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Abstract 

 
While meta-heuristics are effective for solving 

large-scale combinatorial optimization problems, they 
result from time-consuming trial-and-error algorithm 
design tailored to specific problems. For this reason, a 
software tool for rapid prototyping of algorithms 
would save considerable resources. This paper 
presents a generic software framework that reduces 
development time through abstract classes and 
software reuse, and more importantly, aids design with 
support of user-defined strategies and hybridization of 
meta-heuristics. Most interestingly, we propose a novel 
way of redefining hybridization with the use of the 
“request and response” metaphor, which form an 
abstract concept for hybridization. Different 
hybridization schemes can now be formed with 
minimal coding, which gives our proposed Meta-
heuristics Development Framework its uniqueness. To 
illustrate the concept, we restrict to two popular meta-
heuristics Ants Colony Optimization and Tabu Search, 
and demonstrate MDF through the implementation of 
various hybridized models to solve the Traveling 
Salesman Problem.  
 
1. Introduction 
 

Meta-heuristics have grown to be an important 
paradigm in solving large-scale combinatorial 
optimization problems. Following the success of meta-
heuristics such as tabu search (TS), simulated 
annealing (SA), and genetic algorithms (GA), there has 
been an explosive growth of new techniques in line 
with natural and biological observations, such as Ant 
Colony Optimization (ACO) [5], Squeaky Wheel [10] 
and Particle Swarm [15]. With the numerous and 
diverse growth of meta-heuristics, we see the potential 
for advancing the field further if there is provision for 
algorithm designers to hybridize one technique with 
another. As expected, each meta-heuristic has its own 
forte and shortcoming at solving certain subset of 

problems and logically leads to hybrid schemes that 
could exploit the strengths and cover the weaknesses 
of one technique with its collaborator(s). Results from 
the literature have shown that such hybrid methods 
usually out-perform their predecessors, e.g. [3]. 
Unfortunately, most hybrid methods are mere mergers 
of algorithms and often specific to the problems being 
solved. These hybrid models are usually developed 
individually and independently with little or no reuse 
of codes. Such excessive efforts of developing from 
scratch follows by validation of models are very costly 
and consequently discourage researchers from 
exploring new schemes. A high-level software 
framework is needed to address the above-mentioned 
issue.  

There have been proposals for several algorithm 
frameworks. For instance, a Java-based tabu search 
framework, OpenTS [9] has a well-defined structure 
and an object-oriented programming (OOP) style 
inherent in the Java language. The design allows the 
definition of basic elements common to tabu searches 
through interfaces and performs iterations based on 
these elements. OpenTS, however, supports only tabu 
search. The abstract classes also lack the capability to 
interact with one another and thus may not be easily 
extended to support hybridization. Gaspero and 
Schaerf [7] proposed a more general local search 
framework, EASYLOCAL++, which comprises of 
meta-heuristics such as tabu search, simulated 
annealing and composite search. EASYLOCAL++ 
composes a set of cooperating classes that handle the 
different aspects of local search. However these classes 
support only a pre-defined set of hybridization models 
and do not easily accommodate new schemes. A more 
established framework is HOTFRAME by Fink and 
Voß [6] that implements various meta-heuristics such 
as tabu search, simulated annealing and evolutionary 
algorithms. HOTFRAME uses template classes to 
provide reusable data structures on common solution 
representations as well as their neighborhood 
operators. The search procedure is performed through 



these cooperating classes and hybridization can be 
achieved through inheritance by overriding the 
required procedures. However, HOTFRAME could not 
readily combine two developed applications and thus 
poses some limitations to the recycling of available 
systems. Lau et al. [11] recently proposed a Tabu 
Search Framework (TSF) that uses a centralized 
concept of handling strategies in a single control 
mechanism while allowing the flexibility of 
implementation through abstracts classes. However, 
TSF offers only tabu search and hybridization while 
viable, required a major work from the designer.  

