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Abstract

It is well known that for continuous time models with a linear drift standard estimation

methods yield biased estimators for the mean reversion parameter both in �nite dis-

crete samples and in large in-�ll samples. In this paper, we obtain two expressions to

approximate the bias of the least squares/maximum likelihood estimator of the mean

reversion parameter in the Ornstein-Uhlenbeck process with a known long run mean

when discretely sampled data are available. The �rst expression mimics the bias for-

mula of Marriott and Pope (1954) for the discrete time model. Simulations show that

this expression does not work satisfactorily when the speed of mean reversion is slow.

Slow mean reversion corresponds to the near unit root situation and is empirically real-

istic for �nancial time series. An improvement is made in the second expression where

a nonlinear correction term is included into the bias formula. It is shown that the

nonlinear term is important in the near unit root situation. Simulations indicate that

the second expression captures the magnitude, the curvature and the non-monotonicity

of the actual bias better than the �rst expression.

Keywords: Least squares, Maximum likelihood, Discrete sampling, Continuous record,

Near unit root.

JEL Classi�cations: C22, C32



1 Introduction

There is an extensive literature on using continuous time models in economic theory

(e.g., Merton, 1990). Motivated by this success, econometricians have developed meth-

ods for estimating continuous time models, aiming to provide a basis from which these

models may be used in empirical applications. While Ito�s lemma facilitates the mathe-

matical treatment of continuous time models in economic applications, continuous time

models are more di¢ cult to deal with econometrically than their discrete time coun-

terparts. In recent years, however, several exciting developments have been made on

estimating and testing continuous time models based on discrete time observations. In

terms of parameter estimation, important contributions include Lo (1986), Bergstrom

(1990), Du¢ e and Singleton (1993), Pedersen (1995), Aït-Sahalia (1996a, 1999, 2002),

Stanton (1997), Elerian, Chib and Shephard (2001), Bandi and Phillips (2002, 2007),

and Aït-Sahalia and Yu (2006). In terms of speci�cation analysis, important con-

tributions include Chan, Karolyi, Longsta¤, and Sanders (1992), Aït-Sahalia (1996a,

1996b), Dai and Singleton (2000), Bandi (2002), and Hong and Li (2005). While there

are abundant continuous time speci�cations available, much of the focus in the asset

pricing literature has been on the continuous time di¤usion equations with an a¢ ne

structure (see Du¢ e and Kan, 1996). This is the main motivation why we choose to

focus our attention on continuous time di¤usion models with a linear drift function.

However, the methodology employed here is general and is applicable to non-a¢ ne

models including those with nonlinear drift.

One problem with utilizing continuous time models is estimation bias.1 Standard

estimation methods, such as least squares (LS), maximum likelihood (ML) or gener-

alized method of moments (GMM), produce biased estimators for the mean reversion

parameter. The bias is essentially of the Hurwicz type that Hurwicz (1950) developed

in the context of dynamic discrete time models. However, as it will be clear later,

the percentage bias is much more pronounced in continuous time models than their

discrete time counterpart. On the other hand, estimation is fundamentally important

for many practical applications. For example, it provides parameter estimators which

are used directly for estimating prices of �nancial assets and derivatives. For another

example, parameter estimation serves as an important stage for the empirical analysis

1The bias in this article refers to bias arising from estimation. This is di¤erent from the bias

induced by discretizing continuous time models.



of speci�cation and comparative diagnostics. Not surprisingly, it has been found in

the literature that the bias in the mean reversion estimator has important implications

for the speci�cation analysis of continuous time models (Prisker, 1998) and for pricing

�nancial assets (Phillips and Yu, 2005).

Several methods have been proposed to reduce the bias in the mean reversion es-

timator.2 Ball and Torous (1996) suggested utilizing more cross-sectional information

for estimating continuous time term structure models. Obviously this approach is sub-

ject to data availability. In Phillips and Yu (2005) the jackknife method of Quenouille

(1956) was suggested to reduce the bias. While the jackknife method cannot com-

pletely remove the bias, it can be very useful in practice as it is computationally simple

and is applicable to a very broad range of models, including the models for which

it is impossible or di¢ cult to develop the explicit form of an asymptotic expansion

of the bias. Another method whose performance was examined in Phillips and Yu

(2005) is the median unbiased estimator of Andrews (1993). This estimator is closely

related to the indirect inference method and the bootstrap method. The indirect in-

ference method was originally proposed by Smith (1993) and Gouriéroux, Monfort and

Renault (1993) and subsequently applied to reduce the bias in the mean reversion es-

timator by Phillips and Yu (2009a). The bootstrap method was recently proposed to

reduce the bias in the mean reversion estimator by Tang and Chen (2009). All three

methods are simulation-based, and hence computationally demanding.

