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Abstract

Real time supply chain management in a rapidly changing environment requires reactive and
dynamic collaboration among participating entities. In this work, we model supply chain as
a multi agent system where agents are subject to an adjustable autonomy. The autonomy of
an agent refers to its capability and capacity to make decisions within a multi-agent system.
Adjustable autonomy means changing the autonomy of the agents during runtime as a response
to changes in the environment. In the context of a supply chain, different entities at different
points of time will have different autonomy levels. We propose a centralized fuzzy framework for
translating the changes in the environment to the changes in autonomy levels of the agents. A
coalition-formation algorithm based on the autonomy levels is then applied, allowing the agents to
collaborate to cope with the changes while achieving global consistency. Our proposed framework
is applied to two supply chain control problems with drastic changes in the environment: one in
controlling a military hazardous material storage facility under peace-to-war transition, and the
other in supply management during a crisis (such as bird-flu or terrorist attacks). Experimental
results show that by adjusting autonomy in response to environmental changes, the behavior of
the supply chain system can be controlled accordingly.
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1 Introduction

Real-time management of supply chains in a rapidly changing environment entails effective, effi-
cient and reactive collaboration among participating entities. This is a challenging task because
the parties involved in the supply chain have their own resources and objectives. A centralized
authority controlling participating entities is likely to be costly and ineffective.

In this work, we model supply chains as multi-agent systems. A multi-agent approach allows
reactive, real-time collaborative decision making. Decisions can be made asynchronously and can
be performed by the most suitable partners, thereby allowing the overall supply chain system
behavior to react dynamically according to the changing environment. The similarities of supply
chain and multi-agent systems are given in table 1.

An agent’s autonomy refers to its capability and capacity to make autonomous and independent
decisions within the multi-agent system. Adjustable autonomy means changing the level of au-
tonomy of the agents during the running time of the system. The changes can be caused by:
(1) the dynamic environment (e.g. an accident occurs, and the agent loses its resources, thus
reducing its autonomy level), or (2) human interference (e.g. in a critical system like a missile
control system, at some point of time, the autonomy of the agent needs to be reduced to zero,
and decision making is taken over completely by humans). In reactive, real-time multi-agent sys-
tem that interacts with the dynamic environment, adjustable autonomy is unavoidable, either
between agents or between the agents and humans.

In this work, we are interested in the relative autonomy levels among agents where the changes
are caused by the changing environment. Each agent has its own objective which also changes
dynamically, and each agent has the full capability to change its own objective. In our model,
we assume that the autonomy levels can be decided by a central authority, the agents are fully
cooperative, and information flow is reliable. We propose an efficient approach based on a fuzzy
selection process to translate the changes sensed in the environment to the autonomy levels of the
agents. Furthermore, we propose a coalition-formation based algorithm that allows the agents to
negotiate based on their autonomy levels to achieve a global consistency.

We apply this approach to two supply chain control problems: one in controlling a military
hazardous material storage facility under peace-to-war transition, and the other in supply man-
agement during a crisis (such as bird-flu or terrorist attacks). Experimental results show that
by adjusting autonomy in response to environmental changes, the behavior of the supply chain
system can be controlled accordingly.

2 Related works

The following is a list of proposed agent frameworks for implementing supply chain management:

- Integrated Supply Chain Management[6]. In this work, each agent performs one or more
supply chain functions and coordinates its decisions with other relevant agents. There are
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Table 1
Similarity between Supply Chain and Multi Agent Systems
Nature of Supply Chain Nature of Multi Agent

A supply chain consists of multiple parties A multi agent system consists of different

working on multi stage tasks types of agents with different roles and

functions

Each entity in a supply chain has its own Agents have their own objectives, resources

objectives, capabilities, performs certain tasks, and decision rules specified by the user

tasks, and follows certain rules

There is a need to coordinate material, Agents coordinate with each other through

information, and financial flows between communication and interaction,

and among all the participating entities in a network

Information is distributed. Each entity has Agents can communicate with human, with

incomplete information. Information need to other information systems, and with other

be shared across organizational, functional agents. They can share information and

and system boundaries knowledge through message exchange

between agents

There is no single authority. Knowledge is Agents are autonomous. They are responsive

distributed among members in supply chain. to monitor the changing environment, proactive