Localizer++ [14] is  an extensible constraint library 
for local search. It supports both declarative 
abstractions to describe the neighborhoods as well as 
high-level search constructs to specify local moves and 
search procedure. Localizer++ supports a variety of 
features typically found only in modeling languages 
and its extensibility allows for an easy integration of 
new, user-defined, abstractions. While providing ease 
of configuration, a user must provide Localizer the 
formulation, albeit of any local search, to construct an 
algorithm. This differs from the works afore-
mentioned which provides a constructed framework, 
whereby the usage is simpler since the user simply 
needs to implement algorithm specific 
interfaces/classes.  

To foster hybridization among algorithms, a higher-
level development framework is needed that provides 
the linkage among implementations of disparate 
algorithms, thereby enabling easy creation of hybrids. 
To achieve this purpose, the framework should 
introduce genericity through promoting reuse of 
existing techniques and implementations, and yet have 
the robustness to incorporate implementation of new 
techniques. Beside the obvious advantage of 
timesaving in code implementation, the framework 
allows the algorithm designer to concentrate on 
algorithmic research and experimentation. In short, we 
view such a framework to be a foundation tool in 
advancing meta-heuristics research and development. 
In this paper, we propose the Meta-heuristics 
Development Framework (MDF), which extends the 
work of [11] by working on a higher level where TSF 
serves as a component algorithm, along with other 
algorithmic frameworks. With MDF, an algorithm 
designer can: 

1) Easily create various hybrid schemes of any 
existing technique in the framework, or allow 
others to adapt their algorithm through reuse.  

2) Benchmark fairly the performance of 
implementations against an existing technique.  

To present the MDF idea, this paper will focus on two 
different meta-heuristic paradigms, namely TS [8] and 
ACO [5, 18]. We illustrate the usage of MDF by 
examining various schemes of hybridization between 
TS and ACO to solve the Traveling Salesman Problem 
(TSP). We then compare the additional development 
time required for each hybrid relative to the pure 
schemes, with the improvement yield. The rest of the 
paper is organized as follows. Section 2 presents the 
architecture of MDF in bringing together the 
generalized abstract classes common to most meta-
heuristics. We also present the hybridization control 
mechanism using the “request and response” metaphor. 
In section 3, we present implementation of MDF on six 
(6) different hybrid models for TSP. Section 4 presents 
the experimental results and Section 5 the conclusion. 
 
2. MDF Architecture 
 

MDF uses abstraction and inheritance as the primary 
mechanism to build adaptable components or 
interfaces. The general behavior of local search is 
abstracted into general interfaces such as Solution, 
Objective Function, Penalty Function, Move, 
Constraint and Neighborhood Generator. These 
interfaces do not deal with the actual algorithm, but 
provides a common medium, in which different 
algorithms share information and collaborate. An 
example can be illustrated through the Move interface. 
In TS, a move is defined as a translation from current 
solution to its neighbor. For ACO, a move is defined as 
a transition in the construction from a partial to a 
complete solution. GA treats a move as a mutation 
while SA defines the move as a probabilistic operation 
to its next state. Although each of these operators 
exhibits a different behavior, their underlying 
algorithmic concept is the same; they “move” the 
current solution to its next state.  

Proprietary or extended interfaces are built above 
the generalized interfaces to define unique behaviors 
exhibited by each meta-heuristic. For example, in 
ACO, the proprietary interfaces are the local heuristic 
and pheromone trail. In TS, these are tabu list and 
aspiration criteria. GA has population and 
recombination and SA has annealing function as their 
proprietary interfaces. MDF then uses an Engine 
interface for coordinating the rudimentary routines of 
meta-heuristics through the general and respective 
proprietary interfaces. Like engine in reality, a Switch 
Box is incorporated to contain the set of tunable 
parameters for the engine operations. MDF adopts a 
centralized control mechanism that adapts the search 
trajectory through user-defined requests (events) and 



responses (handlers). Hence the search process 
becomes a request-driven search, in which the 
occurrences experienced during the search could be 
utilized to guide future exploration. The architecture of 
MDF is shown in Figure 1.  

