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1 Introduction

Parameter estimation and statistical inference of stochastic volatility (SV) models has recently
received a great deal of attention in the econometrics literature. One reason is that the likeli-
hood function is expressed by a high dimensional integral which cannot be solved analytically
due to the presence of a latent process. As a result, likelihood-based inferences are computa-
tionally demanding. While in the earlier literature some statistically inefficient but numerically
simple methods have been proposed (see for example, Harvey et al., 1994, Melino and Turnbull,
1990, Andersen et al., 1996), the more recent literature shifts the focus towards developing full
likelihood-based methods to analyze SV models. The reason for this shift of the focus is partly
because the simulation based methods can produce more efficient parameter estimation and
partly because computing facilities have rapidly improved.1

Among various full likelihood-based methods, two of them seem to have received the most
attention. The first is the classical inferential method by maximizing a simulated likelihood.
Contributions along this line of research include Danielsson and Richard (1993), Danielsson
(1994), Shephard and Pitt (1997), Durbin and Koopman (1997), Sandmann and Koopman
(1998), Liesenfeld and Richard (2006), Richard and Zhang (2006) and Durham (2006). The
idea there is to evaluate the likelihood function numerically by integrating out the latent volatil-
ity process via importance sampling techniques, followed by maximization of the approximate
likelihood function. The second is the Bayesian Markov chain Monte Carlo (MCMC) method.
Contributions along this line of research include Jacquier, et al. (1994), Kim, et al. (1998),
Meyer and Yu (2000), Meyer, et al. (2003), and Liesenfeld and Richard (2006). The idea there
is to draw a sequence of correlated samples from posterior densities of unknown parameters
and, possibly, the latent variables.2

Both likelihood-based methods are simulation-based and often used are specialized tech-
niques. Many of the algorithms have been implemented in low level programming languages
such as C++ or FORTRAN in order to increase the computational speed. For example, the
SVPack implementation of Kim, et al. (1998) is based on C++ while the MCMC algorithm of
Jacquier et al. (1994) and the importance sampler of Durham (2006) were implemented using
FORTRAN. While the implementation of these specially tailored packages is numerically effi-

1An even more recent literature has focused on measuring variance from intra-day data using the so-called
realized variance. See McAleer and Medeiros (2008) for a survey on the rapidly moving literature. Of course, if
the intra-data are not available, the realized variance approach becomes infeasible.

2Other full likelihood-based methods can be found in two survey papers, Broto and Ruiz (2004) and Asai,
McAleer and Yu (2006).
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cient, the required effort for writing and debugging a program is usually major. In addition,
to use the methods suggested in Kim et al. (1998) and Jacquier et al. (1994) one has to work
out each full conditional density; in order to use the method of Durham (2006), one has to
find the analytical expressions for the first and second order derivatives of the joint probability
distribution of return and volatility, which are required for the Laplace approximation. To over-
come some of these difficulties Meyer and Yu (2000) advocated using the all-purpose Bayesian
software, Bayesian Inference Using Gibbs Sampling (BUGS), to implement MCMC estimation
of SV models. It was shown that BUGS provides a flexible environment to estimate SV models.3

However, being a Bayesian software, BUGS is not able to provide classical frequentist inference.
Moreover, by augmenting the latent volatility into the parameter space, BUGS produces slowly
mixing chains for SV models as the latent volatility is typically highly persistent (Meyer and Yu,
2000). Therefore, to achieve a satisfactory precision for parameter estimates, a large number of
iterations is needed, increasing the computational cost.

One purpose of this paper is to develop several algorithms to perform classical and Bayesian
likelihood-based analyses of SV models using automatic differentiation (AD), combined with the
Laplace approximation. A caveat is to approximate the distribution of volatilities, conditional
on returns, by a multivariate normal distribution. Based on the Laplace approximation, we
also develop new methods for obtaining the filtered, smoother, and forecasted latent variable.
We then demonstrate the ease by which univariate and multivariate SV models can be studied
routinely using the latent variable module ADMB-RE of the software package AD Model Builder
(Fournier, 2001). By combining AD with the Laplace approximation ADMB-RE provides a
unified statistical software environment for dealing with nonlinear statistical models with latent
random variables.4 AD is a technique for calculating exact numerical derivatives of functions
defined as computer algorithms (Griewank and Corliss, 1991), and should not be confused with
symbolic differentiation as performed by for instance MATHEMATICA and MAPLE. As both the
Laplace approximation and numerical likelihood optimization require derivatives, ADMB-RE

facilitates parameter estimation and is an ideal software to do classical and Bayesian likelihood-
based inference for non-Gaussian and non-linear state-space models.

Our paper is closely related to Meyer et al. (2003) where the likelihood function of the basic
SV model was approximated by the Laplace approximation via AD. The focus of their paper is

3Since then a number of studies have used WinBUGS, the version of BUGS for the WINDOWS operating
system, to estimate various specifications of univariate and multivariate SV models. Examples include Berg, et
al. (2004), Lancaster (2004), Selçuk (2004), Yu (2005), Yu and Meyer (2006).

4ADMB-RE is available from http://otter-rsch.com/admbre/admbre.html.
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to develop an efficient MCMC algorithm, however. Moreover, our method for approximating the
likelihood function is different from theirs. Meyer et al. uses a Kalman filter approach, where
a sequence of one-dimensional Laplace approximations is used to perform the one-step updates
of the Kalman filter. We apply a single multivariate Laplace approximation jointly. While
it is trivial to generalize the single multivariate Laplace approximation in the multivariate
SV models, the same argument does not seem to apply to the sequential univariate normal
approximation. Our work is also related to recent work by Liesenfeld and Richard (2006) where
efficient importance sampling was used to perform a classical analysis and a Bayesian analysis
of SV models, respectively. There are two major differences between our algorithms and theirs.
First, for the classical analysis, different importance sampling techniques are used. Second,
for the Bayesian analysis, to increase the simulation efficiency, Liesenfeld and Richard (2006)
proposed to sample the entire volatility process as a single block whereas we use an integration
sampler and hence avoid a need to sample the latent process. Finally, our paper is related
to Durham (2006) where the same Laplace approximation is used for the importance density.
His simulated maximum likelihood algorithm is the same as ours. However, we also propose to
maximize the Gaussian density directly and a Bayesian method. In addition, while he advocates
symbolic calculations of differentiation, we propose AD.