Decision making in supply chain is through to take self-initiated action, and social to

multiparty negotiation and coordination interact with humans and other agents

Learning and reasoning is needed for supply Intelligent agents are capable of reasoning

chain members to make individual or joint based on the rules given by the the user or

decisions for operating and planning knowledge learned from an open

environment

The structure of the supply chain is flexible. Agent systems are flexible. Agents can be

It can be organized differently to implement organized according to different control and

different strategies connection structures

Tasks in the supply chain can be decomposed to An agent can delegate its task to another

subtasks or multiple tasks can be composed agent or coordinate with other agents’ tasks

to a larger function to form a higher level system

Supply chain is dynamic. Entities may join Agents can be created or discarded from a

or leave a supply chain multi-agent system

two types of agents: functional agents and informational agents. Functional agents include
order acquisition agent, logistics agent, scheduling agent, resource agent, dispatching agent
and transportation agent. They plan and/or control activities in the supply chain. Information
agents support other agents by providing information and communication services. This project
address coordination problems at the tactical and operational levels.

- A Negotiation-based Multi-agent System for Supply Chain Management[3]. In this
framework, functional agents can join in, stay, or leave the system. The Supply Chain Man-
agement System functionality is implemented through agent-based negotiation. Virtual supply
chain may emerge from the system through automated or semi-automated negotiation process
between the agents.

- Mediator Agent for Enterprise Integration[12]. Here, a hybrid agent-based mediator-
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centric architecture is used to integrate the manufacturing enterprise activities such as design,
planning, scheduling, simulation, execution and product distribution with those of its suppliers,
customers and partners into an open, distributed environment.

- Collaborative Agent System Architecture[13]. Here, a collaborative agent system archi-
tecture is proposed in a complex supply chain network. The system is composed of collaborative
elements classified as agents, local area coordinators, yellow pages, and cooperative domain
servers. The objective of this work is to support collaborative agents softwares by providing
domain independent communication and cooperative services over the internet.

Research at modeling dynamic supply chain management policies by means of multi-agents in-
clude [5,8]. In [8] for example, the supply chain model is formulated as a discrete resource al-
location problem under a dynamic environment, and a virtual market concept with multi-agent
paradigm is applied to the model.

In the domain of agent autonomy, various factors entail changes of agent autonomy over time.
In some instances, the agent might lack the capability to make decisions [7]. Others tend to
make provisions for human intervention to cater for unexpected events where the agent may act
irrationally [4]. Reduced confidence in a fully automated system is a common reason where some
crucial decisions require user interference. [11] studies the possibility of transferring autonomy for
higher quality decisions with minimizing coordination problems. While agent-to-agent transfer
of autonomy is considered, there is little work on the needs for such a transfer and the practical
advantages and implications of such a strategy. Most of the mentioned work have focused on a
single agent and a single user. While [11] has expanded beyond the one-to-one relationships, the
author limits the transfer to a complete transfer of autonomy and does not consider situations
where some autonomy may be retained. [1] proposes 3 discrete levels of autonomy: ”Command-
Driven” where the agent does not make decisions and must obey orders, ”Consensus” where the
agent shares decision making equally with other agents and ”Locally Autonomous” where the
agent makes decisions alone. In this paper, we consider a real-life military situation where there
is a need to vary the autonomy gradually and continuously to suit changing circumstances.

Another area of research closely related to our work is the Dynamic or Distributed Constraint Sat-
isfaction Problem (DCSP) as a formalism for modeling multi-agent coordination and negotiation.
For Dynamic CSP, constraints can change over time. [2] developed methods for adapting consis-
tency computations to such changes, and [10] solved this problem by seeking minimal change on
the solution. [15] extended this problem to DCSP as well and proposed the ADOPT algorithm
which guaranteed a user-defined optimality. [9] also provided an algorithm (OptAPO) to solve
DCSP, which experimentally performs better than ADOPT. The coalition formation algorithm
presented in this paper is inspired by the above existing algorithms for solving DCSP.

3 Problem definition

Essentially, the problem we study can be divided into two parts, i.e. sense and response. The
sense portion deals with correctly translating all sensing data gathered by the agents to new
local objectives and autonomy levels for each agent. The response portion is, given the new
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objectives and the autonomy levels of the agents, how the agents should interact with each other
to respond to the environment.