 
 

2.1. Hybridization 
 

Hybridization of meta-heuristics is a powerful search 
strategy that uses the concepts of Intensification and 
Diversification [4]. There are two important aspects 
that must be considered for each hybridized scheme; 
first is the point in time in which certain event(s) 
occurred, and second is the required action(s) to be 
performed at that time. We define the first aspect as 
Requests and the second aspect as Responses. Using 
this metaphor, the EventController class within MDF 
is the control mechanism for determining the execution 
of handlers triggered by events.  

A formal model for specifying the behavior of the 
EventController is given by a 4-tuple <S,E,R,s0>, 
where: 

S is a set of search states 
E is a set of event/handler pairs  
R ⊆ S × E ×  S is the transition relation,  
i.e. (s,e,s′) ∈ R  iff .  'ss e⎯→⎯
s0 is a state in S denoting the initial search state.  

In our model, a search state at any time point 
comprises the current and best-found solutions, the 
operating engine and the search parameters. A search 
algorithm begins with an initial search state. As the 
search proceeds, event(s) (such as non-improving 
solutions and new best solution) defined by the 
algorithm designer will determine the corresponding 
response (such as switching to another meta-heuristic 
engine) to be executed. Each request is associated with 
two parameters: a list of “to-be-executed” responses 

and their priority. The hierarchical nature of priority 
for the responses will allow designers to have 
additional control over their execution sequences. 

The EventController is responsible for switching 
the meta-heuristic engines on their turns to modify the 
search state. We illustrate this idea using the hybrid 
scheme of [18] where ACO and Local Search (LS) 
were used to solve TSP. The generalized idea was to 
use ACO as the core algorithm and apply LS to 
improve on the iteration-best solution before the ants 
updated it into the pheromone trails. This strategy can 
be implemented in MDF as follows; ACO is the 
operating meta-heuristic and LS is embedded into a 
handler (response). We define an event (request) that 
will be triggered when an iteration-best solution is 
found during the ACO search. The procedure begins 
with ACO sending out its ants to find solutions. At the 
end of iteration, the iteration-best solution found will 
trigger the LS handler. The EventController then hands 
the search state to LS engine, which in turn improves 
on the iteration-best solution. Once completed, the 
EventController returns the enhanced solution to ACO 
engine for pheromone trails update. This process 
continues until a terminating criterion is reached. 

Figure 1: Architecture of MDF. 

 
3. Hybridization Schemes for TSP  
 

We now show how MDF can be applied to 
implement the hybridization schemes as proposed by 
Lau et al. [12]. The authors introduce Hybrid Ants 
System Tabu Search (HASTS) which has four different 
derived models, namely Empowered Ants (HASTS-
EA), Intensification Exploitation (HASTS-IE), 
Enhanced Diversification (HASTS-ED) and 
Collaborative Coalition (HASTS-CC). Our objective is 
to discover the effectiveness of each hybridized 
schemes on TSP as well as the additional effort 
required to build them from their pure schemes. In 
addition, we also implement hyper-hybrids, which 
combine two hybridized schemes. We found that these 
hyper-hybrids improve the quality of result for most 
cases and the additional development cost is relatively 
trivial. This unlocks a potential area for creating 
complex hybrids rapidly, yielding improvement to 
previous results.    
 
3.1. Strict Tabu Search (Pure TS) 
 

There are currently various schemes for TS, such as 
strict TS [8], reactive TS [2] and robust TS [19] and 
for this illustration, we developed the strict TS. We 
represent a tour or a Solution as a single dimension 
array and the Move is a swap-edge operator that 



exchanges two arbitrary edges in the tour. The function 
of the Neighborhood Generator is then to generate the 
list of possible swaps between the edges. The 
Objective Function is simply to sum up the total 
distance traveled. Two proprietary interfaces are 
required to elicit the essence of tabu search; Tabu List 
and Aspiration Criteria. In our case, we tabu the 
swapped edges and apply a static tenure that is equal to 
the instance size. The aspiration criterion is to override 
the tabu status of a move if a better objective value is 
found (see [8]).  
 