In an independent and concurrent study, Tang and Chen (2009) derived an analyti-

cal formula for approximating the bias of certain estimators for the Ornstein-Uhlenbeck

(OU) process and the square root process, both with an unknown long run mean. The

bias formula corresponds to that of Marriott and Pope (1954) and Kendall (1954) for

the discrete time autoregressive (AR) model with an intercept. It was shown that the

bias of the mean reversion estimator is of order T�1 but not of order n�1, where T is

the data span and n is the number of observations. As a result, increasing the sample

size, by the way of increasing the sampling frequency, cannot yield a consistent LS es-

timator. This result con�rms what has been known in the literature; see, for example,

Merton (1980). However, the performance of their bias formula is unsatisfactory in the

near unit root situations.
2Bias has been under extensive study in the context of discrete time models. Some recent studies

include Abdir (1993), Rilstone, Srivastava, and Ullah (1996), Vinod and Shenton (1996), MacKinnon

and Smith (1998), and Bao and Ullah (2007).

2



In this paper we derive an analytical formula for approximating the bias of ML/LS

estimators for the OU process with a known long run mean. Thus, our results comple-

ment those of Tang and Chen (2009). We make several contributions to the literature.

First, we point out that the true bias of the mean reversion estimate has an interest-

ing curvature and goes to zero when the mean reversion parameter is closer to zero.

This result echoes the conjecture of Hurwicz (1950) about the bias in the autoregres-

sive (AR) estimate in the discrete time AR(1) model. Second, we show that the bias

formula, which mimics that of Marriott and Pope (1954) and Kendall (1954) for the

discrete time model and that of Tang and Chen (2009) for continuous time models, is

essentially linear in coe¢ cient. Consequently, the bias predicted by the formula does

not disappear in the unit root case. One reason why this bias formula does not work

well is that the Cesaro sums are badly approximated in the unit root and the near unit

root situations. Since many �nancial time series have roots extremely near unity, there

is considerable interest in improving the bias formula.

As a third contribution, we derive an alternative bias formula which includes an

extra term. The extra term arises from the exact evaluation of the Cesaro sums. It is

of smaller order and hence can be ignored when the mean reversion parameter is far

away from zero. Interestingly, it does not have a smaller order e¤ect when the mean

reversion parameter is close to zero. Monte Carlo studies show that the alternative

bias formula is more accurate. It reproduces the nonlinear feature in the true bias

function and goes to zero when the mean reversion parameter goes to zero. Finally, we

approximate the bias and the mean square errors (MSE) up to a higher order term.

The paper is organized as follows. Section 2 derives the formulae for approximating

the bias and the mean square error. In Section 3 we assess the accuracy of the analytical

expressions using Monte Carlo experiments. Section 4 obtains the bias and the MSE

in a higher order term. Section 5 concludes the paper. The Appendix collects proofs

of the main results.

2 OU Process with a Known Mean

The model considered here is the Ornstein-Uhlenbeck (OU) process:

dX(t) = �(��X(t))dt+ � dB(t); X(0) � N(�; �2=2�) (1)

3



with � being known, where B(t) is a standard Brownian motion. This model has been

previously used to explain the dynamics of short-term interest rates (Vasicek, 1977)

and log-volatilities (Taylor, 1982). Since we assume the long run mean, �, is known

apriori, without loss of generality, it is set to zero. The parameter of interest is the

speed of mean reversion, �, which is assumed to be positive.3 Phillips (1972) showed

that the exact discrete time model corresponding to (1), is given by the following AR(1)

structure

Xih = �X(i�1)h + �

r
1� e�2�h

2�
�i; (2)

where � = e��h, �i � i.i.d. N(0; 1) and h is the sampling interval. Obviously the

covariance structure of any discrete sample in Model (1) is the same as that in Model

(2) and there is a one-to-one correspondence between � and �. Also, it is easy to see

that � > 0 implies � < 1 and hence stationarity; � ! 0 or h ! 0 implies � ! 1

and the model converges to a unit root model. For a small value of � or a small

value of h (high frequency), both being empirically relevant, the model has a root near

unity. This situation is the primary interest of the present study. Moreover, since the

distribution of the LS estimator of � is invariant to �2, the same property holds for �.

The observed data are assumed to be recorded discretely at (0; h; 2h; � � � ; nh(= T )) in

the time interval [0; T ]. So n+1 is the total number of observations and T is the data

span. With a �nite value of T , n ! 1 when h ! 0 and vice versa. In the limit as

h! 0, a continuous sample path from the interval is observed. This in-�ll asymptotics

has become very popular in recent years in �nancial econometrics following the work

on realized volatility; see, for example, Andersen, Bollerslev, Diebold, Labys (2001)

and Barndor¤-Nielson and Shephard (2002). For �nancial time series, X(t) is often

recorded monthly, weekly, or daily and hence h = 1=12; 1=52 or 1=252. However, higher

frequencies are possible in the setup with an even smaller value for h. When there is

no confusion, we simply write Xih as Xi. Unless speci�ed, the summation sign
P
is

always referred to summation from i = 1 to i = n.

