
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2004

A Development Framework for Rapid Metaheuristics Hybridization A Development Framework for Rapid Metaheuristics Hybridization

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

M. K. LIM

W. C. Wan

S. Halim

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, Business Commons, and the Operations

Research, Systems Engineering and Industrial Engineering Commons

Citation Citation
LAU, Hoong Chuin; LIM, M. K.; Wan, W. C.; and Halim, S.. A Development Framework for Rapid
Metaheuristics Hybridization. (2004). 28th Annual International Computer Software and Applications
Conference (COMPSAC). 362-367.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/1129

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/622?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Development Framework for Rapid Meta-heuristics Hybridization

Hoong Chuin LAU, Wee Chong WAN, Min Kwang LIM, Steven HALIM
National University of Singapore

{lauhc, jwan, limmk, stevenha}@comp.nus.edu.sg

Abstract

While meta-heuristics are effective for solving

large-scale combinatorial optimization problems, they
result from time-consuming trial-and-error algorithm
design tailored to specific problems. For this reason, a
software tool for rapid prototyping of algorithms
would save considerable resources. This paper
presents a generic software framework that reduces
development time through abstract classes and
software reuse, and more importantly, aids design with
support of user-defined strategies and hybridization of
meta-heuristics. Most interestingly, we propose a novel
way of redefining hybridization with the use of the
“request and response” metaphor, which form an
abstract concept for hybridization. Different
hybridization schemes can now be formed with
minimal coding, which gives our proposed Meta-
heuristics Development Framework its uniqueness. To
illustrate the concept, we restrict to two popular meta-
heuristics Ants Colony Optimization and Tabu Search,
and demonstrate MDF through the implementation of
various hybridized models to solve the Traveling
Salesman Problem.

1. Introduction

Meta-heuristics have grown to be an important
paradigm in solving large-scale combinatorial
optimization problems. Following the success of meta-
heuristics such as tabu search (TS), simulated
annealing (SA), and genetic algorithms (GA), there has
been an explosive growth of new techniques in line
with natural and biological observations, such as Ant
Colony Optimization (ACO) [5], Squeaky Wheel [10]
and Particle Swarm [15]. With the numerous and
diverse growth of meta-heuristics, we see the potential
for advancing the field further if there is provision for
algorithm designers to hybridize one technique with
another. As expected, each meta-heuristic has its own
forte and shortcoming at solving certain subset of

problems and logically leads to hybrid schemes that
could exploit the strengths and cover the weaknesses
of one technique with its collaborator(s). Results from
the literature have shown that such hybrid methods
usually out-perform their predecessors, e.g. [3].
Unfortunately, most hybrid methods are mere mergers
of algorithms and often specific to the problems being
solved. These hybrid models are usually developed
individually and independently with little or no reuse
of codes. Such excessive efforts of developing from
scratch follows by validation of models are very costly
and consequently discourage researchers from
exploring new schemes. A high-level software
framework is needed to address the above-mentioned
issue.

There have been proposals for several algorithm
frameworks. For instance, a Java-based tabu search
framework, OpenTS [9] has a well-defined structure
and an object-oriented programming (OOP) style
inherent in the Java language. The design allows the
definition of basic elements common to tabu searches
through interfaces and performs iterations based on
these elements. OpenTS, however, supports only tabu
search. The abstract classes also lack the capability to
interact with one another and thus may not be easily
extended to support hybridization. Gaspero and
Schaerf [7] proposed a more general local search
framework, EASYLOCAL++, which comprises of
meta-heuristics such as tabu search, simulated
annealing and composite search. EASYLOCAL++
composes a set of cooperating classes that handle the
different aspects of local search. However these classes
support only a pre-defined set of hybridization models
and do not easily accommodate new schemes. A more
established framework is HOTFRAME by Fink and
Voß [6] that implements various meta-heuristics such
as tabu search, simulated annealing and evolutionary
algorithms. HOTFRAME uses template classes to
provide reusable data structures on common solution
representations as well as their neighborhood
operators. The search procedure is performed through

these cooperating classes and hybridization can be
achieved through inheritance by overriding the
required procedures. However, HOTFRAME could not
readily combine two developed applications and thus
poses some limitations to the recycling of available
systems. Lau et al. [11] recently proposed a Tabu
Search Framework (TSF) that uses a centralized
concept of handling strategies in a single control
mechanism while allowing the flexibility of
implementation through abstracts classes. However,
TSF offers only tabu search and hybridization while
viable, required a major work from the designer.