The rest of the paper is organized as follows. Section 2 introduces the Laplace approximation
and discusses how to use it to perform classical maximum likelihood (ML) estimation. Section 3
discusses how to use the Laplace approximation to perform a Bayesian analysis. Section 4
explains how the Laplace approximation facilitates smoothing, predicting and filtering of the
latent variable. Section 5 describes AD and the software ADMB-RE. In Section 6 we examine
the relative performance of ADMB-RE using both simulated data and actual data. Section 7
demonstrates how more flexible univariate and multivariate SV models can be fitted under
ADMB-RE, and Section 8 concludes. ADMB-RE code and file structure are described in more
detail in two appendices.

2 Classical Likelihood-Based Methods

For illustrative purposes, we focus on the so-called basic SV model of Taylor (1982) which is
defined by {

Xt = σXeht/2εt, t = 1, . . . , T,
ht+1 = φht + σηt, t = 1, . . . , T − 1,

(1)
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where Xt is the return of an asset, εt
iid∼ N(0, 1), ηt

iid∼ N(0, 1), corr(εt, ηt) = 0, and h1 ∼
N(0, σ2/(1− φ2)). The parameters of interest are θ = (σX , φ, σ)′. An alternative parametriza-
tion often used is α = 2(1− φ) lnσX .

Let X = (X1, . . . , XT )′ and h = (h1, . . . , hT )′. The likelihood function of the basic SV model
is given by

p(X; θ) =
∫

p(X,h; θ)dh =
∫

p(X|h; θ)p(h; θ)dh. (2)

This is a high-dimensional integral which does not have a closed form expression due to the
non-linear dependence of Xt on ht.

To perform maximum likelihood (ML) estimation, one has to approximate the likelihood
function. Following Skaug (2002), our first algorithm employs the Laplace approximation, that
is, we match p(X,h; θ) and a multivariate normal distribution for h as closely as possible (up
to a constant proportion). More precisely, the Laplace approximation to the integral (2) is

p(X; θ) ≈ | det(Ω)|−1/2p(X,h∗; θ), (3)

where

h∗ = arg max
h

ln p(X,h; θ) and Ω =
∂2 ln p(X,h∗; θ)

∂h∂h′
. (4)

The Laplace approximation is exact when p(X,h; θ) is Gaussian in h. It typically works
well when p(h; θ) is Gaussian or nearly Gaussian and p(h; θ) is more informative about h than
p(X|h) is, in the sense of observed Fisher information. This is indeed the case for almost all the
SV models used in practice. From an empirical viewpoint, the normality of h is documented as
one of the stylized facts about volatility in Andersen et al. (2001). Theoretical results about
the accuracy of the Laplace approximation, easily applicable in the present context, are lacking
in the literature. It is worth noting that the accuracy of the approximation may vary with the
parameter θ. It is interesting to investigate the accuracy of the approximation for problem at
hand and this will be done in Section 4.

For SV models h∗ does not have a closed form expression. To find h∗, a numerical optimiza-
tion method, such as Newton’s method, is needed. While Ω may have a closed form expression,
it is typically tedious and error prone to derive this expression by hand. Durham (2006) suggests
using symbolic programs to calculate Ω. In this paper, we will evaluate Ω using AD.

In the case where the Laplace approximation does not work satisfactorily, one can improve
the approximation by using importance sampling, which is a Monte Carlo approach to high-
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dimensional numerical integration. The likelihood can be written as

p(X; θ) =
∫

p(X,h; θ)dh =
∫

p(X,h; θ)
q(h)

q(h)dh, (5)

where q(h) is the importance density. The idea of our second algorithm is to draw samples
h(1), . . . ,h(S) from q(h) so that we can approximate p(X; θ) by

1
S

S∑

i=1

p(X,h(i); θ)
q(h(i))

. (6)

In general, h(i) depends on X and θ. The law of large numbers ensures the convergence of (6)
to p(X; θ) as S →∞.

For the method to be computationally efficient, we should match p(X,h; θ) and q(h) as
closely as possible while ensuring that it is still easy to sample from q(h). To do that, following
Shephard and Pitt (1997) and Durbin and Koopman (1997), we choose q to be the Laplace
approximation to p(X,h; θ). That is h(s) ∼ N(h∗,−Ω−1) where h∗ and Ω are from (4). The
approach is termed simulated maximum likelihood (SML), and it should be noted that q(h)
depends on θ through h∗ and Ω. Skaug and Fournier (2006) provide a formula for the gradient
of the likelihood approximation (6) in the case that the importance density is the Laplace
approximation.

While the importance sampling procedure used in the present paper is based on the Laplace
approximation, other important sampling techniques exist in the literature. For example, the
importance sampler developed by Richard and Zhang (2006), Liesenfeld and Richard (2006)
is based on a particular factorization of the importance density. Lee and Koopman (2005)
compared the performance of the two importance samplers in the context of univariate SV
models and found the two methods to perform similarly well.

3 A Bayesian MCMC Method

The two algorithms discussed in Section 2 are the classical ML methods. We now discuss how
the Laplace approximation can be employed to perform a Bayesian MCMC analysis. The goal
of MCMC methods is to sample from posterior densities. There are a number of different
ways in which Bayesian MCMC can be applied to SV models. The first one samples from
the posterior p(θ|X) ∝ p(X|θ)p(θ). However, since the marginal likelihood p(X|θ), given in
terms of an integral, does not have a closed form expression, standard Bayesian analysis is not
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trivial. Alternatively, one can augment the parameter vector by the vector of latent variables
and obtain the joint posterior p(θ,h|X) ∝ p(X, θ|h)p(h|θ)p(θ). Consequently, evaluation of
p(X|θ) becomes unnecessary. From the joint posterior, one can find the marginal distribution
p(θ|X) to make inference about the model parameters and the marginal distribution p(h|X)
to make inference about the log-volatilities. MCMC can be used to draw (correlated) samples
from the high dimensional (T + p) posterior density.

