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Abstract: The null distribution of the overlapping variance-ratio (OVR) test of
the random-walk hypothesis is known to be downward biased and skewed to the right
in small samples. As shown by Lo and MacKinlay (1989), the test under-rejects the
null on the left tail seriously when the sample size is small. This unfortunate property
adversely affects the applicability of the OVR test to macroeconomic time series, which
usually have rather small samples. In this paper we propose a modified overlapping
variance-ratio statistic and derive its exact mean under the normality assumption. We
propose to approximate the small-sample distribution of the modified statistic using
a Beta distribution that matches the (exact) mean and the (asymptotic) variance. A
Monte Carlo experiment shows that the Beta approximation performs well in small
samples.

Key Words: Beta distribution, Monte Carlo experiment, random-walk hypothesis,
variance-ratio test



1 Introduction

Since the works of Cochrane (1988) and Lo and MacKinlay (1988, 1989) the variance-

ratio (VR) statistic has been used widely as a test for the random-walk hypothesis.

Campbell and Mankiw (1987a, 1987b, 1989), Cogley (1990) and Poterba and Summers

(1988) used the VR statistic to measure the persistence in economic time series. Lo

and MacKinlay (1989) demonstrated that the VR test is more powerful than either the

Dickey-Fuller test or the Box-Pierce Q test for several interesting alternatives. Cecchetti

and Lam (1994) summarized the advantages of using the VR test.

Lo and MacKinlay (1988) provided the asymptotic theory for the overlapping

VR (OVR) statistic. Recently, Tian, Zhang and Huang (1999) derived the exact finite-

sample distribution of the nonoverlapping VR (NVR) statistic, which follows a Beta

distribution. As argued by Lo and MacKinlay (1989), the OVR test is expected to

have higher power than the NVR test. This result was confirmed by their Monte Carlo

experiment. However, Lo and MacKinlay (1989) found that the asymptotic OVR test

seriously under-rejects the null on the lower tail and over-rejects the null on the upper

tail in small and moderate samples. This result adversely affects the use of the OVR in

practical applications, especially in macroeconomic studies. To overcome this problem,

Lo and MacKinlay estimated the critical values of the OVR statistic for various sample

sizes and differencing intervals. The use of this table, however, is rather limited as it is

difficult to interpolate for other cases not found in the table. In this paper, we suggest an

analytical method to calculate the approximate critical values of the OVR statistic. We

propose a circulant OVR (COVR) statistic and derive its exact mean. The distribution

of the COVR statistic is then approximated using a Beta distribution that matches the

exact mean and the asymptotic variance. Our Monte Carlo experiment shows that the

approximation works quite well when the differencing interval is up to about one sixth

of the sample size.

The plan of this paper is as follows. In Section 2 we review the use of the OVR
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statistic. We propose the COVR statistic in Section 3 and derive its exact mean. A

method for approximating the distribution of the COVR statistic is suggested. In Section

4 we present some Monte Carlo results for the suggested test. Section 5 concludes the

paper.

2 The OVR Statistic

Let {Xt} denote a time series generated from the following equation

Xt = µ+Xt−1 + εt. (1)

We denoteH0 as the null hypothesis that εt are independently and identically distributed

(IID) as Gaussian variates with mean zero and variance σ2. That is, H0 : εt ∼ IID

N(0, σ2). Assuming the data consist of kq+1 observations X0,X1, ...,Xkq, where k and

q are arbitrary integers, we define (let n = kq)

µ̂ =
1

n

n

t=1

(Xt −Xt−1) = 1

n
(Xn −X0)

and

σ̂2 =
1

(n− 1)
n

t=1

(Xt −Xt−1 − µ̂)2,

which is an unbiased estimate of σ2 based on the one-period difference ∆Xt = Xt−Xt−1.
Alternatively we may consider the q-period difference of Xt, Xt −Xt−q, from which we

obtain an estimate of the variance of the q-period difference as

σ̂2q =
k

(n− q + 1)(k − 1)
n

t=q

(Xt −Xt−q − qµ̂)2.