Localizer++ [14] is an extensible constraint library
for local search. It supports both declarative
abstractions to describe the neighborhoods as well as
high-level search constructs to specify local moves and
search procedure. Localizer++ supports a variety of
features typically found only in modeling languages
and its extensibility allows for an easy integration of
new, user-defined, abstractions. While providing ease
of configuration, a user must provide Localizer the
formulation, albeit of any local search, to construct an
algorithm. This differs from the works afore-
mentioned which provides a constructed framework,
whereby the usage is simpler since the user simply
needs to implement algorithm specific
interfaces/classes.

To foster hybridization among algorithms, a higher-
level development framework is needed that provides
the linkage among implementations of disparate
algorithms, thereby enabling easy creation of hybrids.
To achieve this purpose, the framework should
introduce genericity through promoting reuse of
existing techniques and implementations, and yet have
the robustness to incorporate implementation of new
techniques. Beside the obvious advantage of
timesaving in code implementation, the framework
allows the algorithm designer to concentrate on
algorithmic research and experimentation. In short, we
view such a framework to be a foundation tool in
advancing meta-heuristics research and development.
In this paper, we propose the Meta-heuristics
Development Framework (MDF), which extends the
work of [11] by working on a higher level where TSF
serves as a component algorithm, along with other
algorithmic frameworks. With MDF, an algorithm
designer can:

1) Easily create various hybrid schemes of any
existing technique in the framework, or allow
others to adapt their algorithm through reuse.

2) Benchmark fairly the performance of
implementations against an existing technique.

To present the MDF idea, this paper will focus on two
different meta-heuristic paradigms, namely TS [8] and
ACO [5, 18]. We illustrate the usage of MDF by
examining various schemes of hybridization between
TS and ACO to solve the Traveling Salesman Problem
(TSP). We then compare the additional development
time required for each hybrid relative to the pure
schemes, with the improvement yield. The rest of the
paper is organized as follows. Section 2 presents the
architecture of MDF in bringing together the
generalized abstract classes common to most meta-
heuristics. We also present the hybridization control
mechanism using the “request and response” metaphor.
In section 3, we present implementation of MDF on six
(6) different hybrid models for TSP. Section 4 presents
the experimental results and Section 5 the conclusion.

2. MDF Architecture

MDF uses abstraction and inheritance as the primary
mechanism to build adaptable components or
interfaces. The general behavior of local search is
abstracted into general interfaces such as Solution,
Objective Function, Penalty Function, Move,
Constraint and Neighborhood Generator. These
interfaces do not deal with the actual algorithm, but
provides a common medium, in which different
algorithms share information and collaborate. An
example can be illustrated through the Move interface.
In TS, a move is defined as a translation from current
solution to its neighbor. For ACO, a move is defined as
a transition in the construction from a partial to a
complete solution. GA treats a move as a mutation
while SA defines the move as a probabilistic operation
to its next state. Although each of these operators
exhibits a different behavior, their underlying
algorithmic concept is the same; they “move” the
current solution to its next state.

Proprietary or extended interfaces are built above
the generalized interfaces to define unique behaviors
exhibited by each meta-heuristic. For example, in
ACO, the proprietary interfaces are the local heuristic
and pheromone trail. In TS, these are tabu list and
aspiration criteria. GA has population and
recombination and SA has annealing function as their
proprietary interfaces. MDF then uses an Engine
interface for coordinating the rudimentary routines of
meta-heuristics through the general and respective
proprietary interfaces. Like engine in reality, a Switch
Box is incorporated to contain the set of tunable
parameters for the engine operations. MDF adopts a
centralized control mechanism that adapts the search
trajectory through user-defined requests (events) and

responses (handlers). Hence the search process
becomes a request-driven search, in which the
occurrences experienced during the search could be
utilized to guide future exploration. The architecture of
MDF is shown in Figure 1.