Let N be the index set of n agents, and each agent i ∈ N holds a set of mutually exclusive variables
Ai = {ai1, ai2, ..., aili}. The domains for the variables held by agent i are Di = {Di1, Di2, ..., Dili}.
The values that can be taken by the variables a11, a12, ..., a21, a22, ..., anln are restricted by a
set of global constraints C = {C1, C2, ..., Cq}. Each agent i has a set of objective functions

Fi = {f1
i , f2

i , ..., fpi
i }. Each function is defined as fk

i :
∏

1≤j≤li Dij → R.

These agents exist in a dynamic environment that are captured by the dynamic environment
variables. Let E be the set of m environment variables E = {e1, e2, .., em} that can be sensed by
the agents. The domain for variable ei is the set Dei of real numbers. Each agent senses some of
the environment variables. Let the function sensed : N → 2E returns the set of variables that an
agent can sense, equivalently sensed(i) ⊆ E. This is to capture the idea that each agent has its
own sensor, and able to sense its surrounding.

The sense problem is defined as, given the existing values of the environment variables in E, find

(1) the objective that the agent must focus on, i.e. a mapping for each agent i, Mi :
∏

1≤j≤m

Dej → Fi;

(2) the relative autonomy levels of the agents, i.e. a mapping for each agent i, Li :
∏

1≤j≤m Dej →
[0, 1].

The response problem is defined as, given both the objective fi and autonomy level ali set for
each agent i, find an assignment for the agent variables (a′11, a

′
12, ..., a

′
21, a

′
22, ..., a

′
nln

) which is
consistent with C and minimizes the agent local objectives and the global objective which is
defined in this work as the sum of the relative ”errors” of all agents, i.e. minimizing

∑

i∈N

(
ali ∗

f∗i − fi(a′i1, a
′
i2, ..., a

′
ili

)
f∗i

)

where fi
∗ is the value of the objective given the optimal assignment to the variables of agent i.

4 Solution approach

The overall solution approach is given as follows. For the sense problem, we propose a fuzzy
framework to capture the relationships between environment variables and the agent objectives
and autonomy levels. The role of the fuzzy framework is to continually capture the sensor data
from all the agents and in turn translate these data into new objectives and autonomy level of
the agents. Then, based on the objectives and the autonomy levels set, we apply a distributed
branch-and-bound algorithm to obtain the solution for the response problem.
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4.1 Fuzzy framework

The system behavior of a sense-and-response system is often difficult to design. Due to the
adaptive nature required of the system, the interpretation of the inputs to the system such that
a proper reaction can be designed is a complex task. In this paper, we propose a fuzzy selection
process to determine the autonomy and objective of agents. Fuzzy system has been studied
extensively in the literature, and has been applied to a wide range of real life applications. The
advantages of using a fuzzy system are that it generally captures relationships between non-
discrete data and handles incomplete data effectively.

The 5-stage fuzzy process listed below has been extensively reported [14]. In the following, we
define the function Li(e′1, e

′
2, ..., e

′
m) as consisting of:

• Normalization, performs a scale transformation of the input metric into a normalized variable.
The input variables obtained from the environment will have a wide range of values. These
variables must first be normalized to values in the range from zero to one. This may seem to
be a simple task but a poor normalization will affect the performance of the fuzzy controller.
The objective in normalization would be to obtain values well distributed in the range from
zero to one. Extreme values can be truncated to zero or one.

For each input variable ej ∈ E, its domain Dej = [0, rj] is normalized into the interval [0, a]
for some value a, and the normalization function is:

nj(e′j) =
(

a

rj

)
.e′j

• Fuzzification, determines the degree to which the normalized variables belong to each of the
appropriate fuzzy sets via membership functions. Fuzzification is the process of assigning a
degree of truth to the statement about the input variables. This will show for example the
extent that the if statements are true. The number of fuzzy sets can be two or more for each
normalized input variable. The first step would be to determine the number of fuzzy sets
described in the statements. Since each fuzzy set can be sees as a direct translation from the
description of the variables in the relevant application the number of fuzzy sets can similarly
be determined in this way. For example a general low/high description will result in two fuzzy
sets while a low low/medium/high description will result in 3 fuzzy sets.

