models. Like the approach of Bernardo and

Rueda, our test statistic is also based on decision theory. However, our approach differs

from that of Bernardo and Rueda in two ways. First, Bernardo and Rueda’s approach is

1The posterior distribution is dependent on the choice of prior distributions, however. In some cases,
the posterior distribution is sensitive to the specification of prior distributions; see, for example, Phillips
(1991).

2If an informative and thus proper prior distributions are specified, BFs may be well defined.
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based on the Kullback-Leibler (KL) loss function. Unfortunately, for the latent variable

models, the KL function may involve calculation of intractable high-dimensional integrals.

Instead we develop a new loss function based on the theory of the powerful EM algorithm

that was originally proposed to estimate parameters of latent variable models (Dempster,

et al., 1977). Second, we prove that the new test statistic is well defined under non-

informative priors, show that it is a by-product of Bayesian estimation, and hence, make

the computation relatively easy.

The paper is organized as follows. Section 2 introduces the setup of the latent variable

models and reviews the Bayesian estimation method via MCMC. Section 3 motivates the

use of continuous loss functions in Bayesian decision problems. In Section 4, the new

Bayesian test statistic is introduced based on the decision theory and the EM algorithm

in the context of latent variable models. Section 5 illustrates the finite sample behavior

of the method in two Monte Carlo studies while Section 6 illustrates the new methods

using real data. Section 7 concludes the paper, and Appendix collects the proof of the

theoretical results in the paper.

2 Latent variable models and Bayesian estimation via MCMC

Without loss of generality, let y = (y1,y2, · · · ,yn)T denote observed variables and ω =

(ω1,ω2, · · · ,ωn)T , the latent variables. The latent variable model is indexed by the pa-

rameter of interest, θ, and the nuisance parameter, ψ. Let p(y|θ,ψ) be the likelihood

function of the observed data, and p(y,ω|θ,ψ), the complete likelihood function. The

relationship between these two functions is:

p(y|θ,ψ) =

∫
p(y,ω|θ,ψ)dω. (1)

In many cases, the integral does not have an analytical expression. Consequently, the

statistical inferences, such as estimation and hypothesis testing, are difficult to implement

if they are based on the ML approach. In recent years, it has been documented that the

latent variables models can be simply and efficiently estimated using MCMC techniques

under the Bayesian framework. See Geweke, Koop, and van Dijk (2010) for algorithms,

examples and references.

Let p(θ,ψ) be the prior distribution of unknown parameter θ,ψ. Due to the presence

of the latent variables, the likelihood, p(y|θ,ψ), is intractable; hence it is difficult to

compute the expectation of the posterior density, p(θ,ψ|y). To alleviate this difficulty,

the data-augmentation strategy of Tanner and Wong (1987) is applied to augment the
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parameter space with the latent variable ω. Then, the Gibbs sampler can be used to

generate random samples from the joint posterior distribution p(θ,ψ,ω|y). In particular,

we start with an initial value, [θ(0),ψ(0),ω(0)], and at the jth iteration, conditional on the

current values [θ(j), ψ(j),ω(j)], we iterate:

(a) Generate θ(j+1) from p(θ|ψ(j),ω(j),y);

(b) Generate ψ(j+1) from p(θ|θ(j+1),ω(j),y);

(c) Generate ω(j+1) from p(ω|ψ(j+1),θ(j+1),y).

After the effect of initialization dies off (namely with a sufficiently long period for the

burning-in phase), the simulated random samples can be regarded as random observations

from the joint distribution. Random observations drawn from the posterior simulation can

be used to estimate the parameters. For example, Bayesian estimates of θ and the latent

variables ω may be obtained via the corresponding sample mean of the generated random

observations.

3 Bayesian hypothesis testing under decision theory

3.1 Hypothesis testing as a decision problem

After the model is estimated, often researchers are interested in testing a null hypothesis,

of which the simplest contains a point. Typically, the point null hypothesis corresponds to

the prediction of a theory. Assuming that the probabilistic behavior of observable data,

y ∈ Y, is described appropriately by the probability model M ≡ {p(y|θ,ψ)} in term of

the parameters of interest, θ ∈ Θ, and the nuisance parameters, ψ ∈ Ψ . Consider the

following point null hypothesis:
H0 : θ = θ0

H1 : θ 6= θ0
. (2)

Formally, this hypothesis testing problem can be taken as a decision problem where the

action space has only two elements, namely, to accept (d0) or to reject (d1) the use of

the null model, M0 ≡ {p(y|θ0,ψ),ψ ∈ Ψ}, as a good proxy for the assumed model,

M1 ≡ {p(y|θ,ψ),θ ∈ Θ,ψ ∈ Θ}.
For the decision problem, a loss function, {L[di, (θ,ψ)], i = 0, 1}, which measures the

loss of accepting H0 or rejecting H0 as a function of the actual value of the parameters

(θ,ψ), must be specified. Given the loss function and data y, the optimal action is to

reject H0, if and only if (iff) the expected posterior loss of accepting H0 is larger than the
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expected posterior loss of rejecting H0, that is,∫
Θ

∫
Ψ
L[d0, (θ,ψ)]p(θ,ψ|y)dθdψ −

∫
Θ

∫
Ψ
L[d1, (θ,ψ)]p(θ,ψ|y)dθdψ

=

∫
Θ

∫
Ψ
{L[d0, (θ,ψ)]− L[d1, (θ,ψ)]} p(θ,ψ|y)dθ dψ > 0.

Therefore, in practice, only the following net loss difference function is required to be

specified:

4L[H0, (θ,ψ)] = L[d0, (θ,ψ)]− L[d1, (θ,ψ)].

It measures the evidence against H0 as a function of (θ,ψ). Following Berger (1985), any

Bayesian admissible solution to the decision problem must satisfy,

Reject H0 iff T (θ,θ0) =

∫
Θ

∫
Ψ
4L[H0, (θ,ψ)]p(θ,ψ|y)dθdψ > 0, (3)

for a pre-specified net loss difference function 4L[H0, (θ,ψ)].

3.2 Discrete loss function and Bayes factors

If the zero-one loss function is used, that is,

L[d0, (θ,ψ)] =

{
0 if θ = θ0

1 if θ 6= θ0

, L[d1, (θ,ψ)] =

{
1 if θ = θ0

0 if θ 6= θ0

,

the net loss difference function 4L[H0, (θ,ψ)] is:

4L[H0, (θ,ψ))] =

{
−1 if θ = θ0

1 if θ 6= θ0

.

According to Equation (3), the corresponding decision rule is:

Reject H0 iff

∫
Ψ

(−1)p(θ0,ψ|y)dψ +

∫
Θ

∫
Ψ

1p(θ,ψ|y)dθdψ > 0.