Note that the formula above has taken account of the degrees-of-freedom adjust-

ment suggested by Lo and MacKinlay (1989). Under H0, the variance of the q-period

difference of Xt is qσ
2. Thus, an unbiased estimate of σ2 can be obtained using σ̂2q/q. A

test for the random-walk hypothesis H0 can be constructed by considering the centered

ratio

M =
σ̂2q
qσ̂2
− 1.
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Lo and MacKinlay (1988) showed that under H0,

√
nM

D→ N(0,
2(2q − 1)(q − 1)

3q
),

where
D→ denotes convergence in distribution as n→∞ keeping q fixed. Denoting

V =
2(2q − 1)(q − 1)

3nq
, (2)

and R as the OVR σ̂2q/(qσ̂
2), we obtain the standardized OVR statistic as

Rs =
M√
V
=
R− 1√
V
, (3)

which is asymptotically distributed as N(0, 1) under H0. Following Lo and MacKinlay

(1989), we call Rs the modified OVR (MOVR) statistic.

Lo and MacKinlay (1989) reported some results on the finite-sample distribution

of Rs. They found that the statistic grossly under-rejects the null on the lower tail.

Although the total empirical size of a two-sided test still approximates quite well to the

nominal size,1 there is a concern for loss in power. As the rejection of the null often

comes from the lower tail, there is a serious loss in power when the lower-tail critical

value is downward biased. This bias is a result of the null distribution being skewed

to the right, which induces errors when the standard normal distribution is used as the

asymptotic approximation. To provide a useful test in small samples Lo and MacKinlay

estimated the critical values for various values of n and q using large-scale Monte Carlo

runs. The use of the table of critical values is, however, limited by the cases simulated.

In the next section we propose an analytical approximation to the critical values of a

modified (circulant) OVR statistic.

3 The COVR Statistic

Note that σ̂2q consists of overlapping differences. When the numerator of the variance

ratio is based on the sum of k nonoverlapping q-period differences we obtain the (un-

1The under-rejection in the lower tail is compensated by an over-rejection in the upper tail.
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centered) NVR statistic R∗ as

R∗ =
k
t=1 (Xqt −Xq(t−1) − qµ̂)2
q n

t=1 (Xt −Xt−1 − µ̂)2
.

In a recent article, Tian, Zhang and Huang (1999) derived the exact finite-sample dis-

tribution of R∗. They showed that

R∗ ∼ Beta
k − 1
2
,
k(q − 1)
2

.

If we denote

ut =
∆Xt − µ̂

[ n
t=1(∆Xt − µ̂)2]1/2

, t = 1, ..., n,

and rt = ∆Xt, then R
∗ can be written as

R∗ =
k
t=1 (rq(t−1)+1 + ...+ rqt − qµ̂)2

q n
t=1 (rt − µ̂)2

=

k
t=1 (rq(t−1)+1 − µ̂) + ...+ (rqt − µ̂)

2

q n
t=1 (rt − µ̂)2

=
1

q
(u1 + ...+ uq)

2 + (uq+1 + ...+ u2q)
2 + ...+ (u(k−1)q+1 + ...+ ukq)2 .

Similarly, the OVR R can be written as

R =
1

q
[(u1 + ...+ uq)

2 + (u2 + ...+ uq+1)
2 + ...+ (u(k−1)q + ...+ ukq−1)2

+(u(k−1)q+1 + ...+ ukq)2].

Faust (1992) demonstrated how R can be written as a ratio of quadratic forms

in normal variates. Thus, numerical methods (such as the Imhof method) can be used

to calculate the distribution. The numerical methods are, however, computationally

intensive, especially for sample sizes encountered in many studies on financial time series.

Due to the end-point effect, R cannot be conveniently related to R∗. To exploit

the result of the finite-sample distribution of R∗ we construct a circulant OVR (COVR)

statistic.2 Defining rn+1 ≡ r1, rn+2 ≡ r2, ..., rn+q−1 ≡ rq−1, we calculate the COVR

2The use of circulant statistic for analytical tractability has been applied in the literature. See, for
example, Durbin (1980).
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statistic Rc as

Rc =
n
t=1 (rt + ..+ rt+q−1 − qµ̂)2

q n
t=1 (rt − µ̂)2

,

which can be written as

Rc = [{(u1 + ...+ uq)2 + (uq+1 + ...+ u2q)2 + ...+ (uq(k−1)+1 + ...+ ukq)2}+

{(u2 + ...+ uq+1)2 + (uq+2 + ...+ u2q+1)2 + ...+ (uq(k−1)+2 + ...+ ukq+1)2}+

...+ {(uq + ...+ u2q−1)2 + (u2q + ...+ u3q−1)2 + ...+ (ukq + ...+ ukq+q−1)2}]/q

= [Q1 + ...+Qq]/q,

where Qi, for i = 1, ..., q, denote sequentially the terms in the curly brackets. By

exchangeability argument, Qi/q are identically distributed as Beta((k−1)/2, k(q−1)/2)
on H0, although they are not independent. Thus, we have the exact result

E(Rc) =
q(k − 1)
qk − 1 ,

which implies

E
qk − 1
q(k − 1)Rc = 1.