2.1. Hybridization

Hybridization of meta-heuristics is a powerful search
strategy that uses the concepts of Intensification and
Diversification [4]. There are two important aspects
that must be considered for each hybridized scheme;
first is the point in time in which certain event(s)
occurred, and second is the required action(s) to be
performed at that time. We define the first aspect as
Requests and the second aspect as Responses. Using
this metaphor, the EventController class within MDF
is the control mechanism for determining the execution
of handlers triggered by events.

A formal model for specifying the behavior of the
EventController is given by a 4-tuple <S,E,R,s0>,
where:

S is a set of search states
E is a set of event/handler pairs
R ⊆ S × E × S is the transition relation,
i.e. (s,e,s′) ∈ R iff . 'ss e⎯→⎯
s0 is a state in S denoting the initial search state.

In our model, a search state at any time point
comprises the current and best-found solutions, the
operating engine and the search parameters. A search
algorithm begins with an initial search state. As the
search proceeds, event(s) (such as non-improving
solutions and new best solution) defined by the
algorithm designer will determine the corresponding
response (such as switching to another meta-heuristic
engine) to be executed. Each request is associated with
two parameters: a list of “to-be-executed” responses

and their priority. The hierarchical nature of priority
for the responses will allow designers to have
additional control over their execution sequences.

The EventController is responsible for switching
the meta-heuristic engines on their turns to modify the
search state. We illustrate this idea using the hybrid
scheme of [18] where ACO and Local Search (LS)
were used to solve TSP. The generalized idea was to
use ACO as the core algorithm and apply LS to
improve on the iteration-best solution before the ants
updated it into the pheromone trails. This strategy can
be implemented in MDF as follows; ACO is the
operating meta-heuristic and LS is embedded into a
handler (response). We define an event (request) that
will be triggered when an iteration-best solution is
found during the ACO search. The procedure begins
with ACO sending out its ants to find solutions. At the
end of iteration, the iteration-best solution found will
trigger the LS handler. The EventController then hands
the search state to LS engine, which in turn improves
on the iteration-best solution. Once completed, the
EventController returns the enhanced solution to ACO
engine for pheromone trails update. This process
continues until a terminating criterion is reached.

Figure 1: Architecture of MDF.

3. Hybridization Schemes for TSP

We now show how MDF can be applied to
implement the hybridization schemes as proposed by
Lau et al. [12]. The authors introduce Hybrid Ants
System Tabu Search (HASTS) which has four different
derived models, namely Empowered Ants (HASTS-
EA), Intensification Exploitation (HASTS-IE),
Enhanced Diversification (HASTS-ED) and
Collaborative Coalition (HASTS-CC). Our objective is
to discover the effectiveness of each hybridized
schemes on TSP as well as the additional effort
required to build them from their pure schemes. In
addition, we also implement hyper-hybrids, which
combine two hybridized schemes. We found that these
hyper-hybrids improve the quality of result for most
cases and the additional development cost is relatively
trivial. This unlocks a potential area for creating
complex hybrids rapidly, yielding improvement to
previous results.

3.1. Strict Tabu Search (Pure TS)

There are currently various schemes for TS, such as
strict TS [8], reactive TS [2] and robust TS [19] and
for this illustration, we developed the strict TS. We
represent a tour or a Solution as a single dimension
array and the Move is a swap-edge operator that

exchanges two arbitrary edges in the tour. The function
of the Neighborhood Generator is then to generate the
list of possible swaps between the edges. The
Objective Function is simply to sum up the total
distance traveled. Two proprietary interfaces are
required to elicit the essence of tabu search; Tabu List
and Aspiration Criteria. In our case, we tabu the
swapped edges and apply a static tenure that is equal to
the instance size. The aspiration criterion is to override
the tabu status of a move if a better objective value is
found (see [8]).