In the basic SV model, one way of sampling σX , φ, σ and h is to update each element
of σX , φ, σ and each element in h one at a time (i.e. a single-mover). This so-called Gibbs
sampling algorithm was suggested by Shephard (1993) and Jacquier et al. (1994). For SV
models, the consecutive states are often highly dependent, rendering inefficient mixing and slow
convergence of the Markov chain to the equilibrium distribution. To improve the simulation
efficiency, Shephard and Pitt (1997), Kim et al. (1998) and Liesenfeld and Richard (2006)
suggested MCMC methods which sample the vector h in a single block (i.e. a multi-mover).

In the present paper, we suggest an alternative Bayesian MCMC algorithm which achieves
high simulation efficiency. The idea is as follows. First, an approximation to the likelihood
function p(X|θ) is obtained via the Laplace approximation (3), making augmentation of the
parameter vector redundant. Second, we use the MH algorithm, developed by Metropolis et
al. (1953) and Hastings (1970), to obtain a MCMC sample from the posterior of θ. To use the
MH algorithm we first fit the model by maximizing the approximated marginal likelihood (3).
Denote by θ̂ the resulting estimate of θ, and by Σ̂θ̂ its covariance matrix based on the observed
Fisher information. The MH-proposal density is taken to be a multivariate normal, centered at
the current parameter value, with covariance matrix Σ̂θ̂. Note further that for each value of θ

proposed by the MH-algorithm the Laplace approximation is invoked via equation (3). While
our algorithm is strongly related to that developed in Meyer et al. (2003), it differs in that
Meyer et al. used a sequential Laplace approximation.

As the posterior sampling is done in a much lower dimensional space in the proposed inte-
gration sampler, it is natural to expect several advantages of our method relative to the MCMC
algorithms that require sampling of the latent process. First, the integration sampler should
have higher simulation efficiency. Second, while it is typically difficult to check the convergence
of simulated chains of latent variables as the sample size T grows, it is trivial to do so in our
integration sampler, regardless of the sample size.

A major advantage of the MCMC algorithms that sample the latent process is that they pro-
vide an integrated framework for parameter estimation and latent variable smoothing. Indeed,
the smoothed latent variable E(ht|X), and the associated posterior variance, is a by-product of

6



the MCMC output (Jacquier et al. 1994). There are two sources of variation contributing to
the posterior uncertainty in h: uncertainty in h given θ and uncertainty about θ. It is worth
pointing out that MCMC, by providing samples from p(h|X), directly accounts for both sources
of uncertainty.

4 Smoothing, Predicting and Filtering Latent Variables

While MCMC can trivially provide the smoothed estimate of unobserved volatility, a separate
algorithm is needed for filtration. For example, Kim, Shephard and Chib (1998) appended a
particle filter to the MCMC parameter estimates. Many other moment- and simulation-based
approaches, also require a special purpose filtration procedure to estimate h. For instance,
Gallant and Tauchen (1998) propose a “reprojection” procedure to be applied after the EMM
estimator has been obtained. Durham (2006) append a particle filter (Kitagawa, 1996 or Pitt
and Shephard, 1999) to the ML estimates. In this section, we develop several algorithms
for obtaining filtered, smoothed and forecasted estimate of the latent variable, all based on
the Laplace approximation. A major advantage of the proposed algorithms is the ease of
implementation, requiring little programming effort, and low computational cost. This is in the
sharp contrast to the filtration methods available in the literature.

We first propose the algorithm for obtaining the smoothed estimate of the latent variable,
with and without taking into account the two sources of error discussed above. Suppose θ̂ is
the ML estimate of θ. A natural smoother of h is the empirical Bayes estimator

ĥs = arg max
h

ln p(X,h; θ̂). (7)

That is, we use the mode of the conditional density p(h|X) to estimate h, conditionally on
X.5 This is because ln p(X,h) = ln p(h|X) + ln p(X), and the latter quantity does not depend
on h. It should be pointed out that the smoother (7) comes as a by-product of the Laplace
approximation.

By ignoring errors in parameter estimation, we get the approximate covariance matrix of
the smoothed estimate of the latent variables,

−
[

∂2 ln p(X, ĥs; θ̂)
∂h∂h′

]−1

. (8)

5Filtered and smoothed values are typically computed as the means of the corresponding conditional distri-
butions. When the conditional distribution is symmetric, the mean and the mode are identical. A nice feature
about the mode is that is robust to nonlinear transformations.
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A variance formula6 that takes the uncertainty in θ̂ into account is

−
[

∂2 ln p(X, ĥs; θ̂)
∂h∂h′

]−1

+
∂ĥs

∂θ
Σθ̂

(
∂ĥs

∂θ

)′
, (9)

where a formula for the Jacobian ∂ĥs/∂θ (n× q matrix) is given in Skaug and Fournier (2006).
The formula (9) may be derived at in different ways. In a Bayesian framework where we think
of both h and θ as random quantities, (9) arises as an approximation to the well known variance
formula Var(h) = E [Var(h|θ)] + Var [E(h|θ)].

The smoothed estimate of h can be used to generate model diagnostics. For example, an
estimate of ηt is given as (ĥs

t+1− φ̂ĥs
t )/σ̂. If the model specification is adequate, the estimated ηt

should be approximately normal and be serially uncorrelated. Similarly, one can estimate εt by
yt exp(−0.5ĥs

t )/(σ̂X). Again, if the model specification is adequate, the empirical distribution
of the estimated εt should be comparable to a normal distribution.

Prediction of future values of the latent variable can easily be done within this framework by
extending the h vector with as many time periods as needed. If we want a K-step prediction we
take h = (h1, . . . , hT , hT+1, . . . , hT+K)′. For the augmented h vector, the optimization problem
(7) yields both the smoothed values ĥs

1, . . . , ĥ
s
T and the predicted values ĥs

T+1, . . . , ĥ
s
T+K . Under

the AR(1) structure for the latent variable, it is clear that ĥs
T+K = φK ĥs

T , K > 0, but for more
general latent processes an explicit expression may not exist.