The LS estimator of � (denoted by �̂) can be obtained by

min
�

X�
Xi � e��hXi�1

�2
: (3)

3It is known, from the simulations conducted in Phillips and Yu (2005) and the theoretical work

in Tang and Chen (2009), that the ML estimators of the long mean parameter and the di¤usion

parameter have little bias. For this reason, we focus our attention to the mean reversion parameter

in the present paper.
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It can be shown that the LS estimator is equivalent to the ML estimator which maxi-

mizes the following log-likelihood function (conditional on X0 = X(0)),X
ln pdf(XijXi�1): (4)

where pdf represents the conditional density. For Model (1) with � = 0, the conditional

distribution is given by

XijXi�1 � N
�
e��hXi�1; �

2(1� e�2�h)=(2�)
�
: (5)

The ML estimator has been widely used in the literature (see, for example, Aït-Sahalia,

1999). The equivalence is the main reason why we focus on LS.

It is well known from the discrete time dynamic literature that the LS estimator

can be downward biased. For example, in the AR(1) model without intercept

Xi = �Xi�1 + ��i; �i � N(0; 1) (6)

Marriott and Pope (1954) derived the following expression to approximate the bias of

the LS estimator

E(�̂)� � = �2�
n
+ o(n�1): (7)

Bartlett (1946) derived the following expression to approximate the variance of �̂

V ar(�̂) =
1� �2

n
+ o(n�1): (8)

Equations (7) and (8) are obtained by replacing the Cesaro sum

nX
j=�n

�
1� jjj

n

�
�jjj

with
1X

j=�1
�jjj:

Obviously the quality of the approximation deteriorates when � ! 1. When j�j < 1,
the model is stationary and the limiting theory of �̂ is given by

p
n(�̂� �)

d! N(0; 1� �2): (9)

Since � = e��h, it is reasonable to believe that the bias in �̂ translates into b�. In
fact, Phillips and Yu (2005, 2009a) provided extensive Monte Carlo evidence of severe

�nite sample bias in b� and many other estimators of �.
5



When � is not close to zero, for b�, we take a Taylor expansion up to the second
order term,

b� = � ln(b�)=h
= �1

h

�
ln�+

1

�
(b�� �)� 1

2�2
(b�� �)2 + op(n

�1)

�
= �1

h

�
ln�+

1

�
(b�� �)� 1

2�2
(V ar(b�) + (E(b�)� �)2) + op(n

�1)

�
= �� 1

h�
(b�� �) +

1

2h�2
V ar(b�) + op(T

�1): (10)

From Equations (7), (8) and (10), it is straightforward to show that

E(b�)� � =
2

hn
+

1

2h�2

�
1� �2

n

�
+ o(T�1) (11)

=
1

2T

�
3 + e2�h

�
+ o(T�1): (12)

Bias formula (12) is analogous to that of Marriott and Pope for the AR(1) model

and corresponds to that of Tang and Chen (2009) for the OU process with an unknown

mean. The �rst term in (11) arises from the bias in �̂ while the second term arises

from the variance of b� and the nonlinear dependence of � in �. By including only
the �rst two terms in Taylor expansion, the bias due to the skewness and the kurtosis

in �̂ is obviously omitted. This omission trades o¤ the quality of the approximation

against algebraic tractability. The bias formula (12) has several implications for the

behavior of the bias. First, according to (12), the size of the bias is mainly determined

by the data span T but not by the sample size n. Second, the bias converges to 2=T

when h! 0. According to this in-�ll asymptotics, the bias does not go away unless T

goes to in�nity. Third, when � is reasonably small, e2�h � 1 + 2�h � 1. Hence, (12)
implies that the bias is essentially linear in � and that the bias is about 2=T and hence

insensitive to �. According to the second and the third implications, the approximate

bias is 2=T when either h! 0 or �! 0. Fourth, the predicted bias will not disappear

when �! 0. The �rst implication seems to be consistent with what have been found

in literature (Phillips and Yu, 2005). The second and the third implications are rather

surprising because (7) suggests that the bias in �̂ is sensitive to the true value. The

last implication seems at odds with the conjecture made by Hurwicz (1950) that the

bias in �̂ is zero in the discrete time unit root case (i.e. � = 1).

To understand the behavior of the actual bias in Model (1) and the performance

of (12), we simulate 756 daily observations (i.e. T = 3) from the model with � taking

6
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Figure 1: The bias as a function of � for daily frequency (ie h = 1=252) when T = 3

(i.e. n = 756). The solid line is from the simulations. The dashed line is from formula

(12).

various values from the region of (0,3] and estimate � using the LS estimator (3). The

experiment is replicated 10,000 times to get the actual bias. Fig. 1 plots the true

bias and the expression (12), both as a function of �. Obviously there is a great deal

of discrepancy between them. The smaller �, the bigger the di¤erence. The actual

bias goes to zero when � ! 0, echoing the conjecture made by Hurwicz (1950) in

the discrete time model, whereas according to (12) the expected value of �̂ is about

2=3 � 0:67 when � or h is close to zero. The discrepancy is due to the error arising from
approximating the Cesaro sum since the derivation of (12) makes use of (7) and (8).

Moreover, there is a strong nonlinearity in the actual bias function while the expression

(12) is nearly linear. Therefore, there are good reasons to �nd a better bias formula

than (12).