The more the fuzzy sets the better the description of the job shop would be and the fuzzy
controllers performance will be enhanced. This can be related to the real world problem where
a person gets a better idea when told the queue is long, medium or short rather than just long
or short. However increasing the number of fuzzy sets beyond a certain level will not result in
significant improvement and will unnecessarily complicate the subsequent computational step.
Thus the number of fuzzy sets used in the design of the fuzzy solution is completely dependent
on the minimum requirements for the problem. The triangular membership function is used as
it is the simplest of the commonly used membership functions both in terms of understanding
and computation. Modifying the membership functions used may show a difference in the
results obtained.

The domain [0, a] of each of the normalized variable ej can be divided into several states, called
fuzzy sets: I1

j , I2
j , ..., I

sj

j , let Ij = {I1
j , I2

j , ..., I
sj

j }. This applies to the output variable as well.
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The partial functions µIk
j

for 1 ≤ k ≤ sj measure the degree of membership of the normalized

value to the set Ik
j . In the example of Figure 1, we have µI2

j
(0.5a) = 0.25, µI3

j
(0.5a) = 0.75,

while µI1
j
(0.5a) and µI4

j
(0.5a) are undefined.

• Fuzzy Inferencing, a rule base, also known as the inference engine, links the fuzzy inputs to
the fuzzy outputs via linked statements called rules. If there is more than one input then the in-
put statements are linked by the ‘or’or ‘and’operator. The implication operator ‘then’indicates
the output statements. The ‘and’operator is again used to link the output statements. Each of
these output statements leads to a fuzzy set.

The truncation level of the initial fuzzy sets determines the truncation of the output fuzzy sets.
When there are more than one initial fuzzy set then the lowest level of the initial sets indicates
the truncation of the output fuzzy sets.

A rule is an if-then statement of the form:

if ej is in Ik
j and ep is in Iq

p and ...
then ali is in Ot

i.

for some p, q, t where ali is the autonomy level of agent i, Ot
i ∈ Oi, and Oi is the set of fuzzy

sets for the output variable ali. In other words, the if-part of a rule contains a set of fuzzy
sets of the input variable, and the then-part of the rule contains a fuzzy set of the output
variable. A rule will fire if µIk

j
(nj(e′j)) is defined for all Ik

j contained in the if-part of the rule.
The result of firing a rule is the state (fuzzy set) that the output variable in and the degree of
the membership which is min

{
µIk

j
(nj(e′j))

}
for all Ik

j in the if-part of the rule.

• Defuzzification, the fuzzy sets for the output from different rules that fire are merged and
the center of area of the combined fuzzy sets is found to get a defuzzified value called the
centroid ci. In this stage the fuzzy sets for each fuzzy output are merged and the center of area
(centroid) of the combined fuzzy sets is determined to evaluate a defuzzified value. In the case
of defuzzification the output fuzzy sets for each fuzzy variable are merged and various methods
are used to defuzzify the result to obtain a single value.A popular method would be to find the
centroid or center of area of the combined fuzzy set . An example can be seen in Figure 2.

• Denormalization, is the reverse of the normalisation process where the scaling biases are
removed. The coefficients which are obtained for each agent, can be viewed as weights that
have to be applied to determine the autonomy of the agent, i.e. ali =

(
1
a

)
.ci

The value of a, the membership functions and the rules are defined based on empirical methods.
Mi is defined in a similar way.

4.2 Coalition formation based algorithm

Here, we propose a coalition formation based algorithm for the agents to find the assignment
to all the variables (a′11, a

′
12, ..., a

′
21, a

′
22, ..., a

′
nln

) that is consistent with C while optimizing the
measure of objective described above, or to output no solution if such solution is not found.
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Fig. 1. Fuzzification

Fig. 2. Defuzzification

This algorithm is based on distributed branch-and-bound. The idea is to have the agents form
coalitions, and to find local solutions. If these local solutions do not conflict each other with
respect to C, then the solution is found. If conflicts between these local solutions occur, then
the agents will try to form a bigger coalitions, and then find the consistent solutions within this
bigger coalitions. In the worst case, all the agents will form one big coalition, and if consistent
solution still can not be found, the algorithm will output no solution.

The algorithm is divided into 3 parts, namely initialization, coalition formation, and negotiation.