It seems natural that θ is estimated using an un-augmented h, and that prediction is con-
ducted after the model has been fit. However, we shall argue that from a practical perspective
it is convenient to use the augmented h also during the estimation phase. The reason is that
no extra programming is required in order to obtain the prediction of (hT+1, . . . , hT+K) and
its covariance matrix, which is given by (9). As long as K is small compared to T the com-
putational overhead is negligible. But we need to argue that augmenting h does not change
the Laplace approximation (3) of the likelihood, and hence not the estimate of θ. This fol-
lows from general properties of the Laplace approximation. To see why, consider the fol-
lowing re-parametrization of the latent variables: u = (h1, . . . , hT , ηT , . . . , ηT+K−1)′, where
ηt = ht+1 − φht for t = T, . . . , T + K − 1. This is a linear transformation, and it can be proved
that the Laplace approximation (3) is invariant under a one-to-one linear transformation of
the latent variables. Further, u1 = (h1, . . . , hT )′ and u2 = (ηT , . . . , ηT+K−1)′ are indepen-
dent, also when we condition on X. For a conditional distribution with the property that

6We are grateful to D. Fournier for making us aware of this formula
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p(u|X) = p1(u1|X)p2(u2|X) we have a corresponding factorization of the Laplace approxima-
tion (3). But, since p2(u2|X) = p(ηT , . . . , ηT+K−1) is Gaussian the Laplace approximation of∫

p2(u2)du2 = 1 exactly, and it follows that inclusion of ηT , . . . , ηT+K−1 does not affect the
likelihood of θ.

Another important quantity is the filtered latent variable, that is the estimate of ht con-
ditional on X1, . . . , Xt, given the parameter value θ. Numerous nonlinear filtering algorithms
have been proposed. In this paper, we propose an alternative filtered estimate of ht based on
the Laplace approximation. In particular, we define

(ĥf
1 , . . . , ĥf

t )′ = arg max
h1,...,ht

ln p(X1, . . . , Xt, h1, . . . , ht; θ̂), (10)

where θ̂ is the estimate of θ obtained from the entire sample {Xt}T
t=1. The filtered estimate

of ht is ĥf
t . Obviously, it involves recursive Laplace approximations but is straightforward to

program after the full-sample based estimation is complete. In Section 6 we will examine the
accurate of the proposed filtration procedure with the particle filter of Kitagawa (1996).

5 Automatic Differentiation and ADMB-RE

The need for calculating derivatives arises in two places in the proposed algorithms. First,
numerical solution of the optimization problem (4) is greatly simplified if the exact gradient of
the objective function is available. Second, as noted above, the Hessian matrix (4) occurring in
the Laplace approximation is typically too complicated to be evaluated by hand.

Automatic differentiation (AD) is a technique to numerically evaluate the derivatives of a
function specified by a computer program (Griewank and Corliss, 1991). It exploits the fact
that every computer program, no matter how complicated, executes a sequence of elementary
arithmetic operations such as additions or elementary functions. By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can in principle be computed
automatically, and accurate to computer precision.

Two classical ways of evaluating derivatives are symbolic differentiation and the method of
finite differences. While both AD and symbolic differentiation utilize the chain rule, it is impor-
tant to emphasize differences between the two methods. The result of symbolic differentiation
is a mathematical formula, while AD is aimed at producing numerical derivatives. Clearly, the
mathematical derivative formula may be evaluated numerically, so there does not seem to be
much to be gained. However, the real distinction is that AD may be applied to whole computer
programs. Application of symbolic differentiation here is possible at a sub-expression level, but
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would involve quite a bit of manual labor. Two important drawbacks with finite differences are
round-off errors in the discretization process, and cancelation. These problems multiply when
calculating higher order derivatives. Automatic differentiation calculates exact (to machine
precision) numerical derivatives and hence is not subject to the same problems.

Two different approaches to AD exist, the forward mode and the reverse mode. They differ
in how the chain rule is used to propagate derivatives through the computation. The forward
mode propagates derivatives of intermediate variables with respect to the independent variables.
In contrast, the reverse mode of AD propagates derivatives of the final result with respect to
all intermediate variables in the program. The program is first evaluated without derivative
calculations, and subsequently derivatives are calculated in reverse order of the original program
flow. During the latter phase the program must keep track of the values of all intermediate
variables that impacts the final result, and thus the reverse algorithm may be very memory
consuming (Griewank and Corliss, 1991).

AD Model Builder (ADMB) is a statistical modeling framework based on C++ that combines
AD with a quasi-Newton function minimizer (Fournier 2001). An example of an ADMB program
is given in Figure 1. When compiled and executed, the program will minimize the objective
function (the negative log-likelihood) with respect to the independent parameters, i.e. those
variables defined in the first part of the PARAMETER SECTION. The use of AD to calculate the
gradient of the objective function makes ADMB fast and numerically stable.

The latent variable module ADMB-RE, usually referred to as the random effects module, al-
lows the Laplace approximation (3) to be calculated automatically, i.e. with the Hessian matrix
in (4) calculated by automatic differentiation. The keyword random effects vector (see Fig-
ure 1) instructs the compiler that the vector h should be the target for the Laplace approxima-
tion. The objective function in the program must be taken to be g(h, θ) = − log [p(X|h, θ)p(h|θ)].
In order to facilitate numerical optimization of the log-likelihood based on (3), ADMB-RE calcu-
lates third order mixed derivatives of g(h, θ) by automatic differentiation (Skaug and Fournier,
2006). Optionally, ADMB-RE employs the importance sampling approximation (6) with the
density q chosen as explained at the end of Section 2. Appendix A provides some ADMB

commands, the file structure and sample ADMB code for the basic SV model.