To derive the bias, we adopt the approach of Bao and Ullah (2007) which is brie�y

reviewed here. Suppose b� is an estimator of �; based on a sample of n observations,
which satis�es the following estimation equation:

 n(
b�) = 1

n

X
qi(b�) = 0: (13)

The identi�cation condition is given by E( n(�)) = 0. Under a set of regular condi-

7



tions, Bao and Ullah (2007) obtained the stochastic expansion of b� as4
b� � � = a�1=2 + a�1 + a�3=2 + op(n

�3=2); (14)

where a�1=2 = �Q n, a�1 = �QV a�1=2� 1
2
QH2a

2
�1=2, a�3=2 = �QV a�1� 1

2
QWa2�1=2�

QH2a�1=2a�1 � 1
6
QH3a

3
�1=2, with  n =  n(�), � = E(�), Hi = @i n=@�

i, Q =
�
H1

��1
,

V = H1 � H1, W = H2 � H2. By the identi�cation condition, E(a�1=2) = 0.5 The

second order and the third order bias of b� is, respectively,
E(a�1); E(a�1 + a�3=2) (15)

and the �rst order and the second order MSE of b� is, respectively,
E(a2�1=2); E(a

2
�1=2 + 2a�1=2a�1): (16)

When the parameter of interest is � in the AR(1) model, it is easy to see that

H2 = H3 = V = W = 0, greatly simplifying the analysis. The parameter of interest in

the present study is � for which the estimation equation is a nonlinear function in �,

Consequently, none of these quantities is zero and hence the derivation of the bias is

more complex in continuous time models. Working with E(a�1) without approximating

the Cesaro sums in the OU model, we get a new second order bias for �̂.

THEOREM 2.1 (New Approximation to the Bias of �̂): Under Model (1) with a
known �, when � is close to 0, we have the following second order bias of �̂,

1

2T

�
3 + e2�h

�
� 2(1� e�2n�h)

Tn(1� e�2�h)
: (17)

Remark 2.1 Compared with (12), the bias formula (17) has an extra term, which

arises from the exact calculation of the Cesaro sums, as shown in the Appendix. This

term is of order (Tn)�1 and hence smaller than 1=T , when � is far away from zero.

In this case it is negligible and (17) becomes (12). However, if � is close to zero, the

extra term is negligible, even for a large n. To see this, applying L�Hospital�s rule to

the second term, we have

lim
�!0

1� e�2n�h

n(1� e�2�h)
= 1,

4The expansion was �rst derived in the i.i.d. framework by Rilstone, Srivastava, and Ullah (1996).
5The asymptotic normaylity theory, such as (9), follows from the fact that

p
na�1=2 converges to

a normal distribution.
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and

lim
�!0

E(a�1) = 0: (18)

As a result, the extra term is of order T�1 but not of order (Tn)�1. Indeed, (18)

suggests that the bias is close to zero when � is close to 0, which is consistent with what

is found in Fig. 1. The bias, however, decreases when the span of data (T ) becomes

larger. This observation is consistent with the Monte Carlo results reported in Phillips

and Yu (2005). Compared with (12), the bias formula (17) is much more nonlinear due

to the inclusion of the extra term.

Remark 2.2When h converges to 0, n(1�e�2�h)! 2T� and 1�e�2n�h = 1�e�2T�.
Thus,

lim
h!0

2(1� e�2n�h)

n(1� e�2�h)
=
1� e�2T�

T�
(19)

and

lim
h!0

E(a�1) =
1

T

�
2� 1� e�2T�

T�

�
: (20)

The implication for h ! 0 is very di¤erent from that for � ! 0 although both cases

lead to a unit root in the exact discrete time representation. The di¤erence arises

because as � ! 0 the initial condition becomes dominant whereas as h ! 0 the error

variance goes to 0. The bias formula (20) is also remarkably di¤erent from the limit

case of (12) when h ! 0. It is easy to see that the bias formula (20) works well for

practically relevant values for h. For example, if T = 3 and � = 3, (20) suggests that

bias is about 0.63 as h! 0; if T = 3 and � = 1, (20) suggests that bias is about 0.46

as h! 0. These values appear to match very well with what we have found in Fig. 1

when h = 1=252.

Remark 2.3 Formulae (17) and (20) suggest feasible ways for bias correction. If �
is reasonably close to zero, we can estimate � by

b�� 1

2T

�
3 + e2b�h�+ 2(1� e�2nb�h)

Tn(1� e�2b�h) :
If in addition, h is small, we can then estimate � by

b�� 1

T

�
2� 1� e�2Tb�

Tb�
�
:

To obtain the limiting theory for �̂ when � > 0, we apply the delta method to (9)

9
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Figure 2: The bias as a function of � for daily frequency (ie h = 1=252). The three

graphs correspond to T = 3; 5; 10 (ie, n = 756; 1260; 2520), respectively. The solid line

is from the simulations. The dashed line is from formula (12). The dotted line is from

formula (17).

p
T (�̂� �)

d! N(0; (e2�h � 1)=h): (21)

The variance in the limiting distribution is identical to what was found in Tang and

Chen (2009).

Working withE(a2�1) without approximating the Cesaro sums, we get the expression

for the �rst order MSE.

