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Panel Data Regressions1

Liangjun Su and Zhenlin Yang

School of Economics, Singapore Management University

email: ljsu@smu.edu.sg, zlyang@smu.edu.sg

December, 2008

Abstract

This paper investigates the asymptotic properties of quasi-maximum likelihood es-

timators for transformed random effects models where both the response and (some of)

the covariates are subject to transformations for inducing normality, flexible functional

form, homoscedasticity, and simple model structure. We develop a quasi maximum

likelihood-type procedure for model estimation and inference. We prove the consistency

and asymptotic normality of the parameter estimates, and propose a simple bootstrap

procedure that leads to a robust estimate of the variance-covariance matrix. Monte

Carlo results reveal that these estimates perform well in finite samples, and that the

gains by using bootstrap procedure for inference can be enormous.

KeyWords: Asymptotics; Bootstrap; Quasi-MLE; Transformed panels; Variance-

covariance matrix estimate.

JEL Classification: C23, C15, C51

1 Introduction.

Panel data regression models with error components have been extensively treated in

the literature, and almost all the standard econometrics text books on panel data models

cover those topics (see, among the others, Baltagi, 2001; Arellano, 2003; Hsiao, 2003; Frees,

2004). However, the literature on transformed panel data regression models is rather sparse,

and many issues of immediate theoretical and practical relevance, such as the properties of

1We would like to thank Peter Phillips and Myoung-Jae Lee for their helpful comments that have led

to improvements in the paper. Thanks are also due to the seminar participants at the Department of

Economics, Korea University (2007), and the conference participants at the 14th International Conference

on Panel Data (2007), WISE, Xiamen University, China, for their comments and discussions. Zhenlin Yang

gratefully acknowledges the support from a research grant (Grant number: C244/MSS7E005) from the Office

of Research, Singapore Management University.



parameter estimates in terms of consistency, asypmtotic normality and robustness against

heavy-tailed distributions; variance-covariance matrix estimation in the situations where

transformation can only bring the data to near-normality, etc., have not been formally

studied.2 This is in a great contrast to the literature on transformed cross-sectional data,

where almost all the standard econometrics text book cover this topic (e.g., Davidson and

MacKinnon, 1993; Greene, 2000), and some of the popular commercial software, such as

SAS and Matlab, have implemented the normal-transformation technique.

It is well known that the purposes of transforming the economic data are to induce (i)

normality, (ii) flexible functional form, (iii) homoscedastic errors, and (iv) simple model

structure. However, it is generally acknowledged that with a single transformation, it is

difficult to reach all the four goals simultaneously, in particular, the normality. Nevertheless,

it is still reasonable to believe that a normalizing transformation should be able to bring the

data closer to being normally distributed (see, e.g., Hinkley (1975), Hernadze and Johnson

(1980), Yeo and Johnson (2000), Yang and Tsui (2004), and Yang and Tse (2007)). Thus, in

the framework of quasi-maximum likelihood estimation (QMLE) where one needs to choose

a likelihood to approximate the true but unknown one, the normalizing transformation

makes it more valid to use the popular Gaussian likelihood for model estimation.

In this paper, we concentrate on the transformed two-way random effects model,

h(Yit,λ) =
k1

j=1

βjXitj +
k

j=k1+1

βjh(Xitj ,λ) + uit, (1)

uit = μi + ηt + vit, i = 1, 2, · · · ,N, t = 1, 2, · · · , T

where h(·,λ) is a monotonic transformation (e.g., Box and Cox, 1964), known except the
indexing parameter λ, called the transformation parameter, Xitj , j = 1, · · · , k1, are the
exogenous variables containing a column of ones, dummy variables, etc., that do not need

to be transformed, Xitj , j = k1 + 1, · · · , k, are the exogenous variables that need to be
transformed, and {μi}, {ηt} and {vit} are error components assumed to be independent of
each other with {μi} being independent and identically distributed (i.i.d.) of mean zero
and variance σ2η, representing the time-invariant and individual-specific effects; {ηt} i.i.d. of
mean zero and variance σ2η, representing the individual-invariant and time-specific effects;

and {vit} i.i.d. of mean zero and variance σ2v , representing the pure random errors. In

2Baltagi (1997) gives LM tests for linear and log-linear error components regression against Box-Cox

alternatives. Abrevaya (1999) proposes a nonparametric estimation of a fixed-effects model with unknown

transformation of the dependent variable. Giannakas et al. (2003) considers the choice of functional form

in stochastic frontier model using panel data. Yang and Huang (2004) consider the maximum likelihood

estimation of a transformed random effects model and proposed a simple computational devise for handling

of large panels.
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the following we will assume that Xitj , j = 1, · · · , k, are all non-random regressors. Our

analysis will hold with probability one if some elements of Xitj are generated randomly, and

in this case, we can interpret our analysis as being conditional on {Xitj , j = 1, · · · , k, i =
1, 2, · · · , N, t = 1, 2, · · · , T}.

Model (1) gives a useful extension of the standard random effects model by allowing the

distribution of Yit to be in a broad family (transformed normal family) not just normal or

lognormal. It also allows easy testing of the traditional economic theories of lognormality

for production function, firm-size distribution, income distribution, etc., as governed by the

Cobb-Douglas production function and Gibrat’s Law. Yang and Huang (2004) considered

the maximum likelihood estimation (MLE) of Model (1) under Gaussian distributions and

provided a simple method for handling the large panel data. Their Monte Carlo simulation

results show that the finite sample performance of the MLE-based inference is excellent if

the errors are normal or close to normal, but our Monte Carlo results show that it can

be quite poor if the errors are fairly non-normal (e.g., there exist gross errors or outliers).

Thus, there is a need for an alternative method for the MLE-based inference. Also, to the

best of our knowledge there are so far no rigorous large sample theories for Model (1) for

either the case of normal errors or the case of non-normal errors. Furthermore, for the cases

where the error components follow nonnormal distributions, there are no available methods

for estimating the variance-covariance matrix. The reason for the lack of these important

results for the transformed two-way random effects panel model is, at least partially, due

to the technical complications caused by the nonlinear response transformation and the

cross-sectional and time wise dependence induced by the two-way error components, which

render the standard large sample techniques not directly applicable.

This paper is organized as follows. Section 2 outlines the quasi-maximum likelihood

estimation for the model. Section 3 presents the large sample results concerning the con-

sistency and asymptotic normality of the QMLEs of model parameters, and their rates of

convergence under different relative magnitudes of N and T . Section 4 introduces a boot-

strap method for estimating the variance-covariance matrix which leads to robust inferences.

Section 5 presents some Monte Carlo results concerning the finite sample behavior of the

QMLEs and the bootstrap-based inference. Section 6 concludes the paper.

Some generic notation. Throughout the paper we adopt the following notation and

conventions. The Euclidean norm of a matrix A is denoted by ,A, = [tr(AAI)]1/2. When A
is a square matrix, its smallest and largest eigenvalues are denoted, respectively, by γmin(A)

and γmax(A). As usual, convergence in probability is denoted by
p−→ and convergence in

distribution by
D−→. That both N and T approach to infinity concurrently is denoted by

N,T →∞, and that either N or T or both approach to infinity is denoted by N ∪ T →∞.
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Partial derivatives of h(Yit,λ) of various order are denoted by adding subscripts to h, e.g.,

hY (Yit,λ) is the first-order partial derivative of h w.r.t. Yit, hY λ(Yit,λ) the partial derivative

of h w.r.t. (Yit,λ), hλλ(Yit,λ) the second-order partial derivative of h w.r.t. λ, etc.

2 Quasi Maximum Likelihood Estimation

Stacking the data according to t = 1, · · · , T , for each of i = 1, · · · , N , Model (1) can be
compactly written in matrix form,

h(Y,λ) = X(λ)β + u, with u = Zμμ+ Zηη + v (2)

where Zμ = IN ⊗ 1T and Zη = 1N ⊗ IT with IN being an N × N identity matrix, 1N an

N -vector of ones, and ⊗ the Kronecker product. Define JN = 1N1
I
N . The Gaussian log

likelihood function after dropping the constant term takes the form

f(ψ) = −1
2
log |Σ|− 1

2
[h(Y,λ)−X(λ)β]IΣ−1[h(Y,λ)−X(λ)β] + J(λ), (3)

where ψ = (βI,σ2μ,σ2η,σ2v ,λ)I, and J(λ) =
N
i=1

T
t=1 log hY (Yit,λ) is the log Jacobian of

the transformation, and Σ is the variance-covariance matrix of u which takes the form

Σ = σ2μ(IN ⊗ JT ) + σ2η(JN ⊗ IT ) + σ2v(IN ⊗ IT ).

When the error components μ, η and v are exactly normal, (3) gives the exact log likelihood

and thus maximizing f(ψ) gives the maximum likelihood estimator (MLE) of ψ. However,

when one or more of the error components are not exactly normal, the f(ψ) function defined

by (3) is no longer the true likelihood function. Nevertheless, when f(ψ) satisfies certain

conditions, maximizing it still gives consistent estimators of model parameters, which are

often termed as quasi-maximum likelihood estimator (QMLE). See, for example, White

(1994). Furthermore, as pointed out in the introduction, the normalizing transformation

makes it more valid to use Gaussian likelihood as an approximation to the true but unknown

likelihood.

Yang and Huang (2004) pointed out that direct maximization of f(ψ) may be impractical

as the dimension of ψ may be high and calculation of |Σ| and Σ−1 can be difficult if
panels are large. They, following Baltagi and Li (1992) and others, considered a spectral

decomposition: Ω = 1
σ2v
Σ = Q + 1

θ1
P1 +

1
θ2
P2 +

1
θ3
P3, where Q = INT − 1

T IN ⊗ JT −
1
N JN ⊗ IT + 1

NT JNT , P1 =
1
T IN ⊗ JT − 1

NT JNT , P2 =
1
N JN ⊗ IT − 1

NT JNT , P3 =
1
NT JNT ,

θ1 = 1/(Tφμ + 1), θ2 = 1/(Nφη + 1), and θ3 = 1/(Tφμ + Nφη + 1), φμ = σ2μ/σ
2
v , and

φη = σ2η/σ
2
v . This leads to

Ω−1 = Q+ θ1P1 + θ2P2 + θ3P3, and |Σ|−1 = (σ2v)−NT θN−11 θT−12 θ3. (4)
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In what follows, we adopt the following parameterization: ψ = (βI,σ2v ,φI)I with φ =

(φμ,φη,λ)
I. The log likelihood function in terms of this new parameterization thus becomes

f(ψ) = c(φμ,φη)− NT
2
log(σ2v)−

1

2σ2v
[h(Y,λ)−X(λ)β]IΩ−1[h(Y,λ)−X(λ)β] + J(λ),

where c(φμ,φη) =
N−1
2 log(θ1) +

T−1
2 log(θ2) +

1
2 log(θ3). The expressions θ1, θ2, and θ3

defined above are often used for convenience.