6 Performance of Proposed Algorithms

For the purposes of illustration and comparison, we first use a widely used dataset to fit the
basic SV model. The dataset consists of 945 observations on daily pound/dollar exchange rate
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DATA_SECTION
init_int n // Length of time series
init_vector X(1,n) // Time series

PARAMETER_SECTION
init_number phi
init_number sigma
init_number sigma_x
random_effects_vector h(1,n) // Vector of latent variables
objective_function_value g

PROCEDURE_SECTION
int i; // Local variables
double log_2pi = 0.9189385;
dvariable phi2 = square(phi);

// Contribution from log[p(h_1)]
g -= -0.5*log_2pi -log(sigma) + 0.5*log(1-phi2)

- 0.5*square(h(1)/sigma)*(1-phi2);

// Contribution from log[p(h_t|h_{t-1})]
for (i=2;i<=n;i++)
g -= -0.5*log_2pi -log(sigma)

-.5*square((h(i)-phi*h(i-1))/sigma);

// Contribution from log[p(X_t|h_t)]
for (i=1;i<=n;i++)
{
dvariable sigma_X = sigma_x*exp(0.5*h(i));
g -= -0.5*log_2pi -log(sigma_X) - 0.5*square(X(i)/sigma_X);

}

Figure 1: AD Model Builder code for the basic SV model (1).
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Method (Software) Parameter Estimate SE IACT CPU(s) Log-Lik
Classical Methods

φ 0.9743 0.0122 9.78 918.791
LA-ML σ 0.1697 0.0363
(ADMB-RE) σX 0.6330 0.0688

φ 0.9748 0.0122 14.53 918.669
SML σ 0.1687 0.0355
(ADMB-RE) σX 0.6337 0.0697

φ 0.9734 0.0120 21.60 917.458
SML σ 0.1726 0.0360
(MATLAB) σX 0.6305 0.0694

φ 0.9743 0.0120 18.73 918.636
SML σ 0.1724 0.0370
(GAUSS) σX 0.6300 0.0680
Bayesian Methods

φ 0.9747 0.0134 10.3 67
MCMC σ 0.1717 0.0374 8.7
(ADMB-RE) σX 0.6526 0.1267 24.9

φ 0.9769 0.0109 133.7 3.2
MCMC σ 0.1611 0.0314 255.3
(WinBUGS) σX 0.6538 0.1360 10.8

Table 1: Parameter estimates and standard errors for the basic SV models.

from 01/10/1981 to 28/06/1985. The same data were used in Harvey et al. (1994), Shephard
and Pitt (1997), Meyer and Yu (2000), and Meyer et al. (2003).

Estimates and (asymptotic) standard errors of σX , φ and σ are given in panels 1, 2, 5 of
Table 1, corresponding, respectively, to the Laplace approximation based maximum likelihood
method in (3) (termed LA-ML) and the simulated maximum likelihood method in (6) (termed
SML), and the integration MCMC sampler. For the integration sampler we use the independent
flat priors for all three parameters and obtain 11,000 iterations with the first 1,000 discarded.
Panel 3 reports the estimates and asymptotic standard errors of the simulated ML of Shep-
hard and Pitt (1997) implemented in MATLAB. Panel 4 reports the estimates and asymptotic
standard errors of the simulated ML of Richard and Zhang (2006) implemented in GAUSS. For
all the simulated ML methods, we select S = 64. In the last panel we report the single-move
MCMC estimates (posterior means) and standard errors (posterior standard errors) using the
BUGS program of Meyer and Yu (2000) based on 110,000 iterations with the first 10,000 dis-
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Figure 2: Laplace approximation based integration sampler for the Pound/Dollar exchange
rate. Left panels show simulations against iteration. Right panels show marginal densities of
posterior distributions.

carded. Also reported in Table 1 is the CPU time on a Pentium IV 3.2 GHz PC running on
WINDOWS XP. For the classical methods, the reported CPU time is time-to-convergence of the
optimizer, while for MCMC methods the CPU time is based on 100 iterations of the sampler.
Finally, for the classical methods, we report the log-likelihood value. For the MCMC methods,
we report the integrated autocorrelation times (IACT) of Sokal (1996) for measuring simulation
inefficiency. Figure 2 shows every 10th iterations and the corresponding marginal densities for
the Laplace-based MCMC sampler. This is compared to Figure 2 of Meyer and Yu (2000). All
the chains reported have passed the Heidelberger and Welch stationarity and halfwidth tests.

It can be seen that the three sets of estimates from our algorithms are very close to each
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T = 500 T = 2000
α φ σX α φ σX

True Value -0.736 0.90 0.363 -0.736 0.90 0.363
Bias
QML -0.70 -0.09 0.09 -0.117 -0.02 0.20
GMM 0.12 0.02 -0.12 0.15 0.02 -0.08
EMM -0.17 -0.02 0.02 -0.57 -0.07 -0.004
AML -0.15 -0.02 0.02 -0.039 0.005 0.005
MCMC -0.13 -0.02 -0.01 -0.026 -0.004 -0.004
N-ML -0.13 -0.02 0.01 NA NA NA
MCL 0.14 0.0 0.01 NA NA NA
LA-ML -0.248 -0.033 0.025 -0.058 -0.008 0.0018
SML -0.130 -0.020 0.012 0.024 0.003 -0.016
RMSE
QML 1.60 0.22 0.27 0.46 0.06 0.11
GMM 0.59 0.08 0.17 0.31 0.04 0.12
EMM 0.60 0.08 0.20 0.224 0.030 0.049
AML 0.42 0.06 0.08 0.173 0.023 0.043
MCMC 0.34 0.05 0.07 0.15 0.02 0.034
N-ML 0.43 0.05 0.08 NA NA NA
MCL 0.27 0.04 0.08 NA NA NA
LA-ML 0.632 0.085 0.099 0.195 0.026 0.043
SML 0.439 0.057 0.081 0.144 0.019 0.038

Table 2: Comparison of different estimation methods for the basic SV model.

other. Moreover, the estimates and standard errors obtained from our algorithms are very
similar to those from the existing methods. Perhaps the most striking result is found in LA-
ML, which provides almost identical estimates, standard errors and log-likelihood value to the
other ML methods, indicating that the approximation error for the Laplace approximation is
very small in this case. Since LA-ML is not simulation-based, not surprisingly it is the fastest
to obtain, taking less than 10 seconds of CPU time.

While it is not fair to compare the computational time from different programming lan-
guages, the computational time is nonetheless indicative of computational cost. Among the
four classical methods, the computational cost is similar. However, the programming effort in
MATLAB and GAUSS is more much involved than that in ADMB-RE. For example, to implement
SML of Shephard and Pitt (1997) in MATLAB, we had to find the first and second derivatives
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of the joint density of X and h. An extension to the basic model requires even more serious
effort. On the other hand, extensions to the basic model is trivial in ADMB-RE, as we will show
in Section 7.