THEOREM 2.2 (The �rst order MSE of �̂): Under Model (1) with a known �,
we have the following the �rst order MSE,

MSE(�̂) � e2kh � 1
Th

: (22)

Remark 2.4 Interestingly, the exact calculation of the Cesaro sums does not make
any di¤erence for the �rst order MSE as it is the same as the asymptotic variance �̂
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Figure 3: The bias as a function of � for weekly frequency (ie h = 1=52). The three

graphs correspond to T = 3; 5; 10 (ie, n = 156; 260; 520), respectively. The solid line is

from the simulations. The dashed line is from formula (12). The dotted line is from

formula (17).

given by (21). Furthermore, when h ! 0, MSE � 2�=T and �̂ a� N(�; 2�=T ), the

latter of which is well known in the statistics literature �see, for example, Brown and

Hewitt (1975).

3 Monte Carlo Results

To examine the performance of the two alternative bias formulae, we estimate � in

Model (1) using the LS estimators (3), assuming � takes various values from the region

of (0,3]. This range covers empirically reasonable values of � for real data on interest

rates and volatilities. The mean reversion parameter is estimated with 3, 5 10 years

of daily, weekly and monthly data. The experiment is replicated 10,000 times to get

the bias. Since the number of simulated paths is large, the bias can be regarded as the

actual bias.
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Figure 4: The bias as a function of � for monthly frequency (ie h = 1=12). The three

graphs correspond to T = 3; 5; 10 (ie, n = 36; 60; 120), respectively. The solid line is

from the simulations. The dashed line is from formula (12). The dotted line is from

formula (17).

Figures 2-4 report the simulation results for the daily, weekly and monthly fre-

quency, respectively. In the �gures, we plot the actual bias, the bias expression (12)

and the bias expression (17) as a function of �.

Several features are apparent in the �gures. First, the actual bias can be substantial.

The bias is especially large for small T both in percentage and absolute terms. For

example, if data from a three-year time interval are used to estimate � when � = 0:1,

regardless of the frequency at which the data are collected, the percentage bias is about

250% and the absolute bias is about 0.25. This bias is very big and has important

economic implications for asset pricing. When � is small, the bias formula (12) does

not perform well and the bias formula (17) o¤ers substantial improvement to (12). The

bad performance of (12) is not surprising since it is known to be di¢ cult to correct the

bias when � is close to 1 (Hurwicz, 1950). Because a small value for � is empirically

reasonable, the improvement in the bias formula (17) is practically useful.
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Figure 5: Approximate bias from (17) and (20) for the daily frequency with T = 3; 5; 10.

The solid line is from formula (17). The dotted line is from formula (20).

Second, the actual bias is always a highly nonlinear function of �; especially when

� is small. The bias formula (12) is virtually linear in � whereas the bias formula (17)

reproduces the curvature in the actual bias function quite well.

Third, as � gets close to zero, the true bias seems to decrease toward zero. In-

terestingly, the bias formula (17) but not the bias formula (12) has the same feature.

Fourth, the actual bias seems to be dependent upon the data span but not the sampling

frequency, consistent with the two bias formulae.

To examine the performance of (20) relative to (17) (i.e. the e¤ect of small h), we

adopt the same simulation design as before but now plot the bias formulae (17) and

(20). Fig. 3-6 are for the daily, weekly and monthly frequency, respectively. Obviously,

the di¤erence between (17) and (20) is the largest for monthly data and the least for

daily data, consistent with the prediction of (20). Similarly to (17), (20) also suggests

the bias converges to 0 as � ! 0. Finally, when the true value of � is closer to 0, the

di¤erence between (17) and (20) is very small, suggesting that we can replace (17) with

(20) to approximate the bias in practice.
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Figure 6: Approximate bias from (17) and (20) for the weekly frequency with T =

3; 5; 10. The dashed line is from formula (17). The dotted line is from formula (20).
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Figure 7: Approximate bias from (17) and (20) for the monthly frequency with T =

3; 5; 10. The dashed line is from formula (17). The dotted line is from formula (20).
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4 Higher Order Bias and MSE

Under the framework of Bao and Ullah (2007), the third order bias of �̂ and the the

second-order MSE of �̂, namely, E(a�1 + a�3=2) and E(a2�1=2 + 2a�1=2a�1), can be

worked out in the same manner.

THEOREM 3.1 (The Third Order Bias and The Second Order MSE): Under
Model (1) with a known �, when � is close to 0, the third order bias of �̂ is

1

2T

�
3 + e2�h

�
�2(3e

2�h + 9 + e�2�h + 4e�2(n�1)�h + 7e�2n�h)

Tn(1� e�2�h)
+
4(1� e�2n�h)(e2�h + 7 + 4e�2�h)

Tn2(1� e�2�h)2
:

(23)

and the second order MSE of �̂

e2kh � 1
Th

� 2(5 + 7e
2�h) + 16e�2(n�1)�h

T 2
+
10(3 + e2�h)(1� e�2n�h)

T 2n(1� e�2�h)
: (24)

Remark 3.1 By L�Hospital�s rule, it can be shown that as �! 0, E(a�1+a�3=2)!
0. If h! 0,