In general, a positive probability ω, is assigned to the event θ = θ0, such that a

reasonable prior for θ with a discrete support at θ0 is formulated as p(θ) = ω, when

θ = θ0, and p(θ) = (1− ω)π(θ). when θ 6= θ0, where π(θ) is a prior distribution. Hence,

the decision criterion is:

Reject H0 iff

∫
Ψ
p(y|θ = θ0,ψ)ωπ(ψ|θ = θ0)dθ0+

∫
Θ

∫
Ψ
p(y|θ,ψ)π(ψ|θ)(1−ω)π(θ)dψ > 0.

To represent the prior ignorance, the probability ω, is set to 0.5 and the criterion becomes:

Reject H0 iff B01 =

∫
Ψ p(y|θ = θ0,ψ)π(ψ|θ = θ0)dψ∫

Θ

∫
Ψ p(y|θ,ψ)π(θ,ψ)dθdψ

< 1,
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where B01 is the well-known BF (Kass and Rafety, 1995).

When a subjective prior is not available, an objective prior or default prior may be

used. Often, π(θk,ψ|Mk) is taken as uninformative priors, such as Jeffreys or the reference

prior (Jeffreys, 1961; Berger and Bernardo, 1992). These priors are generally improper,

and it follows that π(θk,ψ|Mk) = Ckf(θk,ψ|Mk), where f(θk,ψ|Mk) is a nonintegrable

function, and Ck is an arbitrary positive constant, with k = 0, 1. In this case, the BF is

B01 =
C0

C1

∫
Ψ p(y|ψ,θ0)f(θ0,ψ)dψ∫

Θ

∫
Ψ p(y|θ,ψ)f(θ,ψ)dθdψ

. (4)

Clearly the BF is ill-defined since it depends on the arbitrary constants, C0/C1. To

overcome this problem, one may let part of the data be a training sample to generate a

proper prior; see O’Hagan (1995), and Berger and Perrichi (1996). The choice of a training

sample may be arbitrary.

3.3 KL continuous loss function

Bernardo and Rueda (2002) noted that it is more natural to assume the net loss function

to be a continuous function of θ and θ0. A particular function that was suggested in

Bernardo and Rueda is the Kullback-Leibler (KL) divergence function. For any regular

probability functions, p(x) and q(x), the KL divergence function can be expressed as:

K[p(x), q(x)] =

∫
p(x) log

p(x)

q(x)
dx, (5)

which is a non-negative measure and equal to 0 iff p(x) = q(x).

Suppose that the log likelihood ratio for the two competing models is defined as:

R(Y) := log
p(Y|θ,ψ)

p(Y|θ0,ψ)
.

The larger the likelihood ratio, the stronger the evidence against the null hypothesis. The

expected value of the log likelihood ratio is

E(R(Y)|H1) =

∫
log

p(Y|θ,ψ)

p(Y|θ0,ψ)
p(Y|θ,ψ)dY = K[p(Y|θ,ψ), p(Y|θ0,ψ)],

E(R(Y)|H0) =

∫
log

p(Y|θ,ψ)

p(Y|θ0,ψ)
p(Y|θ0,ψ)dY = −K[p(Y|θ0,ψ), p(Y|θ,ψ)].

So K[p(Y|θ,ψ), p(Y|θ0,ψ)] represents the expected log likelihood ratio when H1 is true,

and hence, may be interpreted as “the reminiscent of the power function in hypothesis

testing, measuring the degree to which the data will reveal that the null hypothesis is

false, when the alternative is in fact true”, as noted in Eguchi and Copas (2006).
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If the net loss function is chosen to be the KL function, then the decision criterion

becomes:

T (θ,θ0) =

∫
Θ

∫
Ψ
4L[H0, (θ,ψ)]p(θ,ψ|y)dθdψ

=

∫
Θ

∫
Ψ

{∫
log

p(y|θ,ψ)

p(y|θ0,ψ)
p(y|θ,ψ)dy

}
p(θ,ψ|y)dθdψ.

This is the Bayesian hypothesis test statistic developed by Bernardo and Rueda (2002).

To obtain some good properties such as symmetry, Bernardo and Rueda suggested using

the following net loss function:

4L[H0, (θ,ψ)] = min{K[p(y|θ,ψ), p(y|θ0,ψ)],K[p(y|θ0,ψ), p(y|θ,ψ)]}. (6)

Based on this loss function, the reference priors may be assigned to parameters to retain

objectiveness. An obvious advantage is that this statistic is well defined under improper

priors. Unfortunately, for latent variable models, KL may involve calculation of intractable

high-dimensional integrals, and hence, may be difficult to evaluate.

4 A new loss function for latent variable models

The test statistic based on the KL divergence function requires that the observed data

log-likelihood function be available analytically or be easy to calculate numerically. As

argued above, however, for many latent variable models, evaluating the observed data log-

likelihood function, and hence, the KL loss function is formidable. On the other hand, the

EM algorithm has been widely used in the literature of latent variable models. The new

difference loss function we propose in the present paper is based on the EM algorithm.

4.1 EM algorithm for latent variable models

Let φ = (θ,ψ) and x = (y,ω) be the complete-data set with a density p(x|φ). The

complete-data log-likelihood, Lc(x|φ) = log p(x|φ), is often simple, whereas the observed

data log-likelihood, Lo(y|φ) = log p(y|φ), is very complicated in most situations because

it often involves intractable integrals.

The basic idea of the EM algorithm is to replace maximization of the observed data log-

likelihood function, Lo(y|φ), with successful maximization of Q(φ|φ(r)), the conditional

expectation of the complete-data log-likelihood function, Lc(x|φ), given the observation

data y and a current fit φ(r) of the parameter. Thus, a standard EM algorithm consists of

two steps: the expectation (E) step and the maximization (M) step. The E-step evaluates
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the so-called Q function which is defined by

Q(φ|φ(r)) = Eφ(r){Lc(x|φ)|y, φ(r)}, (7)

where the expectation is taken with respect to the conditional distribution, p(ω|y,φ(r)).

The M-step determines a φ(r) that maximizes Q(φ|φ(r)). Under some mild regularity

conditions, the sequence, {φ(r)}, obtained from the EM algorithm iterations converges to

the ML estimate, φ̂. For details about the convergence properties of the sequence, θ(r),

see Dempster, et al. (1977).

4.2 A new loss function

In a recent study, Ibrahim et al. (2008) proposed an information criterion for model

selection based on Q(·|·). Inspired by this study and the theoretical properties of the EM

algorithm, we propose a new difference loss function for Bayesian point hypothesis testing

in the context of latent variables models.

Consider the same nuisance parameter, ψ. For any θ,θ∗ ∈ Θ, letQ(θ,θ∗) = Q ((θ,ψ)|(θ∗,ψ)).

The new loss function is:

D(θ,θ0) = {Q(θ,θ)−Q(θ0,θ)}+ {Q(θ0,θ0)−Q(θ,θ0)} .

The following lemma establishes some desirable properties of the new loss function, D.