It is easy to see that, for a given φ, f(ψ) is partially maximized at

β̂(φ) = [X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ) (5)

σ̂2v(φ) =
1

NT
[h(Y,λ)−X(λ)β̂(φ)]IΩ−1[h(Y,λ)−X(λ)β̂(φ)], (6)

resulting the concentrated quasi log likelihood for φ as

fmax(φ) = c(φμ,φη)− NT
2
[1 + log σ̂2v(φ)] + J(λ), (7)

Maximizing fmax(φ) gives the QMLE φ̂ of φ, and hence the QMLEs β̂(φ̂) and σ̂2v(φ̂) of β

and σ2v , respectively. Yang and Huang (2004) further noted that maximization of (7) may

still be computationally infeasible when panels become large, i.e., N and T become large,

because the process involves repeated calculations of the NT ×NT the matrices Q,P1, P2,
and P3. They provided a simple computational device that overcomes this difficulty.

3 Asymptotic Properties of the QMLE

As discussed in the introduction, large sample properties of Model (1) have not been

formally considered in the literature when the errors are either normal or non-normal. In

this section, we first treat the consistency of the QMLEs of the model parameters, and then

the asymptotic normality where the different convergence rates of QMLEs are identified.

Let Λ,Φ and Ψ be, respectively, the parameter space for λ,φ and ψ; λ0,φ0 and ψ0 be the

true parameter values; “E” and “Var” be expectation and variance operators corresponding

to the true parameter ψ0.

3.1 Consistency

Let f̄(ψ) be the expected log likelihood, i.e., f̄(ψ) ≡ E[f(ψ)] = −NT2 log(σ2v)+c(φμ,φη)−
1
2σ2v
E [h(Y,λ)−X(λ)β]IΩ−1[h(Y,λ)−X(λ)β] + E[J(λ)]. It is easy to show that, for a

given φ, f̄(ψ) is maximized at

β̄(φ) = [X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1E[h(Y,λ)] (8)

σ̄2v(φ) =
1

NT
E [h(Y,λ)−X(λ)β̄(φ)]IΩ−1[h(Y,λ)−X(λ)β̄(φ)] . (9)
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Thus, the partially maximized f̄(ψ) takes the form

f̄max(φ) = c(φμ,φη)− NT
2
[1 + log σ̄2v(φ)] + E[J(λ)]. (10)

According to White (1994, Theorem 3.4), the uniform convergence of 1
NT [fmax(φ)− f̄max(φ)]

to zero is the focal point for the consistency of the QMLE φ̂. Once the consistency of φ̂ is

established, the consistency of β̂(φ̂) and σ̂2v(φ̂) follows immediately, although some standard

conditions on the regressors are necessary. We now list a set of sufficient conditions for the

consistency of the QMLE.

Assumption C1: The error components μ, η, and v are independent of each other, and

each contains i.i.d. elements with a zero mean and a constant variance denoted by σ2μ0,σ
2
η0,

and σ2v0 respectively for μ, η, and v.

Assumption C2: Φ is convex and compact. φμ = σ2μ/σ
2
v and φη = σ2η/σ

2
v are bounded

away from 0 in Φ.

Assumption C3: limN,T→∞ 1
NT [X

I(λ)Ω−1X(λ)] exists and is nonsingular, uniformly
in φ ∈ Φ.

Assumption C4: E[h2(Yit,λ)] < ∆1 < ∞ and E| log hY (Yit,λ)| < ∆2 < ∞, for all
i = 1, · · · , N , t = 1, · · · , T , and λ ∈ Λ.

Assumption C5: As N ∪ T →∞,
(i) 1

NT
N
i=1

T
t=1[h

2(Yit,λ)−E(h2(Yit,λ))] p−→ 0, for each λ ∈ Λ, and
(ii) 1

NT
N
i=1

T
t=1[loghY (Yit,λ)−E(log hY (Yit,λ))] p−→ 0, for each λ ∈ Λ.

Assumption C6: The partial derivatives {hλ(Xitj ,λ), j = k1 + 1, · · · , k}, hλ(Yit,λ)

and hY λ(Yit,λ) exist such that as N ∪ T →∞,
(i) supλ∈Λ

1
NT

N
i=1

T
t=1 h

2
λ(Xitj ,λ) = O(1) for j = k1 + 1, · · · , k,

(ii) supλ∈Λ 1
NT

N
i=1

T
t=1 h

2(Yit,λ) = Op(1),

(iii) supλ∈Λ
1
NT

N
i=1

T
t=1 h

2
λ(Yit,λ) = Op(1), and

(iv) supλ∈Λ 1
NT

N
i=1

T
t=1 hY λ(Yit,λ)/hY (Yit,λ) = Op(1).

Assumptions C1-C2 are standard in quasi maximum likelihood estimation. Assumption

C3 guarantees the existence of β̄(φ) uniform in φ ∈ Φ. This assumption is weak and can in
fact be ensured by a simpler version:

limN,T→∞ 1
NT [X

I(λ)X(λ)] exists and is nonsingular, uniformly in λ ∈ Λ.
This can be seen by the following matrix results: (i) for any two real symmetric matrices A

and B, γmax(A+B) ≤ γmax(A)+γmax(B), and (ii) the largest eigenvalue of a projection ma-

trix is less than or equal to one. We have by (4), γmax(Ω
−1) ≤ [γmax(Q)+ 3

j=1 θjγmax(Pj)] ≤

6



4, where the last inequality follows from the facts that 0 < θj ≤ 1 for j = 1, 2, 3, and that
Q, P1, P2, and P3 are projection matrices. Thus, the existence of the limit in Assumption

C3 follows from

X I(λ)Ω−1X(λ) ≤ γmax(Ω
−1)X I(λ)X(λ) ≤ 4X I(λ)X(λ),

and the nonsingularity of the limiting matrix follows from

X I(λ)Ω−1X(λ) ≥ γmin(Ω
−1)X I(λ)X(λ),

where γmin(Ω
−1) is strictly positive as Ω−1 is positive definite. Here, A ≥ B means A−B

is positive semidefinte for two matrices A and B of the same order, and A ≤ B is defined

similarly.

Assumption C4 ensures the uniform boundedness of σ̄2(φ) and 1
NT E[J(λ)], and thus

the uniform boundedness of 1
NT f̄max(φ). Assumption C5 says that the sequences of random

variables {h2(Yit,λ)} and {log hY (Yit,λ)} satisfy a pointwise weak law of large numbers

(LLN). Assumption C6 says that these two sequences are well behaved uniformly for λ

in the compact set Λ, which are essential for us to apply the weak uniform law of large

numbers (ULLN). Alternatively, one can require that the two sequences satisfy certain

Lipschitz condition, as specified in, say, Andrews (1987, 1992), Pötscher and Prucha (1989),

and Davidson (1994, Chapter 21). The smoothness condition in Assumption C6 is not

restrictive as the transformation functions h(Yit,λ) applied in practice, such as the Box-Cox

power transformation (Box and Cox, 1964), and more recently the power transformations

by Yeo and Johnson (2000) and the dual-power transformation by Yang (2006), typically

possess continuous partial derivatives in Yit and λ up to any order. We have the following

consistency result.

Theorem 1: Suppose the data generating process is given by Model (1). Assume As-

sumptions C1-C6 hold. Assume further that (a) h(Yit,λ) is monotonic increasing in Yit,

and (b) f̄max(φ) has a unique global maximum at φ0. Then, ψ̂
p−→ ψ0, as N,T →∞.

The proof is relegated to Appendix. The identification uniqueness condition (f̄max(φ)

has a unique global maximum at φ0) stated in Theorem 1 may be proved directly with some

additional minor regularity conditions. Some details on the order of convergence of ψ̂ with

respect to the relative magnitudes of N and T are given in the next subsection.

3.2 Asymptotic normality

Let G(ψ) = ∂f(ψ)/∂ψ and H(ψ) = ∂2f(ψ)/(∂ψ∂ψI) be, respectively, the gradient and
the Hessian of the log likelihood function f(ψ). Their detailed expressions are given in

Appendix. For the asymptotic normality, we need some further assumptions.

7



Assumption N1: E|μi|4+61 < ∞, E|ηt|4+62 < ∞, and E|vit|4+63 < ∞, for some 61, 62
and 63 > 0, all i = 1, · · · ,N ; t = 1, · · · , T

Assumption N2: ψ0 is an interior point of Ψ.

Assumption N3: E[G(ψ0)] = 0.

Assumption N4: X(λ) and h(Y,λ) are third order differentiable w.r.t. λ such that for

N6(λ0) = {λ ∈ Λ : |λ− λ0| ≤ 6}, and as N ∪ T →∞,
(i) supλ∈N6(λ0)

1
NT ,X∗(λ),2 = O(1), where X∗(λ) = X(λ), Xλ(λ), Xλλ(λ), or Xλλλ(λ).

(ii) supλ∈N6(λ0)
1
NT ,h∗(Y,λ),2 = Op(1), where h

∗(Y,λ) = h(Y,λ), hλ(Y,λ), hλλ(Y,λ),

or hλλλ(Y,λ).

(iii) supλ∈N6(λ0)
1
NT |J∗(λ)| = Op(1), where J∗(λ) = J(λ), Jλ(λ), Jλλ(λ), or Jλλλ(λ).

Assumption N5: As N ∪ T →∞,
(i) 1

NTX
I(λ0)[hλ(Y,λ0)− E(hλ(Y,λ0))] = op(1) and the same is true when hλ(Y,λ0) is

replaced by hλλ(Y,λ0).

(ii) 1
NT {hIλ(Y,λ0)h(Y,λ0) − E[hIλ(Y,λ0)h(Y,λ0)]} = op(1), and the same is true when

h(Y,λ0) is replaced by hλ(Y,λ0) or hλ(Y,λ0) is replaced by hλλ(Y,λ0).

(iii) 1
NT {Jλλ(λ0)− E[Jλλ(λ0)]} = op(1).

Assumptions N1-N3 are standard for quasi maximum likelihood inference. Under As-

sumption C1, the first four components ofG(ψ0) automatically satisfies Assumption N3. For

the last component Gλ(ψ0) of G(ψ0), the requirement E[Gλ(ψ0)] = 0 is tricky, but is likely

to be true if the error distributions are symmetric. See Hinkley (1975) and Yang (1999) for

some discussions and useful results. This assumption is related to the Assumption (b) stated

in Theorem 1. Assumptions N4 and N5 spell out conditions on the transformation function

and it partial derivatives to ensure the existence of the information matrix and convergence

in probability of various quantities. In particular, Assumptions N4(iii) and N5(iii) set out

conditions on the derivatives of the Jacobian term. They are not restrictive as in the special

case of Box-Cox power transformation, Jλ(λ) is free of λ, and Jλλ(λ) = Jλλλ(λ) = 0.

One of the key step in proving the asymptotic normality of the QMLE ψ̂ is to show

that the gradient function G(ψ0) after being suitably normalized is asymptotic normal.