During intialization, each agent first constructs an optimal assignment to its variables using a
branch and bound search that maximizes its given objective function fi. This optimal value is
then stored in the variable f∗i . Gi is the set that stores all the agents that are currently in coalition
with agent i. The set is initialized to i itself. The variable Li indicates the agent that has the role
as the leader in the current coalition of agent i, this agent is the one with the highest autonomy
level in the coalition. The set Ki stores all the agents having conflict with agent i, initially set to
empty. Variable statei indicates the state of the agent i. After initialization, the agents will enter
into coalition formation stage, as shown in algorithm 1.

In coalition formation stage, each agent first checks for any external conflicts. The function
Neighbors(i) returns all the agents that share some constraints with agent i, and the function
Conflict(i, j) check whether any two agents are in conflict, which is done through exchange
of variables. After detecting conflicting neighbors, each agent will send invitations to all its
conflicting neighbors to form a coalition(lines 6-7). Along with the invitation, the agent also
sends the variable alLi which is the autonomy level of the leader of the current coalition, or the
highest individual autonomy level in the set Gi. In lines 9-15, we see that An agent will tend to
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ALGORITHM 1: Coalition Formation

Form-Coalition()

1 ∀j ∈ Neighbors(i), if (Conflict(i, j))

2 then Ki ← Ki ∪ {j}

3 n← #Ki

4 if (n = 0)

5 then statei ← no conflict

6 else Send(invite,alLi
) to all j ∈ Ki

7 statei ← conflict

8

9 when received(invite,alLj
) do

10 if(alLi
> alLj

or statei = forming coalition)

11 then Send(reject,alLi
) to j

12 else if(alLi
< alLj

)

13 then Send(accept,alLj
) to j

14 Send(leave,ali) to all agent k ∈ Gi

15 statei ← forming coalition

16 when received(reject,alLj
) do

17 n ← n− 1

18 when received(accept,alLj
) do

19 Gi ← Gi ∪ {j}

20 Li ← j where alj ≥
max
k∈Gi

{alk}

21 Send(confirm,ali,Gi) to all j ∈ Gi

22 n ← n− 1

23 when received(confirm,alj,Gj) do

24 if (Gi 6= Gj)

25 then Gi ← Gj

26 Send(confirm,ali, Gi) to all j ∈ Gi

27 Li ← j where alj ≥
max
k∈Gi

{alk}

28 statei ← negotiating

29 when received(leave,alj) do

30 Gi ← Gi − {j}

31 Li ← j where alj ≥
max
k∈Gi

{alk}

32

33 if(n = 0) then Negotiate()

join a coalition which has a member with the higher autonomy level. This is important for the
convergence of the algorithm. Lines 16-31 of the code deals with concurrent invite and accept,
and to make sure that any agent is in at most one coalition at any point of time. The algorithm
uses concurrent invite and accept to ensure each agent is in at most one coalition at any point
of time. When the agents have formed the coalitions, they will enter the negotiating stage of the
algorithm given as shown in algorithm 2.

If all the agents are in no conflict state, then a consistent solution has been reached, and each
agent will return their current assignment to the variables as the solution (lines 1-2). If the agents
are in negotiating state, then the agent with the highest autonomy level in a coalition will gather
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ALGORITHM 2: Negotiation

Negotiate()

1 if (all agents are in no conflict state)

2 then return (ai1, ai2, ..., aili)

3

4 Li ← j where alj ≥
max
k∈Gi

{alk}

5 if(i 6= Li)

6 then Send((Di1, Di2, ...,Dili),fi,f
∗
i ) to Li

7 else

8 n← #Gi

9 when received((Dj1, Dj2, ...,Djlj )fj, f∗
j ) do

10 n ← n− 1

11 if(n = 0)

12 then do branch and bound search to find an

assignment dpq to all the variables

apq ∈ Ap for all p ∈ Gi

that minimizes
∑

p∈Gi

(
alp ∗

f∗
p −fp

f∗
p

)

13 if (no consistent solution found)

14 then return ”NO SOLUTION”

15 Send(dp1 , dp2 , ..., dplp ) to all p ∈ Gi

16

17 when received(di1, di2, ..., dili ) do

18 assign (di1, di2 , ..., dili) to ai1, ai2, ..., aili

19

20 Form-Coalition()

the data from all other agents in the coalition. A branch and bound search will then be performed
to find a consistent solution that minimizing the sum of the relative error of each agent in the
coalition. If a consistent solution cannot be reached, the algorithm returns no solution. When a
solution is reached, it is broadcasted to every member of the coalition, and the agents return to
coalition formation stage.

