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Combining Two Heuristics to Solve a Supply Chain
Optimization Problem
Hoong Chuin LAU 1 and Yuyue SONG 2

Abstract. In this paper, we consider a real-life supply chain opti-
mization problem concerned with supplying a product from multiple
warehouses to multiple geographically dispersed retailers. Each re-
tailer faces a deterministic and period-dependent demand over some
finite planning horizon. The demand of each retailer is satisfied by
the supply from some predetermined warehouse through a fleet of
vehicles which are only available within certain time windows at
each period. Our goal is to identify a combined inventory and rout-
ing schedule such that the system-wide total cost over the planning
horizon is minimised. This problem in essence is an amalgamation of
two classical NP-hard optimizatin problems: the Dynamic Lotsizing
problem and the Vehicle Routing problem. In this paper, we propose
an efficient rolling horizon heuristic that combines two heuristics to
solve this problem. Numerical experiment results show that our ap-
proach can achieve, on average, within 10% of the lower-bound pro-
posed by Chan, Federgruen and Simchi-Levi (1998) for some spe-
cific instances generated from Solomon benchmarks.

Key Words: Meta-Heuristics, Planning, Scheduling, Search.

1 Introduction

Consider a logistics system consisting of multiple warehouses and
multiple geographically dispersed retailers. Each retailer faces a de-
terministic and period-dependent demand over a finite planning hori-
zon that must be fulfilled by the supply from a predetermined ware-
house through a fleet of vehicles. Under supply chain management
philosophy, these supply activities should be co-ordinated in order
to exploit economies of scale and other benefits arising from supply
chain integration. Hence, the goal is to identify a combined inven-
tory and routing strategy such that the system-wide total cost over
the planning horizon is minimised. The replenishment for each re-
tailer at each period includes two activities: pickup from the pre-
determined warehouse and delivery to the retailer. These two ac-
tivities must be performed within certain time windows, and incur
a warehouse-specific pickup service duration and a retailer-specific
delivery service duration. There is a fixed number of capacitated
vehicles available within certain time window at each period. The
maximum available supply that can be provided by each warehouse
at the beginning of each period is known. Note that the demands
of some retailers at certain period may exceed this supply quantity,
hence shortage (backlogging) is possible for some retailers. The cost
of a route consists of a fixed component and a component which is
proportional with the total travelling distance. The inventory cost at
each retailer includes (a) a retailer-specific fixed service cost for each
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replenishment, and (b) the holding or shortage cost, which is propor-
tional with the stock level.

This problem, which we call the multi-warehoue multi-retailer
distribution problem (MMDP), is essentially an amalgamation of
two classical optimization problems: dynamic capacitated lot-sizing
problem [Florian at al. (1980)] and vehicle routing problem with
time-windows (VRPTW) [Solomon (1987)], both of which are NP-
hard. MMDP is a generalisation of the classical Inventory Routing
Problem (IRP) in logistics management. For a survey on inventory-
routing problems, the reader may refer to Federgruen and Simchi-
Levi (1995). In Campbell et al. (1998), a simplified version of IRP
was considered. Even for that problem, the authors, who proposed
an integer programming approach, reported that ”This model is not
very practical for two reasons: the huge number of possible deliv-
ery routes, and although to a lesser extent, the length of the planning
horizon. To make this integer program computationally tractable, we
only consider a small (but good) set of routes and aggregate time pe-
riods towards the end of the planning horizon.” Hence, even for small
instances of IRP, the resulting mathematical program can be huge.