The asymptotic normality of the components of G(ψ0) corresponding to β,σ
2
v ,φμ and φη

can be proved using the central limit theorem (CLT) for linear-quadratic forms of error

components given in Lemma A3 in Appendix, which adapts the CLT for linear-quadratic

forms of i.i.d. errors by Kelejian and Prucha (2001). However, the component of G(ψ0)

corresponding to λ involves the nonlinear function h and its partial derivatives. Moreover,

the two-way error components μ and η induce dependence along both the cross-sectional

and time-wise directions. These render the standard limiting theorems not applicable and

8



hence some high-level condition needs to be imposed. Define

git ≡ git(ψ0) = hY λ(Yit,λ)

hY (Yit,λ)
+ c1uλ,ituit + c2u

2
it + c3uit + c4μ

2
i + c5η

2
t + c6μi + c7ηt + c8,

for i = 1, · · · , N and t = 1, · · · , T , where c1-c8 are constants depending on ψ0, {uit} are the
elements of u = h(Y,λ0)−X(λ0)β0, and uλ,it = ∂uit/∂λ0.

Assumption N6: 1√
NT

N
i=1

T
t=1 git

D−→ N(0, τ2) as N,T →∞.

It is extremely difficult, if possible at all, to specify explicitly detailed conditions on git

so that a version of CLT can apply. Given the highly nonlinear dependence of git on the

non-identically distributed dependent data, no generic CLT for dependent sequence (as in

McLeish (1975)) is applicable. Alternatively, one can directly assume the score function

G(ψ0) to be asymptotically normal. Now, letting C = diag{Ik+1,
√
T ,
√
N, 1}, we have the

following theorem.

Theorem 2: Given Assumptions C1-C6 and Assumptions N1-N6, we have

√
NTC−1(ψ̂ − ψ0) D−→ N 0, I−1(ψ0)K(ψ0)I−1(ψ0) , as N, T →∞.

where I(ψ0) = − limN,T→∞ 1
NTCE[H(ψ0)]C andK(ψ0) = limN,T→∞

1
NT CE[G(ψ0)G

I(ψ0)]C,
both assumed to exist with I(ψ0) being positive definite. Furthermore, if μi’s, ηt’s and vit’s

are all normally distributed, then
√
NTC−1(ψ̂ − ψ0) D−→ N(0, I−1(ψ0)), as N,T →∞.

The proof of Theorem 2 is given in Appendix. From Theorem 2, we see that the

involvement of the C matrix clearly spells out the rate of convergence for the parameter

estimates. The behavior of the QMLEs is different under following different scenarios:

(a) N,T →∞ such that N/T → c, a positive finite constant;

(b) N,T →∞ such that N/T →∞;
(c) N,T →∞ such that N/T → 0;

(d) N →∞, T is fixed;
(e) T →∞, N is fixed;

Under these scenarios, the asymptotic behavior of the QMLEs are as follows

(i) β̂, σ̂2v and λ̂ are
√
NT -consistent under (a)-(e);

(ii) φμ or (σ
2
μ) is

√
N -consistent under (a)-(d), but is inconsistent under (e).

(iii) φη or (σ
2
η) is

√
T -consistent under (a)-(c) and (e), but is inconsistent under (d).

Thus, the QMLEs β̂, σ̂2v and λ̂ are consistent when either N or T of both approach to

infinity. In the case where both approach to infinity, they are
√
NT -consistent irrespective

of the relative magnitude of N and T . When N approaches infinity but T is fixed, σ̂2μ is
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consistent but σ̂2η is inconsistent. This is because there is no sufficient variations in ηt no

matter how large N is. Similarly, when T goes to infinity but N is fixed, σ̂2η is consistent

but σ̂2μ is inconsistent. See Hsiao (2003, p. 41) for a discussion on a random effects model

without functional form transformation.

The result of Theorem 2 provides theoretical base for statistical inferences for the trans-

formed random effects models. Practical application of this result involves the estimation

of I(ψ0) and K(ψ0). The former can be consistently estimated by I(ψ0) = − 1
NTCH(ψ̂)C,

but for the latter, there are no readily available methods. This is because (i) Var[G(ψ0)

does not have an explicit expression for the transformed panel models, (ii) G(ψ0) cannot

be written as summation of NT independent terms, nor in the form of a U - or V -statistic.

Thus, traditional methods of estimating Var[G(ψ0)] are not applicable.

4 Bootstrap Estimate of Variance-Covariance Matrix

As mentioned above, the difficulty in estimating the variance-covariance matrix of ψ̂

is due to the lack of analytical expression for K(ψ0) or due to the fact that G(ψ0) does

not have the desirable structure. Thus, we turn to the bootstrap method. The bootstrap

procedure given below is inspired by the idea of transformation based bootstrap (TBB) put

fourth by Lahiri (2003, p. 40), which generalized the idea of Hurvivh and Zeger (1987). The

central idea can simply be stated as follows. If (a) a statistic is a function of a dependent

sequence, (ii) this sequence can be transformed through a one-to-one transformation to

a sequence that is approximately independent, and (c) the statistic can be expressed (at

least to a close approximation) in terms of this new sequence, then the distribution of this

statistic can be obtained by bootstrapping the new sequence in the usual way.

The bootstrap procedure is called the Error Components Bootstrap as it directly boot-

straps on the estimated error components obtained by decomposing the estimated error

vector û = h(Y, λ̂) − X(λ̂)β̂. These estimated error components clearly contain approxi-
mately independent elements. The procedure is summarized as follows.

1. Reshape û into an N ×T matrix denoted by Û . Decompose û into three components:

• μ̂ = N × 1 vector of row means of Û
• η̂ = T × 1 vector of column means of Û
• v̂ = û− μ̂⊗ 1T − 1N ⊗ η̂

2. Resample in the usual way μ̂, η̂ and v̂ respectively to give μ̂∗, η̂∗ and v̂∗, and thus

û∗ = μ̂∗ ⊗ 1T + 1N ⊗ η̂∗ + v̂∗

10



3. Compute G(ψ0) using û
∗ and ψ̂, denoted as G∗(ψ̂)

4. Repeat 1-4 B times to give G∗1(ψ̂), G∗2(ψ̂), · · · , G∗B(ψ̂). The bootstrap estimate of
E[G(ψ0)G

I(ψ0)] is then given as

1

B − 1
B

i=1

[G∗i (ψ̂)− μ∗G][G∗i (ψ̂)− μ∗G]I,

where μ∗G =
1
B

B
i=1G

∗
i (ψ̂). This gives a bootstrap estimate of K(ψ0), which together

with I(ψ0) gives an estimate of the VC matrix of the QMLE ψ̂.

Some details in calculating G∗(ψ̂) is given as follows. From Appendix (proof of Theorem
2), we see that the first four elements of G(ψ0) are all explicit functions of u0 and the true pa-

rameters no matter what transformation function is adopted. Their bootstrapped values can

thus be obtained by plugging û∗ and ψ̂ in these functions for u0 and ψ0, respectively. Calcu-
lating bootstrapped values of the last element of G∗(ψ̂), i.e., Gλ(ψ0) = Jλ(λ)− 1

σ2v
uIλΩ

−1u,
requires some algebra which is transformation specific.

For the Box-Cox power transformation, the transformation used in our Monte Carlo sim-

ulation, we have Jλ(λ0) =
N
i=1

T
t=1 log Yit, and hλ(Yiy,λ0) = λ−10 [1+λ0h(Yit,λ0)] log Yit−

λ−10 h(Yit,λ0) when λ0 W= 0; 12(log Yit)
2 when λ0 = 0. Since h(Yit,λ0) = xIit(λ0)β0 + u0,it,

log Yit =
1
λ log[1 + λ0h(Yit,λ0)], and uλ = hλ(Yiy,λ0)−Xλ(λ0)β0, the gradient Gλ(ψ0) can

also be expressed analytically in terms of u0 and ψ0. Thus, the bootstrapped values of

Gλ(ψ0) can again be obtained by plugging û
∗ and ψ̂ in Gλ(ψ0) for u0 and ψ0. For other

transformations, one could go through the same process, although the expressions may be

more complicated than those of Box-Cox power transformation.

The advantage of the proposed bootstrap procedure is that it is computationally feasible

even for large panels. This is because it bootstraps the score function only, for given QMLEs

of parameters, based on resampling the estimated error components, thus avoiding the

numerical optimization as in obtaining the parameter estimates. Section 5 presents Monte

Carlo results for the performance of this bootstrap procedure for VC estimation in the forms

of confidence intervals for model parameters.

5 Monte Carlo Results

Monte Carlo experiments we conducted serve two purposes: one is for checking the

convergence rates of the QMLEs under different scenarios concerning the relative magni-

tude of N and T discussed in Section 3, and the other is for investigating the finite sample

performance of the bootstrap estimate of VC matrix when used in confidence interval con-

struction. The data generating process (DGP) used in the Monte Carlo experiments is as

11



follows.

h(Y,λ) = β0 + β1X1 + β2h(X2,λ) + Zμμ+ Zηη + v

where h is the Box-Cox power transformation with λ = 0.1, X1 is generated from U(0, 5),

X2 from exp[N(0, 1)], β = (20, 5, 1)I, σμ = ση = 0.5, and σv = 1.0.

To generate error components {μi}, {ηt} and {vit}, we consider three distributions: (i)
normal, (ii) normal-mixture, and (iii) normal-gamma mixture, all standardized to have zero

mean and unit variance. The standardized normal-mixture random variates are generated

according to

Wi = ((1− ξi)Zi + ξiτZi)/(1− p+ pτ2)0.5,
where ξ is a Bernoulli random variable with probability of success p and Zi is standard

normal independent of ξ. The parameter p in this case also represents the proportion

of mixing the two normal populations. In our experiments, we choose p = 0.05 or 0.10,

meaning that 95% or 90% of the random variates are generated from the standard normal

and the remaining 5% or 10% are from another normal population with standard deviation

τ . We choose τ = 5 or 10 to simulate the situations where there are gross errors in the

data. Similarly, the standardized normal-gamma mixture random variates are generated

according to

Wi = ((1− ξi)Zi + ξi(Vi − α))/(1− p+ pα)0.5,
where Vi is a gamma random variable with scale parameter 1 and shape parameter α, and

is independent of Zi and ξi. The other quantities are the same as in the definition of

normal-mixture. We choose p = 0.05 or 0.10, and α = 4 or 9.

Note that the normal-mixture gives a non-normal distribution that is still symmetric like

normal distribution but leptokurtic, whereas the normal-gamma mixture gives a non-normal

distribution that is both skewed and leptokurtic. As we discussed in the introduction, one

of the main purposes of a response transformation is to induce normality of the data. We

argued that while exact normality may be impractical, the transformed observations can

be close to normal or at least more symmetrically distributed, which makes the use of

Gaussian likelihood more valid in the QMLE process. This means that there could still be

‘mild’ departure from normality for the error distributions in the forms of excess kurtosis or

skewness or both. As symmetry can pretty much be achieved by transformation, it is thus

more interesting to see the behaviors of the QMLEs and bootstrap VC matrix estimation

in the case of excess kurtosis, i.e., the case of normal-mixture. Nevertheless, we still include

the normal-gamma mixture case to see what happens when the transformed data is still

‘far’ from being normal in the sense that there is still a certain degree of skewness left after

the so called ‘normalizing’ transformation.
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5.1 Convergence of the QMLEs

Table 1 presents Monte Carlo results for the finite sample performance of the QMLEs of

the model parameters ψ, where DGP 1 corresponds to the case that all errors are normal,

DGP 2 corresponds to the case that μ and η are normal but v follows a normal-mixture

distribution with p = 0.05 and τ = 5, and DGP 3 corresponds to the case that μ and η

are normal but v follows a normal-gamma mixture with p = 0.05 and α = 4. The results

corresponding to each combination of values of N,T and DGP are based on 10,000 samples.