Between the two MCMC methods, our integration sampler is more time consuming than
the single mover of BUGS (67 seconds versus 3.2 seconds). This is not surprising because
the latent variable is marginalized via the Laplace approximation in our technique. However,
the integration sampler substantially increases the simulation efficiency. In particular, IACT
reduces to 10.3 from 133.7 for φ and 8.7 from 255.3 for σ. If we are concerned about the
precision in the estimate of σ, for example, the precision achieved with 1 iteration from our
integration sampler matches that achieved with 30(≈ 255.3/8.7) iterations from the single-
mover. Obviously, obtaining 1 iteration from our integration sampler is faster than obtaining
30 iterations from the single-mover of BUGS. The better mixing in the integration sampler can
be clearly seen from Figures 2, as opposed to that in Figure 2 in Meyer and Yu (2000).

To compare our multivariate marginal likelihood approximation (3) to the sequential univari-
ate marginal likelihood approximation of Meyer et al. (2003) we include in the model the prior
on θ = (φ, σ, σX)′ used by Meyer et al. The prior specifies independence for the components of
θ, and that µ = 2 log(σX) ∼ N(0, 10), φ∗ = (φ + 1)/2 ∼ Beta(20, 1.5) and σ2 ∼ IG(2.5, 0.025),
where IG denotes an inverse gamma distribution. We then maximize p(X; θ)p(θ), where p(X; θ)
is given by (3) and p(θ) is the prior, to obtain estimates that are directly comparable to the
posterior mode estimates of Meyer et al. (2003). These are (φ, σ, σX) = (0.9807, 0.1399, 0.6428)
with our approximation, and (φ, σ, σX) = (0.9830, 0.1445, 0.7932) taken from Section 4 of Meyer
et al. (2003). It is worth noting that our estimate of σX is much closer to that of the alternative
methods reported in Table 1 than to that of Meyer et al. (2003). While not reported, we have
found the IACTs for the two methods are comparable.

To investigate the statistical efficiency of the proposed algorithms, we simulate 500 and
2000 observations, respectively, from the basic SV model with (σ, φ, α) = (0.363, 0.9,−0.736)
where α = 2(1−φ) ln(σX). The basic SV model is then fitted to each simulated sequence using
LA-ML and SML (with S = 128). Each experiment is repeated 500 times to obtain the bias
and the root mean square error (RMSE). The same parameters setting and Monte Carlo design
have been adopted in numerous papers in the literature, for example, Jacquier et al. (1994),
Andersen et al. (1999) and Bates (2006). Table 2 reports the results and appends to Andersen
et al.’s Table 5 and Bates’ Table 9.

First, our Laplace approximation based maximum likelihood method provides accurate es-
timates. In the case where the sample size is 500, it is clearly more efficient than QML. Also it
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Figure 3: Filtered log-volatilities based on the Laplace approximation (10) for the basic SV
model. The corresponding estimates based on the particle filter of Kitagawa (1996) are indis-
tinguishably from those based on (10).

appears more efficient than GMM and EMM in terms of σX . In the case where the sample size
is 2000, it outperform QML, GMM and EMM and performs nearly as well as AML. Second,
our simulated maximum likelihood method stands out as one of the most efficient estimation
procedures in both cases. When the sample size is 2000, it provides the most efficient estimate
for α and φ. We also experiment with larger values for S and the results remain qualitatively
unchanged.

In the final comparison, we obtain filtered time series values of h in the basic SV model
using two methods, the Laplace approximation (10) and the particle filter of Kitagawa (1996).
Figure 3 plots the two sequences. It is seen that the two filtered series are almost identical,
suggesting that the Laplace approximation based filter works well.

7 Flexible Modeling

A major difficulty in most existing algorithms and computing softwares is that any change in the
model specification entails substantial effort in careful algebraic derivations (such as finding the
full-conditional distributions and finding the expressions of the first two derivatives) followed by
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Basic SV with SV-t SV
SV Leverage Skewed-t

Laplace approximation

φ .974(.012) .975(.013) .979(.011) .979(.011)
σ .170(.036) .168(.038) .147(.037) .151(.036)
σX .633(.069) .631(.070) .613(.073) .640(.075)
ν 22.73(18.14) 25.14(22.42)
λ -.06
ρ -.003(.026)
CPU time 9.78 50.17 72.38 96.70
Log-lik -918.79 -918.78 -918.05 -917.43

Importance sampling (N = 128)

φ .974(.014) .974(.014) .978(.015) .978(.011)
σ .174(.037) .173(.039) .153(.038) .157(.038)
σX .631(.069) .631(.070) .613(.072) .639(.075)
ν 24.25(20.97) 27.07(26.39)
λ -.06(.05)
ρ -.003(.026)
CPU time 38.55 167.08 209.06 530.02
Log-lik -918.40 -918.38 -917.75 -917.11

Table 3: Parameter estimates of two classical methods for the univariate SV models fitted to
the Pound/Dollar exchange rates. The numbers in brackets are the asymptotic standard errors.

serious effort in coding and debugging. One exception is BUGS, as demonstrated in Meyer and
Yu (2000) and Yu and Meyer (2006) in the context of SV models. As in BUGS, modification
of the model is straightforward in ADMB-RE and usually only involves changing a few lines of
code. To illustrate the strength and flexibility of ADMB-RE, we consider some variations over
the basic SV model and one multivariate SV model. Appendix B provides details about the
modifications of the ADMB-RE code.

First, we consider three univariate SV models, namely, SV-t model, SV-skewed-t model, and
SV model with the leverage effect. All three models are fitted using the Pound/Dollar exchange
rate series.
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The so-called SV-t model is obtained by assuming that εt in the basic SV model (1) has
a Student-t distribution with ν > 2 degrees of freedom. As a further extension we allow εt to
have a skewed Student-t distribution with density

f(t) =





bc

(
1 +

(
1

ν−2

(
bt+a
1−λ

)2)−(ν+1)/2

if t < −a/b,

bc

(
1 +

(
1

ν−2

(
bt+a
1+λ

)2)−(ν+1)/2

if t ≥ −a/b,

(11)

where

a = 4λc

(
ν − 2
ν − 1

)
, b =

√
1 + 3λ2 − a2, c = Γ((ν + 1)/2)/(

√
π(ν − 2)Γ(ν/2)).