To our knowledge, a logistics problem as complicated as MMDP
has not been extensively studied and much less experimented in the
literature. In this paper, we propose a very simple yet effective rolling
horizon heuristic for solving MMDP. This heuristic can be regarded
as a meta-heuristic, in the sense that it incorporates two classical
heuristics, and guides them in a novel way that makes it an effec-
tive approach for MMDP. These classical heuristics are good candi-
dates because they have proven to work well in industry for solv-
ing classical inventory and routing problems. It turns out that by
extending these classical heuristics slightly to take all our problem
constraints into consideration, and by embedding them within our
proposed meta-heuristic, the resulting approach is intuitive, easy to
implement, and produces good solutions! Experimental results show
that our approach can achieve, on average, within 10% of the lower-
bound proposed by Chan, Federgruen and Simchi-Levi (1998) for
some IRP instances generated from Solomon benchmarks [Solomon
(1987)]. It also solves large-scale MMDP problems that we gener-
ated very quickly and effectively.

2 Literature Review and Notations

The one-warehouse multi-retailer distribution problem was first in-
troduced by Anily and Federgruen (1990). The authors restricted
their analysis to a class of replenishment strategies in which their
regional partitioning scheme is asymptotically optimal. Subsequent
works were restricted to other classes of strategies. Gallego and
Simchi-Levi (1990) proved that Direct Shipping Strategies are within
6% of optimality under some assumptions. Herer and Roundy (1997)



as well as Viswanathan and Mathur (1997) showed a good empir-
ical performance for the so-called power-of-two strategies. Under
this policy each retailer is replenished at constant intervals which are
power of two multiples of a common base planning period. Chan,
Federgruen and Simchi-Levi (1998) showed the effectiveness of the
class of so-called Fixed-Partitioning policy under similar assump-
tions stated in Anily and Federgruen (1990). They observed that the
solutions generated by their approach are relatively close to the lower
bound: the optimality gap with respect to the lower bound is always
less than 16% and in most cases no more than 10% for a set of ran-
domly generated problems.

As far as heuristic approaches are concerned, Campbell et al.
(2001) recently proposed a two-phase solution approach. In the first
phase, they determine which customers receive a delivery on each
day of the planning period and on the size of the deliveries. In the
second phase, they determine the actual delivery routes and sched-
ules for each of the day.

The majority of the literature is related to the deterministic mod-
els such as the research works listed above. Dynamic and stochastic
models are very difficult to solve in general. In early works, the plan-
ning horizon for these models is only one day or a very short horizon,
such as the works of Federgruen and Zipkin (1984), Golden, Assad,
and Dahl (1984), Chien, Balakrishnan, and Wong (1989), Dror and
Ball (1987). The approaches differ mainly in how they decide which
customers to include, taking the short-term decisions into account.
Minkov (1993) and Kleywegt et al. (1997) formulate the inventory
routing problem as a Markov decision process.

Most of the research in the literature to date assume that the under-
lying routing subproblem is a pure vehicle routing problem. But in
the real life, the routing subproblem of some multi-warehouse multi-
retailer distribution systems is a pick up and delivery problem with
time window constraints.

In this paper, we assume that one unit of any product consumes
one unit capacity of each vehicle, and the cost per unit distance
travelled equal 1. We also assume warehouses have infinite supply
capacity (which can be easily relaxed under our model). We denote
the multiple retailers as r1, r2, : : :, rI , and the vehicles as v1, v2,
: : :, vL. The following inputs and their notations are used:
H: finite planning horizon, i:e, 1 � t � H

dit: demand for retailer ri in period t
hit: unit holding cost of retailer ri in period t
bit: unit shortage cost of retailer ri in period t
Kit: fixed replenishment service cost of retailer ri in period t
Sl: fixed service cost incurred each time vehicle vl is used
Ujt: maximum available supply at warehouse wj in period t
uit: inventory capacity of retailer ri in period t
Cl: capacity of vehicle vl

MMDP seeks to find a combined inventory and routing plan that
minimizes the sum of holding costs, shortage costs, service costs,
and routing costs subject to demands, inventory capacity and vehicle
capacity constraints.

3 Proposed Solution

The core issues in MMDP are inventory allocation and vehicle route
sequencing. These two activities are interrelated in the following
way. In order to determine which retailer should be serviced and the
amount to be delivered to each retailer in each period, we need the
feasibility and cost associated with routing the vehicles. On the other
hand, the routing cost and feasibility can only be determined if we

have decided on the selected retailers and the delivery quantities in
each period.