3.2. Ants Colony Optimization (Pure AC) 
 

We select ACO as our next hybridization candidate. 
The algorithm is implemented with the settings as 
proposed in [18]. An interesting observation is that the 
development time is much less than expected due to 
the code reuse from the strict TS. Solution and 
Objective Function for example, has the same 
formulation in both implementation, and hence can be 
reused without any modification. In addition, both 
ACO and strict TS use the same Solution interface and 
this allows both engines to operate on the generated 
solutions without further alteration. The Move operator 
is used to incrementally add a new city to the solution 
(which is initially empty) and the Neighborhood 
Generator maintain a list of unvisited cities. A solution 
is completely constructed when the Neighborhood 
Generator could not construct new moves (i.e. the 
unvisited list is empty). We are also required to 
implement the ACO proprietary interfaces.  The Local 
Heuristic is function that computes the inverse of 
length of the tour. The Pheromone Trail records on the 
preferences of ants in following a route when visiting 
the cities.   
 
3.3. HASTS-EA (Empowered Ants) 
 

This hybrid scheme is inspired from observing that 
ACO cycle near optimal solutions due to the emphasis 
on the strong pheromone trails. By empowering the 
ants with memory (tabu list), it reduces the chances of 
reconstructing the same solution. In short, ACO 
optimizes the solution based on its pheromone trails as 
a “preference” memory and reduces solution cycling 
via the tabu list. Furthermore, tabu search can be 
applied to modify the solutions radically, hence 
encouraging exploration that helps to escape from 
local optimality. The tabu list also eliminates the need 
for local pheromone decay, which reduces one of the 
parameters. To implement this strategy, the 
Neighborhood Generator is modified to include a tabu 

list as a handler, which records the solution made by 
each ant in a single iteration. Subsequent ants in the 
iteration will trigger an event to check with the handler 
to prevent reconstruction of similar solutions.  
 
3.4. HASTS-IE (Improved Exploitation) 
 

This model is similar to ACO and LS hybrid [18], 
except that TS is used in the place of LS. The function 
of the embedded TS is to conduct intensification 
search on each iteration best solution. This is achieved 
by using TS to remove the crossings in the solution 
found by ACO before updating the solution into the 
pheromone trail. In addition, the memory in TS 
prevents solution cycling, which results in a more 
superior search than naïve local search. Consequently, 
this improved tour will increase the probability of 
finding a better solution by subsequent ants. In our 
implementation, TS is applied adaptively by adjusting 
the terminating criterion with respect to the number of 
non-improving moves. An event is set to detect the 
time when an iteration best solution is found. Before 
the solution is updated into the pheromone trail, a 
handler will apply TS to optimize the solution until it 
reaches 100 non-improving moves.   
 
3.5. HASTS-ED (Enhanced Diversification) 
 

As TS suffers from local optimality, a diversification 
strategy is to incorporate a diversifier (e.g. [13]). This 
hybrid scheme uses ACO as a diversifier for TS. 
Although there are many diversification schemes such 
as random restart and probabilistic diversification [17], 
the diversified solution is often poor. ACO provides a 
remedy by reconstructing quality solutions. In our 
implementation, we implement a counter event to 
adaptively apply ants to diversify as a non-linear 
function of non-improving moves. A recommended 
function is to cumulatively increment the number of 
non-improved move tolerated for every diversification 
applied. The diversification technique is embedded 
into the handler, which reconstructs the part of best-
found solution in TS using ACO.  
 
3.6. HASTS-CC (Collaborative Coalition) 
 

This scheme is a 2-phase approach between ACO 
and TS, which offers the least coupling between the 
two meta-heuristics. This scheme is inspired from the 
observation that ACO works extremely well for the 
constructing phase while TS is more suited for 
optimizing the generated solutions. Such collaboration 
exploits the natural heritage of each meta-heuristic. 



This scheme is easily implemented by setting an event 
to switch from ACO to TS when ACO has completed 
its iterations. 
 