The proof of Lemma 1 can be found in Appendix 1.

Lemma 4.1 The loss function D has the following properties:

1. D(θ,θ0) = D(θ0,θ);

2. D(θ,θ0) ≥ 0;

3. D(θ,θ0) = 0⇐⇒ θ = θ0.

Remark 4.1 The new loss function is invariant under any one-to-one transformation of

the parameters. This property is not shared by some simple loss functions, such as, the

quadratic loss function.

Remark 4.2 If the observable variable y is independent on ω, the new loss function is

reduced as a symmetric KL divergence function, that is,

K(p(ω|θ,ψ), p(ω|θ0,ψ)) +K(p(ω|θ0,ψ), p(ω|θ,ψ)). (8)
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Based on the new loss function, we define our Bayesian test statistic as the posterior

mean of the loss function, namely,

T (θ,θ0) = E(θ,ψ|y) {Q(θ,θ)−Q(θ0,θ) +Q(θ0,θ0)−Q(θ,θ0)} (9)

The following theorem gives the main result of this paper which shows how to compute

the Bayesian test statistic from the MCMC output. The proof can be found in Appendix

2.

Theorem 4.1 The Bayesian test statistic, T (θ,θ0), can be expressed as

T (θ,θ0) = E(ω,ψ,θ|y)

{
log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)

}
+E(θ,ψ|y)

{
E(ω|y,θ0,ψ)

[
log

p(y,ω|θ0,ψ)

p(y,ω|θ,ψ)

]}
.

(10)

Remark 4.3 If Q function has a tractable form, it is obvious that the test statistic is

only the by-product of the MCMC output under the alternative hypothesis. This is in

shape contrast to BFs.

Remark 4.4 To implement the BF approach for hypothesis testing, numerical algorithms

have to be applied to estimate BFs. However, it is difficult to assess the estimation ac-

curacy. From Equation (10), it can be seen that the standard error of the newly proposed

statistic is easily obtained.

Remark 4.5 If a prior distribution (such as Jeffrery’s prior) is invariant under reparametriza-

tion, the Bayesian test statistic is robust to reparametrization.

Remark 4.6 While BFs are dependent on arbitrary constants under the non-informative

prior, it can be shown that the proposed test statistic is well defined. The reason is that

the arbitrary constants are canceled out in our statistic. The proof of this property can be

found in Appendix 3.

Remark 4.7 In some interesting cases, unfortunately, the Q function does not have a

tractable form. While the first term in (10) is only the by-product of the MCMC output

under the alternative hypothesis, the second term in (10) is more difficult to calculate.

In Appendix 4, we show how to approximate the second term by treating the nuisance

parameter ψ as an additional latent variable, so that T (θ,θ0) can still be approximated

using the MCMC output.
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Remark 4.8 In practice, we need a threshold value for the rejection and the acceptance

of H0. Following Bernardo and Rueda (2002), we use the following decision rule:

Accept H0 if T (θ,θ0) ≤ C; Reject H0 if T (θ,θ0) > C,

where C is the threshold value. How to determine the threshold value is obviously im-

portant. Following McCulloch (1989), the comparison between two Bernoulli distributions

may regarded as a reference case. McCulloch’s idea is as follows. Consider two distribu-

tions, P1 and P2, whose corresponding densities are respectively denoted as p1 and p2. Set

the KL divergence between P1 and P2 to be C, i.e., K(P1, P2) =
∫

log(p1/p2)dP1 = C,

which measures the cost of predicting outcomes using P2 when P1 is the correct descrip-

tion of uncertainty. Let B(p) be the Bernoulli distribution that assigns probability p to an

event. We may find q(C), such that

K(B(0.5), B(q(C))) = K(P1, P2) = C. (11)

This means that the KL distance between P1 and P2 is required to be the same as that

between B(0.5) and B(q(C)). The latter distance is easier to be appreciated. In particular,

it can be shown that K(B(0.5), B(q(C))) = − log(4q(C)(1 − q(C)))/2. Solving (11) for q

(> 0.5), we get

q(C) = 0.5 + 0.5(1− exp(−2C))0.5. (12)

If q(C) = 0.99, the two Bernoulli distributions, B(0.5) and B(0.99), are very different.

As a result, P1 and P2 must be very different too. This may be explained by the following

analogy. The predicting outcomes with P2, when the random variable is in fact P1, is

comparable with describing an unobserved Bernoulli event with probability 0.99, when in

fact the probability is only 0.5. If q(C) = 0.99, using equation (12), we find that C =

1.61. For the new loss function developed in the present paper, C is the sum of the two

KL divergence functions, as in (8) and (16) in Appendix 1. Consequently, we choose

3.22 = 2× 1.61 to be the threshold value in the present paper. The use of threshold values

is not new in the Bayesian literature. For example, Jeffreys’ Bayes factor scale tells the

strength of evidence in favor of one model versus another (Jeffreys, 1961). Perhaps a more

natural approach is to obtain the empirical threshold value from the repeated simulated data.

However, this model based calibration approach would be computationally more demanding.

5 Monte Carlo studies

In this section, we investigate the finite sample properties of the newly proposed statistic,

using simulated data in the context of two financial models. The first is an asset pricing
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model with a heavy-tailed distribution for which the Q function is available analytically.

In the second study, we test for unit root in a stochastic volatility model with jumps

for which the Q function does not have a closed form expression, and hence, has to be

approximated using the MCMC output.

5.1 Asset pricing under multivariate t

Asset pricing theory is a pillar in modern finance. Various econometric approaches have

been proposed to check the validity of various asset pricing models. For example, Gibbons,

Ross, and Shanken (1989) developed a multivariate finite sample test. Bayesian tests have

been proposed by Shanken (1987), Harvey and Zhou (1990), McCulloch and Rossi (1991),

and Geweke and Zhou (1996). These tests were developed based on the normality assump-

tion. Unfortunately, there has been overwhelming empirical evidence against normality

for asset returns, which have led researchers to investigate asset pricing models with a

heavy-tailed distribution, including the family of elliptical distributions discussed in Zhou

(1993). In this section, we apply the new method to check the validity of a factor asset

pricing model with a multivariate t distribution.

Let Rit be the excess return of portfolio i at period t with the following factor structure,

Rit = αi + βiF t + εit, i = 1, 2, · · · , N ; t = 1, 2, · · · , T, (13)

where F t is a k × 1 vector of factor portfolio excess returns, βi a 1 × k vector of scaled

covariances, εit the random error following the t distribution, N the number of portfolios,

and T the length of the time series. This asset pricing model can be rewritten in the

vector form,

Rt = α+ βF t + εt, t = 1, 2, · · · , T, (14)

where α is a 1× k vector, β an N ×K matrix, and εt ∼ t(0,Ψ, ν). The density function

of the multivariate t is given by

f(εt) =
Γ(ν+N

2 )

(πν)
2
nΓ(ν2 )|Ψ|

1
2

{
1 +

ε
′
tΨ
−1εt
ν

}− ν+N
2

.