Tables 1a-1d correspond to the cases where N and T increase concurrently with the

same or different speeds. The results clearly show that as N and T get larger, the bias and

the root mean squared error (rmse) get smaller. If N is relatively larger than T , then the

bias and rmse of φη are larger than those of φμ and vise versa. If T is fixed as in Table

1e, then the bias and rmse of φη, in particular the former, do not go down as N increases.

Similarly, if N is fixed as in Table 1f, then the bias and rmse of φμ do not go down as T

increases.

The results corresponding to DGP 2 and DGP 3 do not differ much from those corre-

sponding to DGP 1 as far as the general observations are concerned. However, introducing

the nonnormality does make the rmse larger, especially in the case of DGP 2. As discussed

in Section 3, the consistency of λ̂ may require that the errors in the transformed model be

near symmetric. The results in Table 1 do indicate that the bias of λ̂ is indeed smaller in

the case of symmetric nonnormal errors (DGP 2) than in the case of asymmetric nonnormal

errors (DGP 3). However, the magnitude of bias is still quite small. Monte Carlo experi-

ments are repeated under other parameter (ψ) values as well. The results (not reported for

brevity) show similar patterns and lead to the same conclusions.

5.2 Performance of the bootstrap estimate of VC matrix

This subsection concerns on the finite sample performance of the bootstrap estimates

of the variance-covariance (VC) matrix of the QMLEs in terms of the coverage probability

of confidence interval (CI) for each parameter in the model. The same DGPs as in Section

5.1 are used with some changes on the parameter values in the mixture distributions. The

results are summarized in Table 5.2. Due to the fact that bootstrap procedure is compu-

tationally more demanding, we use 5,000 samples for each Monte Carlo experiment instead

of 10,000 as in Section 5.1. The number of bootstrap samples is chosen to be 300.

From the results we see that in case of symmetric non-normal errors, the bootstrap pro-

cedure leads to confidence intervals (Boot) with coverage probabilities generally quite close

to their nominal level even though the mixture distributions considered in the Monte Carlo

experiment are quite different from normal distribution. The Hessian-based confidence in-
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tervals (Hess) can perform quite poorly with coverage probabilities significantly below the

nominal level.

In case of skewed errors (DGP 3), the performance of bootstrap confidence intervals are

not as good as in the case of symmetric but nonnormal error (DGP 2), but still significantly

better than the confidence intervals based on Hessian matrix. One point to note is that

the inferences based on both methods do not improve when N and T increase. The cause

of this may be the biasedness of some parameter estimates (e.g., λ̂), inherited from the

skewness of the error distribution. However, the amount of skewness generated by DGP

3 is incompatible with the transformtion model as response transformation can typically

achieve near-symmetry as discussed earlier. Another interesting point to note is that the CIs

for φ̂μ and φ̂η based on both methods perform equally well in all situations. One possible

reason for this may be that the error components μ and η are generated from normal for

all the reported Monte Carlo results. This shows that whether the pure error v is normal

or non-normal does not affect the performance of the inference for φμ and φη.

6 Discussions

Asymptotic properties of the QMLEs of the transformed panel model with two-way

random effects are studies and a bootstrap method for estimating the variance-covariance

matrix is introduced. Typically, a consistent estimate of the model requires bothN and T to

be large. WhenN is large but T is fixed, only the variance of the time-specific random effects

cannot be consistently estimated; when T is large but N is fixed, only the variance of the

individual-specific random effects cannot be consistently estimated. The error component

bootstrap (ECB) estimate of the VC matrix works well when errors are not normal but still

symmetrically distributed, and in this case it shows enormous improvements over the case

where the VC matrix is estimated by the Hessian matrix.
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Appendix: Proofs of the Theorems

Denote u ≡ u(β,λ) = H(Y,λ) −X(λ)β, u0 = u(β0,λ0), uλ ≡ uλ(β,λ) = ∂u(β,λ)/∂λ,

and uλλ ≡ uλλ(β,λ) = ∂2u(β,λ)/∂λ2. Recall Ω−1 = Q + θ1P1 + θ2P2 + θ3P3, where

θ1 = 1/(Tφμ + 1), θ2 = 1/(Nφη + 1), and θ3 = 1/(Tφμ +Nφη + 1). The proof of Theorem

1 needs the following two lemmas.

Lemma A1: Under the assumptions of Theorem 1, the quantity σ̄2v(φ) defined in 9 is

bounded below from zero as N,T →∞, uniformly in φ ∈ Φ.
Proof: Recall f̄(ψ) ≡ E[f(ψ)] = −NT2 log(σ2v) + c(φμ,φη) − 1

2σ2v
E[uI(β,λ)Ω−1u(β,λ)] +

E[J(λ)]. This gives f̄(ψ0) = −NT2 log(σ2v0) + c(φμ0,φη0) − NT
2 + E[J(λ0)]. By information

inequality (see, e.g., White (1994, p.9)), we have

E[f(ψ)] ≤ E[f(ψ0)],∀ψ ∈ Ψ.
It follows that f̄max(φ) = maxβ,σ2v E[f(ψ)] ≤ E[f(ψ0)],∀φ ∈ Φ. That is,

c(φμ,φη)− NT
2
[1 + log σ̄2v(φ)] + E[J(λ)] ≤ c(φμ0,φη0)−

NT

2
[1 + log(σ2v0)] + E[J(λ0)],

or equivalently, log σ̄2v(φ) ≥ 1
NT [c(φμ,φη) − c(φμ0,φη0)] + log σ2v0 + 2

NT [EJ(λ) − EJ(λ0)].
Assumption C4 guarantees that 2

NT [EJ(λ)−EJ(λ0)] is bounded for all N and T , uniformly

in λ ∈ Λ. It follows that σ̄2v(φ) is bounded away from zero uniformly in φ ∈ Φ. Q.E.D.

Lemma A2: Under the assumptions of Theorem 1, |σ̂2v(φ)− σ̄2v(φ)| p→ 0 as N,T →∞,
uniformly in φ ∈ Φ.

Proof:3 By (6) and (9), we have,

σ̂2v(φ)− σ̄2v(φ)
=

1

NT
{hI(Y,λ)Ω−1h(Y,λ)− E[hI(Y,λ)Ω−1h(Y,λ)]}

− 1

NT
{hI(Y,λ)Ω− 1

2P ∗(φ)Ω−
1
2h(Y,λ)− E[hI(Y,λ)Ω− 1

2P ∗(φ)Ω−
1
2h(Y,λ)]}, (11)

where P ∗(φ) = Ω−
1
2X(λ)[X I(λ)Ω−1X(λ)]−1X I(λ)Ω−

1
2 , a projection matrix, and Ω−

1
2 is the

symmetric square root of Ω−1. We prove the lemma in two steps.

Step 1. To show supφ∈Φ |Q1(φ)−E[Q1(φ)]| = op(1), whereQ1(φ) = 1
NT h

I(Y,λ)Ω−1h(Y,λ).
Note that

Q1(φ) ≤ γmax(Ω
−1)

NT
,h(Y,λ),2 ≤ 4

NT
,h(Y,λ),2

3In proving Lemma A2, the following matrix results are repeatedly used: (i) the largest eigenvalue of a

projection matrix is less than and equal to 1; (ii) γmin(A)trB ≤ tr(AB) ≤ γmax(A)trB for symmetric matrix

A and positive semidefinte (p.s.d.) matrix B, (ii) γmax(A+B) ≤ γmax(A)+γmax(B) for symmetric matrices

A and B; and (iv) γmax(AB) ≤ γmax(A)γmax(B) for p.s.d. matrices A and B.
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where the last inequality follows from the fact that supφ∈Φ γmax(Ω−1) ≤ 4 (see the remark
after Assumptions C1-C6). The pointwise convergence follows from Assumptions C4-C5(i)

and the dominated convergence theorem. We are left to show the stochastic equicontinuity

of Q1(φ). By the mean value theorem,

Q1(φ)−Q1(φ̃) = Q1λ(φ∗)(λ− λ̃) +Q1φμ(φ∗)(φμ − φ̃μ) +Q1φη(φ∗)(φη − φ̃η)

where φ∗ ≡ (φ∗μ,φ∗η,λ∗)I lies between φ and φ̃,

Q1λ(φ) =
2

NT
hIλ(Y,λ)Ω

−1h(Y,λ),

Q1φμ(φ) = − 1

NT
hI(Y,λ)(Tθ21P1 + Tθ

2
3P3)h(Y,λ), and

Q1φη(φ) = − 1

NT
hI(Y,λ)(Nθ22P2 +Nθ

2
3P3)h(Y,λ).

By Lemma 1 of Andrews (1992), it suffices to show that supφ∈Φ |Q1ξ(φ)| = Op(1) for

ξ = λ,φμ, and φη. First, by Cauchy-Schwarz inequality and Assumption C6(ii) and C6(iii),

sup
φ∈Φ

|Q1λ(φ)| ≤ sup
φ∈Φ

2

NT
{hIλ(Y,λ)Ω−1hλ(Y,λ)}1/2{hI(Y,λ)Ω−1h(Y,λ)}

1
2

≤ 2{sup
φ∈Φ

γmax(Ω
−1)} sup

λ∈Λ
1√
NT
,hλ(Y,λ), sup

λ∈Λ
1√
NT
,h(Y,λ),

≤ 8 ·Op(1) ·Op(1) = Op(1).