The basic idea behind our rolling horizon heuristic is that we first
solve the inventory allocation, followed by the vehicle routing prob-
lem. We then in turn use the routing cost information of each vehicle
to adjust the delivery quantities for all retailers and resolve the ve-
hicle routing problem. We will repeat this process period by period
from the first period until the end of the planning horizon.

Before we present the detailed description of our approach, we
first discuss two related problems: the dynamic lot sizing problem
with backlogging and capacity constraints, and the vehicle routing
problem for pickup and delivery with time window constraint.

3.1 Dynamic Lot Sizing Problem

For any fixed retailer ri, we can formulate a dynamic lot sizing
problem. For simplicity, we drop the index i, i.e. for any period
t(1 � t � H), dt, ht, bt, Kt and ut, denote the quantities described
above respectively.

Lot sizing is essentially the problem of balancing the fixed replen-
ishment costs with the inventory holding costs. The decision to be
made is what quantity should be ordered at the beginning of each
period. The notations and assumptions used in the description of the
dynamic lot sizing problem are summarised as follows. All ordering
and demands occur at the beginning of each period and the inventory
cost is charged according to the inventory level at the end of each
period.

Let qt denote the order quantity in period t. Let initInvt and invt
be the inventory level at the beginning and end of period t respec-
tively. Clearly, invt is equal to initInvt � dt + qt. For any period
t(> 1), it is clear that initInvt is equal to invt�1 .

Our heuristic approach to this problem is a modification of the
classical Silver-Meal Heuristic due to Silver and Meal (1973), taking
inventory capacity and backlogging cost into consideration. Without
loss of generality, in the following, we are only concerned with the
computation of q1. Computing other quantities qt can be done by
calling this heuristic iteratively. Let �t denote the current average
period cost with respect to q1, which is the total cost incurred from
periods 1 to t by ordering q1 units at the beginning of period 1
divided by t, i.e., �t = 1

t
(K1Æ(q1) +

Pt

l=1
(hlinvl + bl
l) where:

Æ(q1) = 1 if q1 > 0 and 0 otherwise; and 
l = dl � initInvl if
initInvl < dl and 0 otherwise. We say that di can be covered by
q1 iff 0 � (initInv1+q1)+di�

Pt

l=1
dl � ut for all t(1 � t � i).

Modified Silver-Meal Heuristic:

1. Initialisation.

(a). Initialize q1 = 0.

(b). Determine the maximum value � such that d1 can be covered
by q1.

(c). If � > 0, then compute �1. Update invt from 1 to T . Set
q1 = q1 +�.

(d). Else STOP.

2. For period t = 2 to H , do the following:

(a). Determine the maximum value � such that dt can be covered
by q1.

(b). If � > 0, then compute �t, else STOP.

(c). If �t < �t�1, then update invt from 1 to T and set q1 =
q1 +�. Otherwise, STOP.



3.2 Pickup and Delivery Problem

The routing problem arising in MMDP is a pickup and delivery prob-
lem with time windows (PDPTW). The objective is to construct a set
of routes for a fleet of vehicles which services a set of customers with
known demands and time windows. The objective is to minimize the
routing cost, defined by the sum of fixed service costs due to vehicle
usage (i.e. Sl’s) and the travel costs (which is assumed to be total dis-
tance travelled). Each vehicle starts and ends at a given location. Each
customer possesses an original location (pickup location), a destina-
tion location (delivery location), a pickup time window, a delivery
time window, a pickup service duration, and a delivery service dura-
tion. The pickup (resp. delivery) service of a customer can only be-
gin within the pickup (resp. delivery) time window. Each route must
satisfy the pairing constraint, since the corresponding pickup and de-
livery locations must be serviced by the same vehicle. The quantity
of the demand at the pickup location is positive, but the quantity of
the demand at the delivery location is negative. For example, if the
size of the pickup job is +d, the size of the delivery job should be
�d. When a vehicle services a pickup job, its load is increased by
the job load. When it services a delivery job, its load is reduced by
that amount. The load of each vehicle l at any time cannot exceed the
vehicle capacity (Cl).