3.2. Ants Colony Optimization (Pure AC)

We select ACO as our next hybridization candidate.
The algorithm is implemented with the settings as
proposed in [18]. An interesting observation is that the
development time is much less than expected due to
the code reuse from the strict TS. Solution and
Objective Function for example, has the same
formulation in both implementation, and hence can be
reused without any modification. In addition, both
ACO and strict TS use the same Solution interface and
this allows both engines to operate on the generated
solutions without further alteration. The Move operator
is used to incrementally add a new city to the solution
(which is initially empty) and the Neighborhood
Generator maintain a list of unvisited cities. A solution
is completely constructed when the Neighborhood
Generator could not construct new moves (i.e. the
unvisited list is empty). We are also required to
implement the ACO proprietary interfaces. The Local
Heuristic is function that computes the inverse of
length of the tour. The Pheromone Trail records on the
preferences of ants in following a route when visiting
the cities.

3.3. HASTS-EA (Empowered Ants)

This hybrid scheme is inspired from observing that
ACO cycle near optimal solutions due to the emphasis
on the strong pheromone trails. By empowering the
ants with memory (tabu list), it reduces the chances of
reconstructing the same solution. In short, ACO
optimizes the solution based on its pheromone trails as
a “preference” memory and reduces solution cycling
via the tabu list. Furthermore, tabu search can be
applied to modify the solutions radically, hence
encouraging exploration that helps to escape from
local optimality. The tabu list also eliminates the need
for local pheromone decay, which reduces one of the
parameters. To implement this strategy, the
Neighborhood Generator is modified to include a tabu

list as a handler, which records the solution made by
each ant in a single iteration. Subsequent ants in the
iteration will trigger an event to check with the handler
to prevent reconstruction of similar solutions.

3.4. HASTS-IE (Improved Exploitation)

This model is similar to ACO and LS hybrid [18],
except that TS is used in the place of LS. The function
of the embedded TS is to conduct intensification
search on each iteration best solution. This is achieved
by using TS to remove the crossings in the solution
found by ACO before updating the solution into the
pheromone trail. In addition, the memory in TS
prevents solution cycling, which results in a more
superior search than naïve local search. Consequently,
this improved tour will increase the probability of
finding a better solution by subsequent ants. In our
implementation, TS is applied adaptively by adjusting
the terminating criterion with respect to the number of
non-improving moves. An event is set to detect the
time when an iteration best solution is found. Before
the solution is updated into the pheromone trail, a
handler will apply TS to optimize the solution until it
reaches 100 non-improving moves.

3.5. HASTS-ED (Enhanced Diversification)

As TS suffers from local optimality, a diversification
strategy is to incorporate a diversifier (e.g. [13]). This
hybrid scheme uses ACO as a diversifier for TS.
Although there are many diversification schemes such
as random restart and probabilistic diversification [17],
the diversified solution is often poor. ACO provides a
remedy by reconstructing quality solutions. In our
implementation, we implement a counter event to
adaptively apply ants to diversify as a non-linear
function of non-improving moves. A recommended
function is to cumulatively increment the number of
non-improved move tolerated for every diversification
applied. The diversification technique is embedded
into the handler, which reconstructs the part of best-
found solution in TS using ACO.

3.6. HASTS-CC (Collaborative Coalition)

This scheme is a 2-phase approach between ACO
and TS, which offers the least coupling between the
two meta-heuristics. This scheme is inspired from the
observation that ACO works extremely well for the
constructing phase while TS is more suited for
optimizing the generated solutions. Such collaboration
exploits the natural heritage of each meta-heuristic.

This scheme is easily implemented by setting an event
to switch from ACO to TS when ACO has completed
its iterations.