E(a�1 + a�3=2)!
2

T
� 13 + 11e

�2T�

T 2�
+
12(1� e�2T�)

T 3�2
; (25)

and

E(a2�1=2 + 2a�1=2a�1)!
2�

T
� 24 + 16e

�2T�

T 2
+
20(1� e�2T�)

T 3�
: (26)

5 Conclusions

We have presented two alternative expressions for approximating the bias of the mean

reversion estimator in a continuous time di¤usion model, based on the method proposed

by Bao and Ullah (2007). The simpler expression mimics the bias formula derived by

Marriott and Pope (1954) for the discrete time AR model and corresponds to the

bias formula derived independently by Tang and Chen (2009) for the same model

but with unknown mean. The complicated one includes an additional term from the

exact evaluation of the Cesaro sums. We show that the additional term is important

for improving the quality of bias approximation, especially when the mean reversion

parameter is close to zero. This near unit case is practically realistic for �nancial time

series.
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One drawback is that our formulae only work for the simple univariate OU process.

However, Bao and Ullah�s method is general and is applicable to more complicated

models, so long as the estimator can be obtained from an estimation equation which is

available analytically. Interesting generalizations include the square-root model, non-

a¢ ne models, models with a nonlinear drift, and multivariate models. The results for

more general models will be reported in future work. Finally, the initial condition is

assumed to be the stationary distribution in our treatment. This initial condition is

known to have important implications for the �nite sample theory (White, 1961) and

even for asymptotic theory in the unit root case (Phillips and Magdalinos, 2009). It is

useful to derive the bias formula for alternative initial conditions for the mean reversion

parameter.

6 Appendix

Before proving Theorem 2.1, we �rst introduce a lemma.

Lemma 1

1. If X � N(0;�), A, A1, A2 and A3 are all symmetric matrices, then

E(X 0AX) = tr(A�); (27)

E(X 0AX)2 = (tr(A�))2 + 2tr(A�A�); (28)

E(X 0A1XX
0A2X) = tr(A1�)tr(A2�) + 2tr(A1�A2�); (29)

and

E(X 0A1XX
0A2XX

0A3X) = tr(A1�)tr(A2�)tr(A3�) + 2ftr(A1�)tr(A2�A3�)
+tr(A2�)tr(A1�A3�) + tr(A3�)tr(A1�A2�)g
+8tr(A1�A2�A3�); (30)

where tr denotes the trace of a matrix.

2.
P
i��i = ���1�n(1+n)+n��n

(1��)2 .

3.
PP

�jt�sj = n1+�
1�� �

2�(1��n)
(1��)2 .

4.
PP

�jt�sj+jt�s�1j = n 2�
1��2 �

�(1+�2)(1��2n)
(1��2)2 .
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5.
PP

(�2jt�sj + �jt�s+1j+jt�s�1j) = n1+4�
2��4

1��2 � 2�2(1��2n)
(1��2)2 .

Proof of Lemma 1:

1. Equations (27) and (28) are straightforward consequences of Exercise 3 in Ullah

(2004, Page 12). To get Equations (29) and (30), we need to de�ne y = X��1=2

and assume � = 0 in Exercise 4 in Ullah (2004, Page 12).

2. Working from the derivatives, we have

X
i��i = ��@(

P
��i)

@�
= ��@((1� ��n)=(�� 1))

@�

=
�� �1�n(1 + n) + n��n

(1� �)2

3. Following from the last equation, we have

XX
�jt�sj = n+ 2�n

n�1X
i=1

i��i = n+ 2
�n+1 � n�2 + (n� 1)�

(1� �)2

= n
1 + �

1� �
+
2�n+1 � 2�
(1� �)2

;

XX
�jt�sj+jt�s�1j = n�+

n�1X
i=1

(n� i)�2i�1 +
n�1X
i=1

(n� i)�2i+1

= n�+ (1 + �2)
�2(�2n�1 � �)� (n� 1)(�2 � 1)�

(1� �)2

= n
2�

1� �2
+
(1 + �2)(�2n+1 � �)

(1� �2)2
;

andXX
(�2jt�sj + �jt�s+1j+jt�s�1j) =

XX
�2jt�sj +

XX
�jt�s+1j+jt�s�1j

= n
1 + 4�2 � �4

1� �2
� 2�

2(1� �2n)

(1� �2)2

Proof of Theorem 2.1: Denote X = (X0; : : : ; Xn)
0,
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C1 =
1

2

26666666666666664

0 1 0 � � � 0 0 0

1 0 1 � � � 0 0 0

0 1 0 � � � 0 0 0
...
...
...
. . .

...
...
...

0 0 0 � � � 0 1 0

0 0 0 � � � 1 0 1

0 0 0 � � � 0 1 0

37777777777777775
; and C2 =

26666666666664

1 0 0 � � � 0 0

0 1 0 � � � 0 0

0 0 1 � � � 0 0
...
...
...
. . .

...
...