Most of the literature on pickup and delivery problems focus on
the dial-a-ride problem (DARP). The size of the job in DARP is 1
at the pickup location and �1 at the delivery location. Hence it can
be regarded as a special case of PDPTW. We propose the following
two-phase heuristic for solving PDPTW. In phase 1, we apply an in-
sertion heuristic to construct an initial solution, which is improved
via a greedy local improvement method in phase 2. Conceivably,
our proposed heuristic may be improved using more powerful search
strategies such as tabu search. However, in this paper, our purpose is
not to propose a new algorithm to solve PDPTW per se, but rather to
investigate the effectiveness of combining heuristics to solve a more
complex problem.

Define the insertion cost of a pickup job to be inserted at a
specified location on a vehicle as follows. Fix the pickup job at that
specified location and insert the corresponding delivery job after
the pickup job at the position that minimizes the resulting routing
cost while preserving feasibility. If found, the insertion cost is the
resulting cost minus the old routing cost; otherwise, it is set to
infinity.

Insertion Heuristic for PDPTW

1. Initialisation: the unassigned pool consists of the set of all unas-
signed pickup jobs. The route of each vehicle is empty. Let the
insertion cost of the best insertion move be infinity.

2. If the unassigned pool is empty, then STOP.
3. For each unassigned pickup job and each insertion position on

each vehicle, compute the insertion cost. If it is smaller than the
insertion cost of the best insertion move, update the best insertion
move.

4. If the insertion cost of the best insertion move is not infinity, we
insert the corresponding pickup and delivery job pair, delete this
pickup job from the unassigned pool, and let the insertion cost of
the best insertion move be infinity. Otherwise, STOP.

5. Goto Step 2.

By using the above Insertion Heuristic, we obtain an initial so-
lution. We apply the following Greedy Improvement Heuristic for
PDPTW to improve the quality of the initial solution.

There are two basic move operations in our Greedy Improvement
Heuristic: the relocate operation and the exchange operation.

The relocate operation involves a pickup and delivery job pair
(PJ1; DJ1) on vehicle v1, the current insertion position l1 of PJ1,
and the one possible insertion position l2 of PJ1 on vehicle v2(6=
v1). Notice that both pickup and delivery jobs are removed from v1

and inserted into v2. The cost of a relocate operation is the increase in
the routing cost due to the operation. If the new routes are not feasi-
ble with respect to the vehicle capacity and time window constraints,
the cost is set to infinity.

The exchange operation involves two pickup and delivery job
pairs (PJ1; DJ1) on vehicle v1 and (PJ2; DJ2) on v2(6= v1), and
the insertion positions l1 of PJ1 and l2 of PJ2. In this operation,
we remove PJ1 from v1 and PJ2 from vehicle v2 and then insert
PJ1 to the position l2 on v2 and PJ2 to the position l1 on v1. The
cost of a exchange operation is the increase in the routing cost due
to the operation. If the new routes are not feasible with respect to
the vehicle capacity and time window constraints, the cost is set to
infinity.

Greedy Improvement Heuristic for PDPTW

1. Input the initial solution generated by the Insertion Heuristic.
2. Find the operation with the minimal cost among all possible relo-

cate and exchange operations.
3. If this minimal cost is positive, then STOP. Otherwise, execute the

corresponding operation and goto Step 2.

3.3 Rolling Horizon Heuristic

Based on the two heuristics described above for solving the dynamic
lot sizing problem and the pick up and delivery problem with time
windows respectively, we propose the following meta-heuristic for
solving MMDP. These two heuristics are treated as black boxes and
called in the following Rolling Horizon Heuristic.