Here, ν > 2 still has the interpretation as being the degrees of freedom, while −1 < λ < 1
controls the degree of asymmetry. For λ = 0 we get the ordinary t(ν) distribution, and λ < 0
gives a negatively skewed distribution (i.e. the left tail is longer than the right tail); see Hansen
(1994) for more details about the skewed t-distribution. Both ν and λ are parameters to be
estimated, and are hence included in θ.

In the third variation of the basic SV model, we introduce a leverage effect into the basic
SV model (1), by assuming that εt, ηt are iid N(0, 1) and corr(εt, ηt) = ρ. A reparameterization
of the model yields (Yu, 2005)

{
Xt = σX

ρσ exp(0.5ht)(ht+1 − ht)− σX
ρ exp(0.5ht)

√
1− ρ2wt,

ht+1 = φht + σηt,
(12)

where ηt, wt are iid N(0, 1) and corr(ηt, wt) = 0.
Table 3 reports the estimates, asymptotic standard errors, CPU time and log-likelihood value

for the three univariate models, obtained from the two ML methods.7 For SML, we choose S =
128. The results for the basic SV model are reported for the purpose of comparison. First, it can
be seen that all three models can be quickly estimated by LA-ML, with the resulting estimates
and log-likelihood being almost identical to those generated by SML. The CPU time difference
between these two methods increases with the complexity of estimated models. Second, both
estimation procedures suggest that the model extensions do not improve the fit over the basic

7While the MCMC method is readily applicable, we only report the ML results to save space. We also
calculated the Monte Carlo standard errors of the MLE estimates by repeating the estimation under different
common random numbers. The Monte Carlo standard errors are small, indicating that the proposed method is
reliable. To save space, we do not report the Monte Carlo standard errors.
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Σ µ Φ Ση

Laplace approximation
1 -0.474 -0.24 -0.918 0.974 0 0 0.029 0 0

θ̂ -0.474 1 0.377 -1.359 0 0.916 0 0 0.052 0
-0.24 0.377 1 -1.938 0 0 0.913 0 0 0.161

0 0.019 0.015 0.217 0.012 0 0 0.012 0 0
SE(θ̂) 0.019 0 0.016 0.101 0 0.033 0 0 0.023 0

0.015 0.016 0 0.158 0 0 0.025 0 0 0.048

CPU time: 711.25 Log-lik: -2183.12
Importance sampling (N = 128)

1 -0.474 -0.239 -0.921 0.974 0 0 0.03 0 0
θ̂ -0.474 1 0.377 -1.354 0 0.923 0 0 0.046 0

-0.239 0.377 1 -1.935 0 0 0.92 0 0 0.147

0 0.019 0.015 0.217 0.012 0 0 0.013 0 0
SE(θ̂) 0.019 0 0.016 0.103 0 0.029 0 0 0.019 0

0.015 0.016 0 0.162 0 0 0.023 0 0 0.041

CPU time: 4026.47 Log-lik: -2184.10

Table 4: Parameter estimates (θ̂) and asymptotic standard errors (SE(θ̂)) for the multivariate
SV model (13) fit with ADMB-RE.

model, judged by the marginal increase in the log-likelihood value. Moreover, in the SV-t model,
the estimated degrees of freedom, ν, is very large, suggesting little evidence of fat-tails in εt.
In the SV-skewed-t model, the estimated asymmetry parameter, λ, is very close to zero (-0.06)
and statistically insignificant, suggesting no evidence of asymmetry in εt. In the leverage effect
model, the leverage parameter is estimated to be very close to zero (-0.003) and statistically
insignificant, suggesting no evidence of leverage effect.

To further illustrate the flexibility of our proposed algorithms and ADMB-RE, we fit a
multivariate SV model to a dataset that has been used in the literature using LA-ML and SML
with S = 128. It consists of 945 daily observations on three exchange rates from 01/10/1981 to
28/06/1985: Pound/Dollar, Deutschmark/Dollar and Yen/Dollar. The same data were used in
Harvey et al. (1994), Liesenfeld and Richard (2006) and Jungbacker and Koopman (2006). As
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in BUGS, multivariate SV models can be estimated with a dozen lines on code in ADMB-RE.
The multivariate model fitted here is taken from Harvey et al. (1994)

{
Xt = exp(0.5diag(ht))εt, εt ∼ N(0, Σ),
ht+1 = µ + Φ(ht − µ) + ηt, ηt ∼ N(0, Ση),

(13)

where ht = (h1,t, h2,t, h3,t)′, Ση = diag{σ2
η,1, σ

2
η,2, σ

2
η,3}, µ = (µ1, µ2, µ3)′, Φ = diag{φ1, φ2, φ3},

and

Σ =




1 σ12 σ13

σ12 1 σ23

σ13 σ23 1


 .

Table 4 reports the estimates, asymptotic standard errors, CPU time and log-likelihood value
in the multivariate SV model, obtained from the two ML methods. The two sets of param-
eter estimates are close to each other and appear reasonable. The estimated covariances in
Σ are all statistically significantly different from zero, with the covariances between Pound
and Deutschmark and between Pound and Yen being negative and the covariance between
Deutschmark and Yen being positive. Indeed the importance of the correlations is also mani-
fest in the log-likelihood value of the multivariate model which substantial improves the sum of
the likelihood values obtained under the basic univariate SV model (not reported).

Note that the matrices Φ and Ση have been assumed to be diagonal, which means that
the components of ht are independent. From a techniqually point of view, there would be no
problem to allow non-zero off-diagonal terms in Φ and Ση, although the identifiability of these
extra parameters has not been checked.