Now, by Assumption C2, the positive constants Tθ21, Nθ
2
2, Tθ

2
3 and Nθ

2
3 are such that

Tθ23 and Nθ
2
3 are o(1) if N ∪ T →∞; Tθ21 is free of N , which is O(1) if T is fixed and o(1)

if T grows; and Nθ22 is free of T , which is O(1) if N is fixed and o(1) if N grows. In any

case, they are bounded uniformly by a constant c, say. We have

sup
φ∈Φ

|Q1φμ(φ)| ≤ sup
φ∈Φ

1

NT
hI(Y,λ)(Tθ21P1 + Tθ

2
3P3)h(Y,λ)

≤ sup
φ∈Φ

(Tθ21γmax(P1) + Tθ
2
3γmax(P3))

1

NT
,h(Y,λ),2

≤ 2c sup
λ∈Λ

1

NT
,h(Y,λ),2 = Op(1) by Assumption C6(ii),

and similarly

sup
φ∈Φ

|Q1φη(φ)| ≤ sup
φ∈Φ

1

NT
hI(Y,λ)(Nθ22P2 +Nθ

2
3P3)h(Y,λ)

≤ sup
φ∈Φ

(Nθ22γmax(P2) +Nθ
2
3γmax(P3))

1

NT
,h(Y,λ),2

≤ 2c sup
λ∈Λ

1

NT
,h(Y,λ),2 = Op(1) by Assumption C6(ii).
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Step 2. To show supφ∈Φ|Q2(φ) − E[Q2(φ)]| = op(1), where Q2(φ) =
1
NT h

I(Y,λ)Ω−
1
2

P ∗(φ)Ω−
1
2h(Y,λ). Noting that Q2(φ) ≤ γmax(P

∗(φ)) 1
NT h

I(Y,λ)Ω−1h(Y,λ) ≤ Q1(φ), the

pointwise convergence follows from Step 1 and the dominated convergence theorem. We

now show the stochastic equicontinuity of Q2(φ). By the mean value theorem,

Q2(φ)−Q2(φ̃) = Q2λ(φ∗∗)(λ− λ̃) +Q2φμ(φ∗∗)(φμ − φ̃μ) +Q2φη(φ∗∗)(φη − φ̃η),

where φ∗∗ ≡ (φ∗∗μ ,φ∗∗η ,λ∗∗)I lies between φ and φ̃,

Q2λ(φ) =
2

NT
hIλ(Y,λ)Ω

−1X(λ)[X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ)

+
2

NT
hI(Y,λ)Ω−1Xλ(λ)[X

I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ)

− 2

NT
hI(Y,λ)Ω−1X(λ)[X I(λ)Ω−1X(λ)]−1X Iλ(λ)Ω

−1X(λ)

×[X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ)
≡ 2Q2λ,1(φ) + 2Q2λ,2(φ)− 2Q2λ,3(φ),

Q2φμ(φ) = − 2

NT
hI(Y,λ)(Tθ21P1 + Tθ

2
3P3)X(λ)[X

I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ)

+
1

NT
hI(Y,λ)Ω−1X(λ)[X I(λ)Ω−1X(λ)]−1(Tθ21P1 + Tθ

2
3P3)

×[X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ), and
Q2φη(φ) = − 2

NT
hI(Y,λ)(Nθ22P2 +Nθ

2
3P3)X(λ)[X

I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ)

+
1

NT
hI(Y,λ)Ω−1X(λ)[X I(λ)Ω−1X(λ)]−1(Nθ22P2 +Nθ

2
3P3)

×[X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ).

By the Cauchy-Schwarz inequality, and Assumption C6(ii)-(iii),

sup
φ∈Φ

|Q2λ,1(φ)|

= sup
φ∈Φ

1

NT
hIλ(Y,λ)Ω

− 1
2P ∗(φ)Ω−

1
2h(Y,λ)

≤ sup
φ∈Φ

1

NT
hIλ(Y,λ)Ω

− 1
2P ∗(φ)Ω−

1
2hλ(Y,λ)

1
2 hI(Y,λ)Ω−

1
2P ∗(φ)Ω−

1
2h(Y,λ)

1
2

≤ sup
φ∈Φ

γmax(P
∗(φ))

1

NT
hIλ(Y,λ)Ω

−1hλ(Y,λ)
1
2 hI(Y,λ)Ω−1h(Y,λ)

1
2

≤ sup
φ∈Φ

γmax(Ω
−1)

1

NT
,hλ(Y,λ),,h(Y,λ),

≤ 4 sup
λ∈Λ

1√
NT
,hλ(Y,λ), sup

λ∈Λ
1√
NT
,h(Y,λ), = Op(1). (12)
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Similarly,

sup
φ∈Φ

|Q2λ,2(φ)| = sup
φ∈Φ

1

NT
hI(Y,λ)Ω−1Xλ(λ)[X

I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ)

≤ sup
φ∈Φ

1

NT
hI(Y,λ)Ω−1Xλ(λ)[X

I(λ)Ω−1X(λ)]−1X Iλ(λ)Ω
−1h(Y,λ)

1
2

× sup
φ∈Φ

1

NT
hI(Y,λ)Ω−1X(λ)[X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ)

1
2

.

Let QXX(φ) ≡ 1
NTX

I(λ)Ω−1X(λ). The first term on the right hand side (r.h.s.) is

≤ sup
φ∈Φ

[γmin (QXX(φ))]
− 1
2 sup
φ∈Φ

1

NT
hI(Y,λ)Ω−1Xλ(λ)X

I
λ(λ)Ω

−1h(Y,λ)
1
2

≤ sup
φ∈Φ

[γmin(QXX(φ))]
−1 sup

λ∈Λ
1√
NT
,Xλ(λ), sup

φ∈Φ
γmax(Ω

−1) sup
λ∈Λ

1√
NT
,hI(Y,λ),

= Op(1)Op(1)O(1)Op(1) = Op(1), by Assumptions C3 and C6(i),

and supφ∈Φ γmax(Ω−1) ≤ 4. The second term on the r.h.s. is

sup
φ∈Φ

1

NT
hI(Y,λ)Ω−

1
2P ∗(φ)Ω−

1
2h(Y,λ)

1
2

≤ sup
φ∈Φ

γmax(Ω
− 1
2P ∗(φ)Ω−

1
2 )

1/2

sup
λ∈Λ

1√
NT
,hI(Y,λ),

≤ 2 sup
λ∈Λ

1√
NT
,hI(Y,λ), = Op(1), by Assumption C6(i).

Consequently,

sup
φ∈Φ

|Q2λ,2(φ)| = Op(1). (13)

Next,

sup
φ∈Φ

|Q2λ,3(φ)| ≤ sup
φ∈Φ
,hI(Y,λ)Ω−1X(λ)[X I(λ)Ω−1X(λ)]−1, sup

λ∈Λ
1√
NT
,X Iλ(λ),

× sup
φ∈Φ

1√
NT
,Ω−1X(λ)[X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ),.

The first term on the r.h.s. is

sup
φ∈Φ
,hI(Y,λ)Ω−1X(λ)[X I(λ)Ω−1X(λ)]−1,

≤ sup
φ∈Φ

,hI(Y,λ)Ω−1X(λ)[X I(λ)Ω−1X(λ)]−2X I(λ)Ω−1h(Y,λ),
1
2

≤ sup
φ∈Φ

[γmin(QXX(φ))]
− 1
2

1√
NT

hI(Y,λ)Ω−
1
2P ∗(φ)Ω−

1
2h(Y,λ)

1
2

≤ sup
φ∈Φ

[γmin(QXX(φ))]
− 1
2 sup
φ∈Φ

γmax(Ω
−1)

1
2 1√

NT
,h(Y,λ),

= Op(1)O(1)Op(1) = Op(1) by Assumptions C3 and C6(i),
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the middle term is O(1) by Assumption C6(i), and the third term on r.h.s. is

sup
φ∈Φ

1√
NT

Ω−
1
2P ∗(φ)Ω−

1
2h(Y,λ)

= sup
φ∈Φ

1√
NT

hI(Y,λ)Ω−
1
2P ∗(φ)Ω−1P ∗(φ)Ω−

1
2h(Y,λ)

1
2

≤ γmax Ω−
1
2P ∗(φ)Ω−1P ∗(φ)Ω−

1
2

1
2 sup
λ∈Λ

1√
NT
,h(Y,λ),

≤ 4 sup
λ∈Λ

1√
NT
,h(Y,λ), = Op(1) by Assumption C6(i),

where we repeatedly use the fact that γmax(AB) ≤ γmax(A)γmax(B) for positive semidefinite

matrices A and B. Consequently, we have

sup
φ∈Φ

|Q2λ,3(φ)| = Op(1). (14)

By the triangle inequality, combining (12)-(14) yields supφ∈Φ |Q2λ(φ)| = Op(1).
Analogously, we can show supφ∈Φ |Q2φμ(φ)| = Op(1) and supφ∈Φ |Q2φη(φ)| = Op(1).

This completes the proof of the lemma. Q.E.D.

Proof Theorem 1: Since fmax(φ) has identifiably unique maximizer φ0, following

White (1994, Theorem 3.4), the proof of the consistency of φ̂ amounts to show the uniform

convergence

sup
φ∈Φ

1

NT
fmax(φ)− f̄max(φ) p−→ 0, as N,T −→∞. (15)

From (7) and (10), we have 1
NT [fmax(φ)− f̄max(φ)] = −12 [log σ̂2v(φ)− log σ̄2v(φ)]+ 1

NT {J(λ)−
E[J(λ)]}. By a Taylor expansion of log σ̂2v(φ) at σ̄2v(φ), we obtain

| log σ̂2v(φ)− log σ̄2v(φ)| = |σ̂2v(φ)− σ̄2v(φ)|/σ̃2v(φ),

where σ̃2v(φ) lies between σ̂
2
v(φ) and σ̄

2
v(φ). Lemma A1 shows that σ̃

2
v(φ) is bounded below

from zero uniformly in φ ∈ Φ, and Lemma A2 shows that |σ̂2v(φ)−σ̄2v(φ)| p−→ 0, uniformly in

φ ∈ Φ. Hence, | log σ̂2v(φ)− log σ̄2v(φ)| p−→ 0, uniformly in φ ∈ Φ. Now, Assumptions C5(ii)
and C6(ii) ensure that 1

NT {J(λ)−E[J(λ)]}
p−→ 0 uniformly in φ ∈ Φ. The result (A.1) thus

follows. Finally, the consistency of β̂(φ̂) and σ̂2v(φ̂) follows from the consistency of φ̂ and

Assumption C3. Q.E.D.

The proof of Theorem 2 requires Lemma A.3, which essentially gives a central limit

theorem (CLT) for linear-quadratic forms of error components u = Zμμ+Zηη+ v defied in

(2). Let m
(k)
μ0 ,m

(k)
η0 and m

(k)
v0 be, respectively, the kth moment of μi, ηt and vit, k = 1, 2, 3, 4.
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Let κμ0 = m
(k)
μ0 /σ

4
μ0 − 3, κη0 = m

(k)
η0 /σ

4
η0 − 3 and κv0 = m

(k)
v0 /σ

4
v0 − 3. Denote n = NT .

Let W = {wjk} be an n × n symmetric matrix and b = {bj} be an n × 1 column vector.
Consider the following linear-quadratic form:

q = uIWu+ bIu.

Lemma A3. Assume (i) E|μi|4+61 <∞, E|ηt|4+62 <∞, and E|vit|4+63 <∞, for some
61, 62 and 63 > 0, and for all i = 1, · · · , N and t = 1, · · · , T ; (ii) sup1≤k≤n n

j=1 |wjk| <∞;
and (iii) supn n

−1 n
j=1 |bj |2+6 <∞ for some 6 > 0. Then, we have, as n −→∞,

q − μq
σq

D−→ N(0, 1),

where μq = E(q) = σ2μ0tr(Wμ) + σ2ηtr(Wη) + σ2vtr(W ), and

σ2q = σ4μ0(κμ0 w2μ,ii+2tr(W
2
μ))+σ

4
η0(κη0 w2η,ii+2tr(W

2
η ))+σ

4
v0(κv0 w2ii+2tr(W

2))

+ 4σ2μ0σ
2
η0tr(Z

I
μWZηZ

I
ηWZμ) + 4σ

2
μ0σ

2
v0tr(Z

I
μW

2Zμ) + 4σ
2
η0σ

2
v0tr(Z

I
ηW

2Zη),

+ 2m
(3)
μ0 wμ,iibμ,i + 2m

(3)
η0 wη,iibη,i + 2m

(3)
v0 wiibi + σ2v0b

IΩb,

where Wμ = Z
I
μWZμ, Wη = Z

I
ηWZη, bμ = Z

I
μb, and bη = Z

I
ηb.