The mean-variance efficiency implies that the excess premium α should not be statistically

different from zero. The hypothesis can be formulated as:

H0 : α = 0× 1N , H1 : α 6= 0× 1N ,

where 1N is N × 1 vector with component 1.
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It has been noted in Kan and Zhou (2006) that under the multivariate t specification, a

direct numerical optimization of the observed data likelihood function is difficult. The scale

mixture of multivariate normals may be used to represent the multivariate t distribution.

As a consequence, Model (13) can be alternatively specified as:

Rt = α+ βF t + εt, εt ∼ N(0× 1N ,Ψ/ωt), ωt ∼ Γ(
ν

2
,
ν

2
).

By treating ωt as a latent variable, the powerful EM algorithm can be used to obtain the

Q function in EM algorithm. Hence, one can obtain the Bayesian test statistic proposed

earlier. The details are shown in Appendix 5.

In the simulation study, we consider a portfolio with N = 8, k = 1, and Ψ is diagonal.

The true parameter values are set as ν = 8, βi = 0.8, ψii = 1.0, i = 1, 2, · · · , 8. In this asset

pricing model, we consider five different cases, corresponding toα = (0.00, 0.06, 0.07, 0.08, 0.10)×
1N . Some vague conjugate prior distributions are specified for the parameters to represent

the prior ignorance. In particular,

µi ∼ N [0, 100];βi ∼ N [0, ψii];ψ
−1
ii ∼ Γ[0.001, 0.001].

Three different sample sizes are considered, 250, 500 and 1000. The number of replications

is always fixed at 100.

Since the Q function is known analytically, it is easy to obtain the Bayesian test

statistic. The results are reported in Table 1 to 4. The estimates of α are always close to

the true value and the standard errors (SE) are always small, suggesting MCMC provides

reliable estimates on α. Furthermore, the behavior of the estimates improves (smaller bias

and smaller SE) when the sample size T increases. The finite sample behavior of our test

is reasonable, judging by the proportion of the correct decisions over the 100 replications

reported in Table 4. The power of the test increases with sample size.

To check the reliability of the threshold value of 3.22 obtained from the Bernoulli

distribution, we repeat the experiment for 1,000 times under the null hypothesis for the

three sample sizes and calculate the 99% quantile of the finite sample distribution of the

test statistics. Since the Q function is analytically available, this Monte Carlo study is

computationally feasible. The 99% quantile is 3.46, 3.50, and 3.49 when the sample size is

250, 500, and 1,000. All these values are close to 3.22, suggesting that the threshold value

obtained from the Bernoulli distribution is reliable. Moreover, the three calibrated quan-

tiles are very similar to each other, suggesting that the true threshold value is insensitive

to the sample size.

13



Par α = 0× 1N α = 0.06× 1N α = 0.07× 1N α = 0.08× 1N α = 0.10× 1N

α1 -0.0085 0.0753 0.0645 0.0713 0.0962
(0.0672) (0.0673) (0.0674) (0.0672) (0.0669)

α2 -0.0133 0.0676 0.0871 0.0666 0.0936
(0.0675) (0.0677) (0.0674) (0.0675) (0.0675)

α3 0.0027 0.0570 0.0740 0.0827 0.0934
(0.0668) (0.0676) (0.0676) (0.0668) (0.0674)

α4 -0.0104 0.0554 0.0667 0.0696 0.0950
(0.0671) (0.0674) (0.0670) (0.0672) (0.0680)

α5 0.0112 0.04986 0.0732 0.0912 0.0952
(0.0679) (0.0679) (0.0674) (0.0679) (0.0680)

α6 -0.0009 0.0613 0.0645 0.07914 0.1065
(0.0677) (0.0670) (0.0675) (0.0677) (0.0672)

α7 0.0011 0.0613 0.0587 0.0810 0.0965
(0.0671) (0.0670) (0.0675) (0.0671) (0.0675)

α8 -0.0023 0.0637 0.0550 0.07762 0.0953
(0.0681) (0.0676) 0.0677 (0.0680) (0.0678)

Test 1.9820 2.7782 3.0626 3.2874 4.0274
(0.8902) (1.1108) (1.1897) (1.2248) (1.3968)

Table 1: The average of the posterior mean and the posterior standard error of α and the
value of test statistic under 100 replications and T = 250 for the one factor asset pricing
model. The numbers in parentheses are the standard errors.

5.2 Unit root test in a stochastic volatility model with jumps

Whether or not there is a unit root in volatility of financial assets has been a long-standing

topic of interest to econometricians and empirical economists. In a log-normal stochastic

volatility (SV) model, the volatility is often assumed to follow an AR(1) model with the

autoregressive coefficient φ. The test of unit root amounts to testing φ = 1. Based on

the BF, So and Li (1999) proposed a Bayesian approach to test a unit root in the basic

SV model. In this section, we consider the unit root test in the SV model with jumps.

The presence of jumps in returns is an important stylized fact. Without including jumps,

the jumps in the price will be mistakenly attributed to volatility, and hence, potentially

change the dynamic properties of volatility. The model is specified as:

yt = stqt + exp(ht/2)ut, ut ∼ N(0, 1),

ht = τ + φ(ht−1 − τ) + σvt, vt ∼ N(0, 1),

where t = 1, 2, · · · , T , qt is an ordinary Bernoulli trial with P (qt = 1) = π, and log(1+st) ∼
N(−η2/2, η2). stqt can be viewed as a discretization of a finite activity Lévy process. This
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Par α = 0× 1N α = 0.06× 1N α = 0.07× 1N α = 0.08× 1N α = 0.10× 1N

α1 -0.0009 0.0527 0.0742 0.0866 0.0987
(0.0476) (0.0480) (0.0477) (0.0476) (0.0477)

α2 -0.0059 0.0589 0.0715 0.0746 0.0961
(0.0473) (0.0473) (0.0474) (0.0476) (0.0474)

α3 -0.0012 0.0505 0.0677 0.0781 0.1037
(0.0474) (0.0475) (0.0475) (0.0477) (0.0474)

α4 -0.0048 0.0595 0.0682 0.0736 0.0923
(0.0478) (0.0475) (0.0473) (0.0475) (0.0479)

α5 0.0051 0.0708 0.0746 0.0817 0.1040
0.0476 (0.0475) (0.0474) (0.0475) (0.0477)

α6 0.0063 0.0601 0.0658 0.0847 0.1060
(0.0477) (0.0477) (0.0473) (0.0476) (0.0477)

α7 -0.0006 0.0587 0.0715 0.0882 0.1003
(0.0472) (0.0474) (0.0472) (0.0476) (0.0473)

α8 0.0020 0.0511 0.0642 0.0834 0.1005
(0.0480) (0.0481) (0.0475) (0.0477) (0.0480)

Test 2.0082 3.4745 4.2915 4.9429 6.4886
(0.8771) (1.2395) (1.4152) (1.5231) (1.7851)

Table 2: The average of the posterior mean and the posterior standard error of α and the
value of test statistic under 100 replications and T = 500 for the one factor asset pricing
model. The numbers in parentheses are the standard errors.

model was introduced in Chib et al. (2002). The estimation of φ is complicated by the fact

that volatility and jump components are both latent. For the same reason, the frequentist

tests, including the Dickey-Fuller method, are difficult to use, and so are the BFs.