3.7. Two Hyper Hybrid Models

In addition to the four hybrid schemes, we illustrate
the strengths of MDF in combining hybrid to form
hyper-hybrid. We introduce two hyper hybrid schemes,
HASTS-CCED and HASTS-IEEA. HASTS-CCED
replaces the TS in HASTS-CC to HASTS-ED. This
aims to enhance the optimizing phase. For HASTS-
IEEA, it fuses the tabu list strategy in HASTS-EA to
HASTS-IE, thus allowing HASTS-IE to develop a
more aggressive diversifying capability. HASTS-
CCED and HASTS-IEEA illustrates how hyper-
hybrids can be easily formed from previously
constructed hybrids when MDF is used. Initial
experimentation of has shown promising results for
these hyper hybrids with low additional development
cost.

4. Discussion of Results

We demonstrate experimentally the cost-
effectiveness of MDF in hybridization using the TSP
test problems obtained from TSPLIB [16]. The most
obvious and necessary incentive for using a framework
is cost-savings in development time. However, it is
difficult to measure accurately the amount of efforts
required due to the numerous affecting factors. As
such, we infer from the lines of codes to reveals at
least partially the programming efforts. We understand
that judging by the number of line of codes alone is
often inadequate to reflect the development time, as
some programmers are known to write condensed
codes. In addition, this metric only considers the
implementation time and not the validation time.
Intuitionally, if each hybrid scheme was developed
independently, they would be validated separately. An
implicit advantage of MDF is its capability to recycle
validated applications and hence it could save
considerable resources especially in complex software
such as meta-heuristic hybridization. Unfortunately,
this validating cost as well as other development costs
could not be easily recorded and we present in Figure
2 the lines of development codes as an informal
representation of the developmental efforts. From the
comparison, it is apparent that developing strict TS and
ACO requires less effort than to build from scratch.
The large amount of codes in MDF and the relatively
smaller additional codes to formulate TSP, strongly
suggests that MDF provides the bulk of the

implementation. Consequently, this implies that MDF
has a strong software reuse capability that could
greatly abate development time, satisfying the
primarily motive of the framework.

 Figure 2: Comparison of development costs

To compare the effectiveness, all test cases are run
for different hybrids on an Athlon XP 3200+ processor
with 512MB of memory, and the results are taken after
90 seconds, independent of the instance size. We
examine the result of KROA150 as an example.

 Figure 3: Result of test case KROA150.

We observed that Pure TS converged faster then Pure
AC. However the solution quality of TS stops
improving at around 10 seconds while Pure AC
continued to improve on its solution. HASTS-CC,
HASTS-ED and HASTS-CCED produced the same
result at 90 seconds although HASTS-ED converged

the fastest. Although HASTS-CCED appeared to be
slowest to reach the local optimum, we observe a rapid
improvement from 22nd sec to the 26th sec. The winner
of this instance is HASTS-IEEA where the local
optimum is reached at 88 seconds. HASTS-EA has the
weakest result showing the unsuitability of the scheme
in this instance. An addition of another 15 test cases
from the TSPLIB is recorded in Figure 4. The “Bound”
column shows the best-published results to date. Each
column gives the percentage gap as benchmarked
against the best-published results. In summary, the
table shows that HASTS-IEEA produces the best
results and has the best standard deviation. Although it
is not conclusive, we have a strong belief that hybrids
(and hyper-hybrids) usually out-perform their parents.
With MDF, complex hybridized schemes are now
possible to be developed in much less development
time, allowing complex hybridization to become a
practical solution for algorithm improvement.

5. Conclusion

MDF speeds up the development of new and
hybridized meta-heuristics. It also provides a level-
playing field for experimental benchmarking of algo-
rithms. In future, MDF will be enhanced with higher
level of genericity and robustness.

6. References

[1] Ahuja, R. K., Jha K. C., Orlin J. B. and Sharma D.,

Very Large-Scale Neighborhood Search for the
Quadratic Assignment Problem, MIT Sloan School of
Management Working Paper, 2003.

[2] Battiti, R. and Tecchiolli, G. 1994. The reactive tabu
search. ORSA Journal on Computing, 6:2, 126-140.