Proof: Since uIWu = (Zμμ+Zηη+ v)IW (Zμμ+Zηη+ v) = μIWμμ+ ηIWηη+ v
IWv+

2μIZ IμWZηη + 2μIZ IμWv + 2ηIZ IηWv, we have E(q) = σ2μ0tr(Wμ) + σ2η0tr(Wη) + σ2v0tr(W ).

Noting that the six terms in the expansion of uIWu are mutually uncorrelated, we have

Var(uIWu) = Var(μIWμμ) + Var(η
IWηη) + Var(v

IWv)

+4Var(μIZ IμWZηη) + 4Var(μ
IZ IμWv) + 4Var(η

IZ IηWv)

It is easy to show that

Var(μIWμμ) = σ4μ0 κμ0 w2μ,ii + 2tr(W
2
μ) ,

Var(μIZμWZηη) = σ2μ0σ
2
η0tr(Z

I
μWZηZ

I
ηWZμ).

The former leads to the expressions for Var(ηIWηη) and Var(v
IWv), and the latter leads to

the expressions for Var(μIZ IμWv) and Var(ηIZ IηWv). Finally,

Cov(uIWu, bIu) = m(3)
μ0 wμ,iibμ,i +m

(3)
η0 wη,iibη,i +m

(3)
v0 wiibi,

where we note the number of items in each summation is, respectively, N , T , and NT .

Putting all together gives the expression for σ2q =Var(q).

For the asymptotic normality of q, we note that q = uIWu + bIu = (μIWμμ + b
I
μμ) +

(ηIWηη+b
I
ηη)+(v

IWv+bIv)+2μIZ IμWZηη+2μIZ IμWv+2ηIZ IηWv. The asymptotic normality
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of the first three bracketed terms follow from the CLT for linear-quadratic forms of vector

of i.i.d. elements given in Kelejian and Prucha (2001). The asymptotic normality of the last

three terms can easily be proved using the fact that the two random vectors involved in each

term are independent. Q.E.D.

Proof of Theorem 2: Let G†(ψ) = CG(ψ), where G(ψ) ≡ ∂f(ψ)/∂ψ is the gradient

function containing the following elements.

Gβ(ψ) = 1
σ2v
X I(λ)Ω−1u

Gσ2v
(ψ) = 1

2σ4v
uIΩ−1u− NT

2σ2v

Gφμ(ψ) = 1
2σ2v
uIAμu− 1

2T (N − 1)θ1 − 1
2Tθ3

Gφη(ψ) = 1
2σ2v
uIAηu− 1

2N(T − 1)θ2 − 1
2Nθ3

Gλ(ψ) = Jλ(λ)− 1
σ2v
uIλΩ

−1u

where Aμ ≡ − ∂
∂φμ

Ω−1 = T (θ21P1+θ23P3), and Aη ≡ − ∂
∂φη

Ω−1 = N(θ22P2+θ23P3). The proof
of the theorem starts from a Taylor expansion of G†(ψ̂) around ψ0:

0 =
1√
NT

G†(ψ̂) =
1√
NT

G†(ψ0) +
1

NT
CH(ψ̄)C

√
NTC−1(ψ̂ − ψ0)

where ψ̄ lies between ψ̂ and ψ0, and H(ψ) is the Hessian matrix containing the following

elements
Hββ = − 1

σ2v
X I(λ)Ω−1X(λ)

Hβσ2v
= − 1

σ4v
X I(λ)Ω−1u

Hβφμ = − 1
σ2v
X I(λ)Aμu

Hβφη = − 1
σ2v
X I(λ)Aηu

Hβλ = 1
σ2v
[X Iλ(λ)Ω

−1u+X I(λ)Ω−1uλ]

Hσ2vσ
2
v
= NT

2σ4v
− 1

σ6v
uIΩ−1u

Hσ2vφμ
= − 1

2σ4v
uIAμu

Hσ2vφη
= − 1

2σ4v
uIAηu

Hσ2vλ
= 1

σ4v
uIλΩ

−1u

Hφμφμ = 1
2T

2((N − 1)θ21 + θ23)− 1
2σ2v
uIAμμu

Hφμφη = 1
2NTθ

2
3 − 1

2σ2v
uIAμηu

Hφμλ = − 1
σ2v
uIλAμu

Hφηφη = 1
2N

2((T − 1)θ22 + θ23)− 1
2σ2v
uIAηηu

Hφηλ = − 1
σ2v
uIλAηu

Hλλ = − 1
σ2v
(uIλλΩ

−1u+ uIλΩ
−1uλ) + Jλλ(λ).

where Aμμ =
∂2

∂φ2μ
Ω−1 = 2T 2(θ31P1 + θ33P3), Aμη =

∂2

∂φμ∂φη
Ω−1 = 2NTθ33P3, and Aηη =

∂2

∂φ2η
Ω−1 = 2N2(θ32P2 + θ33P3).
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The result of the theorem follows from the following three results:

(i)
1√
NT

CG(ψ0)
D−→ N(0,K(ψ0))

(ii)
1

NT
C{H(ψ̄)−H(ψ0)}C = op(1)

(iii)
1

NT
C{H(ψ0)− E[H(ψ0)]}C = op(1).

For (i), the joint asymptotic normality of the first four elements of G(ψ0) follows from

Lemma A3 and the Cramér-Wold device. The last element of G(ψ0) can be written as

Gλ(ψ0) =
i t

hY λ(Yit,λ0)

hY (Yit,λ0)
− 1

σ2v0 i t

(uλ,ituit + (θ1 − 1)ūλiūi
+(θ2 − 1)ūλtūt + (1− θ1 − θ2 + θ3)¯̄uλ ¯̄u)

where ūi· and ūλi· are the averages over t for a given i of {uit(β0,λ0)} and {uλ,it(β0,λ0)},
respectively; ū·t and ūλ·t are the averages over i for a given t, and ¯̄u and ¯̄uλ are the overall
averages. It is easy to see that ūi· = μi + Op(T

− 1
2 ), ū·t = ηt + Op(N

−1/2), and ¯̄u =
Op(T

−1/2)+Op(N−1/2)+Op((NT )−1/2). Since ūλi·, ūλ·t, and ¯̄uλ are all Op(1) by Assumption
N5, it follows that the linear combinations of Gλ(ψ0) with other elements of G(ψ0) can

be written in the form of i t git where git is defined before Assumption N6. Thus,

Assumption N6 and Cramér-Wold device lead to the joint asymptotic normality of G(ψ0).

What is left is to show that the normalizing factor should be adjusted by the matrix

C to reflect the different rates of convergence of the components of ψ̂. This amounts to

show that Gβ(ψ0), Gσ2v
(ψ0) and Gλ(ψ0) are all Op(

√
NT ), but Gφμ(ψ0) = Op(

√
N) and

Gφη(ψ0) = Op(
√
T ). The first three results are trivial. To prove the latter two, note that

uIP1u = NT (s2μ + s
2
v1 + s

2
μv)

uIP2u = NT (s2η + s
2
v2 + s

2
ηv)

uIP3u = NT (μ̄+ η̄ + ¯̄v)2

where s2μ =
1
N

N
i=1(μi − μ̄)2, s2v1 =

1
N

N
i=1(v̄i· − ¯̄v)2, and s2μv = 1

N
N
i=1[μi(v̄i· − ¯̄v)];

s2η =
1
T

T
t=1(ηi− η̄)2, s2v2 = 1

T
T
t=1(v̄·t− ¯̄v)2, and s2ηv = 1

T
T
t=1[ηt(v̄·t− ¯̄v)]; μ̄ = 1

N
N
i=1 μi,

η̄ = 1
T

T
t=1 ηi, v̄i· =

1
T

T
t=1 vit, v̄·t =

1
N

N
i=1 vit, and ¯̄v =

1
NT

N
i=1

T
t=1 vit. These give

Gφμ(ψ0) =
1

2σ2v0
uIAμu− 1

2
T (N − 1)θ1 − 1

2
Tθ3

=
T

2σ2v0
(θ21u

IP1u+ θ23u
IP3u)− 1

2
T (N − 1)θ1 − 1

2
Tθ3

=
NT 2(s2μ + s

2
v1 + s

2
μv)

2σ2v0(Tφμ0 + 1)
2

+
NT 2(μ̄+ η̄ + ¯̄v)2

2σ2v0(Tφμ0 +Nφη0 + 1)
2

− (N − 1)T
2(Tφμ0 + 1)

− T

2(Tφμ0 +Nφη0 + 1)
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Under Assumption C1, we have, as N → ∞, μ̄ p−→ 0, ¯̄v
p−→ 0, η̄

p−→ 0 if T → ∞ as well,

but otherwise does not converge, s2μ
p−→ σ2μ0, s

2
v1

p−→ σ2v0/T , s
2
μv

p−→ 0. These give for N

large

Gφμ(ψ0) ≈
√
N

2(φμ0 + 1/T )

√
N

s2μ + s
2
v1

σ2μ0 + σ2v0/T
− 1

Clearly, the term
√
N((s2μ + s

2
v1)/(σ

2
μ0 + σ2v0/T ) − 1) is Op(1) as N approaches infinity

irrespective of whether T being fixed or approaching to infinity, and hence Gφμ(ψ0) =

Op(
√
N) as N approaches to infinity irrespective of whether T being fixed or approaching

to infinity. Similarly, one can show that as T −→∞,

Gφη(ψ0) ≈
√
T

2(φη0 + 1/N)

√
T

s2η + s
2
v2

σ2η0 + σ2v0/N
− 1

showing that it is Op(
√
T ), irrespective of weather N being fixed or approaching to infinity.

To show (ii) 1
NTCH(ψ̄)C − 1

NT CH(ψ0)C = op(1), Note that ψ̂
p−→ 0 implies ψ̄

p−→
0. All parameters or their one-to-one functions, except λ, appear in H(ψ) additively or

multiplicatively. The parameter λ appears inH(ψ) through either continuous non-stochastic

functions X(λ) and its derivatives up to second order, or stochastic functions h(Y,λ) and

its partial derivatives up to third order. Hence, it suffices to show the following:

(a) 1
NT [X

I(λ̄)WX(λ̄)−X I(λ0)WX(λ0)] = op(1), forW = INT , P1, P2, P3, with the same

being true when X(λ) is replaced by its first and second derivatives with respect to λ;

(b) 1
NT [h

I(Y, λ̄)WX(λ̄) − hI(Y,λ0)WX(λ0)] = op(1), for W = INT , P1, P2, P3, with the

same being true when X(λ) or h(Y,λ) is replaced by its first and second derivatives with

respect to λ;

(c) 1
NT [h

I(Y, λ̄)Wh(Y, λ̄) − hI(Y,λ0)Wh(Y,λ0)] = op(1), for W = INT , P1, P2, P3, with

the same being true when h(Y,λ) is replaced by its first and second derivatives with respect

to λ; and

(d) 1
NT [Jλλ(λ̄)− Jλλ(λ0)] = op(1).