Following So and Li (1999), three values are considered for φ, 1.00, 0.98, 0.95, cor-

responding to the nonstationary, the nearly nonstationary, and the stationary case. The

other parameters are set at τ = −9, σ2 = 0.1, π = 0.08, and η = 0.03. These values are

empirically reasonable for daily equity returns. As in So and Li (1999) and Chib et al.

(2002), we specify some proper prior distributions for the nuisance parameters:

τ ∼ N [0.0, 100],
1

ση
∼ Gamma(2+10−10, 0.1), π ∼ Beta(2, 100), log(η) ∼ N(−3.07, 0.149).

For φ, we consider a prior density that assigns a positive mass at unity, namely,

f(φ) = πI(φ = 1) + (1− π)Uniform(0, 1), π ∼ Uniform(0, 1), (15)

where I(x) is the indicator function, such that I(x) = 1 if x is true and 0 otherwise, π

the weight that represents the prior probability for model M0 formulated under the null
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Par α = 0× 1N α = 0.06× 1N α = 0.07× 1N α = 0.08× 1N α = 0.10× 1N

α1 0.0008 0.0535 0.0738 0.0820 0.1032
(0.0338) (0.0334) (0.0337) (0.0336) (0.0335)

α2 -0.0040 0.0623 0.0643 0.0796 0.1018
(0.0337) (0.0336) (0.0336) (0.0334) (0.0336)

α3 -0.0039 0.0561 0.0680 0.0752 0.1020
(0.0335) (0.0337) (0.0336) (0.0336) (0.0337)

α4 -0.0020 0.0626 0.0677 0.0850 0.0997
(0.0336) (0.0335) (0.0336) (0.0336) (0.0335)

α5 0.0026 0.0637 0.0735 0.0818 0.1017
(0.0336) (0.0335) (0.0337) (0.0337) (0.0335)

α6 -0.0022 0.0536 0.0721 0.0741 0.0934
(0.0336) (0.0336) (0.0335) (0.0336) (0.0336)

α7 0.0002 0.0513 0.0702 0.0778 0.1005
(0.0335) (0.0335) (0.0336) (0.0335) (0.0335)

α8 0.0015 0.0556 0.0679 0.0774 0.0953
(0.0336) (0.0336) (0.0338) (0.0336) (0.0335)

Test 2.0386 4.9698 6.3204 7.5784 10.9372
(0.8759) (1.5064) (1.7138) (1.9147) (2.3423)

Table 3: The average of the posterior mean and the posterior standard error of α and the
value of test statistic under 100 replications and T = 1000 for the one factor asset pricing
model. The numbers in parentheses are the standard errors.

hypothesis. The Uniform distribution is assigned for π to represent the prior ignorance for

model uncertainty. Since the Q function is not analytically available, Appendix 6 shows

how to compute T (θ,θ0).

Three different sample sizes are considered, 500, 1000 and 1500 in this simulation

study. The number of replications is fixed at 100. The results are reported in Table 5 and

Table 6, and the following conclusions may be drawn. First, the estimates of φ are always

close to the true value and the SEs are always small, suggesting MCMC provides reliable

estimates on φ with both sets of priors. Second, the behavior of the estimates improves

(smaller bias and smaller SE) when the sample size increases. Third, the finite sample

behavior of our test is reasonable, judging by the proportion of the correct decisions over

the 100 replications, as reported in Table 6. For example, the test accepts the correct unit

root hypothesis 75%, 91% and 93% of the time when the sample size is increased from

500 to 1500 observations. In addition, the correct stationary model is chosen 95% and

100% of the time when 500 observations are used, 100% and 100% of the time when 1000

observations are used, and 100% and 100% of the time when 1500 observations are used.
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Parameter T = 250 T = 500 T = 1000

α = 0.00× 1N 95 98 97
α = 0.06× 1N 27 63 93
α = 0.07× 1N 42 75 99
α = 0.08× 1N 48 87 100
α = 0.10× 1N 74 100 100

Table 4: The number of correct decisions out of 100 replications for the one-factor asset
pricing model.

n Prior Statistic φ = 1 φ = 0.98 φ = 0.95

500 Uniform φ̂ 0.9941 0.9747 0.9416

SE(φ̂) 0.0043 0.0137 0.0267
Test 2.4750 13.1041 58.6337

1000 Uniform φ̂ 0.9971 0.9786 0.9509

SE(φ̂) 0.0019 0.0086 0.0159
Test 1.7258 16.5421 75.8355

1500 Uniform φ̂ 0.9981 0.9782 0.9497

SE(φ̂) 0.0012 0.0071 0.0129
Test 1.3566 24.7524 102.3799

Table 5: The average of the posterior mean and the posterior standard error of φ and the
value of test statistic under 100 replications for the SV model with jumps.

6 Empirical Study

6.1 Testing the market price model

In the first empirical study, we illustrate our method by testing a simple asset pricing

model – the market price model. This single-factor model is given as:

Rit = αi + βiRMt + εit,

where RMt is the excess return of the market, and εit is independent over i. We consider the

monthly returns of 25 portfolios and the market excess return. The portfolios, constructed

at the end of each June, are the intersections of 5 portfolios formed on size (market equity,

ME) and 5 portfolios formed on the ratio of book equity to market equity (BE/ME). This

sample period is from July 1927 to December 2009, so that N = 25, T = 1002. The data

are freely available from the data library of Kenneth French.3

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

17



φ n = 500 n = 1000 n = 1500

1.00 75 91 93
0.98 95 100 100
0.95 100 100 100

Table 6: The number of correct decisions under different sample sizes for the SV model
with jumps.

Before estimating the model, we first use the Shapiro-Wilk statistic (Shapiro and Wilk,

1965) to test normality and found overwhelming evidence against it. Consequently, we

replace normality with the t distribution. In the Bayesian analysis, we specify the vague

conjugate prior distributions to represent the prior ignorance, namely,

µi ∼ N [0, 100], βi ∼ N [0, 100], ψ−1
ii ∼ Γ[0.001, 0.001].