After the determination of the delivery quantity to all retailers by
calling the Modified Silver-Meal Heuristic at the beginning of certain
period t, we need to check whether the maximum available supply at
each warehouse (i.e. Ujt)is sufficient to satisfy the delivery quan-
tity to all related retailers. If it cannot be satisfied, we first sort all
related retailers according to their respective distances to the ware-
house. We then delete the delivery jobs that are furthest from the
warehouse until the maximum available supply can satisfy the total
delivery quantity from this warehouse in period t.

We then construct the routes for period t by calling the Inser-
tion Heuristic and Greedy Improvement Heuristic. As there are fixed
number of vehicles available at each period, some pickup and deliv-
ery job pairs may not be serviced. All these unserved jobs are deleted.
For all served jobs, in order to balance the routing cost and the inven-
tory cost, we readjust the delivery quantity for all related retailers at
the beginning of certain period t by using the routing cost informa-
tion, computed as follows.

For each vehicle v used, let the Hamiltonian cost covering the
pickup locations and delivery locations on the corresponding route
be Lv . We regard �Lv as the additional fixed service cost for all re-
tailers R(v) serviced by vehicle v in period t, where the � is a small
positive parameter (0 � � � 1:5). The delivery quantity for each re-
tailer in R(v) will cover the demands for some periods from period
t onward. We randomly select one retailer from R(v) with the mini-
mal value of the number of covered periods by the delivery quantity
to this retailer and adjust the delivery quantity to this retailer by cov-



ering one more period, repeat this process for R(v) whenever the
total increased holding cost is less than �Lv .

In the following Rolling Horizon Heuristic, we will generate 30
solutions for each instance by varying the value of � from 0 to 1.5
incremented by L = 0:05 for each iteration.

Rolling Horizon Heuristic:

1. Initialisation: Let � = 0:0 and L = 0:05. Let the planning hori-
zon be H periods.

2. While � � 1:5 do the following:

2.1 For period t = 1 to H , do:

(a) Determine the delivery quantity to each retailer in period t

using the Modified Silver-Meal Heuristic.
(b) Construct vehicle routes to service these retailers using the

Insertion Heuristic and Greedy Improvement Heuristic.
(c) Adjust the delivery quantity to each retailer in period t by

using the routing cost information and �.
(d) Update the inventory and initial inventory for all retailers

from period t to period H .

2.2 Set � = �+ L.

3. Choose the best solution among the solutions generated in Step 2.

4 Numerical Experiments

In this section, we report numerical experiments conducted to verify
our proposed method. For all experiments described in this section,
we let the number of warehouses and retailers to be 1 and 100 re-
spectively. The planning horizon H = 5. We assume that the length
of each period is 1. Hence there are 5 periods.

4.1 MMDP Problems

We generated MMDP test instances based on the generalization of
Solomon benchmark VRPTW problems, described as follows. The
locations, time windows, demands and service durations of retailers
are exactly the same as the customer data in the Solomon test cases.
We set the holding cost and backlogging cost for all retailers at all
periods to be 1 and 10, respectively. We set the inventory capacity of
all retailers at all periods are to infinity. Likewise, for the single ware-
house, the location and the time windows for all periods are the same
as the location and the time window of the depot. The maximum
available supply at each period is set to infinity. Hence the pickup
location for any retailer is the location of the single warehouse. The
vehicle information at each period is the same as the vehicle infor-
mation in the Solomon test cases.

For each instance, we obtained 30 solutions by varying the value
of �(0 � � � 1:5). Due to space constraints, we will show sam-
ple experimental runs for C101, R101 and RC101. Figures 1 to 3
show the objective value (i.e. total cost) obtained by varying the val-
ues of �. As shown in the figures, we observe that for random and
semi-random instances (R101 and RC101), the value of � affects the
quality of the solution, although this cannot be generally said of the
C instances. We also observed similar behavior patterns in other R, C
and RC generalized Solomon instances. Hence, there is no particular
value of � that will work well for all instances, whether for R or RC
test cases. For C test cases, experiments reveal that setting � = 0
almost always produces the best solution.