To show (a), by the mean value theorem,

1

NT
[X I(λ̄)WX(λ̄)−X I(λ0)WX(λ0)] = 2

NT
X Iλ(λ̃)WX(λ̃)(λ̄− λ0)

where λ̃ lies between λ̄ and λ0. Let ιi denotes a k × 1 vector with 1 in the ith place and 0
elsewhere. Then by the fact that W is a projection matrix, the Cauchy-Schwarz inequality,
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and Assumption N4

1

NT
ιIiX

I
λ(λ̃)WX(λ̃)ιj

≤ 1

NT
ιIiX

I
λ(λ̃)WX

I
λ(λ̃)ιi

1/2 1

NT
ιIjX

I(λ̃)WX(λ̃)ιj
1
2

≤ γmax (W )
1√
NT

ιIiX
I
λ(λ̃)

1√
NT

ιIjX
I(λ̃)

≤ sup
λ∈N6(λ0)

1√
NT
,Xλ(λ), sup

λ∈N6(λ0)
1√
NT
,X(λ),

= O(1)O(1) = O(1).

It follows that 1
NT [X

I(λ̄)WX(λ̄)−X I(λ0)WX(λ0)] = op(1) as λ̄−λ0 = op(1), and thus the
first part of (a) follows. Noting that 1√

NT
,Xλ(λ),, 1√

NT
,Xλλ(λ),, and 1√

NT
,Xλλλ(λ),

are O(1) uniformly in the 6-neighborhood of λ0 by Assumption N4, the other parts of (a)

follow by similar arguments. Analogously, one can show that the results (b)-(d) follow.

Finally, to show (iii) 1
NTC {H(ψ0)− E[H(ψ0)]}C = op(1), it is straightforward to handle

the terms which are linear or quadratic forms of u0, i.e.,
1
NTX

I∗(λ0)Wu0 = op(1) and
1
NT [u

I
0Wu0 − E(uI0Wu0)] = op(1), for W = INT , P1, P2, P3, and X

I∗(λ0) = X(λ0), Xλ(λ0),

and Xλλ(λ0). For other items, Assumption N5 implies that

(a) 1
NTX

I(λ0)W [hλ(Y,λ0) − E(hλ(Y,λ0))] = op(1), for W = INTP1, P2, P3, with the

same being true when hλ(Y,λ0) is replaced by hλλ(Y,λ0);

(b) 1
NT {hIλ(Y,λ0)Wh(Y,λ0)− E[hIλ(Y,λ0)Wh(Y,λ0)]} = op(1), forW = INT , P1, P2, P3,

with the same being true when h(Y,λ0) is replaced by hλ(Y,λ0) or hλ(Y,λ0) is replaced by

hλλ(Y,λ0).

Finally, Assumption 5N(iii) states 1
NT {Jλλ(λ0)− E[Jλλ(λ0)]} = op(1). This completes

the proof of (iii) and thus the proof of Theorem 2.
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Table 1a. Monte Carlo Results for Bias and RMSE: T = Ceiling(N/3)

(N,T ) (10, 4) (30, 10) (90, 30) (200, 67)
DGP ψ Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE
1 20 1.4850 4.2025 0.1518 1.1387 0.0182 0.3640 0.0019 0.1734

5 15.4692 3.4779 0.9954 0.6977 0.1178 0.2130 0.0211 0.0975
1 16.4202 0.7732 1.0627 0.1556 0.1114 0.0463 0.0219 0.0211
1 63.3115 2.5958 2.7896 0.2986 0.2773 0.0893 0.0727 0.0406

.25 16.8834 0.3256 0.5225 0.0975 0.0573 0.0430 -0.0609 0.0267

.25 -6.5971 0.2874 -7.1974 0.1282 -2.6440 0.0680 -1.2370 0.0437

.10 -0.5324 0.0376 0.0250 0.0096 0.0188 0.0030 0.0020 0.0014
2 20 1.1845 4.6417 0.4475 1.6176 0.2634 0.5492 0.2531 0.2679

5 21.1295 5.1422 2.3531 1.0404 0.7842 0.3376 0.6521 0.1619
1 23.2728 1.1711 2.4264 0.2220 0.7495 0.0698 0.6495 0.0332
1 191.1191 15.3145 8.0796 0.6139 1.8845 0.1637 1.4040 0.0764

.25 59.6726 0.4670 6.5192 0.1224 0.2663 0.0476 0.1467 0.0283

.25 26.9171 0.4165 -1.1966 0.1484 -2.4037 0.0702 -0.9441 0.0460

.10 -1.4870 0.0433 0.2615 0.0137 0.3927 0.0046 0.4178 0.0022
3 20 1.1752 3.9537 0.6544 1.1921 -0.6135 0.4035 -0.5213 0.2097

5 13.0648 3.2485 2.2002 0.7352 -1.4375 0.2344 -1.2778 0.1194
1 14.0831 0.7210 2.3692 0.1650 -1.4595 0.0498 -1.2505 0.0251
1 32.9719 2.1937 5.7527 0.3273 -3.4043 0.0962 -2.3534 0.0475

.25 34.7490 0.3634 0.2941 0.1001 0.6344 0.0439 -0.2369 0.0267

.25 9.2933 0.3244 -6.9805 0.1283 -2.0470 0.0677 -1.5639 0.0438

.10 -0.7973 0.0353 0.8214 0.0099 -1.0804 0.0033 -0.9076 0.0017

Table 1b. Monte Carlo Results for Bias and RMSE: N = Ceiling(T/3)

(N,T ) (4, 10) (10, 30) (30, 90) (67, 200)
DGP ψ Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE
1 20 1.6626 3.5220 0.1212 1.1225 0.0045 0.3700 0.0110 0.1729

5 10.0607 2.5084 0.8350 0.6959 0.0648 0.2185 0.0238 0.0974
1 8.4445 0.5141 0.6747 0.1443 0.0534 0.0473 0.0197 0.0211
1 31.3067 1.4900 2.4561 0.3014 0.1868 0.0918 0.0693 0.0407

.25 -7.4761 0.2938 -6.2675 0.1277 -2.8286 0.0670 -0.9196 0.0445

.25 16.1751 0.3416 0.2472 0.0978 -0.3819 0.0434 -0.1904 0.0266

.10 0.4069 0.0294 -0.0705 0.0095 -0.0195 0.0030 0.0036 0.0014
2 20 1.5019 3.8552 0.4219 1.5741 0.2936 0.5645 0.2745 0.2606

5 12.0462 3.1864 2.2684 1.0372 0.8794 0.3499 0.7002 0.1573
1 10.4869 0.6289 2.0535 0.2051 0.8561 0.0712 0.6784 0.0323
1 70.3777 6.8206 8.0102 0.6051 2.1802 0.1699 1.4127 0.0744

.25 23.8538 0.4217 -1.8562 0.1453 -1.7470 0.0705 -1.0862 0.0444

.25 51.9917 0.4556 6.6628 0.1229 0.3339 0.0475 0.1305 0.0282

.10 -0.2634 0.0331 0.2200 0.0135 0.4430 0.0048 0.4527 0.0022
3 20 0.5578 3.4725 -0.1199 1.1146 -0.5424 0.3945 -0.3817 0.1948

5 7.2228 2.4724 0.2162 0.6831 -1.2801 0.2303 -0.9401 0.1103
1 5.6161 0.4817 0.1704 0.1409 -1.2560 0.0491 -0.9247 0.0235
1 16.6609 1.4810 1.0719 0.2971 -3.5683 0.0974 -2.4932 0.0476

.25 1.9333 0.3197 -7.9895 0.1259 -1.3736 0.0682 -0.8216 0.0441

.25 30.5226 0.3702 0.7213 0.0999 1.1827 0.0444 0.5264 0.0269

.10 -1.4481 0.0293 -0.4884 0.0095 -0.9676 0.0033 -0.6692 0.0016

27



Table 1c. Monte Carlo Results for Bias and RMSE: T = Ceiling(N2/3)

(N,T ) (10, 5) (30, 10) (90, 21) (200, 35)
DGP ψ Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE
1 20 0.6714 3.3944 0.1004 1.1168 0.0145 0.4312 0.0168 0.2370

5 8.0998 2.4804 0.8047 0.6947 0.0994 0.2543 0.0579 0.1358
1 9.1545 0.5718 0.8373 0.1484 0.0868 0.0551 0.0520 0.0290
1 30.1281 1.4476 2.5120 0.3007 0.3006 0.1068 0.1385 0.0566

.25 11.9192 0.2711 0.4978 0.0983 -0.0399 0.0459 0.0816 0.0286

.25 -2.3470 0.2603 -6.0608 0.1279 -3.9286 0.0800 -2.3244 0.0615

.10 -1.1210 0.0299 -0.0933 0.0095 -0.0162 0.0035 0.0144 0.0019
2 20 1.1472 3.9027 0.4735 1.6043 0.2578 0.6505 0.2455 0.3636

5 14.2339 3.6941 2.5092 1.0660 0.8052 0.4011 0.6723 0.2210
1 16.1274 0.8367 2.3411 0.2161 0.7838 0.0824 0.6600 0.0449
1 97.4621 7.0443 8.6327 0.6275 1.9647 0.1989 1.4691 0.1040

.25 39.7601 0.3674 6.1964 0.1201 1.2364 0.0517 0.1877 0.0311

.25 22.7846 0.3527 -1.1836 0.1496 -2.9973 0.0842 -2.1562 0.0617

.10 -0.5890 0.0356 0.3148 0.0138 0.3402 0.0055 0.3992 0.0030
3 20 5.2050 3.7566 -0.1560 1.1518 -0.4588 0.4618 -0.3992 0.2610

5 21.9689 3.0336 0.2115 0.7048 -1.0756 0.2690 -0.9699 0.1489
1 23.7486 0.7016 0.2117 0.1482 -1.0567 0.0575 -0.9586 0.0315
1 76.8265 2.6040 -2.4828 0.2953 -2.1617 0.1112 -2.1341 0.0614

.25 11.5621 0.2701 4.2328 0.1034 0.1849 0.0469 0.1804 0.0289

.25 -2.6763 0.2631 -3.3042 0.1315 -4.0713 0.0813 -1.9501 0.0600

.10 6.8458 0.0312 -0.5480 0.0098 -0.8493 0.0038 -0.7074 0.0021

Table 1d. Monte Carlo Results for Bias and RMSE: N = Ceiling(T 2/3)

(N,T ) (5, 10) (10, 30) (21, 90) (35, 200)
DGP ψ Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE
1 20 0.9086 2.9491 0.1771 1.0901 -0.0200 0.4507 0.0066 0.2342

5 6.5530 2.0498 0.9423 0.6634 0.0284 0.2655 0.0469 0.1328
1 5.9321 0.4541 0.9262 0.1454 0.0084 0.0571 0.0394 0.0291
1 21.1822 1.1090 2.5036 0.2854 0.1470 0.1119 0.1083 0.0557