Under these prior specifications, we run 30,000 Gibbs iterations with a burning-in sample

of 20,000. The remaining 10,000 iterations are regarded as effective random samples for

the posterior Bayesian inference. The convergence of Gibbs sampling is checked using the

Raftery-Lewis diagnostic test statistic (Raftery and Lewis, 1992). The posterior mean of

the degrees of freedom is 2.444, with standard error 0.1175. The other estimation results

are reported in Table 7. The Bayesian test statistic for α = 0×125 is 19.08, with standard

error 4.057. Hence, we conclude that the asset pricing model is strongly rejected.

6.2 Unit root testing in the volatility of S&P 500 index

In the second empirical study, we test the unit root hypothesis in volatility of S&P 500

index sampled over the period that covers the 2007-2008 subprime crisis. The data are

the demeaned daily returns of S&P 500 from January 3, 2005 to January 31, 2009. There

are 1512 observations in the data. Following Chib et al. (2002), we specify the proper

prior distributions as follows:

τ ∼ N [0.0, 100],
1

ση
∼ Gamma(2.5, 0.025), π ∼ Beta(2, 100), log(η) ∼ N(−3.07, 0.149),

φ ∼ πI(φ = 1) + (1− π)Uniform(0, 1), π ∼ Uniform(0, 1).

The empirical results are obtained based on 30,000 iterations after a burn-in of 20,000.

The convergence of Gibbs sampling is checked using the Raftery-Lewis diagnostic test

statistic. The results are reported in Table 8 and show that the unit root hypothesis is

rejected.
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Portfolio α β Ψ
EST SE EST SE EST SE

S1B1 -0.0087 0.0014 1.4040 0.0370 0.0025 0.0001
S1B2 -0.0028 0.0010 1.2700 0.0274 0.0014 0.0001
S1B3 -0.0014 0.0009 1.1690 0.0244 0.0011 0.0001
S1B4 -0.0006 0.0008 1.0870 0.0215 0.0008 0.0001
S1B5 0.0013 0.0009 1.1600 0.0245 0.0011 0.0001
S2B1 -0.0038 0.0009 1.2970 0.0232 0.0010 0.0001
S2B2 -0.0003 0.0007 1.1830 0.0183 0.0006 0.0000
S2B3 0.0014 0.0006 1.0890 0.0168 0.0005 0.0000
S2B4 0.0016 0.0007 1.1020 0.0176 0.0006 0.0003
S2B5 0.0012 0.0009 1.2130 0.0226 0.0010 0.0000
S3B1 -0.0016 0.0006 1.2350 0.0186 0.0006 0.0000
S3B2 0.0010 0.0006 1.1180 0.0150 0.0004 0.0000
S3B3 0.0016 0.0005 1.0720 0.0143 0.0004 0.0000
S3B4 0.0018 0.0006 1.0630 0.0154 0.0004 0.0000
S3B5 0.0014 0.0008 1.1590 0.0213 0.0008 0.0000
S4B1 -0.0006 0.0005 1.1380 0.0138 0.0004 0.0000
S4B2 -0.0001 0.0004 1.0670 0.0119 0.0003 0.0000
S4B3 -0.0006 0.0005 1.0580 0.0128 0.0003 0.0000
S4B4 -0.0007 0.0006 1.0560 0.0157 0.0005 0.0000
S4B5 -0.0001 0.0008 1.1970 0.0228 0.0010 0.0000
S5B1 0.0001 0.0004 0.9937 0.0109 0.0002 0.0000
S5B2 -0.0009 0.0004 0.9573 0.0107 0.0002 0.0000
S5B3 -0.0001 0.0005 0.8935 0.0128 0.0003 0.0000
S5B4 0.0001 0.0006 0.9629 0.0156 0.0004 0.0000
S5B5 0.0003 0.0010 1.0630 0.0283 0.0014 0.0001

Table 7: Bayesian estimation and standard error of the parameters for the market model
with the multivariate t distribution.
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Model π η τ φ σ2 Test

EST 0.0096 0.0504 -0.8130 0.9822 0.0281 47.84
SE 0.0065 0.0202 0.2597 0.0092 0.0113 NA

Table 8: Empirical results for S&P 500

7 Conclusion and discussion

In this paper, we have proposed a new loss function for Bayesian point hypothesis testing

in the context of latent variable models. The loss function is based on the Q function of the

EM algorithm. Based on the new loss function, a new Bayesian test statistic is developed.

The main advantages of the new statistic is that it is a by-product of the MCMC output

under the alternative hypothesis, and hence, easy to compute. The second advantage is

that it is well-defined even under a non-informative prior specification.

While it is necessary to specify a threshold value to implement our test, various strate-

gies are available for calibrating the threshold value. McCulloch (1989) provided a simple

and effective approach. Soofi, Ebrahimi, and Habibullah (1995) extended McCulloch’s

method to cases that involve distributions other than Bernoulli, and proposed a calibration

method based on a normalized transformation of the KL information. Both approaches are

independent of the data. Perhaps a more natural approach is to borrow the idea from the

bootstrap method by generating the empirical threshold value from the data. However,

this necessitates higher computational cost.

The new approach has been applied to test a simple one-factor asset pricing model and

the unit root hypothesis in a SV model with jumps. However, the technique itself is quite

general and can be applied in many other contexts. Examples includes the Fama-French

three factor models with dependent covariance structure and the testing of the number of

factors in latent factor models, just to name a few.
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8 Appendix

8.1 Appendix 1: Proof of Lemma 4.1

For any θ1,θ2 ∈ Θ, by the definition of Q(·|·),

Q(θ1|θ2) = E{Lc(y,ω|θ1,ψ)|y,θ2,ψ} =

∫
Ω

log p(y,ω|θ1,ψ)p(ω|y,θ2,ψ)dω

=

∫
Ω

log p(y,ω|θ1,ψ)p(ω|y,θ2,ψ)dω =

∫
Ω

log[p(ω|y,θ1,ψ)p(y|θ1,ψ)]p(ω|y,θ2,ψ)dω

=

∫
Ω

log p(ω|y,θ1,ψ)p(ω|y,θ2,ψ)dω + log p(y|θ1,ψ) = H(θ1|θ2) + log p(y|θ1,ψ)

It follows that,

Q(θ|θ)−Q(θ0|θ) = H(θ|θ) + log p(y|θ,ψ)−H(θ0|θ)− log p(y|θ0,ψ)

= H(θ|θ)−H(θ0|θ) + log p(y|θ,ψ)− log p(y|θ0,ψ)

=

∫
Ω

log
p(ω|y,θ,ψ)

p(ω|y,θ0,ψ)
p(ω|y,θ,ψ)dω + log p(y|θ,ψ)− log p(y|θ0,ψ)

= K[p(ω|y,θ,ψ), p(ω|y,θ0,ψ)] + log p(y|θ,ψ)− log p(y|θ0,ψ)

Q(θ0|θ0)−Q(θ|θ0) = K[p(ω|y,θ0,ψ), p(ω|y,θ,ψ)] + log p(y|θ0,ψ)− log p(y|θ,ψ).

where K[·, ·] is the KL divergence function. Therefore,

D(θ,θ0) = {Q(θ|θ)−Q(θ0|θ)}+ {Q(θ0|θ0)−Q(θ|θ0)}

= K[p(ω|y,θ,ψ), p(ω|y,θ0,ψ)] +K[p(ω|y,θ0,ψ), p(ω|y,θ,ψ)], (16)

and the three properties stated in Lemma 4.1 naturally follow.