5 Application in military storage facility

In this section, we apply our proposed framework to solve a real-time control problem within a
military storage facility for hazardous materials. The facility has a constantly changing environ-
ment that affects the movement of goods and unexpected events which essentiates a deviation
from the original plan.

In this problem, a wide range of hazardous products are to be stored in containers. A job comprises
a combination of products of given quantities retrieved from a given set of containers. One or
more vehicles will be used to transport the requested products out of the facility. Demands are
dynamic since their arrival timings are not known apriori. The rate of arrival of demand is also
not constant contributing to the dynamism of the facility. The paths leading to the entrance are
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Fig. 3. Storage Facility

defined by a road network and there is a restriction on the number of vehicles that can travel on
a particular road segment at any time point. Due to the nature of the goods to be transported,
there are safety measures in terms of doors which limit the exposure area at any one time. These
doors open to allow goods through and close to maintain safety.The doors separate road segments
and should be kept closed for safety of the facility, and opened only to allow vehicle moments.
The number of door opening and closing should also be minimized because they generate heat
within the facility. The door temperature increases each time the door is opened or closed, and
decreases gradually over time in between. There is also a safety consideration that discourages
doors from opening concurrently (to contain possible leakages and explosions).

5.1 Experimental setup

We perform experiments on a prototype of the storage facility problem. In this paper, we report
results for a 7-agent problem responsible for the 7 doors (not including the main door). Each agent
has two objectives, namely to minimize request tardiness (by minimizing the waiting time of the
vehicles), and to minimize the heat caused by opening/closing. The constraints are: the exposure
of the facility due to the opening of the doors must not exceed certain level. The exposure is
measured by the number of road segments that are revealed because of the opening of the doors.
In this case, it must not be more than 4. There are 3 traffic agents with 1 overlapping road
segment. The congestion level of this segment is limited to 15 vehicles at any point of time. The
traffic agents have a single objective, that is to minimize the delay of jobs. The outline of the
system is given in Figure 3.

The environmental variables captured in the experiment are the war level and the temperatures
of each door. These two inputs are fed into the fuzzy system. The domain of the temperature
[25, 65] is normalized to [0, 1] and divided into 5 fuzzy sets {L,LM,M,MH,H} as shown in Figure
4. Similarly, the domain of the input war-level [0, 100] is normalized and divided into 3 sets
{L,M,H}. The output variables of the fuzzy system are: autonomy level, with domain [0, 1], and
objective function, with domain {0, 1}. The domain of the autonomy level is also normalized and
divided into 5 sets {L,LM,M,MH,H}. The rule base inside the fuzzy system are obtained from
empirical and historical data.
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Fig. 4. Fuzzification of Input Variables

Fig. 5. Subset of The Inferencing Rules

A subset of the rules for determining the autonomy level and objective function of the door
agents is shown in Figure 5, where a low objective function refers to minimizing tardiness and
high refers to minimizing temperature.

For each pair of environmental variables, we generate 3000 requests with different deadlines. The
two output variables that we observed are: the tardiness of the requests (how late the requests
are satisfied) and the safety level of the system, by measuring the exposure caused by the opening
of the doors.
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Fig. 6. Comparison of Tardiness

Fig. 7. Comparison of Safety

5.2 Experimental results

The test cases are divided into 3 parts. First, we fixed the average temperature to 25oC, and
varied the war level. Second, we fixed the war level, to 15% and varied the average temperature.
Thirdly, we varied both the war level and the average temperature.

Figure 6 shows the measure of tardiness for 3 different cases. The first case shows that as the war
level increases over time, tardiness decreases but at the same time the security level of the whole
system also decreases, as seen in Figure 7. In the second case, as we increase the temperature
over time, the effect is the opposite of the first case, as seen in both figures. For the third case,
the variations in the observed output variables are shown in Figures 6 and 7. It can be observed
that the system adapts to changes in environmental variables and respond accordingly.