[3] Bent, R. and Van Hentenryck, P. 2001. A two stage
hybrid local search for the vehicle routing problem with
time windows, Technical Report, CS-01-06, Dept. of
Computer Science, Brown University.

[4] Blum, C. and Roli, A. 2003. Metaheuristics in
Combinatorial Optimization: Overview and Conceptual
Comparison. ACM Computing Survey, 35:3, 268-308.

[5] Dorigo, M. and Di Caro, G. 1999. The Ant Colony
Optimization Meta-Heuristic. Readings, New Ideas in
Optimization: McGraw-Hill, 11-32.

[6] Fink, A. and Voß, S. 2002. HotFrame: A Heuristic
Optimization Framework. Readings, In Optimization
Software Class Libraries: Kluwer, Boston, 81-154.

[7] Di Gaspero, L. and Schaerf, A. 2001. EASYLOCAL++:
an object-oriented framework for the flexible design of
local search algorithms and metaheuristics. In
Proceedings of the 4th Metaheuristics International
Conference.

[8] Glover, F. and Laguna, M. 1997. Tabu Search.
Readings, Tabu Search: Kluwer Academic Publishers.

[9] Harder, R. 2001. IBM OpenTS website:
http://opents.iharder.net

[10] Joslin, D. E. and Clements, D. P. 1999. Squeaky wheel
optimization. In Proceedings of the 15th American
Association for Artificial Intelligence.

[11] Lau, H. C., Wan, W. C, and Jia, X. 2003. Generic
Object-Oriented Tabu Search Framework. In
Proceedings of the 5th Metaheuristics International
Conference.

[12] Lau, H. C, Lim, M. K, Wan, W. C, Wang, H and Wu,
X. 2003. Solving Multi-Objective Multi-Constrained
Optimization Problems using Hybrid Ants System and
Tabu Search. In Proceedings of the 5th Metaheuristics
International Conference.

[13] Li, H. and Lim, A. 2001. A Metaheuristic for the Pickup
and Delivery Problem with Time Windows. In
Proceedings of International Conference on Tools with
Artificial Intelligence.

[14] Michel, L. and Van Hentenryck, P. 2001. Localizer++:
An Open Library for Local Search, Technical Report,
CS-01-03, Brown University

Figure 4: Tabulation of TSP results.

[15] Parsopoulos, K. E. and Vrahatis, M. N. 2002. Particle
Swarm Optimization Method for Constrained
Optimization Problems. Readings, Intelligent
Technologies - Theory and Applications: New Trends in
Intelligent Technologies: IOS Press, 214-220.

[16] Reinelt, G. 1991. TSPLIB - A Traveling Salesman
Problem Library. ORSA Journal on Computing 3, 376-
384

[17] Rochat, Y. and Taillard, E. 1995. Probabilistic
Diversification And Intensification In Local Search For
Vehicle Routing. Journal of Heuristics, 1, 147-167.

[18] Stützle, T. and Dorigo, M. 1999. ACO Algorithms for
the Traveling Salesman Problem. Readings,
Evolutionary Algorithms in Engineering and Computer
Science, Wiley.

[19] Taillard, E. 1991. Robust Tabu Search for the Quadratic
Assignment Problem. Parallel Computing, 17, 443-455.

http://opents.iharder.net/

	A Development Framework for Rapid Metaheuristics Hybridization
	Citation

	1. Introduction
	2. MDF Architecture
	2.1. Hybridization

	3. Hybridization Schemes for TSP
	3.1. Strict Tabu Search (Pure TS)
	3.2. Ants Colony Optimization (Pure AC)
	3.3. HASTS-EA (Empowered Ants)
	3.4. HASTS-IE (Improved Exploitation)
	3.5. HASTS-ED (Enhanced Diversification)
	3.6. HASTS-CC (Collaborative Coalition)
	3.7. Two Hyper Hybrid Models

	4. Discussion of Results
	5. Conclusion
	6. References