Note that (qk − 1)/[q(k − 1)] is the degrees-of-freedom correction for the asymptotic

mean to be exact. Applying Lo and MacKinlay’s result, we have, when n is large,

Var
qk − 1
q(k − 1)Rc ≈ V,

where V is given in (2).

As Rc is the sum of q Beta variates each taking values between 0 and 1, we

normalize Rc by a factor of q so that the normalized statistic lies within the support

of a Beta variate. Our strategy is to approximate Rc/q using a Beta distribution that

matches the exact mean and the asymptotic variance of Rc/q.
3 Specifically, we denote

m =
k − 1
qk − 1

3The strategy of using Beta approximation with matching moments has been motivated by the
works of Durbin and Watson (1950, 1951, 1971). As the OVR statistic is skewed, it may be better
approximated by the skewed Beta distribution than the symmetric normal in finite samples.
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and

ν =
(k − 1)2
(qk − 1)2V,

and approximate Rc/q by Beta(α, β) such that

m =
α

α+ β

and

ν =
αβ

(α+ β + 1)(α+ β)2
.

Solving the simultaneous equations we obtain the parameters of the Beta distribution

as

α =
m2 −m3 −mν

ν

and

β =
α(1−m)

m
.

Given a probability p, let ξ satisfies

p = Pr(Rc < ξ)

= Pr(Rc/q < ξ/q)

≈ Pr(Beta(α,β) < ξ/q).

Then, if η satisfies Pr(Beta(α, β) < η) = p, we can approximate ξ by qη.4

In the next section we examine the small-sample performance of the Beta ap-

proximation to the COVR statistic using Monte Carlo method.

4 Some Monte Carlo Results

We first examine the null distribution of Rc. We consider samples of size n = 30, 60,

120, 180, 360 and 720. For each n, several values of q are considered such that n/q is an

integer. We consider values of q up to one-sixth of n. Table 1 summarizes the empirical

4A GAUSS code to compute the percentiles of Rc based on the Beta approximation can be down-
loaded from the web site: http://staff.mysmu.edu/yktse/yktsehp.htm
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sizes of Rc and Rs for one-sided tests with nominal sizes of 2.5% and 5%, and two-sided

tests with nominal sizes of 5% and 10%. The results are based on Monte Carlo runs

of 500,000 samples. For the one-sided tests, there is under-rejection in the lower tail

and over-rejection in the upper tail for both Rc and Rs. Compared to the results of the

MOVR statistic, however, there are marked improvements in COVR. At the nominal

significance level of 5%, the approximation works very well for n as small as 30.

Next we consider the power of Rc when Xt are not generated from a random

walk.5 Two models are considered. In Model 1, Xt are generated from the following

equations:

Xt = Yt + Zt

Yt = θYt−1 + εt, εt ∼ N(0, 1)

Zt = Zt−1 + ξt, ξt ∼ N(0,σ2).

Thus, Xt consists of an AR(1) component Yt and a random-walk component Zt, so that

Xt follows an ARIMA(1, 1, 1) process. We consider θ = 0.95 and 0.9, and σ2 = 0.5 and

1. Note that σ2 measures the size of the random-walk relative to the AR component.

We expect the power of Rc to be large when θ and σ2 are small. Model 2 is a simple

AR(1) process in which Xt = φXt−1+ εt with φ = 0.95 and εt ∼ N(0, 1). In this model,
without loss of generality the variance of the error has been taken to be unity. Table 2

reports the estimated power of two-sided Rc-test based on Monte Carlo runs with sample

size of 500,000.

For the AR(1) process, the power is low for n ≤ 120. When n ≥ 180, the power
of the test increases with q. Indeed, it can be seen that there is remarkable improvement

in the power for using the COVR test with larger value of q when n ≥ 360̇. For the

ARIMA(1, 1, 1) model, the power decreases with q when n ≤ 60. For n ≥ 180, however,
the power increases with q initially and then decreases. As expected, the power is higher

5The empirical power of the MOVR statistic based on the asymptotic normal approximation is not
considered, due to its poor size.
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for smaller θ and σ2.

5 Conclusions

We have proposed a small-sample approximation to the distribution of a circulant

variance-ratio statistic for testing the random-walk hypothesis with Gaussian errors.