6 Application in Crisis Management

The recent series of world disasters and other emergencies have lead the international community
to react in terms of providing medical aid, food and other basic necessities. Unfortunately due
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Fig. 8. Supply Chain

to the unpredictable nature of such events and the inability to react quickly there is often a very
costly delay in supplies reaching their destinations While there is generally a shortage in terms of
re-deployable resources a more effective management of resources available in terms of utilizing
a real-time response has a tendency to reduce the delays. In this section, we apply our proposed
framework to solve the real-time control problem in crisis management. In this problem, a wide
range of supplies are to be collected by various collection centers from a range of supply locations.
The supplies are to be sent to crisis locations based on the needs at each location. A job or supply
requests comprises a combination of products of given quantities. One or more vehicles will be
used to transport the requested products from the supply locations to the collection centers and
similarly to the crisis locations. The same set of resources are in the control of the crisis manager.
Demands are dynamic since crisis locations and extent are not known apriori. We can assume
that the collection centers are fixed in terms of location and there is a known fixed number of
regions that a collection center serves.

It can be assumed that there is always adequate supplies to meet the demand. However sup-
plies are also dynamically changing(increasing) as demand occurs. Supply locations however are
assumed to be regional and fixed.

6.1 Experimental setup

The overall setup can be seen at figure 8. It is a 3-echelon supply chain with 12 agents interacting
with each other. There are 3 types of agents involved: (1) Resource Agents, which are the suppliers
with unlimited storage capacity. The amount of supply goods at each of the resource agent
increases at a constant rate. In this experiment, we assume 3 types of supply goods, each supplied
by one of the resource agents. (2) Mid-level Distribution Agents, which serve as holding area and
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Fig. 9. Demand satisfaction (service level) over time

assembly points where the 3 types of supply goods into the final goods to be distributed to the
lower-level distribution agents. (3) Lower-level Distribution Agents, where the demands (crisis)
occur. Demand occurs dynamically during the running time of the system, and sensed by the
lower-level distribution agents. The lower-level distribution agents will then send the changes in
demands to the central controller which will determine the autonomy level of each agent. All
distribution agents have limited storage capacity.

There are 3 types of cost in this setting: storage cost on each agent, transportation cost, and
processing cost at mid-level distribution agent. The resource and mid-level agents have a single
objective, that is to minimize cost while satisfying the service level constraint. Service level
is a user-defined value that specifies the percentage of the demand satisfied during a certain
period of time. This is a soft constraint, which the system is allowed to violate. The lower-level
agents, however have two objectives, minimizing cost while maintaining a certain service level
and maximizing service level while maintaining a certain threshold on cost. The lower-level agents
can switch between objectives during the running time of the system. Requests for supply arrive
from the lower-level agent to the higher-level agents and decisions are made by coalition formation
process described in section 4.2. Each agent maintains its own inventory policy and the coalition
formation occurs only where there are conflicts between agents.

6.2 Experimental results

The result of the experiment can be observed in figure 9 and 10. The time can be divided into
3 phases: (1) first phase (from time point 1 to 7) is the initialization phase, (2) second phase
(from time point 8 to 15) is the behavior of the system under normal situation, and (3) third
phase (from time point 16 onwards) is when there is a sudden drastic increase in one of the lower-
level distribution agent, we call this agent the critical agent, and other lower-level distribution
agents as non-critical agents. Figure 9 shows the service level of the critical agent and the average
service level of the non-critical agents. Under normal situation, the threshold on the service level
is maintained while the agents tries to minimize its cost. On the critical situation, however, when
changes is detected, the critical agent switch its objective from cost to service level. The changes
also caused this agent to receive a high level of autonomy, causing the service level to increase
substantially, and the cost also increases towards the threshold given, as shown in figure 10.
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Fig. 10. Cost over time

The increase in service level of the critical agent causes the service level of the non-critical agents
to drop gradually. The effect conforms to what we expected, i.e. the cost of increasing the service
level of one critical agent is shared equally by the other non-critical agents. It is also observed
that when the demand of the critical agent drops to normal level, the whole system behavior
return to normal state.

7 Conclusion

We studied the problem of adjustable autonomy in the context of sense and respond to dynamic
environmental changes. Our solution approach has shown promising results for real-world prob-
lems involving the design of a control system for a military storage facility under a peace-to-war
transition, as well as the management of a supply chain under sudden crisis. We believe our
proposed approach can be applied to solve other real-time supply chain management problems
where drastic changes in environmental variables (such as peace-to-war) is an issue.
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