8.2 Appendix 2: Proof of Theorem 4.1

From Lemma 4.1, we have.

Q(θ|θ)−Q(θ0|θ) =

∫
Ω

log
p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)
p(ω|y,θ,ψ)dω

= E(ω|y,θ,ψ)

{
log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)

}
Q(θ0|θ0)−Q(θ|θ0) =

∫
Ω

log
p(y,ω|θ0,ψ)

p(y,ω|θ,ψ)
p(ω|y,θ0,ψ)dω

= E(ω|y,θ0,ψ)

{
log

p(y,ω|θ0,ψ)

p(y,ω|θ,ψ)

}
Hence, the Bayesian test statistic can be expressed as:

T =

∫
Θ

∫
Ψ
{Q(θ|θ)−Q(θ0|θ) +Q(θ0|θ0)−Q(θ|θ0)} p(θ,ψ|y)dθdψ

= E(θ,ψ|y){Q(θ|θ)−Q(θ|θ)}+ E(θ,ψ|y){Q(θ0|θ0)−Q(θ|θ0)}
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It can be shown that,

E(θ,ψ|y){Q(θ|θ)−Q(θ0|θ)} = E(θ,ψ|y)

{
E(ω|y,θ,ψ)

[
log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)

]}
=

∫
Θ

∫
Ψ
E(ω|y,θ,ψ)

{
log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)

}
p(θ,ψ|y)dθdψ

=

∫
Θ

∫
Ψ

{∫
Ω

log
p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)
p(ω|y,θ,ψ)dω

}
p(θ,ψ|y)dθdψ

=

∫
Θ

∫
Ψ

∫
Ω

log
p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)
p(ω,θ,ψ|y)dωdθdψ

= E(ω,θ,ψ|y)

{
log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)

}
,

which proves Theorem 4.1.

8.3 Appendix 3

In this Appendix, we will show that the proposed statistic, T (θ,θ0), is free of arbi-

trary constants. First, assume that some general improper priors satisfy p(ψ|θ, Hk) =

Akf(ψ|θ, Hk), p(θ|Hk) = Bkf(θ|Hk) where f(ψ|θ, Hk), f(θ|Hk) are the nonintegrable

function, and Ak, Bk are arbitrary positive constants with k = 0, 1. Then, it can be shown

that,

p(ω,ψ,θ|y, Hk) =
p(ω,ψ,θ|y, Hk)

p(y|Hk)
=

p(y,ω,ψ,θ|Hk)∫
Ω

∫
Θ

∫
Ψ p(y,ω,ψ,θ|Hk)dωdψdθ

=
p(y,ω|ψ,θ, Hk)p(ψ,θ|Hk)∫

Ω

∫
Θ

∫
Ψ p(y,ω|ψ,θ, Hk)p(ψ,θ|Hk)dωdψdθ

=
p(y,ω|ψ,θ, Hk)Akf(ψ|θ, Hk)Bkf(θ|Hk)∫

Ω

∫
Θ

∫
Ψ p(y,ω|ψ,θ, Hk)Akf(ψ|θ, Hk)Bkf(θ|Hk)dωdψdθ

=
p(y,ω|ψ,θ, Hk)f(ψ,θ|Hk)∫

Ω

∫
Θ

∫
Ψ p(y,ω|ψ,θ, Hk)f(ψ,θ|Hk)dωdψdθ

.

Hence, p(ω,ψ,θ|y, Hk) is independent onAk, Bk. Similarly, we can show that p(θ,ψ|y, Hk)

and p(ω|y,θ,ψ, Hk) are also independent on Ak, Bk. Furthermore, from Appendix 1 and
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Appendix 2, we have,

E(ω,θ,ψ|y)

{
log

p(y,ω,ψ|θ)

p(y,ω,ψ|θ0)

}
= E(ω,θ,ψ|y)

{
log

p(y,ω|ψ,θ)p(ψ|θ)

p(y,ω|ψ,θ0)p(ψ|θ0)

}
= E(ω,θ,ψ|y)

{
log

p(y,ω|ψ,θ)A1f(ψ|θ)

p(y,ω|ψ,θ0)A0f(ψ|θ0)

}
= E(ω,θ,ψ|y)

{
log

p(y,ω|ψ,θ)f(ψ|θ)

p(y,ω|ψ,θ0)f(ψ|θ0)

}
+ log

A1

A0

E(θ,ψ|y)

{
E(ω|y,θ0,ψ)

[
log

p(y,ω,ψ|θ0)

p(y,ω,ψ|θ)

]}
= E(θ,ψ|y)

{
E(ω|y,θ0,ψ)

[
log

p(y,ω|ψ,θ0)p(ψ|θ)

p(y,ω|ψ,θ)p(ψ|θ0)

]}
= E(θ,ψ|y)

{
E(ω|y,θ0,ψ)

[
log

p(y,ω|ψ,θ0)A0f(ψ|θ0)

p(y,ω|ψ,θ)A1f(ψ|θ))

]}
= E(θ,ψ|y)

{
E(ω|y,θ0,ψ)

[
log

p(y,ω|ψ,θ0)f(ψ|θ0)

p(y,ω|ψ,θ)f(ψ|θ))

]}
+ log

A0

A1
.

From Theorem 4.1, it can be seen that the arbitrary constants are cancelled. As a result,

the Bayesian test statistic is free of the arbitrary constants.

8.4 Appendix 4

In this Appendix, we will propose a method to calculate T (θ,θ0) when Q is not analytically

tractable. To do so, we treat the nuisance parameterψ as the latent variable. The Bayesian

test statistic is shown to take the form of:

T (θ,θ0) = E(ω,θ,ψ|y)

{
log

p(y,ω,ψ|θ)

p(y,ω,ψ|θ0)

}
+ E(θ|y)

{
E(ω,ψ|y,θ0)

[
log

p(y,ω,ψ|θ0)

p(y,ω,ψ|θ)

]}
.

The first expectation is only a by-product of Bayesian estimation under the alternative

hypothesis and can be easily approximated with the MCMC output. To approximate the

second expectation, let

f(θ) =

∫
Ω

∫
Ψ

log p(y,ω,ψ|θ)p(ω,ψ|y,θ0)dωdψ,

and

ḟ(θ) =
∂f(θ)

∂θ
, f̈(θ) =

∂2f(θ)

∂θ∂θT
.