The approximation is based on fitting a Beta distribution to the test statistic that

matches its exact mean and asymptotic variance. The critical values of the test can

be calculated analytically. The Monte Carlo experiment shows that the approximation

works well in small samples.
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Table 1. Empirical Size (%) of the COVR and MOVR Statistics

Lower Tail Upper Tail Two-sided
n q 2.5% 5% 2.5% 5% 5% 10%

C M C M C M C M C M C M

30 2 2.49 2.64 5.00 5.43 2.47 2.95 4.99 5.71 4.96 5.59 9.99 11.14
3 2.02 1.29 4.49 3.92 2.86 4.22 5.40 6.99 4.88 5.51 9.89 10.91
5 1.52 0.08 3.93 1.68 3.08 5.39 5.59 8.00 4.60 5.47 9.52 9.68

60 2 2.51 2.60 5.00 5.26 2.48 2.70 4.98 5.37 4.99 5.30 9.97 10.63
3 2.22 1.73 4.74 4.36 2.70 3.54 5.23 6.19 4.92 5.27 9.97 10.55
4 2.04 1.18 4.54 3.68 2.86 4.11 5.39 6.76 4.90 5.29 9.93 10.44
5 1.95 0.83 4.46 3.18 2.93 4.44 5.44 7.06 4.88 5.27 9.89 10.24
6 1.84 0.48 4.30 2.62 2.99 4.79 5.51 7.39 4.83 5.27 9.80 10.02
10 1.41 0.00 3.84 0.85 3.14 5.67 5.69 8.11 4.55 5.67 9.53 8.96

120 2 2.48 2.53 4.97 5.12 2.47 2.57 4.98 5.13 4.95 5.09 9.95 10.25
3 2.32 1.98 4.84 4.55 2.69 3.22 5.23 5.82 5.00 5.19 10.07 10.37
4 2.20 1.62 4.67 4.09 2.75 3.51 5.24 6.14 4.95 5.13 9.91 10.24
6 2.13 1.16 4.63 3.57 2.83 4.02 5.37 6.65 4.96 5.18 10.00 10.22
10 1.92 0.51 4.39 2.57 2.96 4.68 5.46 7.21 4.89 5.19 9.85 9.78
20 1.43 0.00 3.83 0.58 3.15 5.74 5.70 8.11 4.58 5.74 9.54 8.69

180 2 2.46 2.51 4.97 5.07 2.47 2.53 4.96 5.09 4.93 5.05 9.93 10.16
4 2.27 1.80 4.73 4.26 2.68 3.30 5.22 5.88 4.96 5.10 9.95 10.14
6 2.21 1.43 4.72 3.89 2.77 3.71 5.29 6.27 4.98 5.15 10.01 10.16
10 2.04 0.88 4.54 3.13 2.89 4.29 5.43 6.86 4.93 5.17 9.97 9.99
20 1.80 0.14 4.26 1.69 3.07 5.16 5.62 7.60 4.86 5.30 9.88 9.29
30 1.42 0.00 3.82 0.51 3.16 5.75 5.72 8.15 4.58 5.75 9.54 8.66

360 2 2.50 2.53 5.00 5.06 2.47 2.48 5.00 5.05 4.97 5.01 10.00 10.11
5 2.31 1.87 4.82 4.34 2.67 3.20 5.17 5.75 4.98 5.07 9.99 10.09
10 2.23 1.39 4.76 3.78 2.78 3.74 5.32 6.28 5.02 5.13 10.08 10.06
20 2.05 0.76 4.54 2.91 2.89 4.39 5.44 6.95 4.94 5.16 9.98 9.86
40 1.76 0.10 4.25 1.53 3.04 5.15 5.54 7.59 4.80 5.26 9.79 9.11
60 1.46 0.00 3.87 0.44 3.17 5.79 5.70 8.14 4.63 5.79 9.57 8.58

720 2 2.50 2.51 5.00 5.03 2.49 2.50 4.94 4.97 4.99 5.01 9.94 10.00
5 2.36 2.03 4.84 4.49 2.61 2.97 5.15 5.52 4.97 5.00 9.98 10.01
10 2.32 1.72 4.80 4.14 2.68 3.33 5.24 5.93 5.00 5.05 10.04 10.07
30 2.15 0.98 4.67 3.24 2.81 4.11 5.35 6.67 4.96 5.09 10.02 9.91
60 1.93 0.32 4.42 2.13 3.00 4.89 5.54 7.37 4.93 5.20 9.96 9.49
120 1.43 0.00 3.83 0.39 3.17 5.74 5.70 8.05 4.61 5.74 9.53 8.44

Note: C denotes the COVR statistic and M denotes the MOVR statistic. The empirical

size, in percentage, is the relative frequency of rejecting the null hypothesis based on Monte

Carlo of 500,000 runs.