0 0 0 � � � 1 0

0 0 0 � � � 0 0

37777777777775
(31)

Note that the LS estimator of � is obtained from the following estimation equation,

1

n

X
Xi�1

�
Xi � e�b�hXi�1

�
=
1

n
X 0C1X � e�b�h 1

n
X 0C2X := Un � e�b�hVn: (32)

with Un = 1
n
X 0C1X and Vn = 1

n
X 0C2X.

Since the property of b� is independent of �2, without loss of generality, we assume
�2 = 2�. As a result, Xt � N(0; 1) and X � N(0;�) where � is an (n + 1)� (n + 1)
matrix with ij-th element �ji�jj. By Lemma 1, E(Un) = � and E(Vn) = 1. Moreover,

E(UnVn) =
1

n2
E (X 0C1XX

0C2X)

=
1

n2
ftr(C1�)tr(C2�) + tr(C1�C2�)g

= �+
4�

n(1� �2)
� 2�(1 + �

2)(1� �2n)

n2(1� �2)2
; (33)

where the second and third equalities follow from Lemma 1. Similarly

E(V 2
n ) =

1

n2
E (X 0C2X)

2

= 1 +
2(1 + �2)

n(1� �2)
� 4�

2(1� �2n)

n2(1� �2)2
; (34)

and

E(U2n) =
1

n2
E (X 0C1X)

2

= �2 +
1 + 4�2 � �4

n(1� �2)
� 4�

2(1� �2n)

n2(1� �2)2
; (35)

18



From the estimation equation (32), using the same notations as in Bao and Ullah

(2004), we have H1 = �hVn, Q = 1=(�h), H1 = �h, V = �h(Vn � 1), H2 = ��h2Vn,
H2 = ��h2, H3 = �h3Vn, W = �h2(1 � Vn), and H3 = �h3. Substituting all these

expressions to the individual terms in the stochastic expansion of �̂ given by Equation

(14), we obtain

a�1=2 = �
Un � �Vn

�h
; (36)

and

a�1 =
U2n � �2V 2

n

2�2h
� Un � �Vn

�h
: (37)

Substituting (33), (34) and (35) into (36) and (37), taking expectation, and collecting

terms, we have

E(a�1=2) = 0; (38)

E(a�1) =
E(U2n)� �2E(V 2

n )

2�2h

=
1

2�2h

�
�2 +

1 + 4�2 � �4

n(1� �2)
� 4�

2(1� �2n)

n2(1� �2)2

�
� �2

2�2h

�
1 +

2(1 + �2)

n(1� �2)
� 4�

2(1� �2n)

n2(1� �2)2

�
=

1

2T

�
3 + ��2

�
� 2(1� �2n)

Tn(1� �2)

=
1

2T

�
3 + e2�h

�
� 2(1� e�2n�h)

Tn(1� e�2�h)

This proves Equation (18).

Proof of Theorem 2.2: For the OU model, the �rst order MSE is of the form

a2�1=2 =
(Un � �Vn)

2

�2h2
: (39)

Substituting (33), (34) and (35) into (39), taking expectation, and collecting terms, we

have

19



E(a2�1=2) =
1

�2h2

�
�2 +

1 + 4�2 � �4

n(1� �2)
� 4�

2(1� �2n)

n2(1� �2)2

�
+

1

�2h2

�
�2 +

2�2(1 + �2)

n(1� �2)
� 4�

4(1� �2n)

n2(1� �2)2

�
� 1

�2h2

�
2�2 +

8�2

n(1� �2)
� 2�

2(1 + �2)(1� �2n)

n2(1� �2)2

�
=

��2 � 1
Th

=
e2�h � 1
Th

:

Interestingly, the terms that involve 1=n2 are cancelled out. Hence, the exact calcula-

tion of the Cesaro sums does not make a di¤erence to the �rst order MSE. This proves

Theorem 2.2.

Before proving Theorem 3.1, we introduce another lemma.

Lemma 2 Suppose � is an (n+ 1)� (n+ 1) matrix with ij-th element �ji�jj, and
C1 and C2 are de�ned in Equation (31), then

8tr(C1�C1�C1�) = 2n�

�
�2 � 3 + 12(1 + �

2)(1 + �2n)

(1� �2)2

�
�12�(1 + 6�

2 + �4)(1� �2n)

(1� �2)3
;

(40)

tr(C2�C2�C2�) = n+
6n�2(1 + �2n)

(1� �2)2
� 6�

2(1 + �2)(1� �2n)

(1� �2)3
; (41)

tr(C1�C2�C2�) =
3n�(1 + �2)(1 + �2n)

(1� �2)2
� 2�(1 + 4�

2 + �4)(1� �2n)

(1� �2)3
; (42)

and

8tr(C1�C1�C2�) = 4n

�
1 + 2�2n +

12�2(1 + �2n)

(1� �2)2

�
(43)

�2
�
1 + �2n +

2(13�2 + 10�4 + �6 � �2n � 10�2n+2 � 13�2n+4)
(1� �2)3

�
;

Proof of Lemma 2: To prove Equation (40), �rst note that

8tr(C1�C1�C1�) = 2n�(�
2 � 3) + 12

X
(2t� 1)(2n� 2t+ 1)�2n�2t+1; (44)

Applying Lemma 1 and the induction method to the right hand side of (44), one derives

(40). Similarly, Equations (41)-(43) can be derived.