Taking the second Taylor expansion of f at θ0, we get,

f(θ) ≈ f(θ0) + ḟ(θ0)(θ − θ0) + (θ − θ0)T f̈(θ0)(θ − θ0).
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It follows that,

E(θ|y)

{
E(ω,ψ|y,θ0)

{
log

p(y,ω,ψ|θ0)

p(y,ω,ψ|θ)

}}
= E(θ|y){f(θ0)− f(θ)}

≈
∫

Θ

{
−ḟ(θ0)(θ − θ0)− (θ − θ0)T f̈(θ0)(θ − θ0)

}
p(θ|y)dθ

= E(θ|y)

{
−ḟ(θ0)(θ − θ0)− (θ − θ0)T f̈(θ0)(θ − θ0)

}
.

Assuming the exchange between the integration and the differentiation in the θ, we then

get,

ḟ(θ) =
∂f(θ)

∂θ
=

∫
Ω

∂ log p(y,ω,ψ|θ)

∂θ
p(ω,ψ|y,θ0)dω

f̈(θ) =
∂2f(θ)

∂θ∂θT
=

∫
Ω

∂2 log p(y,ω,ψ|θ)

∂θθT
p(ω,ψ|y,θ0)dω.

At θ0, the first-order and the second-order differentiations can be easily approximated

using MCMC samples of the posterior distribution, p(ω,ψ|y,θ0).

8.5 Appendix 5: Calculation of T ( θ, θ0) for the factor asset pricing
model

Let y = {y1, y2, · · · ,yn}, ω = {ω1, ω2, · · · , ωn}. The observed data log-likelihood function,

Lo(y|θ,ψ), is expressed as:

C − T

2

k∑
i=1

log φii −
ν + k

2

T∑
t=1

k∑
i=1

log

(
1 +

(yit − αi − βiF t)
2

νφii

)
,

where C is a constant. Based on the multivariate normal-gamma mixture representa-

tion for the multivariate t distribution, the complete log-likelihood, Lc(y,ω|θ,ψ), can be

expressed as

C +
N

2

T∑
t=1

logωt −
T

2

k∑
i=1

log φii −
1

2

T∑
t=1

k∑
i=1

ωtφ
−1
ii (yit − αi − βiF t)

2.

Thus, the posterior expectation of ωt given the data and parameters is

E(ωt|θ,ψ,yt) =
ν +N

ν +
∑k

i=1 φ
−1
ii (yit − αi − βiF t)2

, t = 1, 2, · · · , T.

For the asset pricing model considered in the simulation study, we can show that,

Q(θ|θ)−Q(θ0|θ) =

∫
[Lc(y,ω|θ,ψ)− Lc(y,ω|θ0,ψ)]p(ω|y,θ,ψ)dω

=

∫ T∑
t=1

N∑
i=1

{
ωtφ
−1
ii [(yit − βiF t)αi −

1

2
α2
i ]

}
p(ω|y,θ,ψ)dω

=
T∑
t=1

N∑
i=1

{
E(ωt|θ,ψ,yt)φ−1

ii [(yit − βiF t)αi −
1

2
α2
i ]

}
,
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and that

Q(θ0|θ0)−Q(θ|θ0) =
T∑
t=1

N∑
i=1

{
−E(ωt|θ0,ψ,yt)φ

−1
ii [(yit − βiF t)αi −

1

2
α2
i ]

}
.

Therefore, the Bayesian test statistic is given by,

T (θ,θ0) = E(θ,ψ|y) [Q(θ|θ)−Q(θ0|θ) +Q(θ0|θ0)−Q(θ|θ0)]

= E(θ,ψ|y)

{
T∑
t=1

N∑
i=1

[E(ωt|θ,ψ,yt)− E(ωt|θ0,ψ,yt)]φ
−1
ii [(yit − βiF t)αi −

1

2
α2
i ]

}
.

8.6 Appendix 6: Calculation of T (θ, θ0) for the SV model

Let y = {y1,y2, · · · ,yn}, h = {h1, h2, · · · , hn}, s = {s1, s2, · · · , sn}, q = {q1, q2, · · · , qn}.
The joint density function is:

p(y,h, s, q|π, η, τ, φ, σ2) =

T∏
t=1

p(yt, ht, st, qt|ht−1, π, η, τ, φ, σ
2)

=

T∏
t=1

{
p(yt|ht, st, qt)p(ht|ht−1, τ, φ, σ

2)p(qt|π)p(st|η)
}

=

T∏
t=1

{Cσ−1 exp

[
−(yt − stqt)2 exp(−ht) + ht

2
− (ht − τ − φ(ht−1 − τ))2

2σ2

]
×πqt(1− π)(1−qt) 1

η(1 + st)
exp

[
−(log(1 + st)− 0.5η2)2

2η2

]
}, (17)

where C is a known constant. The observed data log-likelihood function is given by,

Lo(y|π, η, τ, φ, σ2) = log

{∫
p(y,h, s, q|π, η, τ, φ, σ2)dhdsdq

}
.

We can see that this function involves a 3T -dimensional integral. When T is large, the

optimization is extremely difficult.

For the SV model with jumps, the method shown in Appendix 4 can be used to

approximate the Bayesian test statistic, T (θ,θ0). To do, several components are required.

For example,

log p(y,h, s,q, π, η, τ, σ2|φ)− log p(y,h, s,q, π, η, τ, σ2|φ0)

= log p(y,h, s,q|π, η, τ, σ2, φ) + log p(π, η, τ, σ2|φ)

− log p(y,h, s,q|π, η, τ, σ2, φ0)− log p(π, η, τ, σ2|φ0)

= log p(y,h, s,q|π, η, τ, σ2, φ)− log p(y,h, s,q|π, η, τ, σ2, φ0).

25



It follows that,

log p(y,h, s,q|π, η, τ, σ2, φ)− log p(y,h, s,q|π, η, τ, σ2, φ0)

=
1

2σ2

T∑
t=1

{(φ2
0 − φ2)(ωt−1 − τ)2 − 2(φ0 − φ)(ωt − τ)(ωt−1 − µ)}.

Moreover,

ḟ(φ) =

∫
∂ log p(y,h, s,q, π, η, τ, σ2|φ)

∂φ
p(h, s,q, π, η, τ, σ2|y, φ0)dhdsdqdπdηdτdσ2

= E(h,s,q,π,η,τ,σ2|y,φ0)

{
1

σ2

T∑
t=1

[(ht − τ − φ(ht−1 − τ))(ht−1 − τ)]

}
,

f̈(φ) =

∫
∂2 log p(y,h, s,q, π, η, τ, σ2|φ)

∂2φ
p(h, s,q, π, η, τ, σ2|y, φ0)dhdsdqdπdηdτdσ2

= E(h,s,q,π,η,τ,σ2|y,φ0)

{
− 1

σ2

n∑
t=1

[(ωt−1 − τ)2]

}
,

...
f (φ) = 0.
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