Table 2. Estimated Power (%) of the COVR Statistic

ARIMA(1; 1; 1) Process AR(1) Process
µ = 0:95 µ = 0:90

¾2 = 0:5 ¾2 = 1:0 ¾2 = 0:5 ¾2 = 1:0 Á = 0:95
n q 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

30 2 4.92 9.92 4.81 9.86 4.85 9.93 4.97 9.92 4.91 9.87
3 4.59 9.70 4.64 9.83 4.46 9.38 4.45 9.26 4.53 9.40
5 4.20 9.06 4.21 9.26 3.93 8.55 3.78 8.52 4.03 8.89

60 2 4.75 9.62 4.89 9.92 5.07 10.19 4.89 9.83 4.83 9.92
3 4.67 9.55 4.72 9.60 4.73 9.98 4.60 9.52 4.68 9.66
4 4.49 9.45 4.48 9.40 4.67 9.80 4.27 9.27 4.53 9.44
5 4.29 9.22 4.33 9.16 4.40 9.57 4.27 9.23 4.29 9.28
6 4.32 9.11 4.34 9.20 4.11 9.34 4.04 9.09 4.15 9.12
10 3.66 8.36 3.72 8.35 3.33 8.48 3.38 8.16 3.27 8.01

120 2 5.12 10.12 4.99 9.97 5.80 11.02 5.20 10.49 5.24 10.38
3 4.92 9.89 4.88 10.01 6.17 11.93 5.34 10.57 5.25 10.47
4 4.76 9.97 4.66 9.50 6.30 12.37 5.23 10.71 5.35 10.72
6 4.50 9.62 4.54 9.51 6.76 13.28 5.34 11.13 5.33 10.81
10 4.43 9.37 4.15 9.06 6.87 13.84 5.06 10.84 5.13 10.85
20 3.36 8.35 3.19 7.94 5.37 12.83 3.92 9.64 4.17 10.40

180 2 5.22 10.47 5.02 10.06 6.43 12.11 5.65 11.03 5.59 10.71
4 5.18 10.28 5.05 10.19 8.04 14.77 6.13 12.10 6.18 12.11
6 5.31 10.88 4.74 9.95 9.46 17.14 6.88 13.28 6.79 13.12
10 5.26 10.94 4.64 9.85 10.34 19.53 7.34 14.22 7.57 14.77
20 4.87 10.52 4.23 9.54 11.00 21.41 6.74 14.10 8.34 17.17
30 4.15 9.97 3.42 8.46 8.97 19.75 5.50 12.60 7.62 17.25

360 2 5.87 11.07 5.37 10.64 8.66 15.45 6.98 12.92 6.77 12.69
5 6.89 13.31 5.93 11.92 16.13 26.17 10.83 18.91 10.70 18.58
10 8.66 15.80 6.51 12.60 24.43 37.43 13.93 23.89 16.26 26.62
20 10.53 19.24 6.95 13.95 30.62 46.54 16.20 27.74 24.50 38.39
40 10.35 20.81 6.61 14.13 27.31 44.56 13.25 24.88 32.27 50.73
60 8.50 19.17 5.32 12.54 20.09 36.95 9.40 19.63 33.00 54.73

720 2 6.94 12.80 5.84 11.26 14.05 22.65 10.05 17.31 9.48 16.35
5 10.75 18.45 7.76 14.26 31.87 44.84 19.21 29.93 19.54 30.26
10 15.96 25.93 10.30 18.18 50.78 64.85 28.82 41.99 34.58 48.16
30 27.43 42.27 14.88 25.36 70.19 83.00 36.34 51.56 70.94 83.11
60 29.26 46.10 14.49 25.99 59.06 75.40 26.59 41.96 88.51 95.56
120 19.32 35.87 9.11 19.38 33.56 52.59 14.14 26.98 92.46 98.30

Note: The ARIMA(1, 1) process is given by Xt = Yt + Zt, with Yt = µYt¡1 + "t;
"t » N (0; 1) and Zt = Zt¡1 + »t; »t » N(0; ¾2): The AR(1) process is given by
Xt = ÁXt¡1 + "t with Á = 0:95 and "t » N (0; 1): The estimates are based on Monte
Carlo runs of 50,000 samples.
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