3.7. Two Hyper Hybrid Models 
 

In addition to the four hybrid schemes, we illustrate 
the strengths of MDF in combining hybrid to form 
hyper-hybrid. We introduce two hyper hybrid schemes, 
HASTS-CCED and HASTS-IEEA. HASTS-CCED 
replaces the TS in HASTS-CC to HASTS-ED. This 
aims to enhance the optimizing phase. For HASTS-
IEEA, it fuses the tabu list strategy in HASTS-EA to 
HASTS-IE, thus allowing HASTS-IE to develop a 
more aggressive diversifying capability. HASTS-
CCED and HASTS-IEEA illustrates how hyper-
hybrids can be easily formed from previously 
constructed hybrids when MDF is used. Initial 
experimentation of has shown promising results for 
these hyper hybrids with low additional development 
cost. 
 
4. Discussion of Results 
 

We demonstrate experimentally the cost-
effectiveness of MDF in hybridization using the TSP 
test problems obtained from TSPLIB [16]. The most 
obvious and necessary incentive for using a framework 
is cost-savings in development time. However, it is 
difficult to measure accurately the amount of efforts 
required due to the numerous affecting factors. As 
such, we infer from the lines of codes to reveals at 
least partially the programming efforts. We understand 
that judging by the number of line of codes alone is 
often inadequate to reflect the development time, as 
some programmers are known to write condensed 
codes. In addition, this metric only considers the 
implementation time and not the validation time. 
Intuitionally, if each hybrid scheme was developed 
independently, they would be validated separately. An 
implicit advantage of MDF is its capability to recycle 
validated applications and hence it could save 
considerable resources especially in complex software 
such as meta-heuristic hybridization. Unfortunately, 
this validating cost as well as other development costs 
could not be easily recorded and we present in Figure 
2 the lines of development codes as an informal 
representation of the developmental efforts. From the 
comparison, it is apparent that developing strict TS and 
ACO requires less effort than to build from scratch. 
The large amount of codes in MDF and the relatively 
smaller additional codes to formulate TSP, strongly 
suggests that MDF provides the bulk of the 

implementation. Consequently, this implies that MDF 
has a strong software reuse capability that could 
greatly abate development time, satisfying the 
primarily motive of the framework. 

 

 
 Figure 2: Comparison of development costs
 

To compare the effectiveness, all test cases are run 
for different hybrids on an Athlon XP 3200+ processor 
with 512MB of memory, and the results are taken after 
90 seconds, independent of the instance size. We 
examine the result of KROA150 as an example. 

 

 
 Figure 3: Result of test case KROA150. 
 
We observed that Pure TS converged faster then Pure 
AC. However the solution quality of TS stops 
improving at around 10 seconds while Pure AC 
continued to improve on its solution. HASTS-CC, 
HASTS-ED and HASTS-CCED produced the same 
result at 90 seconds although HASTS-ED converged 



the fastest. Although HASTS-CCED appeared to be 
slowest to reach the local optimum, we observe a rapid 
improvement from 22nd sec to the 26th sec. The winner 
of this instance is HASTS-IEEA where the local 
optimum is reached at 88 seconds. HASTS-EA has the 
weakest result showing the unsuitability of the scheme 
in this instance. An addition of another 15 test cases 
from the TSPLIB is recorded in Figure 4. The “Bound” 
column shows the best-published results to date. Each 
column gives the percentage gap as benchmarked 
against the best-published results. In summary, the 
table shows that HASTS-IEEA produces the best 
results and has the best standard deviation.  Although it 
is not conclusive, we have a strong belief that hybrids 
(and hyper-hybrids) usually out-perform their parents. 
With MDF, complex hybridized schemes are now 
possible to be developed in much less development 
time, allowing complex hybridization to become a 
practical solution for algorithm improvement. 
 

 
 

 
5. Conclusion 
 

MDF speeds up the development of new and 
hybridized meta-heuristics. It also provides a level-
playing field for experimental benchmarking of algo-
rithms. In future, MDF will be enhanced with higher 
level of genericity and robustness. 
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