.25 -6.6775 0.2615 -7.5289 0.1265 -4.0155 0.0806 -2.5084 0.0607

.25 4.0118 0.2699 -0.1795 0.0971 -0.0217 0.0451 0.0496 0.0281

.10 -0.2126 0.0251 0.0524 0.0091 -0.0795 0.0037 0.0079 0.0018
2 20 1.3733 3.4228 0.2871 1.4986 0.2388 0.6870 0.2433 0.3522

5 10.4854 2.7818 1.6693 0.9516 0.8098 0.4254 0.6463 0.2139
1 9.9401 0.5962 1.7204 0.1985 0.7852 0.0869 0.6374 0.0443
1 55.8167 3.8679 5.7291 0.5497 1.9901 0.2046 1.5275 0.1021

.25 19.8571 0.3558 -1.9789 0.1465 -3.3260 0.0829 -2.1208 0.0615

.25 35.3587 0.3674 6.4728 0.1216 0.9734 0.0519 0.0544 0.0307

.10 0.1624 0.0299 -0.0061 0.0127 0.3165 0.0058 0.3859 0.0029
3 20 0.2111 2.8711 0.0570 1.1180 -0.0357 0.4693 -0.4332 0.2603

5 4.5863 1.9592 0.6030 0.6724 0.0096 0.2755 -1.0502 0.1480
1 4.1735 0.4378 0.5002 0.1459 0.0412 0.0582 -1.0358 0.0317
1 6.9426 0.9532 4.4785 0.3091 -1.3457 0.1140 -1.9337 0.0605

.25 2.0814 0.2794 -10.0904 0.1253 -2.6570 0.0810 -2.3653 0.0605

.25 14.4077 0.2909 -2.2718 0.0982 1.4432 0.0467 -0.1125 0.0285

.10 -1.3220 0.0246 -0.1968 0.0093 -0.1020 0.0039 -0.7615 0.0021
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Table 1e. Monte Carlo Results for Bias and RMSE: T = 6

(N,T ) (10, 6) (30, 6) (90, 6) (200, 6)
DGP ψ Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE
1 20 0.5176 2.5188 0.1920 1.4818 0.0699 0.8520 0.0414 0.5945

5 4.3508 1.6859 1.4480 0.9370 0.5334 0.5147 0.1935 0.3449
1 4.4221 0.3974 1.6185 0.2067 0.4656 0.1125 0.1584 0.0739
1 12.4808 0.8504 4.5732 0.4162 1.4810 0.2192 0.5530 0.1458

.25 6.6293 0.2346 2.0671 0.1241 0.9901 0.0702 0.5473 0.0457

.25 -4.8258 0.2287 -13.5153 0.1620 -15.5476 0.1458 -15.8451 0.1422

.10 -0.4027 0.0214 -0.1371 0.0126 0.0032 0.0071 -0.0287 0.0048
2 20 0.8390 2.9618 0.5264 2.0239 0.2808 1.2295 0.2923 0.8783

5 6.9884 2.2412 3.4373 1.3936 1.4094 0.7854 1.1367 0.5474
1 7.8780 0.5155 3.5880 0.2968 1.4024 0.1623 1.0758 0.1115
1 34.4753 2.5459 13.8585 0.9604 4.4340 0.4148 3.0105 0.2756

.25 29.8492 0.3138 11.7330 0.1567 4.1343 0.0848 1.9740 0.0555

.25 19.6292 0.3135 -4.0819 0.1956 -12.5116 0.1534 -15.2801 0.1457

.10 -0.2556 0.0256 0.1047 0.0174 0.1649 0.0105 0.3879 0.0074
3 20 -0.1263 2.3799 0.0686 1.4659 -1.0046 0.9072 -0.9829 0.6624

5 2.4054 1.5447 1.1418 0.9208 -2.1759 0.5324 -2.2858 0.3789
1 2.4613 0.3618 1.1868 0.2057 -2.1201 0.1144 -2.2234 0.0800
1 -2.4846 0.6659 3.7739 0.4198 -1.1348 0.2230 -1.4319 0.1515

.25 15.5504 0.2486 1.9605 0.1258 -2.2069 0.0698 -2.3133 0.0467

.25 4.8760 0.2470 -13.3253 0.1637 -17.1744 0.1430 -17.9169 0.1399

.10 -1.3612 0.0204 -0.3407 0.0125 -1.9236 0.0077 -1.7920 0.0055

Table 1f. Monte Carlo Results for Bias and RMSE: N = 6

(N,T ) (6, 10) (6, 30) (6, 90) (6, 200)
DGP ψ Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE Bias (%) RMSE
1 20 0.6010 2.5238 0.2521 1.5170 0.0873 0.8517 0.0351 0.5931

5 4.5205 1.6876 1.6386 0.9616 0.5002 0.5173 0.1921 0.3430
1 4.6810 0.3965 1.7997 0.2134 0.4451 0.1121 0.1510 0.0727
1 13.1904 0.8543 5.1963 0.4276 1.4016 0.2186 0.5562 0.1454

.25 -4.5043 0.2280 -12.9882 0.1609 -15.2029 0.1443 -16.1954 0.1424

.25 2.1429 0.2275 1.4080 0.1228 1.0595 0.0690 0.5436 0.0461

.10 -0.2702 0.0214 -0.0708 0.0130 -0.0196 0.0071 -0.0278 0.0047
2 20 0.7508 2.9542 0.6402 2.0800 0.3092 1.2393 0.3050 0.8668

5 6.6834 2.1923 3.8620 1.4425 1.4862 0.7915 1.1148 0.5368
1 7.4786 0.5041 4.1143 0.3096 1.4786 0.1626 1.0406 0.1089
1 32.3731 2.3497 15.2978 1.0088 4.5079 0.4162 2.9287 0.2717

.25 19.4406 0.3194 -4.4418 0.1918 -12.4435 0.1544 -14.4436 0.1449

.25 30.2216 0.3201 11.9166 0.1577 4.3162 0.0843 2.2850 0.0560

.10 -0.4123 0.0256 0.2626 0.0179 0.2051 0.0106 0.3868 0.0073
3 20 -0.1466 2.3923 0.0867 1.5013 -1.0186 0.9097 -0.9925 0.6549

5 2.4299 1.5598 1.2234 0.9491 -2.2174 0.5348 -2.2764 0.3783
1 2.3144 0.3604 1.2935 0.2103 -2.1578 0.1155 -2.2034 0.0795
1 -1.8531 0.6859 4.1209 0.4329 -1.2705 0.2229 -1.4183 0.1513

.25 3.8823 0.2450 -12.1404 0.1663 -17.3942 0.1429 -18.7594 0.1400

.25 13.7751 0.2491 2.2762 0.1269 -1.8197 0.0700 -2.4326 0.0467

.10 -1.3970 0.0205 -0.3495 0.0129 -1.9545 0.0077 -1.7853 0.0054
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Table 2. Empirical Coverage Probabilities for 95% Confidence Intervals

(N,T ) (25,25) (50, 25) (50, 50) (100, 50) (100, 100)

ψ Hess Boot Hess Boot Hess Boot Hess Boot Hess Boot

Normal Errors

20 .9468 .9382 .9456 .9354 .9454 .9406 .9502 .9450 .9490 .9482

5 .9480 .9366 .9438 .9352 .9496 .9426 .9510 .9444 .9512 .9466

1 .9490 .9404 .9442 .9330 .9472 .9386 .9534 .9512 .9502 .9462

1 .9390 .9276 .9372 .9294 .9486 .9404 .9482 .9418 .9512 .9496

.25 .8984 .9128 .9352 .9484 .9266 .9288 .9324 .9434 .9370 .9352

.25 .8988 .9144 .8938 .8868 .9216 .9260 .9238 .9148 .9416 .9376

.10 .9472 .9370 .9476 .9370 .9484 .9402 .9516 .9472 .9502 .9466

Normal-Mixture, p = .05, τ = 5

20 .8322 .9200 .8054 .9210 .8114 .9332 .8000 .9318 .7966 .9446

5 .8260 .9146 .7994 .9200 .7986 .9366 .7848 .9390 .7702 .9434

1 .8402 .9164 .8200 .9206 .8212 .9362 .8060 .9334 .7924 .9436

1 .7542 .8828 .7388 .9068 .7500 .9260 .7294 .9360 .7168 .9384

.25 .8780 .9050 .9112 .9410 .9116 .9270 .9282 .9498 .9298 .9368

.25 .8924 .9206 .8860 .8928 .9240 .9356 .9142 .9124 .9292 .9366

.10 .8228 .9140 .7950 .9172 .7970 .9332 .7834 .9354 .7678 .9412

Normal-Mixture, p = .10, τ = 5

20 .8402 .9206 .8382 .9316 .8410 .9362 .8368 .9408 .8470 .9442

5 .8360 .9166 .8348 .9250 .8246 .9318 .8184 .9412 .8242 .9458

1 .8488 .9186 .8512 .9320 .8472 .9352 .8410 .9378 .8468 .9438

1 .7804 .8922 .7838 .9156 .7640 .9270 .7760 .9390 .7720 .9470

.25 .8930 .9168 .9126 .9388 .9160 .9274 .9302 .9494 .9260 .9322

.25 .8946 .9174 .8932 .8972 .9180 .9292 .9168 .9208 .9326 .9400

.10 .8362 .9190 .8326 .9240 .8234 .9334 .8152 .9398 .8238 .9446

Normal-Mixture, p = .05, τ = 10

20 .6904 .8916 .6770 .9096 .6638 .9244 .6612 .9316 .6474 .9352

5 .6782 .8940 .6608 .9092 .6444 .9256 .6358 .9318 .6070 .9378

1 .7056 .8988 .6928 .9140 .6756 .9270 .6664 .9342 .6492 .9396

1 .5902 .8464 .5778 .8840 .5750 .9186 .5642 .9316 .5578 .9456

.25 .8700 .9130 .8756 .9370 .8958 .9262 .8912 .9326 .9220 .9398

.25 .8616 .9068 .8802 .8994 .9044 .9346 .9080 .9188 .9212 .9404

.10 .6760 .8896 .6606 .9108 .6418 .9222 .6332 .9242 .6058 .9340

Normal-Gamma Mixture, p = .05,α = 9

20 .8992 .9226 .8864 .9216 .9162 .9494 .8394 .8976 .8612 .9146

5 .8958 .9132 .8812 .9084 .9208 .9546 .8270 .8900 .8510 .9076

1 .9008 .9146 .8868 .9148 .9250 .9520 .8436 .8958 .8610 .9118

1 .8704 .8910 .8652 .8956 .9052 .9402 .8532 .9008 .8894 .9310

.25 .8920 .9110 .9186 .9406 .9212 .9254 .9232 .9392 .9260 .9274

.25 .8958 .9126 .9008 .8986 .9232 .9296 .9138 .9066 .9150 .9184

.10 .9016 .9214 .8876 .9214 .9194 .9534 .8378 .9010 .8524 .9152
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