Proof of Theorem 3.1: First, we obtain expressions for E(U3n), E(V
3
n ), E(U

2
nVn),

and E(UnV 2
n ). By Lemma 1.1, (33), (34), (35), (41), (42) and (43), we have
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E(U3n) =
1

n3
E (X 0C1X)

3

=
1

n3
�
(tr(C1�))

3 + 3tr(C1�)2tr(C1�C1�) + 8tr(C1�C1�C1�)
	

= �3 +
3�

n2

�
n(1 + 4�2 � �4)

1� �2
� 4�

2(1� �2n)

(1� �2)2

�
(45)

+
2�

n2

�
�2 � 3 + 12(1 + �

2)(1 + �2n)

(1� �2)2

�
�12�(1� �2n)(�4 + 6�2 + 1)

n3(1� �2)3
;

E(V 3
n ) =

1

n3
E (X 0C2X)

3

=
1

n3
�
(tr(C2�))

3 + 3tr(C2�)2tr(C2�C2�) + 8tr(C2�C2�C2�)
	

= 1 +
3

n2

�
2n(1 + �2)

1� �2
� 4�

2(1� �2n)

(1� �2)2

�
(46)

+
1

n2

�
8 +

48�2(1 + �2n)

(1� �2)2

�
� 48�

2(1 + �2)(1� �2n)

n3(1� �2)3
;

E(UnV
2
n ) =

1

n3
E
h
X 0C1X (X

0C2X)
2
i

=
1

n3
ftr(C1�)(tr(C2�))2 + 2tr(C1�)tr(C2�C2�)

+2tr(C2�)2tr(C1�C2�) + 8tr(C1�C2�C2�)g

= �+
�

n2

�
2n(1 + �2)

1� �2
� 4�

2(1� �2n)

(1� �2)2

�
(47)

+
4

n2

�
2n�

1� �2
� �(1 + �2)(1� �2n)

(1� �2)2

�
+
24�(1 + �2)(1 + �2n)

n2(1� �2)2
� 16�(1 + 4�

2 + �4)(1� �2n)

n3(1� �2)3
;
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E(U2nVn) =
1

n3
E
h
(X 0C1X)

2
X 0C2X

i
=

1

n3
f(tr(C1�))2tr(C2�) + 2tr(C1�)2tr(C1�C2�)

+2tr(C2�)tr(C1�C1�) + 8tr(C1�C1�C2�)g

= �2 +
4�

n2

�
2n�

1� �2
� �(1 + �2)(1� �2n)

(1� �2)2

�
(48)

+
1

n2

�
n(1 + 4�2 � �4)

1� �2
+
4�2(1� �2n)

(1� �2)2

�
+
4

n2

�
1 + 2�2n +

12�2(1 + �2n)

(1� �2)2

�
� 2
n3

�
1 + �2n +

2(13�2 + 10�4 + �6 � �2n � 10�2n+2 � 13�2n+4)
(1� �2)3

�
:

In the second step of the proof, as in the proof of Theorem 2.1, we obtain expressions

of the high order terms in the stochastic expansion of �̂ given by Equation (14), i.e.,

a�3=2 = �QV a�1 �
1

2
QWa2�1=2 �QH2a�1=2a�1 �

1

6
QH3a

3
�1=2

= �U
3
n � �3V 3

n

3�3h
+
U2n � �2V 2

n

�2h
� Un � �Vn

�h
: (49)

Substituting (40), (41), (45), and (46) into (49), taking expectation, and collecting

terms, we have

E(a�3=2) = E

�
�U

3
n � �3V 3

n

3�3h
+
U2n � �2V 2

n

�2h
� Un � �Vn

�h

�
= �E(U

3
n)� �3(V 3

n )

3�3h
+ E(a�1)

= �2(3e
2�h + 8 + e�2�h + 4e�2(n�1)�h + 8e�2n�h)

Tn(1� e�2�h)

+
4(1� e�2n�h)(e2�h + 7 + 4e�2�h)

Tn2(1� e�2�h)2
:

and hence

E(a�1 + a�3=2) =
1

2T

�
3 + e2�h

�
� 2(3e

2�h + 9 + e�2�h + 4e�2(n�1)�h + 7e�2n�h)

Tn(1� e�2�h)

+
4(1� e�2n�h)(e2�h + 7 + 4e�2�h)

Tn2(1� e�2�h)2
:
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This gives rise to (23).

Similarly, the second order MSE to �̂ is

E(a2�1=2 + 2a�1=2a�1) =
�1
�3h2

�
E(U3n) + �3E(V 3

n )� �2E(UnV
2
n )� �E(U2nVn)

	
+ 3E(a2�1=2)

=
e2kh � 1
Th

� 2(5 + 7e
2�h) + 16e�2(n�1)�h

T 2
+
10(3 + e2�h)(1� e�2n�h)

T 2n(1� e�2�h)
:

This proves the �rst part of Theorem 3.1. The proof of the second part is straightfor-

ward and hence omitted.
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