8 Conclusion

This paper proposes to use AD and the Laplace approximation to provide the basis for numerical
and simulated ML estimation and a Bayesian MCMC analysis for univariate and multivariate
SV models. Also based on the Laplace approximation, we develop simple algorithms for obtain-
ing the filtered, smoothed and forecasted latent variable. We show how the software ADMB-RE

facilitates the automatic implementation of these algorithms. The proposed techniques are
flexible, robust, computationally efficient, simulation-efficient, and statistically efficient. Ap-
plications of the proposed techniques using both simulated and actual data highlight these
advantages. While the present paper only applies the approach to estimate SV models, the
technique itself is quite general and can be applied in many other models with latent variables.
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Appendix A: ADMB Commands, File Structure, Sample Code

ADMB exists for the WINDOWS and LINUX platforms as a set of C++ libraries and a
preprocessor that converts the ADMB code (e.g. Figure 1) into C++. The C++ compiler is
not part of ADMB, and must be installed separately. A model implemented in ADMB consists
of three separate files that share the base name (here taken to be basicSV), but with different
extensions:

.tpl is known as the “template file”, and specifies the likelihood function in terms of θ and h
using a language that resembles C++. An example is given in Figure 1.

.dat contains the data needed by the model, including dimensions of arrays.

.pin contains initial values of θ used in the numerical optimization of the integrated likelihood.

The template file basicSV.tpl is compiled by the command

admb -re basicSV

into an executable file basicSV.exe (under WINDOWS) using a C++ compiler, where -re is a
command line option invoking the latent variable module. When executed to perform classical
estimation, basicSV.exe produces several output files. We here only discuss basicSV.std which
contains point estimates and standard deviations for θ and h (smoothed values). In addition
ADMB-RE will calculate the standard deviation of any user specified function w(θ,h), using the
delta-method.
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Figure 1 shows the template file which implements the basic SV model (1). Taking the
logarithm (and changing the sign) of the likelihood function p(X, θ|h)p(h|θ) we obtain the
objective function

− [log {p(h1|σ, φ)}]−
[

T∑

t=2

log {p(ht|ht−1, φ, σ)}
]
−

[
T∑

t=1

log {p(Xt|ht, σX)}
]

. (14)

The three terms in square brackets are specified separately in the template file. It should be
noted that the Hessian matrix Ω is banded under this model, i.e. Ωij = 0, whenever |i− j| > 1.
This special structure can be exploited by ADMB-RE both in the manipulation of the matrix Ω
and in the derivative calculations involved in the evaluation of Ω itself.8

A program compiled with ADMB is run from a command line prompt (DOS window), both
under WINDOWS and LINUX. To do maximum likelihood estimation based on the Laplace
approximation one gives the command:

basicSV -ilmn 5

where the option -ilmn 5 invokes a limited-memory Newton method for the optimization prob-
lem (4). For high dimensional problems this optimization algorithm is more efficient than the
quasi-Newton method used as the default in ADMB-RE. To perform the simulated maximum
likelihood estimation, we use the command

basicSV -ilmn 5 -is 64

where -is 64 specifies S = 64 in the simulated maximum likelihood method.
As an integrated environment, ADMB-RE provides an option to perform Bayesian analysis

in the way described in Section 3. To generate MCMC samples one uses the commands

basicSV -ilmn 5 -mcmc 5000
basicSV -mceval > mcmcout.txt

where -mcmc 5000 specifies that 5000 iterations of the sampler should be performed, and the
second line re-directs the output from the integration sampler to the file mcmcout.txt. ADMB
does not contain any functionality for post-processing the contents of mcmcout.txt. Usually,
other statistical software such as the R function CODA is used for this purpose.

The quantities needed for the diagnostic tests suggested earlier should be calculated after
the model has been fit. For instance, to calculate the estimates (ĥs

t+1 − φ̂ĥs
t )/σ̂ of ηt one would

append the following code at the end of the program in Figure 1:

REPORT_SECTION
dvar_vector eta(1,n+1);
for (i=1;i<=n;i++)
eta(i) = (h(i+1)-phi*h(i))/sigma;

report << eta << endl;

8In order for ADMB-RE to recognize this structure, some directives must be added to the code in Figure 1.
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which would result in the creation of a file basicSV.rep containing the estimated η values.

Appendix B: ADMB Code to Estimate Flexible SV Models

To estimate SV-t model, the only change is in the conditional distribution Xt|ht. Hence,
the only change we need to make in the code in Figure 1 is to introduce a new parameter nu
in the PARAMETER SECTION, and to replace the last for-loop with

for (i=1;i<=n;i++)
{
dvariable sigma_X = sigma_X*exp(0.5*h(i));
dvariable t = X(i)/sigma_X;
g -= gammln(0.5*(nu+1.0)) - gammln(0.5*nu) - 0.5*log(nu) - 0.5723649429;
g -= -log(sigma_X) - (nu+1.0)/2*log(1+square(t)/nu);

}

Here, gammln is the log-gamma function.
To estimate the SV model with the skewed t distribution, the challenge offered by this model

relative to the ordinary Student-t model discussed above is the branch involved in the definition
of the density (11). Straightforward coding in ADMB-RE would involve a statement like if(t
< -a/b). Unfortunately, since both a and b are functions of the independent parameter of
the model, this may possibly yield a non-differentiable objective function, and cause trouble in
the AD-scheme used by ADMB-RE. A more robust approach is to “smooth” the step function
implicit in the if() statement, by employing a weighted sum of the two branches in (11). So,
if log g1 and log g2 are variables holding the log-likelihood values of the two branches, we
implement a logistic weighting scheme in ADMB-RE as follows:

dvariable w = exp(-20*(t+a/b));
w = w/(1.0 + w);
g -= w*log_g1 + (1.0-w)*log_g2;

The choice of the scale factor 20 in the logistic function is experienced based, and the results
we obtain are not very sensitive to the choice of the scale factor.

To estimate the leverage SV model, the first line in (12) is coded in ADMB-RE as:

g -= -0.5*log_2pi - 0.5*log(1-square(rho))
- 0.5*rho*(rho*square(X(i))*exp(h(i))/sigma_X)
+ rho*square((h(i+1)-phi*h(i))/sigma)
- 2*X(i)*(h(i+1)-phi*h(i))*(1-square(rho))/(sigma*sigma_X*exp(0.5*h(i)))
- 0.5*h(i) -log(sigma_X) - 0.5*square(X(i)/sigma_X)/exp(h(i));

In a recent article, Omori, Nakajima, Chib and Shephard (2006) developed an efficient MCMC
algorithm to estimate the SV model with the leverage effect. If used in the Bayesian context, our
method can be regarded as an alternative to theirs but does not need a mixture approximation.
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