Figure 1. Results of C101 instance

Figure 2. Results of R101 instance

Figure 3. Results of RC101 instance



4.2 Problems with Known Lower Bounds

In this subsection, we consider a special case of the MMDP problem
which was studied in Chan, Federgruen and Simchi-Levi (1998) (ab-
brev. CFS). Our purpose is to compare the objective values obtained
by our approach against the lower bound proposed in CFS. In order
for the lower bound proposed in CFS to be still valid, we need to
make the following modifications to the problem instances.

1. In CFS, each retailer faces a constant demand rate, which is a
special case of MMDP achieved by setting all period-dependent
demands for each retailer to be equal.

2. Since demands are constant over time, there is no difference be-
tween the infinite horizon considered in CFS and the fixed plan-
ning horizon considered in this paper.

3. In CFS, backorders are not allowed, which can be emulated in
MMDP by setting the unit shortage costs to be a large constant.

4. In accordance with CFS, we set the holding cost per unit time h =
6 for all retailers and periods, the routing cost per unit distance to
be 1, and the fixed service cost for all vehicles to be equal.

All other parameter values are the same as the experimental setup
described in the above sub-section.

Notice that since the holding cost is much larger than the routing
cost, the parameter � has no effect on improving the quality of the
solutions. Hence, for the experiments in this section, we conveniently
use � = 0.

The lower bound B
� obtained in CFS is given as follows. Let C

be the identical vehicle capacity and the S be the fixed service cost
of each used vehicle. Let Di be the demand rate for retailer ri and li
be the distance between the retailer ri (1 � i � 100) and the ware-
house. Then, B� = H

P100

i=1
[Di(2li+S)

C
+ hDi

2
]. For the planning

period H = 5, the values of the lower bound (B�) and the corre-
sponding values of our solutions (ZH ) are compared in Table 2.

Table 2. Our Cost ZH over the Lower Bound B�

ZH B
� ZH

B�

C101 32529.7 29901.1 1.08791
C201 30352.4 27946.1 1.08611
R101 26579.6 23715.5 1.12077
R201 25465.5 22239.1 1.14508
RC101 31480.6 28820.3 1.09231
RC201 29514.2 26452.1 1.11576

From Table 2, we observe that the quality of the solutions gener-
ated by our approach is very promising. It is on average within 10%
of the lower bound proposed by CFS.

5 Conclusion

In this paper, we presented a realistic model for managing a complex
supply chain optimization problem involving inventory and route
scheduling over multiple warehouses, multiple retailers and time-
dependent demands. The underlying routing problem we considered
is the pickup and delivery problem with time window constraints,
which is more realistic yet much more computationally challenging.
We proposed an efficient meta-heuristic based on combining known
heuristics. The key feature of this heuristic is that in order to balance
the routing and inventory costs, we use the Hamiltonian cost related
to each vehicle to adjust the delivery quantities for the retailers. Ex-
perimentally, we observed that this adjustment process can generate

a better solution for some test cases. In order to verify the quality of
the generated solutions, we performed further numerical experiments
for cases where there are known lower bounds. The solutions gener-
ated by our approach have objective values which are within 10%
on average of the lower bounds proposed by Chan, Federgruen, and
Simchi-Levi (1998).

In this paper, we used the same parameter � for all routes in all
periods during each iteration. What we believe could be promising
in obtaining better solutions is to use different parameters � for dif-
ferent routes in each iteration. Moreover, by using the routing cost
information, perhaps a different process (compared to ours) can be
used to adjust the delivery quantity for all retailers at a certain pe-
riod. These ideas require more analysis and extensive numerical ex-
perimentation.

The main purpose for using the Solomon test cases to generate
instances of MMDP is so that these instances can be generated by
others for the purpose of comparison with our results. These in-
stances can foreseeably evolve into benchmark problem instances for
MMDP.
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